• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High performance solar-blind deep ultraviolet photodetectors via β-phase(In0.09Ga0.91)2O3 single crystalline film

    2023-10-11 07:56:38BichengWang王必成ZiyingTang湯梓熒HuyingZheng鄭湖穎LishengWang王立勝YaqiWang王亞琪RunchenWang王潤(rùn)晨ZhirenQiu丘志仁andHaiZhu朱海
    Chinese Physics B 2023年9期

    Bicheng Wang(王必成), Ziying Tang(湯梓熒), Huying Zheng(鄭湖穎), Lisheng Wang(王立勝),Yaqi Wang(王亞琪), Runchen Wang(王潤(rùn)晨), Zhiren Qiu(丘志仁),?, and Hai Zhu(朱海),2,?

    1State Key Laboratory of Optoelectronic Materials and Technologies,School of Physics,Sun Yat-Sen University,Guangzhou 510275,China

    2Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices,School of Physics,Sun Yat-sen University,Guangzhou 510275,China

    Keywords: deep ultraviolet,film,photodetector,heteroepitaxy

    1.Introduction

    Solar irradiation with wavelength shorter than 280 nm,commonly known as the solar-blind range,is rarely present at the Earth’s surface due to the strong absorption of deep ultraviolet(DUV)light by the ozone layer,water vapor and fine particles in the atmosphere.[1]As a result,photodetectors operating in this spectral range, as solar-blind photodetectors, have the advantages of low bit error rates and high signal-to-noise ratios.[2]These photodetectors have a wide range of important applications in industry,environmental protection,monitoring of the ozone layer, and the military.[1,3–6]Therefore, solarblind photodetectors have received extensive attention and high research enthusiasm.Narrow-bandgap semiconductors,such as silicon semiconductors, have been largely limited in the development of solar-blind photodetectors due to the low ultraviolet light sensitivity and poor thermal stability.[7]The ultra-wide bandgap semiconductors have large bandgaps and high Baliga figures of merit (BFOMs), providing incomparable advantages in terms of breakdown resistance,low leakage,and low loss.[8–10]In recent years, ultra-wide bandgap semiconductor materials,including aluminum nitride(AlN),[11–13]diamond,[5,14,15]β-phase gallium oxide (β-Ga2O3),[2,16–24]aluminum gallium nitride (AlGaN),[25,26]aluminum gallium oxide (AlGaO),[27]magnesium zinc oxide (MaZnO)[28]and InGaO[29–32]have been used to fabricate solar-blind photodetectors.As an important member of ultrawide bandgap semiconductors, the bandgap (BFOM) ofβ-Ga2O3is 4.9 eV(3000).Furthermore,β-Ga2O3exhibits a significant absorption in the solar-blind range, exceptional thermal and chemical stability.Therefore,Ga2O3-based semiconductor is an excellent material for the preparation of solar-blind DUV photodetectors,which has high responsivity and external quantum efficiency.[24,33,34]Although manyβ-Ga2O3solar-blind detectors have been reported to have excellent performance,they are limited by the fact thatβ-Ga2O3only has a single bandgap.

    In order to realize the manipulation ofβ-Ga2O3bandgap flexiblility,the Ga2O3host crystal lattice can be doped with Al or In atom.Due to the similar diameter between the In and Ga atoms,the In is an ideal candidate for dopingβ-Ga2O3.[35,36]The bandgap of InGaO alloy system can be manipulated by adjusting the atom components ratio.[31,37]This doping scheme will allow the fabricated detector to cover a wider spectral range and enhance parameters such as responsibility.[29,31]

    Swallowet al.utilized density functional theory(DFT)to determine the electronic structure of InGaO alloys and discovered that the density of the In 4d state in In2O3is higher than that of the Ga 3d state in Ga2O3,indicating that InGaO has an increased density of states in the valence band due to the presence of indium.[38]This increase In density results in stronger light absorption,especially in the deep ultraviolet range.Consequently, the InGaO solar-blind detector produces a higher density of photoexcited carriers than that of the Ga2O3solarblind detector under deep ultraviolet light irradiation.Additionally, indium doping introduces In 5s orbital at the bottom of the conduction band,which enhances the transport of photogenerated carrier.Because In 5s orbital has a larger spatial expansion than that of Ga 4s orbital, the electron mobility is higher.[39]In conclusion,the In-modulated electronic structure in Ga2O3significantly improves the performance of the InGaO solar-blind photodetector.

