• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light

    2023-10-11 07:56:40JianZhou周建ChangguiGu顧長(zhǎng)貴YuxuanSong宋雨軒andYanXu許艷
    Chinese Physics B 2023年9期

    Jian Zhou(周建), Changgui Gu(顧長(zhǎng)貴), Yuxuan Song(宋雨軒), and Yan Xu(許艷)

    Business School,University of Shanghai for Science and Technology,Shanghai 200093,China

    Keywords: circadian rhythm,light sensitivity,heterogeneous network,free running period

    1.Introduction

    Circadian rhythms are orchestrated by an endogenous biological clock which synchronizes the behavioral and physiological activities of living beings to the natural light-dark cycle.[1–4]Interestingly, even in the absence of an external light-dark cycle or environmental time cue, living beings can also sustain a robust rhythm with an endogenous period of approximation but not exact 24 h.[5–7]The endogenous period in constant condition,such as under constant light or under constant darkness, is called the free running period (FRP).[8–10]The length of the FRP varies under different conditions.[2,5]For example, the FRP length is smaller in the aging animals than the young animals under constant darkness,and the FRP length increases with the increase of the light intensity when exposed to constant light.[11,12]

    In mammals, this endogenous clock is situated in the suprachiasmatic nucleus (SCN) in the anterior hypothalamus of the brain.[13]The SCN contains approximately 20000 selfoscillating neuronal oscillators with periods around 24 h.[14]The self-oscillating process of the SCN individual neurons is accomplished through a transcription-translation feedback loop composed of several key genes, such asPer,Cry,clock,andBmal1.[15]At the cellular level,the SCN neurons can display second-scale firing rhythms.The firing frequency of the SCN neurons is regulated by the genetic feedback loop.[16–18]In turn,the SCN neuron electrical activity affects the circadian oscillation properties of the genetic feedback loop, such as period, amplitude, and phase.[19–21]The interaction between electrical activity and feedback loop differs significantly from previous neuron models, such as the Hodgkin–Huxley model and the Mihalas–Niebur model.[22]The SCN neurons are nonidentical and express different intrinsic periods from the range of 22 h to 28 h.[2,6]The output of a robust rhythm with a uniform circadian period for these nonidentical neurons implies that the SCN neurons are well synchronized to form a network.[1,23,24]The cellular couplings play a key role in the synchronization,which are mainly through neurotransmitters,e.g., vasoactive intestinal polypeptide, arginine vasopressin,and gamma-aminobutyric acid.[25–27]

    Although the exact topology of the SCN network has not been revealed, the SCN network is considered to be heterogenous.[28–30]Based on the heterogenous functions and network characteristic,it can be distinguished into two distinct subnetworks,including a ventrolateral(VL)part composed of about 25% SCN neurons and a dorsomedial (DM) part composed of rest SCN neurons.[31,32]The VL neurons are regarded as the hubs because the links of the VL neurons are much more than those of the DM neurons.[33–35]Additionally,the VL and the DM neurons have heterogenous characteristics in terms of the light sensitivity.[36–38]Early studies found that the VL neurons are directly sensitive to the light information originating from intrinsically photosensitive retinal ganglion cells through the retino-hypothalamic tract,and relay the information to the DM neurons.In contrast, the DM neurons are insensitive to the light information.[31,32,39]Recent studies found that both the VL and DM neurons are sensitive to light,but the sensitivity for the DM neurons are much smaller than that for the VL neurons.[36,37]Therefore, the sensitivity to light for the neurons and the number of links for the neurons are positively correlated.

    In this article, we examine whether the FRP is affected by the SCN network structure based on a Poincaré model exposed to constant light.Four typical network structures are considered, including a nearest-neighbor coupled network, a Newman–Watts (NW) small world network,[40,41]an Erd¨os–Rényi(ER)random network,[42]and a Barab′asi–Albert(BA)scale free network.[43]The rest of this article is organized as follows.In Section 2,the Poincaré model is introduced to simulate an SCN network exposed to constant light.In Section 3,we present the simulation results of the effects of the SCN network structures on the FRP.In Section 4,the analytical results are presented.Finally, the conclusion and discussion are included in Section 5.

