• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light

    2023-10-11 07:56:40JianZhou周建ChangguiGu顧長(zhǎng)貴YuxuanSong宋雨軒andYanXu許艷
    Chinese Physics B 2023年9期

    Jian Zhou(周建), Changgui Gu(顧長(zhǎng)貴), Yuxuan Song(宋雨軒), and Yan Xu(許艷)

    Business School,University of Shanghai for Science and Technology,Shanghai 200093,China

    Keywords: circadian rhythm,light sensitivity,heterogeneous network,free running period

    1.Introduction

    Circadian rhythms are orchestrated by an endogenous biological clock which synchronizes the behavioral and physiological activities of living beings to the natural light-dark cycle.[1–4]Interestingly, even in the absence of an external light-dark cycle or environmental time cue, living beings can also sustain a robust rhythm with an endogenous period of approximation but not exact 24 h.[5–7]The endogenous period in constant condition,such as under constant light or under constant darkness, is called the free running period (FRP).[8–10]The length of the FRP varies under different conditions.[2,5]For example, the FRP length is smaller in the aging animals than the young animals under constant darkness,and the FRP length increases with the increase of the light intensity when exposed to constant light.[11,12]

    In mammals, this endogenous clock is situated in the suprachiasmatic nucleus (SCN) in the anterior hypothalamus of the brain.[13]The SCN contains approximately 20000 selfoscillating neuronal oscillators with periods around 24 h.[14]The self-oscillating process of the SCN individual neurons is accomplished through a transcription-translation feedback loop composed of several key genes, such asPer,Cry,clock,andBmal1.[15]At the cellular level,the SCN neurons can display second-scale firing rhythms.The firing frequency of the SCN neurons is regulated by the genetic feedback loop.[16–18]In turn,the SCN neuron electrical activity affects the circadian oscillation properties of the genetic feedback loop, such as period, amplitude, and phase.[19–21]The interaction between electrical activity and feedback loop differs significantly from previous neuron models, such as the Hodgkin–Huxley model and the Mihalas–Niebur model.[22]The SCN neurons are nonidentical and express different intrinsic periods from the range of 22 h to 28 h.[2,6]The output of a robust rhythm with a uniform circadian period for these nonidentical neurons implies that the SCN neurons are well synchronized to form a network.[1,23,24]The cellular couplings play a key role in the synchronization,which are mainly through neurotransmitters,e.g., vasoactive intestinal polypeptide, arginine vasopressin,and gamma-aminobutyric acid.[25–27]

    Although the exact topology of the SCN network has not been revealed, the SCN network is considered to be heterogenous.[28–30]Based on the heterogenous functions and network characteristic,it can be distinguished into two distinct subnetworks,including a ventrolateral(VL)part composed of about 25% SCN neurons and a dorsomedial (DM) part composed of rest SCN neurons.[31,32]The VL neurons are regarded as the hubs because the links of the VL neurons are much more than those of the DM neurons.[33–35]Additionally,the VL and the DM neurons have heterogenous characteristics in terms of the light sensitivity.[36–38]Early studies found that the VL neurons are directly sensitive to the light information originating from intrinsically photosensitive retinal ganglion cells through the retino-hypothalamic tract,and relay the information to the DM neurons.In contrast, the DM neurons are insensitive to the light information.[31,32,39]Recent studies found that both the VL and DM neurons are sensitive to light,but the sensitivity for the DM neurons are much smaller than that for the VL neurons.[36,37]Therefore, the sensitivity to light for the neurons and the number of links for the neurons are positively correlated.

    In this article, we examine whether the FRP is affected by the SCN network structure based on a Poincaré model exposed to constant light.Four typical network structures are considered, including a nearest-neighbor coupled network, a Newman–Watts (NW) small world network,[40,41]an Erd¨os–Rényi(ER)random network,[42]and a Barab′asi–Albert(BA)scale free network.[43]The rest of this article is organized as follows.In Section 2,the Poincaré model is introduced to simulate an SCN network exposed to constant light.In Section 3,we present the simulation results of the effects of the SCN network structures on the FRP.In Section 4,the analytical results are presented.Finally, the conclusion and discussion are included in Section 5.

    2.Description of the Poincaré model

    In the field of circadian rhythms,two major types of models are predominantly used to describe the collective behavior of the SCN oscillatory networks, namely biochemical models, such as the Goodwin model,[44]and phenomenological models, such as the Kuramoto model[18]and the Poincaré model.[45–47]The Goodwin model describes the oscillator in terms of a genetic feedback loop,whereas the Poincaré model mimics the oscillator by a more general description.The results obtained from the latter are general enough to apply to synchronous rhythms generated by a single cell or coupled oscillators.[48]Furthermore,the analytical calculation of the Poincaré oscillator is straightforward.Thus, the Poincaré model,containing both phase and amplitude information,was utilized for numerical simulations and theoretical analysis.Each oscillator is modeled by two variablesxandy.The SCN network is coupled or linked through a local mean field of neurotransmitters.[49,50]Therefore,the model composed ofNoscillators exposed to the constant light reads