    In this article, the realization of high-performance In-GaO alloy based solar-blind photodetector is reported at room-temperature (RT).The InGaO film is grown oncplane sapphire by plasma-assisted molecular beam epitaxy.Typical schottky junction is constructed between interdigital electrodes and InGaO film with metal–semicondutor–metal(MSM) configuration.The dark current of device is as low as 40 pA,while it’s responsivity is as high as 450 A/W(50 V).The UV/VIS rejection ratio of device (R232nm/R380nm) exceeds 4×104, which demonstrates the excellent solar-blind selectivity response character.The transient response test gives the rising and falling time of the device are only 80 ns and 420 ns, respectively.Moreover, an unambiguous twodimensional scanning imaging pattern provided by InGaO solar-blind detectors is also demonstrated.

    2.Experimental procedures

    InGaO film was grown on 2 inches sapphire (0001) by PA-MBE(SVT 35-V-3).The sapphire substrate was annealed at 750°C for 15 min at an oxygen flow rate of 1.6 sccm.Firstly, high-purity (6N) gallium source was evaporated onto the substrate.Then,a low temperature(200°C)Ga2O3buffer layer was grown.Afterwards, a high temperature Ga2O3buffer later was grown for 1 h at temperature of 950°C for the Ga source and 700°C for the substrate while maintaining the oxygen flow rate.To introduce the indium source,the indium source temperature was raised to 550°C and the indium gallium oxide grown for 1 h.After InGaO growth,the surface topography and thickness of the film were characterized by field-emission scanning electron microscopy (SEM, Hitachi S-4800), and the surface roughness of the film was measured using the tapping mode of the atomic force microscopy(AFM,Veeco Dimension Edge).X-ray diffraction instruments(XRD,Bruker Discover&Advance)were used to determine the crystal structure and growth quality of the thin film.The spectrometer (Shimadzu UV-2700) can test the transmittance and absorption optical properties of the sample.Then x-ray photoelectron spectroscopy(XPS,Escalab 250 Xi, Thermo Fisher)was tested on the InGaO film to obtain the composition content information of the film.The solar-blind photodetector devices were designed to be 50 pairs of interdigital electrodes(Ti/Au 20 nm/50 nm) with interfingers spacing of 6 μm that evaporated by electron beam(EB,Oxford Cryo-Plex 8)on In-GaO film.For electrical measurements of the detector,theI–Vcharacteristics and responsivity of device were carried out with a multifunctional digital source measure unit (Keysight B2902A) when a 150 W Xe lamp was used as an ultraviolet light excitation source.The transient photoresponse test of detector was recorded by an oscilloscope (Teledyne LeCroy HDO4304) under 193 nm pulse laser (GAM laser EX5 EXCIMER laser).