    2.Description of the Poincaré model

    In the field of circadian rhythms,two major types of models are predominantly used to describe the collective behavior of the SCN oscillatory networks, namely biochemical models, such as the Goodwin model,[44]and phenomenological models, such as the Kuramoto model[18]and the Poincaré model.[45–47]The Goodwin model describes the oscillator in terms of a genetic feedback loop,whereas the Poincaré model mimics the oscillator by a more general description.The results obtained from the latter are general enough to apply to synchronous rhythms generated by a single cell or coupled oscillators.[48]Furthermore,the analytical calculation of the Poincaré oscillator is straightforward.Thus, the Poincaré model,containing both phase and amplitude information,was utilized for numerical simulations and theoretical analysis.Each oscillator is modeled by two variablesxandy.The SCN network is coupled or linked through a local mean field of neurotransmitters.[49,50]Therefore,the model composed ofNoscillators exposed to the constant light reads

    where the subscriptidenotes thei-th neuronal oscillator; the parametersγ,a, andτrepresent the relaxation parameter, intrinsic amplitude, and intrinsic period of the individual oscillator,respectively;μirepresents the dispersed intrinsic period for the individual oscillators which satisfies a normal distribution with the mean equal to 1 and the standard deviationσ.GFidescribes the local field term among the coupled neuronal oscillators,in which the parameterGrepresents the cellular coupling strength andFiis the local mean field.[34,48,51]The value ofFiis the mean value of the variablexover neighbors of theith node.The network structure of the SCN can be described by an adjacent matrixAN×N, whose elementAijis 1 when nodeiand nodejare connected, and otherwiseAij=0.Notably,the neuron oscillatoriis connected to itself here.The strength of circadian rhythms of the SCN network can be described by the synchronization degreeRof neuronal oscillators.The synchronization degreeRof the SCN neuronal oscillators can be expressed over time as follows:

    The light termLiis equal toliL,whereLis the constant light intensity andliis the sensitivity of the SCN neurons to light information.Because the SCN neurons exhibit heterogeneity in light sensitivity, i.e., the VL neurons are much more sensitive to the light-information than the DM neurons,[36,37]and the links in VL neurons are denser than those in DM neurons.[34,35]Thus, there is positive correlation between the node degree and the sensitivity, we setli=di/D,i=1,2,...,N,withdidenoting the degree of nodei,i.e.,the number ofi’s neighbors.Dis the average node degree of the SCN network,which is equal toAccordingly,Ldi/Ddescribes the input of the light information depending on the node degree.

    In the present study, we use the fourth-order Runge–Kutta method for the numerical simulations with time steps of 0.01 h.The initial 5×106steps(5×104h)are neglected to avoid the influence of transients and the next 1×105steps(1×103h) are selected.The initial values ofxandyare chosen randomly from a uniform distribution in the range(0,1) for each oscillator.Without special statement, we setγ=0.5,a=1,G=0.2,L=0.1, andτ=24,[32,48,52,53]and the standard deviation isσ=0, the total number of neurons isN=1000, and the each numerical simulation is averaged over 20 results to avoid the effects of randomness in network generations.

    3.Numerical results

    An illustrative example to examine the effect of the network topology of the SCN neurons on the FRP is shown in Fig.1,when exposed to constant light.In particular,the temporal evolutions of five randomly chosen oscillators are presented in the nearest-neighbor network (a), the NW network(b), the ER network (c), and the BA network (d).The value of the average node degree is selected to beD=10 for all the networks.The temporal evolutions of the five oscillators are highly synchronized and exhibit robust circadian rhythms in each panel(a)–(d), indicating that their periods are the same.The FRP is 27.97 h,28.31 h,28.59 h and 29.71 h,respectively,and the synchronization degree isR=1,0.99,0.97,and 0.88 for (a)–(d), respectivley.Therefore, the FRP in the BA network is longer than the other networks.Meanwhile,the value ofRis close to 1 within each panel, indicating that the SCN neurons are highly synchronized.R ≈1 agrees that thexvalues of the oscillators are almost equal within each network,i.e., the temporal evolutions of the SCN neuronal oscillators are almost identical within each network in Fig.1.

    Fig.1.The temporal evolutions of the neuronal oscillators are affected by the SCN network structure under constant light.The evolutions of five oscillators are randomly chosen from the nearest-neighbor network(a),the NW network(b),the ER network(c),and the BA network(d).The average node degree is D=10 for all the networks.The peak of one randomly selected oscillator is indicated by a black solid line, accordingly,the length of the FRP is the interval between two consistent solid lines.

    We next examine the effects of the SCN network structure on the FRP for the selected values of the average node degreeDin Fig.2.It is obvious that the relationship between the FRP andDdiffers in different networks,i.e.,the FRP is the longest in the BA network among the four networks for a focused value ofD.With the increase ofD,the FRP slightly decreases within each network.Figure 3 shows the relationships between the synchronization degreeRand the average node degreeDfor each network.The synchronization degreeRis around 0.9 in the BA network, and 1 in the nearest-neighbor network, the NW network or the ER network, whenDgoes from 10 to 50.Therefore, the neuronal oscillators are highly synchronized.Accordingly, the changes in the average node degree of the SCN network do not affect the main results that the FPR in the BA network is longer than that in the other three network structures.

    Fig.2.Comparison of the relationship between FRP and average node degree D in four network structures, including nearest-neighbor, NW,ER,and BA networks. D is selected from 10 to 50.

    Fig.3.Relationships between the synchronization degree R and the average node degree D within each network. D is selected from 10 to 50.