    where the subscriptidenotes thei-th neuronal oscillator; the parametersγ,a, andτrepresent the relaxation parameter, intrinsic amplitude, and intrinsic period of the individual oscillator,respectively;μirepresents the dispersed intrinsic period for the individual oscillators which satisfies a normal distribution with the mean equal to 1 and the standard deviationσ.GFidescribes the local field term among the coupled neuronal oscillators,in which the parameterGrepresents the cellular coupling strength andFiis the local mean field.[34,48,51]The value ofFiis the mean value of the variablexover neighbors of theith node.The network structure of the SCN can be described by an adjacent matrixAN×N, whose elementAijis 1 when nodeiand nodejare connected, and otherwiseAij=0.Notably,the neuron oscillatoriis connected to itself here.The strength of circadian rhythms of the SCN network can be described by the synchronization degreeRof neuronal oscillators.The synchronization degreeRof the SCN neuronal oscillators can be expressed over time as follows:

    The light termLiis equal toliL,whereLis the constant light intensity andliis the sensitivity of the SCN neurons to light information.Because the SCN neurons exhibit heterogeneity in light sensitivity, i.e., the VL neurons are much more sensitive to the light-information than the DM neurons,[36,37]and the links in VL neurons are denser than those in DM neurons.[34,35]Thus, there is positive correlation between the node degree and the sensitivity, we setli=di/D,i=1,2,...,N,withdidenoting the degree of nodei,i.e.,the number ofi’s neighbors.Dis the average node degree of the SCN network,which is equal toAccordingly,Ldi/Ddescribes the input of the light information depending on the node degree.

    In the present study, we use the fourth-order Runge–Kutta method for the numerical simulations with time steps of 0.01 h.The initial 5×106steps(5×104h)are neglected to avoid the influence of transients and the next 1×105steps(1×103h) are selected.The initial values ofxandyare chosen randomly from a uniform distribution in the range(0,1) for each oscillator.Without special statement, we setγ=0.5,a=1,G=0.2,L=0.1, andτ=24,[32,48,52,53]and the standard deviation isσ=0, the total number of neurons isN=1000, and the each numerical simulation is averaged over 20 results to avoid the effects of randomness in network generations.

    3.Numerical results

    An illustrative example to examine the effect of the network topology of the SCN neurons on the FRP is shown in Fig.1,when exposed to constant light.In particular,the temporal evolutions of five randomly chosen oscillators are presented in the nearest-neighbor network (a), the NW network(b), the ER network (c), and the BA network (d).The value of the average node degree is selected to beD=10 for all the networks.The temporal evolutions of the five oscillators are highly synchronized and exhibit robust circadian rhythms in each panel(a)–(d), indicating that their periods are the same.The FRP is 27.97 h,28.31 h,28.59 h and 29.71 h,respectively,and the synchronization degree isR=1,0.99,0.97,and 0.88 for (a)–(d), respectivley.Therefore, the FRP in the BA network is longer than the other networks.Meanwhile,the value ofRis close to 1 within each panel, indicating that the SCN neurons are highly synchronized.R ≈1 agrees that thexvalues of the oscillators are almost equal within each network,i.e., the temporal evolutions of the SCN neuronal oscillators are almost identical within each network in Fig.1.

    Fig.1.The temporal evolutions of the neuronal oscillators are affected by the SCN network structure under constant light.The evolutions of five oscillators are randomly chosen from the nearest-neighbor network(a),the NW network(b),the ER network(c),and the BA network(d).The average node degree is D=10 for all the networks.The peak of one randomly selected oscillator is indicated by a black solid line, accordingly,the length of the FRP is the interval between two consistent solid lines.

    We next examine the effects of the SCN network structure on the FRP for the selected values of the average node degreeDin Fig.2.It is obvious that the relationship between the FRP andDdiffers in different networks,i.e.,the FRP is the longest in the BA network among the four networks for a focused value ofD.With the increase ofD,the FRP slightly decreases within each network.Figure 3 shows the relationships between the synchronization degreeRand the average node degreeDfor each network.The synchronization degreeRis around 0.9 in the BA network, and 1 in the nearest-neighbor network, the NW network or the ER network, whenDgoes from 10 to 50.Therefore, the neuronal oscillators are highly synchronized.Accordingly, the changes in the average node degree of the SCN network do not affect the main results that the FPR in the BA network is longer than that in the other three network structures.

    Fig.2.Comparison of the relationship between FRP and average node degree D in four network structures, including nearest-neighbor, NW,ER,and BA networks. D is selected from 10 to 50.

    Fig.3.Relationships between the synchronization degree R and the average node degree D within each network. D is selected from 10 to 50.

    Fig.4.Comparison of the relationship between FRP and average node degree D.In panels (a)–(d), the relaxation rates γ is 0.1, 0.2, 0.3, and 0.4,respectively,and the range of D is taken from 10 to 50.