    3.Results and discussion

    In this paper, high-quality InGaO thin films are grown on sapphire (001) using the plasma-assisted molecular beam epitaxy (PA-MBE).First, the sapphire substrate is annealed at 750°C for 15 min before growth to remove impurities on the substrate surface.Then, in order to release the mismatch between sapphire and InGaO, Ga/Ga2O3buffer layers are first grown on the sapphire substrate.Here,the Ga atomic layer can release interfacial strain due to its inherent ductility.Meanwhile, the low-temperature Ga2O3buffer layer acts as a nucleation site,and the high-temperature buffer layer provides a smooth plane for growth.After the deposition of the buffer layer, a uniform thin film of InGaO is grown at high substrate temperature for 1 h.A schematic diagram of the growth process of InGaO is shown (Fig.1(a)).During the growth process, the flux of oxygen atoms is greater than that of Ga atoms,which is due to the fact that oxygen-rich conditions can inhibit the formation of suboxide Ga2O and reduce the decomposition rate of GaOxon the substrate surface.[40,41]To monitor InGaO crystal quality during the growth process,reflection high energy electron diffraction (RHEED) patterns are recorded(Fig.1(b)).It can be seen that the diffraction patterns of the InGaO thin film are sharp linear shape,indicating that the surface during the growth process is very flat and the atoms on the surface are arranged in an orderly manner,which confirms that the epitaxial InGaO layer is a high-quality single crystal film with a two-dimensional planar growth mode.

    The field-emission SEM surface topography of as-grown InGaO alloy film via MBE is depicted in Fig.1(d), meanwhile, the cross-sectional image of sample is given (inset of Fig.1(d)).It is noted that the thin film of InGaO presents compact and dense crystallization with a thickness of around 300 nm.The smooth surface of the film without pits can be seen obviously, which indicates that the fabricated InGaO alloy film is a high crystalline quality film.Figure 1(e) displays the AFM surface image of the InGaO thin film, it can be obtained that the as-grown InGaO film is extremely smooth with a root mean square (RMS) of 0.54 nm in the region of 5 μm×5 μm.

    Fig.1.Growth and surface morphology of InGaO.(a) Growth diagram of InGaO thin film on sapphire substrate.The two designed buffer layers are deposited sequentially to reduce mismatches between the epitaxial film and the substrate.(b) and (c) RHEED patterns of InGaO thin film growth along [010] azimuth for 10 min and 30 min.(d) SEM image of InGaO thin film surface.The cross-section displays that the thin film exhibits dense crystallization, with a thickness of 300 nm(insert).(e) The atom AFM scanning image of InGaO hetero-epitaxy film.Here,the RMS of film is about 0.54 nm.

    Figure 2(a) presents the XRD patterns of InGaO sample and pureβ-Ga2O3thin film.In addition to the characteristic peak of sapphire (0006) at 41.81°, both InGaO andβ-Ga2O3films contain three typical diffraction peaks at around 18.92°, 38.36°, and 59.08°, which correspond to its three crystal planes (ˉ201), (ˉ402), and (ˉ603), respectively.[21]Figure 2(b) shows the XRD pattern around the (ˉ201) diffraction peak which can be seen that the (ˉ201) diffraction peak of In-GaO has an obvious blue shift, and the FHWM is 0.21°, indicating that high-quality single-crystal thin films have been achieved.Furthermore, the InGaO sample has a blue shift of about 0.03°relative to Ga2O3,which is due to the larger diameter of the indium atom than that of the gallium atom,resulting in a larger lattice constant.[29]It can be seen from XRD pattern that the quality of InGaO film is very excellent.

    Then, the ultraviolet-visible optical absorption spectrum test between the InGaO and Ga2O3thin films is carried out to compare the difference in optical properties.As shown in Fig.2(c),both InGaO and Ga2O3thin films have obvious absorption in the sola-blind band, and the absorption peak cutoff wavelength of InGaO(Ga2O3)is 266(257)nm.The inset of Fig.2(c) displays the relationship between (αhν) andEg,which is calculated according to the Tauc formula combined bandgap of the film[32]

    wherehνis the incident photon energy,Egis the band-gap,andAis a constant.[30]Based on Eq.(1), the bandgap of the InGaO film is 4.76 eV, which is smaller than the bandgap of Ga2O3(4.87 eV).It can be concluded that the doping of indium can effectively regulate the bandgap of Ga2O3.