    Fig.4.Comparison of the relationship between FRP and average node degree D.In panels (a)–(d), the relaxation rates γ is 0.1, 0.2, 0.3, and 0.4,respectively,and the range of D is taken from 10 to 50.

    Moreover, we examine whether the main results are affected by the relaxation parameterγof the SCN neuronal oscillators(Figs.4 and 5).The four relaxation ratesγ=0.1,0.2,0.3, and 0.4 are examined in(a)–(d).Consistent with Figs.2 and 3, respectively, the FRP is longest in the BA network for each value ofγin Fig.4, and the synchronization degreeRis large for each network in Fig.5.Therefore,the changes in the relaxation rate of the SCN neuronal oscillators do not affect the main results,i.e.,the BA network has the longest FRP among the four networks.

    Fig.5.Relationships between the synchronization degree R and the average node degree D within each network for the four relaxation rates γ =0.1,0.2,0.3,and 0.4 in panels(a)–(d). D is selected from 10 to 50.Each value of R corresponds to each value of the FRP in Fig.4.

    Fig.6.Comparison of the relationship between the FRP and the average node degree D.In panels(a)and(b),the intensities of constant light L are 0.01 and 0.05,respectively,and the range of D is 10–50.

    Fig.7.Relationships between the synchronization degree R and the average node degree D within each network for the two values of constant light intensity L=0.01 and 0.05 in panels(a)and(b), respectively. D is selected from 10 to 50.

    In addition,we examine whether the intensity of constant light affects the main results (Figs.6 and 7).Two values of constant light intensityL=0.01 and 0.05 are examined in(a)and (b), respectively.Consistent with Figs.2 and 3, respectively,the FRP is longest in the BA network for each value ofLin Fig.6,and the synchronization degreeRis approximately equal to 1 for each network in Fig.7.Therefore,the changes in the intensity of constant light do not affect the main results,i.e., the FRP in the BA network is longer than the other networks.In comparison of Figs.2, 6 and 7, the FRP increases with the increase of the intensity of constant lightLfor a focused value ofDwithin each network.

    4.Analytical results

    In this section,we implement a series of theoretical analyses to explain the numerical results.The order of network heterogeneity going from the lowest to the highest is the nearestneighbor network,the NW network,the ER network,and the BA network.Accordingly,we use the most heterogeneous network topology, namely a star network, to mimic the BA network.In order to model the input of the light information of the SCN neurons depending on the node degree, for convenience,we consider the star network composed ofNnodes as the SCN network structure,[54,55]where the central node can be represented by oscillator 1, the leaf nodes are represented by the oscillators 2,3,4,...,N,respectively.

    Fig.8.Schematic diagram of the star network composed of 10 nodes.

    Figure 8 schematically shows the star network composed of 10 nodes.Since the leaf nodes in the star network are symmetrical,the system described by the Poincaré model reads

    Here,ddenotes the degree of the central node,which is equal toN,and each leaf node degree is 2,because each node contains self-connected edge.The local mean fields of the neuronal oscillators 1 and 2 are expressed byand, respectively.Other parameters are the same as those in Eq.(1).Whendis small, the difference of degree between the central node and the leaf node is small,then the heterogeneity of the star network is low;whendis larger,this difference will be larger,and the heterogeneity of the star network will be higher.In addition,with the increase ofd,the central node has more links in the star network,i.e.,the central node is more sensitive to light.

    Fig.9.Temporal evolutions of the neuronal oscillators i affected by the star network structure under constant light:(a)d=3 and(b)d=4,i.e.,the sizes of the network are N=3 and N=4,respectively.The peak of one randomly selected oscillator is indicated by a black solid line,thus the FRP is the interval between two consistent solid lines.

    Figure 9 shows the temporal evolutions of the SCN neurons affected by the star network under constant light.We taked=3 in panel(a)andd=4 in panel(b)as examples to present the results.The FRP is 28.17 h and 28.60 h in(a)and(b),respectively,and the synchronization degree isR=1 and 0.99 in(a)and(b),respectively.Therefore,the FRP ford=4 is longer than the FRP ford=3.It is seen that the temporal evolutions of the oscillators are highly synchronized and exhibit robust circadian rhythms in each panel of(a)and(b),indicating that the values of the oscillators are almost equal at the same time, and their periods are the same.Thus, we can obtainx1≈x2≈···≈xN,and the local mean field of the oscillator 1 is simplified to.Accordingly,Eq.(4)can be rewritten as

    For theoretical analysis, Eq.(5) is transformed from Cartesian coordinates to polar coordinates.Letx1=r1cosθ1,y1=r1sinθ1,x2=r2cosθ2,y2=r2sinθ2, andω= 2π/τ.Substituting them into Eq.(5),consequently,we can obtain