    Moreover, we examine whether the main results are affected by the relaxation parameterγof the SCN neuronal oscillators(Figs.4 and 5).The four relaxation ratesγ=0.1,0.2,0.3, and 0.4 are examined in(a)–(d).Consistent with Figs.2 and 3, respectively, the FRP is longest in the BA network for each value ofγin Fig.4, and the synchronization degreeRis large for each network in Fig.5.Therefore,the changes in the relaxation rate of the SCN neuronal oscillators do not affect the main results,i.e.,the BA network has the longest FRP among the four networks.

    Fig.5.Relationships between the synchronization degree R and the average node degree D within each network for the four relaxation rates γ =0.1,0.2,0.3,and 0.4 in panels(a)–(d). D is selected from 10 to 50.Each value of R corresponds to each value of the FRP in Fig.4.

    Fig.6.Comparison of the relationship between the FRP and the average node degree D.In panels(a)and(b),the intensities of constant light L are 0.01 and 0.05,respectively,and the range of D is 10–50.

    Fig.7.Relationships between the synchronization degree R and the average node degree D within each network for the two values of constant light intensity L=0.01 and 0.05 in panels(a)and(b), respectively. D is selected from 10 to 50.

    In addition,we examine whether the intensity of constant light affects the main results (Figs.6 and 7).Two values of constant light intensityL=0.01 and 0.05 are examined in(a)and (b), respectively.Consistent with Figs.2 and 3, respectively,the FRP is longest in the BA network for each value ofLin Fig.6,and the synchronization degreeRis approximately equal to 1 for each network in Fig.7.Therefore,the changes in the intensity of constant light do not affect the main results,i.e., the FRP in the BA network is longer than the other networks.In comparison of Figs.2, 6 and 7, the FRP increases with the increase of the intensity of constant lightLfor a focused value ofDwithin each network.

    4.Analytical results

    In this section,we implement a series of theoretical analyses to explain the numerical results.The order of network heterogeneity going from the lowest to the highest is the nearestneighbor network,the NW network,the ER network,and the BA network.Accordingly,we use the most heterogeneous network topology, namely a star network, to mimic the BA network.In order to model the input of the light information of the SCN neurons depending on the node degree, for convenience,we consider the star network composed ofNnodes as the SCN network structure,[54,55]where the central node can be represented by oscillator 1, the leaf nodes are represented by the oscillators 2,3,4,...,N,respectively.

    Fig.8.Schematic diagram of the star network composed of 10 nodes.

    Figure 8 schematically shows the star network composed of 10 nodes.Since the leaf nodes in the star network are symmetrical,the system described by the Poincaré model reads

    Here,ddenotes the degree of the central node,which is equal toN,and each leaf node degree is 2,because each node contains self-connected edge.The local mean fields of the neuronal oscillators 1 and 2 are expressed byand, respectively.Other parameters are the same as those in Eq.(1).Whendis small, the difference of degree between the central node and the leaf node is small,then the heterogeneity of the star network is low;whendis larger,this difference will be larger,and the heterogeneity of the star network will be higher.In addition,with the increase ofd,the central node has more links in the star network,i.e.,the central node is more sensitive to light.

    Fig.9.Temporal evolutions of the neuronal oscillators i affected by the star network structure under constant light:(a)d=3 and(b)d=4,i.e.,the sizes of the network are N=3 and N=4,respectively.The peak of one randomly selected oscillator is indicated by a black solid line,thus the FRP is the interval between two consistent solid lines.

    Figure 9 shows the temporal evolutions of the SCN neurons affected by the star network under constant light.We taked=3 in panel(a)andd=4 in panel(b)as examples to present the results.The FRP is 28.17 h and 28.60 h in(a)and(b),respectively,and the synchronization degree isR=1 and 0.99 in(a)and(b),respectively.Therefore,the FRP ford=4 is longer than the FRP ford=3.It is seen that the temporal evolutions of the oscillators are highly synchronized and exhibit robust circadian rhythms in each panel of(a)and(b),indicating that the values of the oscillators are almost equal at the same time, and their periods are the same.Thus, we can obtainx1≈x2≈···≈xN,and the local mean field of the oscillator 1 is simplified to.Accordingly,Eq.(4)can be rewritten as

    For theoretical analysis, Eq.(5) is transformed from Cartesian coordinates to polar coordinates.Letx1=r1cosθ1,y1=r1sinθ1,x2=r2cosθ2,y2=r2sinθ2, andω= 2π/τ.Substituting them into Eq.(5),consequently,we can obtain

    When the SCN neuronal oscillators are synchronized,we have ˙r1= ˙r2=0, ˙θ1= ˙θ2=Ω,whereΩrepresents the angular frequency.Let the phases beθ1=Ωt+φ1andθ2=Ωt+φ2.The averaging method developed by Krylov and Bogoliubov as used in Refs.[32,48,53,56] is taken into account,φhas a lower time scale thanΩt.Letting the phase difference beα=φ2-φ1,then we have

    where〈···〉 denotes the average in one circadian cycle.For simplicity, the non-averaged sign ofr1,r2,φ1, andφ2is kept in the rest of the article.Substituting Eq.(7)into Eq.(6), we obtain