    To determine the indium content of the film, XPS spectrum is presented in Fig.2(d), which shows the presence of all elements,and their concentrations are calculated using the integrated peak area ratio given by

    whereAiis the integral area of elementi, andnis the total number of elements contained.The indium,gallium,and oxygen concentrations are found to be 2.7%, 28.4%, and 68.8%,respectively.Accordingly, the value ofXlnis estimated to be approximately 0.09 in InGO, which is consistent with the bandgap value obtained from the Tauc plot in Fig.2(c).Hence,the flexible doping technique for the InGaO alloy films using PA-MBE is feasible,which serves as a foundation for the fabrication of high performance solar-blind detectors.

    Based on the high-quality InGaO film, the MSM-type solar-blind photodetectors with interdigital electrodes configuration are constructed.Figure 3(a) illustrates the 4×5 matrix of the fabricated solar-blind detectors,where each device’s surface appears clean without any impurities.On the other hand,Fig.3(b)shows the physical image of the InGaO solarblind DUV photodetector.As can be seen,the width and spacing of fingers are both equal to 6 μm,and the total number of interdigitated electrodes is 50 pairs.

    Figure 3(c) displays theI–Vcharacteristic of the photodetector under 232 nm light illumination and dark condition, respectively.The inset presents theI–Vcurve in semilogarithmic coordinates to distinguish the dark currents.Without DUV irradiation, the dark current of device is as low as 40 pA at zero bias.With increase of the bias voltage, the photon/dark current plots exhibit an obvious rectification characteristic.Above nonlinearly photon/darkI–Vproperties of device originate from the Schottky barrier between the Ti/Au and InGaO films.The current of the device is mainly tunneling current through metal/semiconductor interface for InGaO Schottky junction.At high external bias, the field emission(FE)current will dominate and can be described as[42]

    Based on Eq.(3), the fitting of theI–Vcurves shows that the field emission component dominates the carrier transport at high voltage (inset of Fig.3(d)).The fitted curve closely matches the experimental data.

    Fig.2.The crystalline properties of InGaO alloy film grown on sapphire substrate.(a)The XRD patterns of InGaO alloy and β-Ga2O3.(b)The XRD pattern around the(ˉ201)diffraction peak.It can be seen that the(201)diffraction peak of InGaO has an obvious blue shift,and the FHWM is 0.21°.(c)The absorption spectrum of InGaO alloy film and β-Ga2O3 at room-temperature,its cut-off peak is 267 nm.Insert: the relationship between(αhν)and Eg.The optical bandgap of sample is estimated via Tauc plot.(d)XPS spectrum of InGaO alloy films grown on sapphire substrates.Composition estimated from XPS measurements is calculated using peak areas rather than exact peak positions.XPS measurement results show that XIn=0.09 in InGO.

    Fig.3.The InGaO alloy ultraviolet photodetector and photon response.(a) 4×5 solar-blind photodetector matrix.(b) Enlargerd SBPDs devices are constructed with interdigital Ti/Au electrodes(20 nm/50 nm)with interfingers spacing of 6 μm that are fabricated via photolithography.(c)The characteristic I–V curve of InGaO detector corresponds to DUV light and dark current of the device respectively.Insert: the I–V plots that are described in semi-log coordinates.(d) The typical photon responsibility spectra of the InGaO detector at RT.Insert: the responsibility of device as a function of the externally applied voltage.

    When the bias voltage reaches 10 V,the DUV photoncurrent of the device is as high as 30 μA.The photo-to-dark ratio(PDCR) can give the detail information about the signal-tonoise ratio of detector,which is described as follows:[16]

    whereIPis the photoncurrent under irradiation of 232 nm andIdis the dark current.The value of PDCR can be obtained as high as 20 at 10 V, indicating that the as-grown InGaO photodetector exhibits an excellent signal-to-noise ratio.