    When the SCN neuronal oscillators are synchronized,we have ˙r1= ˙r2=0, ˙θ1= ˙θ2=Ω,whereΩrepresents the angular frequency.Let the phases beθ1=Ωt+φ1andθ2=Ωt+φ2.The averaging method developed by Krylov and Bogoliubov as used in Refs.[32,48,53,56] is taken into account,φhas a lower time scale thanΩt.Letting the phase difference beα=φ2-φ1,then we have

    where〈···〉 denotes the average in one circadian cycle.For simplicity, the non-averaged sign ofr1,r2,φ1, andφ2is kept in the rest of the article.Substituting Eq.(7)into Eq.(6), we obtain

    From Eq.(8),we acquire

    Due to sin2θ1+cos2θ1= 1 and sin2θ2+cos2θ2= 1,Eq.(9)can reduce to

    When all the oscillators are in a synchronized state,Fig.9 shows that the amplitudes of the SCN neurons are almost equal(B ≡r1≈r2).From Eq.(10),consequently,we have

    When the oscillators output one uniform FRP,i.e.,the oscillators are synchronized,the difference between the oscillators is very small in that we obtainα →0 and cosα →1.After substituting Eq.(11)into Eq.(10),we obtain

    wherec ≡(1/2)B(a-B)+(GB/2).

    Therefore,Ωcan be solved from Eq.(12)as

    From Eq.(13), we observe that the relationship betweenΩanddis negative, i.e., between the FRP anddis positive.Moreover,the larger the central node degreedin the star network is,the larger difference between the central node degree and the leaf node degree is,indicating that the heterogeneity of the star network is large.Therefore,the larger the heterogeneity of the network is, the longer the FRP is.In other words,the FRP of the neuronal oscillator increases with the increase ofd,when the oscillators are synchronized.It shows that the results of the FRP affected by network heterogeneity are consistent with our numerical simulations, i.e., the BA network has the longest FRP because its network structure is most heterogeneous.Consequently,we theoretically explain the results in Fig.1.Moreover, the relationship of the FRP or the synchronization degreeRto the central node degreedin the star network is shown in Fig.10, and the numerical simulations from Eq.(4).It indicates that the neuronal oscillators are in perfect synchronicity (R >0.95) and that the FRP increases with the increase ofd.

    Fig.10.The relationship of the FRP or the synchronization degree R to the central node degree d in the star network.

    5.Discussion and conclusion

    In summary,we have investigated the effects of the SCN network structure on the FRP length based on the Poincaré model exposed to constant light.Although the precise network structure is currently unclear,the SCN network structure is thought to be heterogeneous.[28–30]The VL neurons have more links than the DM neurons.In addition, the sensitivity to the light information is heterogenous for the SCN neurons,i.e., the VL neurons are more sensitive to the light than the DM neurons.[36–38]Thus far,it is unknown how the SCN network structure affects the FRP.In this study,four typical networks are considered, namely the nearest-neighbor network(most homogeneous network), the NW small world network,the ER random network,and the BA scale-free network(most heterogeneous network).We find that the FRP in the BA network is longer than the other three networks.

    Aschoff’s rule suggests that different animals have different FRPs under constant-light conditions.[8,57]A possible reason given in this article is that the SCN network of the animals with longer FRP has more hub nodes(e.g.,BA scale-free network), which are more sensitive to light.In contrast, the SCN network of the animals with shorter FRP has fewer or even no hub nodes(e.g.,nearest-neighbor network),which are less sensitive to light.

    In addition, previous studies have demonstrated that the FRP of one animal varies in response to different photoperiods(seasons)or age.[46,58]For instance,compared with other age groups, adolescents tend to have a longer chronotype, which means that they have a longer FRP.[58]This temporal change may also be related to the change in the light sensitive heterogeneity of the SCN neurons,caused by these different photoperiods (seasons) or age, thus resulting in a change in the neuronal endogenous periods.Our work not only contributes to understanding the mechanisms by which the SCN neurons are sensitive to light information, but also provides a potential explanation to understand that different animals or an animal exhibits different rhythmic behaviors under constant-light conditions.

    In fact,there are other neuronal models.For instance,Xuet al.summarized the development process since the establishment of the first neuron model in 1907, and summarized 17 most representative mathematical models.They were divided into conductance-dependent models and non-conductancedependent models for comparative analysis.Moreover, Xuet al.highlighted five classical models including the neuron on the latest neural chip TrueNorth, and analyzed their simulation characteristics and the requirements for circuit implementation.[22]The electrical activities of neuronal models include the Hodgkin–Huxley model, and Mihalas–Niebur model,etc.,which are basically on the millisecond or second scale.The SCN neuron is a special kind of neurons.Its electrical activity can not only exhibit firing rhythms at the second scale,but also reveal circadian rhythmic behavior at the circadian scale.These two rhythms interplay with each other.In detail, the firing frequency of the SCN neurons is modulated by the genetic feedback loops.In turn, the electrical activity of the SCN neurons affects the nature of the circadian oscillations of the genetic feedback loop.In this article,the collective behavior of the SCN neuron oscillators is explored at the circadian scale.In-depth exploration of the interactions between the SCN neurons at the second and circadian scales is our future research focus.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12275179 and 11875042)and the Natural Science Foundation of Shanghai (Grant No.21ZR1443900).