    From Eq.(8),we acquire

    Due to sin2θ1+cos2θ1= 1 and sin2θ2+cos2θ2= 1,Eq.(9)can reduce to

    When all the oscillators are in a synchronized state,Fig.9 shows that the amplitudes of the SCN neurons are almost equal(B ≡r1≈r2).From Eq.(10),consequently,we have

    When the oscillators output one uniform FRP,i.e.,the oscillators are synchronized,the difference between the oscillators is very small in that we obtainα →0 and cosα →1.After substituting Eq.(11)into Eq.(10),we obtain

    wherec ≡(1/2)B(a-B)+(GB/2).

    Therefore,Ωcan be solved from Eq.(12)as

    From Eq.(13), we observe that the relationship betweenΩanddis negative, i.e., between the FRP anddis positive.Moreover,the larger the central node degreedin the star network is,the larger difference between the central node degree and the leaf node degree is,indicating that the heterogeneity of the star network is large.Therefore,the larger the heterogeneity of the network is, the longer the FRP is.In other words,the FRP of the neuronal oscillator increases with the increase ofd,when the oscillators are synchronized.It shows that the results of the FRP affected by network heterogeneity are consistent with our numerical simulations, i.e., the BA network has the longest FRP because its network structure is most heterogeneous.Consequently,we theoretically explain the results in Fig.1.Moreover, the relationship of the FRP or the synchronization degreeRto the central node degreedin the star network is shown in Fig.10, and the numerical simulations from Eq.(4).It indicates that the neuronal oscillators are in perfect synchronicity (R >0.95) and that the FRP increases with the increase ofd.

    Fig.10.The relationship of the FRP or the synchronization degree R to the central node degree d in the star network.

    5.Discussion and conclusion

    In summary,we have investigated the effects of the SCN network structure on the FRP length based on the Poincaré model exposed to constant light.Although the precise network structure is currently unclear,the SCN network structure is thought to be heterogeneous.[28–30]The VL neurons have more links than the DM neurons.In addition, the sensitivity to the light information is heterogenous for the SCN neurons,i.e., the VL neurons are more sensitive to the light than the DM neurons.[36–38]Thus far,it is unknown how the SCN network structure affects the FRP.In this study,four typical networks are considered, namely the nearest-neighbor network(most homogeneous network), the NW small world network,the ER random network,and the BA scale-free network(most heterogeneous network).We find that the FRP in the BA network is longer than the other three networks.

    Aschoff’s rule suggests that different animals have different FRPs under constant-light conditions.[8,57]A possible reason given in this article is that the SCN network of the animals with longer FRP has more hub nodes(e.g.,BA scale-free network), which are more sensitive to light.In contrast, the SCN network of the animals with shorter FRP has fewer or even no hub nodes(e.g.,nearest-neighbor network),which are less sensitive to light.

    In addition, previous studies have demonstrated that the FRP of one animal varies in response to different photoperiods(seasons)or age.[46,58]For instance,compared with other age groups, adolescents tend to have a longer chronotype, which means that they have a longer FRP.[58]This temporal change may also be related to the change in the light sensitive heterogeneity of the SCN neurons,caused by these different photoperiods (seasons) or age, thus resulting in a change in the neuronal endogenous periods.Our work not only contributes to understanding the mechanisms by which the SCN neurons are sensitive to light information, but also provides a potential explanation to understand that different animals or an animal exhibits different rhythmic behaviors under constant-light conditions.

    In fact,there are other neuronal models.For instance,Xuet al.summarized the development process since the establishment of the first neuron model in 1907, and summarized 17 most representative mathematical models.They were divided into conductance-dependent models and non-conductancedependent models for comparative analysis.Moreover, Xuet al.highlighted five classical models including the neuron on the latest neural chip TrueNorth, and analyzed their simulation characteristics and the requirements for circuit implementation.[22]The electrical activities of neuronal models include the Hodgkin–Huxley model, and Mihalas–Niebur model,etc.,which are basically on the millisecond or second scale.The SCN neuron is a special kind of neurons.Its electrical activity can not only exhibit firing rhythms at the second scale,but also reveal circadian rhythmic behavior at the circadian scale.These two rhythms interplay with each other.In detail, the firing frequency of the SCN neurons is modulated by the genetic feedback loops.In turn, the electrical activity of the SCN neurons affects the nature of the circadian oscillations of the genetic feedback loop.In this article,the collective behavior of the SCN neuron oscillators is explored at the circadian scale.In-depth exploration of the interactions between the SCN neurons at the second and circadian scales is our future research focus.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12275179 and 11875042)and the Natural Science Foundation of Shanghai (Grant No.21ZR1443900).