    As one of the critical parameters of a detector,photon responsivity refers to the magnitude of photocurrent under the illumination of a unit of light power.The responsivity can be calculated as[43]

    wherePis light power.As shown in Fig.3(d),the photon responsivity peak corresponds to a wavelength of 232 nm.Under the applied bias voltage of 50 V,the value of responsivity peak can increase to be as high as 450 A/W.Meanwhile the magnitude of UV/VIS suppression ratio(R232nm/R380nm)can be extracted to be about 4×104from the plot.It should be noted that almost no obvious response of the detector in visible light region is observed, which demonstrates a cracking solar-blind selection characteristic.

    The inset of Fig.3(d) displays the relationship between responsivity and applied bias voltage.It can be observed that the responsivity increases linearly with the increase in bias voltage.Furthermore, the device does not exhibit any saturation or breakdown phenomenon even when the bias voltage reaches 60 V,demonstrating that the device can stably operate under high voltage at room temperature.

    The external quantum efficiency(EQE)of the device can be calculated from the optical responsivity using[20]

    wherehis the Planck constant,cis the speed of light,λis the corresponding wavelength,andRλis the responsivity corresponding to the wavelength.Under an external bias voltage of 50 V, the calculation shows that, EQE=2×105%, which proves that the device has great muscle augmentation.

    The noise equivalent power (NEP) represents the minimum incident optical power required for the signal-to-noise ratio (SNR) to reach 1, and is calculated using the following equation:[32]

    To further measure the performance of the solar blind detector,special detectivity can be calculated by[32]

    whereAis the effective area of the device with a value of 0.18 mm2, and Δfrepresents the bandwidth, which is equal to 1 Hz.Therefore,special detectivity of the solar-blind detector is 2×108Jones, demonstrating the superior performance of the device.

    Fig.4.The temporal dynamic characteristics of InGaO alloy film solarblind photodetectors.(a)The transient photo-response of device with the irradiation of nanosecond pulsed laser.Here,the red solid line is a fitting curve according to a double exponential formula.Detector exhibits an extremely fast response speed and short restoring time.(b)Response time plots for different voltages.As the applied voltage increases,the lifetime of the device is slowly decreasing,and there is a tendency to saturation.

    In order to investigate the temporal dynamic properties of our InGaO solar-blind detector,we perform measurements of the instantaneous response kinetics of the device.The response time of photodetector is defined as the time it takes for the photon current to rise(or fall)to 1/e of its maximum value when the irradiation light is turned on or off.Figure 4 depicts the instantaneous response curve of the InGaO detector under pulsed 193 nm laser excitation.Experimental data can be fitted with double exponential function

    whereI0represents steady-state current,τ1andτ2are the response times, andA1andA2are the coefficients associated with the response times.As can be seen from Fig.4(a), the device exhibits an extremely fast response speed under pulsed laser irradiation.The rising time of the device,extracted from the rising edge of the plot, is approximately 80 ns.Transient drop timeτ1=420 ns andτ2=6.3 μs are deduced from the good agreement fitting curve.By varying the voltage, different response times are obtained (Fig.4(b)).As the applied voltage increasing, the response time of the device gradually decreases, which is due to the gradual increase of the carrier drift speed under the action of a strong electric field.However,when the load voltage is further increased,the probability of carrier-lattice collision increases so that the drift velocity reaches an extreme value.Therefore,the response time of the device is also saturated.

    Table 1.Comparison of several reported solar-blind detectors with important parameters.

    Fig.5.The imaging properties of InGaO detector.(a)Schematic diagram of imaging test system.Here, a InGaO film DUV photodetector plays a role as an imaging unit under external voltage.(b) The photograph of the two-dimensional(2D)object with several words SYSU.(c)The mapping image of the photon current corresponds to the profile of object.The scanning image exhibits a sharp edge, which is very similar to hollow letters.