    简卡轻食公司| 天堂av国产一区二区熟女人妻| 一本久久中文字幕| 亚洲av一区综合| 国产一区二区激情短视频| 男女做爰动态图高潮gif福利片| 男人舔女人下体高潮全视频| 亚洲精品亚洲一区二区| 97碰自拍视频| 亚洲精品亚洲一区二区| 日韩中文字幕欧美一区二区| 成年版毛片免费区| 成人永久免费在线观看视频| 99热这里只有是精品50| 亚洲不卡免费看| 欧美3d第一页| 三级毛片av免费| 最后的刺客免费高清国语| 女人十人毛片免费观看3o分钟| 99国产综合亚洲精品| 床上黄色一级片| 深夜精品福利| 一进一出好大好爽视频| 我的女老师完整版在线观看| 91av网一区二区| 成人三级黄色视频| 成人av一区二区三区在线看| 一区二区三区激情视频| 黄色一级大片看看| 黄色一级大片看看| 成人永久免费在线观看视频| 伊人久久精品亚洲午夜| 在线播放无遮挡| 国产精品人妻久久久久久| 中文字幕高清在线视频| 夜夜躁狠狠躁天天躁| 中文字幕av在线有码专区| 国产精品不卡视频一区二区 | 国产不卡一卡二| 午夜a级毛片| 久久精品国产自在天天线| 91av网一区二区| 国产野战对白在线观看| 精品久久久久久,| 成人三级黄色视频| 婷婷色综合大香蕉| 国产av在哪里看| 亚洲欧美日韩无卡精品| 亚洲成人中文字幕在线播放| 日本五十路高清| 最好的美女福利视频网| 美女免费视频网站| 久久精品国产自在天天线| 精品乱码久久久久久99久播| 精品久久久久久久久av| or卡值多少钱| 亚洲av熟女| 亚洲精品影视一区二区三区av| 禁无遮挡网站| 精品一区二区三区视频在线| 精品欧美国产一区二区三| 好男人在线观看高清免费视频| 久久久色成人| 亚洲欧美激情综合另类| 免费在线观看成人毛片| 久久精品国产99精品国产亚洲性色| 美女高潮的动态| 一级av片app| 亚洲不卡免费看| 十八禁国产超污无遮挡网站| 亚洲人成网站高清观看| 精品久久久久久久人妻蜜臀av| 激情在线观看视频在线高清| 亚洲电影在线观看av| 不卡一级毛片| 在线观看av片永久免费下载| 午夜免费成人在线视频| 国产男靠女视频免费网站| 亚洲国产精品999在线| 亚洲国产欧洲综合997久久,| 丰满乱子伦码专区| 女人十人毛片免费观看3o分钟| 男插女下体视频免费在线播放| 最近在线观看免费完整版| 欧美乱妇无乱码| 最近在线观看免费完整版| 亚洲一区高清亚洲精品| 热99re8久久精品国产| 一本久久中文字幕| 一本一本综合久久| 99热这里只有是精品在线观看 | 午夜福利在线观看免费完整高清在 | 深夜精品福利| 精品久久国产蜜桃| 岛国在线免费视频观看| 精品人妻视频免费看| 免费看a级黄色片| 国产欧美日韩一区二区三| 国产一区二区三区在线臀色熟女| 观看美女的网站| 国产高清有码在线观看视频| 俺也久久电影网| 一级黄片播放器| 午夜福利成人在线免费观看| 国产探花在线观看一区二区| 久久久久国产精品人妻aⅴ院| 日韩中文字幕欧美一区二区| 日韩人妻高清精品专区| 丁香欧美五月| 国产私拍福利视频在线观看| 亚洲国产欧洲综合997久久,| 中文字幕熟女人妻在线| 精品久久久久久久久av| 成年女人永久免费观看视频| 两个人视频免费观看高清| 男插女下体视频免费在线播放| 亚洲人成伊人成综合网2020| 中文字幕免费在线视频6| 淫妇啪啪啪对白视频| 波多野结衣巨乳人妻| 成年版毛片免费区| 我的老师免费观看完整版| 精品人妻视频免费看| 国内揄拍国产精品人妻在线| 国产黄a三级三级三级人| 欧美激情在线99| 久久久色成人| 免费看日本二区| 亚洲在线观看片| 免费看光身美女| 全区人妻精品视频| 午夜福利高清视频| 色噜噜av男人的天堂激情| 久久精品影院6| 欧美在线一区亚洲| 国产亚洲精品久久久com| 亚洲欧美日韩高清专用| 久久精品国产99精品国产亚洲性色| 啦啦啦韩国在线观看视频| 国内精品一区二区在线观看| 国产免费一级a男人的天堂| 久久国产乱子伦精品免费另类| 亚洲18禁久久av| 狠狠狠狠99中文字幕| 麻豆国产av国片精品| 一卡2卡三卡四卡精品乱码亚洲| 成人美女网站在线观看视频| 少妇高潮的动态图| 国产高潮美女av| 色噜噜av男人的天堂激情| 国产成人福利小说| av视频在线观看入口| 国产真实乱freesex| 国产成人欧美在线观看| 国产 一区 欧美 日韩| 老司机深夜福利视频在线观看| 精品一区二区三区视频在线观看免费| 两个人的视频大全免费| 少妇被粗大猛烈的视频| 国产成年人精品一区二区| 亚洲欧美日韩卡通动漫| 精品熟女少妇八av免费久了| 久久伊人香网站| 国产精品人妻久久久久久| 熟女电影av网| 精品久久久久久,| 久久精品影院6| 毛片一级片免费看久久久久 | a级毛片免费高清观看在线播放| 18禁裸乳无遮挡免费网站照片| 