    亚洲国产精品成人久久小说 | 久久久久网色| 成人亚洲精品av一区二区| 免费观看精品视频网站| 尾随美女入室| 成人鲁丝片一二三区免费| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 三级男女做爰猛烈吃奶摸视频| 伦理电影大哥的女人| 国产白丝娇喘喷水9色精品| 久久99蜜桃精品久久| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看 | 啦啦啦韩国在线观看视频| 99久久九九国产精品国产免费| 亚洲欧美精品专区久久| 亚洲精品粉嫩美女一区| 日本欧美国产在线视频| 男女那种视频在线观看| 国产成人精品久久久久久| 色综合亚洲欧美另类图片| 欧美激情在线99| 美女高潮的动态| 人人妻人人看人人澡| 亚洲成人久久性| 爱豆传媒免费全集在线观看| 深爱激情五月婷婷| 欧美性猛交╳xxx乱大交人| 国产精品1区2区在线观看.| 男人舔奶头视频| 2022亚洲国产成人精品| 欧美日本亚洲视频在线播放| 99久久中文字幕三级久久日本| 亚洲熟妇中文字幕五十中出| 中国国产av一级| 变态另类丝袜制服| 一区二区三区四区激情视频 | 国内精品久久久久精免费| 内射极品少妇av片p| .国产精品久久| 12—13女人毛片做爰片一| 黄片无遮挡物在线观看| 国产成年人精品一区二区| 国产精品精品国产色婷婷| 成人漫画全彩无遮挡| 免费观看a级毛片全部| 亚洲精品成人久久久久久| 黄片无遮挡物在线观看| 国产成年人精品一区二区| 精品久久国产蜜桃| 日本免费a在线| 在线观看美女被高潮喷水网站| 少妇熟女欧美另类| 亚洲在久久综合| 自拍偷自拍亚洲精品老妇| 亚洲最大成人av| 午夜激情福利司机影院| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| 99riav亚洲国产免费| 亚洲国产精品国产精品| 国产一级毛片七仙女欲春2| 国产精品,欧美在线| 亚洲va在线va天堂va国产| av黄色大香蕉| 亚洲第一区二区三区不卡| 国产精品免费一区二区三区在线| 麻豆成人午夜福利视频| 在线播放无遮挡| 日产精品乱码卡一卡2卡三| 噜噜噜噜噜久久久久久91| 秋霞在线观看毛片| 国产老妇伦熟女老妇高清| 成人美女网站在线观看视频| 国产精品综合久久久久久久免费| 中国国产av一级| 欧美丝袜亚洲另类| 亚洲精华国产精华液的使用体验 | 啦啦啦啦在线视频资源| 成年版毛片免费区| 亚洲18禁久久av| 一本一本综合久久| 亚洲欧美成人精品一区二区| 国产 一区精品| 国产黄片视频在线免费观看| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99 | 国产高清不卡午夜福利| 久久精品国产清高在天天线| 中文精品一卡2卡3卡4更新| 国产精品久久久久久久久免| 校园人妻丝袜中文字幕| 中文精品一卡2卡3卡4更新| 99九九线精品视频在线观看视频| 久久6这里有精品| 午夜激情欧美在线| 国产精品野战在线观看| 久久热精品热| 国产黄片视频在线免费观看| 亚洲人成网站高清观看| 午夜福利在线在线| 69av精品久久久久久| 性欧美人与动物交配| 如何舔出高潮| 欧美精品国产亚洲| 有码 亚洲区| 亚洲最大成人av| 国产精品久久久久久av不卡| 热99re8久久精品国产| 看片在线看免费视频| 久久热精品热| 国产成人a∨麻豆精品| 99久久成人亚洲精品观看| 国产精品久久久久久久电影| 色综合站精品国产| 人妻系列 视频| 欧美变态另类bdsm刘玥| 亚洲中文字幕日韩| 欧美一级a爱片免费观看看| 国产av一区在线观看免费| 欧美潮喷喷水| 免费av不卡在线播放| 日韩一本色道免费dvd| 婷婷六月久久综合丁香| 26uuu在线亚洲综合色| 亚洲av免费在线观看| 岛国在线免费视频观看| 天堂网av新在线| 久久热精品热| 性插视频无遮挡在线免费观看| av黄色大香蕉| 国产三级在线视频| 国产成人影院久久av| 黄色欧美视频在线观看| 成人三级黄色视频| 亚洲va在线va天堂va国产| 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 搡老妇女老女人老熟妇| 亚洲国产精品久久男人天堂| 久久热精品热| 一边摸一边抽搐一进一小说| 在线国产一区二区在线| 九九久久精品国产亚洲av麻豆| 春色校园在线视频观看| 亚洲av中文字字幕乱码综合| 12—13女人毛片做爰片一| 深夜精品福利| 国产精品精品国产色婷婷| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 国产亚洲精品久久久久久毛片| 国产伦精品一区二区三区视频9| 