    In addition,the decay time obtained by the experiment is much shorter than that of most reported Ga2O3-based devices.τ1andτ2correspond to two different relaxation mechanisms.Among them,τ1is mainly due to the formation of recombination center energy levels in the interior and surface of the film.Rapid carriers transport between the interdigitated Ti/Au electrode and the thin film under an applied electric field.When the 193 nm laser is turned off,the current-carrying concentration drops rapidly,andτ1can be further optimized by changing the interdigital electrode parameters, annealing, etc.The parameterτ2is primarily associated with persistent photoconductivity(PPC).In InGaO film,traps capture minority carriers,and these carriers that fall into the traps cannot recombine directly.Instead,they recombine through recombination centers,resulting in slow decay characteristics of photonresponse.[7]In addition,τ2is also related to factors such as laser power and device parasitic capacitance.The ratio ofA1/A2is 16,which proves that the transport of photogenerated carriers between the electrode accounts for the main part of the device.Both the fast rise and fall exhibited by our device indicate its excellent fast response capability.

    Table 1 summarizes various solar-blind detectors related to gallium oxide and their important parameters.Our devices exhibit remarkably high responsivity and fast response speed.

    Additionally, the DUV scanning imaging capability is critical faculty for solar-blind photodetector.A self-designed scanning detecting system as shown in Fig.5(a)is constructed to evaluate the imaging performance of the device.Among them, Xe lamp provides DUV light and places the imaging object at the focal point of the first lens.DUV light passes through the second lens and parallel exits to the detector.Under ultraviolet light,the object with the word SYSU(Fig.5(b)) moves through the two-dimensional mobile platform.A source meter is used to provide an external bias voltage of 20 V and the computer records the current conditions at different positions.Finally, the current intensity at different locations is imaged.It can be observed from Fig.5(c)that the imaging of the current intensity is very similar to the object and has obvious boundaries.The wonderful performance demonstrates that the system has excellent fidelity characteristics and InGaO devices can satisfy imaging systems requirement.

    4.Conclusion

    The growth and characterization of high-quality InGaO film by PA-MBE is reported, meanwhile the solar-blind detector with metal–semiconductor–metal structure is fabricated using the as-grown InGaO film.The excellent performance of our detector is analyzed comprehensively at RT.The dark current of device is weakness as low as 40 pA, while it’s responsivity is as high as 450 A/W(50 V).The UV/VIS rejection ratio of device(R232nm/R380nm)exceeds 4×104,which demonstrates the excellent solar-blind selectivity response faculty.The transient response gives the rising and falling time of the device are only 80 ns and 420 ns,respectively.In addition,the clear two-dimensional scanning imaging patterns by In-GaO solar-blind detectors are demonstrated.Our results pave the way for future applications of DUV photodetectors based on large-scale InGaO heteroepitaxially grown alloy semiconductor films.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.U22A2073,11974433,91833301,and 11974122).