免费看日本二区| 亚洲欧美日韩高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲人成网站在线播放欧美日韩| 国产三级在线视频| 国产91精品成人一区二区三区| or卡值多少钱| 18美女黄网站色大片免费观看| 免费观看人在逋| 国产精华一区二区三区| 亚洲第一欧美日韩一区二区三区| 中文字幕高清在线视频| 在线天堂最新版资源| 一级a爱片免费观看的视频| 天堂√8在线中文| 91久久精品国产一区二区成人| 亚洲成a人片在线一区二区| 亚洲天堂国产精品一区在线| 又黄又爽又免费观看的视频| 又粗又爽又猛毛片免费看| 婷婷六月久久综合丁香| 男女之事视频高清在线观看| 欧美在线一区亚洲| 男人和女人高潮做爰伦理| 99久久成人亚洲精品观看| 免费av观看视频| 国产精品一区二区性色av| 久久这里只有精品中国| 九九热线精品视视频播放| 中亚洲国语对白在线视频| 免费看日本二区| 国产亚洲精品综合一区在线观看| 亚洲 欧美 日韩 在线 免费| 中文字幕人成人乱码亚洲影| 综合色av麻豆| 女人被狂操c到高潮| 亚洲av成人精品一区久久| 亚洲精品一卡2卡三卡4卡5卡| 婷婷精品国产亚洲av在线| 天堂动漫精品| 亚洲av熟女| 国产精品伦人一区二区| 18+在线观看网站| 精品一区二区三区人妻视频| 高清日韩中文字幕在线| 毛片一级片免费看久久久久 | 99国产综合亚洲精品| 精品人妻熟女av久视频| 亚洲不卡免费看| 亚洲欧美日韩东京热| av中文乱码字幕在线| 90打野战视频偷拍视频| 日韩 亚洲 欧美在线| 最近最新中文字幕大全电影3| 色综合婷婷激情| 日本免费一区二区三区高清不卡| 波多野结衣高清作品| 欧美xxxx黑人xx丫x性爽| 国产v大片淫在线免费观看| 国产精品野战在线观看| 精品一区二区三区人妻视频| 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频| 中文字幕免费在线视频6| 老司机深夜福利视频在线观看| 亚洲 国产 在线| 少妇的逼好多水| 日韩高清综合在线| 亚洲精品乱码久久久v下载方式| 国产精品国产高清国产av| 日韩成人在线观看一区二区三区| 亚洲国产欧美人成| 一级作爱视频免费观看| 欧美潮喷喷水| 成年女人看的毛片在线观看| 精品久久久久久久久亚洲 | 最近最新免费中文字幕在线| 校园春色视频在线观看| 免费看光身美女| 久久精品国产自在天天线| 最近中文字幕高清免费大全6 | 亚洲七黄色美女视频| 久久草成人影院| 欧美+日韩+精品| 村上凉子中文字幕在线| 国产伦人伦偷精品视频| 如何舔出高潮| 欧美不卡视频在线免费观看| 一级a爱片免费观看的视频| 男女之事视频高清在线观看| 99热这里只有是精品在线观看 | 琪琪午夜伦伦电影理论片6080| 久99久视频精品免费| 中文字幕久久专区| 亚洲成人久久性| 90打野战视频偷拍视频| 18禁黄网站禁片午夜丰满| 久久久久久久久中文| 成人毛片a级毛片在线播放| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 亚洲国产高清在线一区二区三| 国产蜜桃级精品一区二区三区| 午夜亚洲福利在线播放| 久久精品国产99精品国产亚洲性色| 一本综合久久免费| av中文乱码字幕在线| 哪里可以看免费的av片| 国内毛片毛片毛片毛片毛片| 精品无人区乱码1区二区| 桃色一区二区三区在线观看| 欧美日本视频| 亚洲成人精品中文字幕电影| 天美传媒精品一区二区| 欧美丝袜亚洲另类 | 啦啦啦观看免费观看视频高清| 精品人妻偷拍中文字幕| 国产三级黄色录像| 老司机午夜十八禁免费视频| 色综合婷婷激情| 色在线成人网| 极品教师在线免费播放| 久久精品国产99精品国产亚洲性色| 欧美绝顶高潮抽搐喷水| 精华霜和精华液先用哪个| 色播亚洲综合网| 国内久久婷婷六月综合欲色啪| 亚洲av二区三区四区| 国产精品一及| 18禁裸乳无遮挡免费网站照片| 十八禁国产超污无遮挡网站| 永久网站在线| 国产精品一及| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 91字幕亚洲| or卡值多少钱| 国产单亲对白刺激| 国产精品亚洲美女久久久| 午夜影院日韩av| 国产黄色小视频在线观看| 蜜桃久久精品国产亚洲av| 国产老妇女一区| 国产精品,欧美在线| 成人无遮挡网站| 亚洲天堂国产精品一区在线| 午夜福利在线观看免费完整高清在 | 国产白丝娇喘喷水9色精品| 草草在线视频免费看| 成人无遮挡网站| 99精品在免费线老司机午夜| 日韩欧美国产一区二区入口| 亚洲性夜色夜夜综合| 久久久久性生活片| 免费看光身美女| 国产精品野战在线观看| 精品人妻偷拍中文字幕| 