观看美女的网站| 日韩 亚洲 欧美在线| 精品久久久久久成人av| 日韩成人伦理影院| 国产精品综合久久久久久久免费| 国产精品免费一区二区三区在线| 卡戴珊不雅视频在线播放| 亚洲成a人片在线一区二区| 亚洲欧美日韩高清在线视频| 久久久久久久久久久免费av| 2021天堂中文幕一二区在线观| 亚洲av成人av| 亚洲精品久久国产高清桃花| 欧美丝袜亚洲另类| 国产综合懂色| 黄色一级大片看看| av在线观看视频网站免费| 国产黄a三级三级三级人| 国产亚洲av嫩草精品影院| 亚洲精品乱码久久久v下载方式| 久久久久免费精品人妻一区二区| 日韩欧美 国产精品| 精品久久久久久久久亚洲| av又黄又爽大尺度在线免费看 | 一级黄色大片毛片| 黄片wwwwww| 亚洲av成人av| 亚洲婷婷狠狠爱综合网| 久久精品夜色国产| 久久鲁丝午夜福利片| 久久99热这里只有精品18| 久久久国产成人免费| 亚洲,欧美,日韩| 国产伦精品一区二区三区视频9| 亚洲欧美中文字幕日韩二区| 亚洲色图av天堂| 中文精品一卡2卡3卡4更新| 国产视频内射| 国产老妇女一区| 久久久久久大精品| 老女人水多毛片| 此物有八面人人有两片| 欧美在线一区亚洲| 久久综合国产亚洲精品| 精品久久久久久成人av| 欧美又色又爽又黄视频| 99久久精品国产国产毛片| 亚洲无线观看免费| av又黄又爽大尺度在线免费看 | 高清毛片免费看| 国产老妇女一区| 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 99久久久亚洲精品蜜臀av| 国产精品福利在线免费观看| 中国美白少妇内射xxxbb| 国产午夜精品久久久久久一区二区三区| 国产精品免费一区二区三区在线| 午夜亚洲福利在线播放| 婷婷色av中文字幕| 亚洲人成网站在线观看播放| 亚洲中文字幕一区二区三区有码在线看| 蜜臀久久99精品久久宅男| 国产精品爽爽va在线观看网站| 免费看av在线观看网站| 亚洲最大成人中文| 26uuu在线亚洲综合色| 国内精品宾馆在线| 天堂av国产一区二区熟女人妻| 国产三级在线视频| 欧美日韩乱码在线| 亚洲精品乱码久久久v下载方式| 国产精品一区二区在线观看99 | 日韩av在线大香蕉| 蜜桃亚洲精品一区二区三区| 看免费成人av毛片| 国产伦精品一区二区三区视频9| 国产精品久久久久久av不卡| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 美女内射精品一级片tv| 99久久成人亚洲精品观看| 久久精品91蜜桃| 亚洲熟妇中文字幕五十中出| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添av毛片| 久久久久久九九精品二区国产| 国产高清视频在线观看网站| 午夜老司机福利剧场| 天堂影院成人在线观看| 亚洲中文字幕一区二区三区有码在线看| 色哟哟·www| 日韩欧美精品免费久久| 日本三级黄在线观看| 日韩成人伦理影院| 22中文网久久字幕| 97在线视频观看| 午夜老司机福利剧场| 国产久久久一区二区三区| 精品少妇黑人巨大在线播放 | 热99在线观看视频| 男人和女人高潮做爰伦理| 欧洲精品卡2卡3卡4卡5卡区| 欧美区成人在线视频| 99热只有精品国产| 国内精品宾馆在线| 91精品国产九色| 亚洲成av人片在线播放无| 欧美bdsm另类| 国产高清有码在线观看视频| 麻豆精品久久久久久蜜桃| 午夜精品国产一区二区电影 | 亚洲国产精品国产精品| 国产亚洲精品av在线| 国内揄拍国产精品人妻在线| 欧美zozozo另类| 亚洲成a人片在线一区二区| 国产av麻豆久久久久久久| 亚洲最大成人中文| 欧美日韩精品成人综合77777| 日本爱情动作片www.在线观看| 嘟嘟电影网在线观看| 亚洲国产精品合色在线| 亚洲成人中文字幕在线播放| 一夜夜www| 晚上一个人看的免费电影| 国产精品人妻久久久久久| 在线观看一区二区三区| 日本av手机在线免费观看| 热99re8久久精品国产| 中文字幕av在线有码专区| 亚洲av中文av极速乱| 一级毛片久久久久久久久女| 精品日产1卡2卡| 国产精品1区2区在线观看.