日韩欧美免费精品| 91麻豆av在线| 99国产精品一区二区三区| 婷婷色综合大香蕉| 久久午夜福利片| 男女那种视频在线观看| 午夜福利在线观看免费完整高清在 | 人人妻,人人澡人人爽秒播| 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 草草在线视频免费看| 久久久国产成人免费| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 男女下面进入的视频免费午夜| 日韩高清综合在线| 国内精品久久久久精免费| 欧美又色又爽又黄视频| 我要搜黄色片| 在线播放国产精品三级| 悠悠久久av| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播| 国内精品美女久久久久久| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 99久久精品热视频| 一本久久中文字幕| 99久久99久久久精品蜜桃| 97人妻精品一区二区三区麻豆| 桃红色精品国产亚洲av| 精品国内亚洲2022精品成人| 少妇人妻一区二区三区视频| 亚洲欧美清纯卡通| 看片在线看免费视频| 精华霜和精华液先用哪个| 真人一进一出gif抽搐免费| 9191精品国产免费久久| 18禁黄网站禁片免费观看直播| 午夜福利视频1000在线观看| 日韩欧美在线乱码| 久久精品夜夜夜夜夜久久蜜豆| 精品欧美国产一区二区三| 成人精品一区二区免费| 午夜福利欧美成人| 午夜精品在线福利| 亚洲中文日韩欧美视频| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 91九色精品人成在线观看| 在线观看一区二区三区| 午夜免费激情av| 一本综合久久免费| 国产伦精品一区二区三区视频9| 亚洲五月婷婷丁香| 99久久99久久久精品蜜桃| 精品久久久久久久久亚洲 | 欧美激情在线99| 又黄又爽又刺激的免费视频.| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 日本在线视频免费播放| 免费av不卡在线播放| 麻豆国产97在线/欧美| 亚洲男人的天堂狠狠| 亚洲成人久久性| 天美传媒精品一区二区| 人妻丰满熟妇av一区二区三区| 欧美在线黄色| 日韩有码中文字幕| 搡老熟女国产l中国老女人| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 午夜久久久久精精品| 全区人妻精品视频| 丰满乱子伦码专区| 日本三级黄在线观看| 日韩欧美国产一区二区入口| 亚洲精品影视一区二区三区av| 看片在线看免费视频| 精华霜和精华液先用哪个| 99riav亚洲国产免费| 9191精品国产免费久久| 最新中文字幕久久久久| 99在线视频只有这里精品首页| 欧美+日韩+精品| 国产私拍福利视频在线观看| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 亚洲熟妇熟女久久| 国产成人啪精品午夜网站| 国产精品久久久久久亚洲av鲁大| 国模一区二区三区四区视频| 国产精品不卡视频一区二区 | 一卡2卡三卡四卡精品乱码亚洲| 成人av一区二区三区在线看| 欧美zozozo另类| 国产在线精品亚洲第一网站| 无遮挡黄片免费观看| 男插女下体视频免费在线播放| 熟妇人妻久久中文字幕3abv| 色哟哟·www| 亚洲不卡免费看| 日本五十路高清| 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| 日本精品一区二区三区蜜桃| 亚洲欧美精品综合久久99| 久久精品91蜜桃| 成人午夜高清在线视频| a级一级毛片免费在线观看| av欧美777| 亚洲成a人片在线一区二区| 午夜两性在线视频| 两个人视频免费观看高清| 天堂网av新在线| www日本黄色视频网| 久99久视频精品免费| 久久香蕉精品热| 免费看美女性在线毛片视频| 夜夜躁狠狠躁天天躁| 色在线成人网| 色综合站精品国产| 色尼玛亚洲综合影院| 国产三级中文精品| 久久久久九九精品影院| 欧美高清成人免费视频www| 在线免费观看的www视频| 免费在线观看成人毛片| 人妻久久中文字幕网| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 精品一区二区免费观看| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 我要搜黄色片| 窝窝影院91人妻| 精品一区二区免费观看| 欧美中文日本在线观看视频| 成人毛片a级毛片在线播放| 男女视频在线观看网站免费| 免费av观看视频| 国产精品免费一区二区三区在线| 久久久久性生活片| 色哟哟哟哟哟哟| 午夜福利在线观看吧| 亚洲午夜理论影院| www.