| 黑人高潮一二区| 国产精品美女特级片免费视频播放器| 天堂网av新在线| 国产精品久久久久久亚洲av鲁大| 我要看日韩黄色一级片| 欧美极品一区二区三区四区| 亚洲中文字幕日韩| 色综合站精品国产| 国产69精品久久久久777片| 日韩,欧美,国产一区二区三区 | 国内揄拍国产精品人妻在线| 春色校园在线视频观看| 成人综合一区亚洲| 亚洲乱码一区二区免费版| 欧美性猛交黑人性爽| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 亚洲自偷自拍三级| 久久久久性生活片| 欧美激情久久久久久爽电影| 久久久成人免费电影| 好男人在线观看高清免费视频| 少妇的逼水好多| 91av网一区二区| 午夜福利在线观看吧| 亚洲三级黄色毛片| 中文欧美无线码| 欧美xxxx黑人xx丫x性爽| 亚洲在线观看片| 亚洲真实伦在线观看| 69av精品久久久久久| 成人综合一区亚洲| 村上凉子中文字幕在线| 国产高清有码在线观看视频| 国模一区二区三区四区视频| 亚洲国产精品成人久久小说 | 69av精品久久久久久| 中文字幕精品亚洲无线码一区| 伦理电影大哥的女人| 久久精品国产清高在天天线| 一级黄片播放器| 变态另类成人亚洲欧美熟女| 乱人视频在线观看| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线 | 国产在线男女| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 久久久a久久爽久久v久久| 2022亚洲国产成人精品| 亚洲高清免费不卡视频| 国产成人a区在线观看| 神马国产精品三级电影在线观看| 丝袜美腿在线中文| 亚洲不卡免费看| 12—13女人毛片做爰片一| 国产黄片视频在线免费观看| 国产精品麻豆人妻色哟哟久久 | 亚洲美女搞黄在线观看| 国产高清不卡午夜福利| 亚洲精品国产成人久久av| 欧美高清性xxxxhd video| 91av网一区二区| 夜夜夜夜夜久久久久| 能在线免费看毛片的网站| 六月丁香七月| 两个人视频免费观看高清| 午夜a级毛片| 欧美成人a在线观看| 亚洲久久久久久中文字幕| 波野结衣二区三区在线| 看非洲黑人一级黄片| 久久午夜福利片| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 黄色视频,在线免费观看| 人妻少妇偷人精品九色| 国产午夜精品一二区理论片| 国产精品综合久久久久久久免费| 久久精品夜夜夜夜夜久久蜜豆| 丝袜美腿在线中文| 精品日产1卡2卡| 97超碰精品成人国产| 只有这里有精品99| 69av精品久久久久久| 亚洲国产精品国产精品| 边亲边吃奶的免费视频| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久国产蜜桃| 热99re8久久精品国产| 欧美激情久久久久久爽电影| 日韩三级伦理在线观看| 欧美色欧美亚洲另类二区| 亚洲在久久综合| 久久精品国产亚洲av香蕉五月| 99riav亚洲国产免费| 少妇的逼水好多| 99国产极品粉嫩在线观看| 五月玫瑰六月丁香| 51国产日韩欧美| 赤兔流量卡办理| 国产一区二区三区av在线 | 成年免费大片在线观看| 成人欧美大片| 欧美区成人在线视频| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人| 亚洲一区高清亚洲精品| 国产日韩欧美在线精品| 亚洲成人av在线免费| 国产 一区精品| 一级毛片久久久久久久久女| 久久久a久久爽久久v久久| 国产爱豆传媒在线观看| 天美传媒精品一区二区| 啦啦啦啦在线视频资源| 三级经典国产精品| 欧美精品国产亚洲| 美女高潮的动态| 亚洲欧美精品自产自拍| 国产精品日韩av在线免费观看| 亚洲成人久久爱视频| 尾随美女入室| 午夜福利在线在线| 哪里可以看免费的av片| 少妇人妻精品综合一区二区 | 国产av在哪里看| 九九热线精品视视频播放| 给我免费播放毛片高清在线观看| 97超碰精品成人国产| 男人舔奶头视频| АⅤ资源中文在线天堂| 精品人妻熟女av久视频| 97超碰精品成人国产| av免费观看日本| 久久久色成人| 色5月婷婷丁香| 亚洲自偷自拍三级| 成人性生交大片免费视频hd| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄 | 麻豆国产av国片精品| 日韩一区二区视频免费看| 成人毛片60女人毛片免费| 欧美性猛交╳xxx乱大交人| 蜜桃久久精品国产亚洲av| 永久网站在线| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 一区二区三区四区激情视频 | 欧美不卡视频在线免费观看| 此物有八面人人有两片| 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| 又黄又爽又刺激的免费视频.