色视频.com| 美女高潮的动态| 老熟妇仑乱视频hdxx| 精品久久久久久久末码| 国产熟女xx| 国产国拍精品亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 2021天堂中文幕一二区在线观| 国产欧美日韩一区二区精品| 午夜两性在线视频| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 国产精品,欧美在线| 午夜福利成人在线免费观看| 97碰自拍视频| 日韩亚洲欧美综合| 国产精品亚洲一级av第二区| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久免费视频| 久久精品国产亚洲av香蕉五月| 中出人妻视频一区二区| 精品一区二区三区人妻视频| 午夜老司机福利剧场| 人妻制服诱惑在线中文字幕| 亚洲av一区综合| 国产熟女xx| 淫秽高清视频在线观看| 精品久久久久久久人妻蜜臀av| 久久人人爽人人爽人人片va | 国产精品98久久久久久宅男小说| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 观看美女的网站| 91狼人影院| 18禁在线播放成人免费| 午夜日韩欧美国产| 久久精品综合一区二区三区| 午夜精品一区二区三区免费看| 国产私拍福利视频在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产成人福利小说| 国产色婷婷99| 亚洲熟妇熟女久久| 99热精品在线国产| 九色成人免费人妻av| 国产精品电影一区二区三区| 少妇的逼好多水| 九色国产91popny在线| 精品乱码久久久久久99久播| 国产综合懂色| 国产精品,欧美在线| 乱码一卡2卡4卡精品| 高清日韩中文字幕在线| 99久久成人亚洲精品观看| 高清日韩中文字幕在线| 亚洲人成网站高清观看| 97超视频在线观看视频| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 观看免费一级毛片| 99热只有精品国产| 久久久精品大字幕| 五月玫瑰六月丁香| 观看免费一级毛片| 欧美黄色片欧美黄色片| 国产高清三级在线| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩高清在线视频| 国产高清视频在线观看网站| 国内精品久久久久精免费| 久久精品影院6| 国产高清三级在线| 亚洲av成人av| 欧美最黄视频在线播放免费| 久久久久久久午夜电影| 久久久久久久久中文| 久久久精品欧美日韩精品| 亚洲一区二区三区不卡视频| 男女之事视频高清在线观看| 欧美激情国产日韩精品一区| 欧美日韩乱码在线| 欧美日韩瑟瑟在线播放| 天天躁日日操中文字幕| 又紧又爽又黄一区二区| 美女cb高潮喷水在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆成人av免费视频| 国产av在哪里看| 国产精品亚洲av一区麻豆| 精品久久久久久久久亚洲 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美黑人巨大hd| 又紧又爽又黄一区二区| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在 | 两个人视频免费观看高清| 亚洲经典国产精华液单 | 在线观看66精品国产| 亚洲成av人片免费观看| 久久热精品热| 欧美中文日本在线观看视频| 搡女人真爽免费视频火全软件 | 午夜福利18| 亚洲男人的天堂狠狠| 免费av毛片视频| 欧美最黄视频在线播放免费| 露出奶头的视频| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 精品熟女少妇八av免费久了| 最好的美女福利视频网| 老司机福利观看| 他把我摸到了高潮在线观看| 国产色婷婷99| 俄罗斯特黄特色一大片| 伊人久久精品亚洲午夜| 18美女黄网站色大片免费观看| 国产一级毛片七仙女欲春2| 欧美xxxx性猛交bbbb| 美女大奶头视频| 国产av一区在线观看免费| 免费高清视频大片| 免费av观看视频| 欧美激情在线99| 三级男女做爰猛烈吃奶摸视频| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 免费人成视频x8x8入口观看| 可以在线观看毛片的网站| 亚洲自拍偷在线| 精品久久久久久久末码| 日日夜夜操网爽| 欧美bdsm另类| 久久久国产成人免费| av专区在线播放| 亚洲,欧美精品.|