| 国产精品一区二区在线观看99 | 欧美潮喷喷水| 成人国产麻豆网| 国产精品久久久久久精品电影小说 | 啦啦啦观看免费观看视频高清| 免费一级毛片在线播放高清视频| 午夜精品国产一区二区电影 | 国产精品久久久久久av不卡| 男人狂女人下面高潮的视频| 欧美激情久久久久久爽电影| 亚洲成人精品中文字幕电影| 中国国产av一级| 99热6这里只有精品| 波多野结衣巨乳人妻| 12—13女人毛片做爰片一| 国产精品一区二区三区四区久久| 老司机影院成人| a级一级毛片免费在线观看| 黄片wwwwww| 久久午夜亚洲精品久久| 国产大屁股一区二区在线视频| 日韩欧美 国产精品| a级毛片a级免费在线| 99热全是精品| 成年版毛片免费区| www.色视频.com| 男插女下体视频免费在线播放| 色尼玛亚洲综合影院| 成人亚洲欧美一区二区av| 深爱激情五月婷婷| 国产单亲对白刺激| 国产精品1区2区在线观看.| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 熟女人妻精品中文字幕| 欧美激情久久久久久爽电影| 男女啪啪激烈高潮av片| 久久久久久伊人网av| 给我免费播放毛片高清在线观看| 在线国产一区二区在线| 欧美一区二区亚洲| 看十八女毛片水多多多| 亚洲欧美日韩高清专用| 国产av在哪里看| 亚洲国产精品久久男人天堂| 亚洲国产欧洲综合997久久,| 在线播放无遮挡| av视频在线观看入口| 精品熟女少妇av免费看| 少妇熟女欧美另类| 一区福利在线观看| 久久久精品大字幕| 一级毛片久久久久久久久女| 欧美日韩一区二区视频在线观看视频在线 | 色尼玛亚洲综合影院| 国产成人福利小说| 免费看光身美女| 亚洲va在线va天堂va国产| 日韩人妻高清精品专区| 免费黄网站久久成人精品| 变态另类丝袜制服| 日韩国内少妇激情av| 男人的好看免费观看在线视频| 国产高潮美女av| 干丝袜人妻中文字幕| 美女国产视频在线观看| 小蜜桃在线观看免费完整版高清| 欧美zozozo另类| 亚洲欧美精品自产自拍| 久久草成人影院| 在线免费观看的www视频| 欧美变态另类bdsm刘玥| 好男人视频免费观看在线| 22中文网久久字幕| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久久av| 国产精品.久久久| 国产精品一区www在线观看| 免费观看a级毛片全部| 十八禁国产超污无遮挡网站| 最近视频中文字幕2019在线8| h日本视频在线播放| 亚洲国产色片| 五月伊人婷婷丁香| 亚洲欧美日韩高清在线视频| 午夜亚洲福利在线播放| 色哟哟哟哟哟哟| 又爽又黄无遮挡网站| 91麻豆精品激情在线观看国产| 亚洲成av人片在线播放无| 日韩欧美精品免费久久| 欧美日本亚洲视频在线播放| 久久久久久久亚洲中文字幕| 两个人视频免费观看高清| 三级国产精品欧美在线观看| 欧美成人免费av一区二区三区| 国产高清视频在线观看网站| 伊人久久精品亚洲午夜| 久久午夜亚洲精品久久| 日韩中字成人| 国产精品电影一区二区三区| 一个人观看的视频www高清免费观看| 亚洲成人久久性| 如何舔出高潮| 亚洲国产欧美人成| 国产白丝娇喘喷水9色精品| 能在线免费观看的黄片| 国内揄拍国产精品人妻在线| 99久久精品一区二区三区| 欧美在线一区亚洲| 亚洲精品亚洲一区二区| 中文在线观看免费www的网站| 久久久精品欧美日韩精品| 国产亚洲精品久久久久久毛片| 啦啦啦啦在线视频资源| 国产成人精品婷婷| 国产精品一区二区三区四区免费观看| 日韩 亚洲 欧美在线| 搡女人真爽免费视频火全软件| 天堂av国产一区二区熟女人妻| 一个人观看的视频www高清免费观看| 亚洲激情五月婷婷啪啪| 亚洲国产精品国产精品| 免费大片18禁| 12—13女人毛片做爰片一| 亚洲美女搞黄在线观看| a级毛片a级免费在线| 在线天堂最新版资源| 久久草成人影院| 亚洲欧洲日产国产| 国产老妇女一区| 性欧美人与动物交配| 国产精品一区二区三区四区久久| 色综合色国产| 最近的中文字幕免费完整| 菩萨蛮人人尽说江南好唐韦庄 | .国产精品久久| 夜夜夜夜夜久久久久| 亚洲av成人av| 国产精品一区二区在线观看99 | 69人妻影院| 国产女主播在线喷水免费视频网站 | 亚洲国产精品成人综合色| 亚洲激情五月婷婷啪啪| 国产 一区 欧美 日韩| 少妇裸体淫交视频免费看高清| 一进一出抽搐gif免费好疼| 久久精品国产鲁丝片午夜精品| 青春草亚洲视频在线观看| 永久网站在线| 高清毛片免费看| 超碰av人人做人人爽久久| 亚洲一区二区三区色噜噜| 亚洲精品乱码久久久v下载方式| 狂野欧美激情性xxxx在线观看| 亚洲第一区二区三区不卡| 精品日产1卡2卡| 噜噜噜噜噜久久久久久91| 日本黄色视频三级网站网址| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区在线臀色熟女| 国产精品久久久久久久电影| 91精品国产九色| a级毛片a级免费在线| 国产成人精品久久久久久| 亚洲人成网站在线播|