    另类亚洲欧美激情| 国产有黄有色有爽视频| 成人免费观看视频高清| 永久网站在线| 欧美精品一区二区免费开放| 日本av免费视频播放| 男女边摸边吃奶| 一区二区三区精品91| 这个男人来自地球电影免费观看 | 你懂的网址亚洲精品在线观看| 高清午夜精品一区二区三区| 国产免费福利视频在线观看| 久久99一区二区三区| 你懂的网址亚洲精品在线观看| 人妻夜夜爽99麻豆av| 我的老师免费观看完整版| 亚洲精品aⅴ在线观看| 亚洲欧美精品自产自拍| 日韩三级伦理在线观看| 精品久久久精品久久久| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 人人妻人人澡人人看| 校园人妻丝袜中文字幕| 日本黄色片子视频| 精品人妻熟女毛片av久久网站| 国产av国产精品国产| 天堂俺去俺来也www色官网| 亚洲人成网站在线观看播放| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| a级毛片黄视频| 在线观看一区二区三区激情| 91久久精品电影网| 国产亚洲最大av| 老司机亚洲免费影院| 国产色爽女视频免费观看| 在线天堂最新版资源| 精品一区二区免费观看| 亚洲四区av| 久久久久久久亚洲中文字幕| 伊人亚洲综合成人网| 一级片'在线观看视频| 老司机影院成人| 亚洲欧美色中文字幕在线| 熟女电影av网| 女人精品久久久久毛片| 男人爽女人下面视频在线观看| 午夜影院在线不卡| 中文字幕人妻丝袜制服| 久久人人爽人人爽人人片va| 一级黄片播放器| 另类亚洲欧美激情| 亚洲精品乱码久久久久久按摩| 色哟哟·www| 丝袜脚勾引网站| 日韩精品免费视频一区二区三区 | 只有这里有精品99| 国产日韩一区二区三区精品不卡 | 满18在线观看网站| 伦理电影免费视频| 飞空精品影院首页| 女性生殖器流出的白浆| 日日撸夜夜添| 亚洲欧美中文字幕日韩二区| 亚洲国产精品999| 久久99精品国语久久久| 久久国产亚洲av麻豆专区| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 各种免费的搞黄视频| 欧美 亚洲 国产 日韩一| 国产精品麻豆人妻色哟哟久久| 国产免费福利视频在线观看| av天堂久久9| 韩国av在线不卡| 人妻 亚洲 视频| 亚洲精品乱码久久久久久按摩| 国产高清国产精品国产三级| 欧美成人精品欧美一级黄| 男人添女人高潮全过程视频| 欧美97在线视频| 日韩av免费高清视频| 观看美女的网站| 人人澡人人妻人| 91久久精品国产一区二区三区| 欧美另类一区| 久久午夜福利片| a 毛片基地| 蜜桃国产av成人99| 极品少妇高潮喷水抽搐| 久久这里有精品视频免费| 精品少妇黑人巨大在线播放| .国产精品久久| 男的添女的下面高潮视频| 最黄视频免费看| 午夜久久久在线观看| 美女内射精品一级片tv| 99久国产av精品国产电影| 国产深夜福利视频在线观看| 国产av码专区亚洲av| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 黄色配什么色好看| 一级毛片 在线播放| 夜夜骑夜夜射夜夜干| 黄色欧美视频在线观看| av播播在线观看一区| 国精品久久久久久国模美| 国产在线一区二区三区精| 欧美日韩综合久久久久久| 黑人高潮一二区| 国产精品一区www在线观看| 国产精品国产av在线观看| 国产精品偷伦视频观看了| 精品少妇久久久久久888优播| 熟妇人妻不卡中文字幕| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡 | 精品酒店卫生间| 九九久久精品国产亚洲av麻豆| 免费观看的影片在线观看| 午夜免费观看性视频| 18在线观看网站| 久久人人爽av亚洲精品天堂| 老女人水多毛片| 三级国产精品欧美在线观看| 黄色怎么调成土黄色| 久久久久久久国产电影| 91久久精品电影网| 国产综合精华液| 18禁观看日本| 男女啪啪激烈高潮av片| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 人成视频在线观看免费观看| 亚洲精品av麻豆狂野| 伊人久久国产一区二区| 最新的欧美精品一区二区| 国产av国产精品国产| 91成人精品电影| 天天操日日干夜夜撸| 亚洲情色 制服丝袜| 熟妇人妻不卡中文字幕| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频| 日韩精品免费视频一区二区三区 | www.色视频.com| 热99国产精品久久久久久7| 热99久久久久精品小说推荐| 色婷婷av一区二区三区视频| 三级国产精品片| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久| 99热这里只有精品一区| 亚洲精品自拍成人| 丰满少妇做爰视频| 一区二区日韩欧美中文字幕 | 少妇人妻 视频| 中文字幕精品免费在线观看视频 | 欧美精品人与动牲交sv欧美| 免费观看无遮挡的男女| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 免费少妇av软件| 日本与韩国留学比较| 国产免费视频播放在线视频| 午夜视频国产福利| 国产成人91sexporn| 简卡轻食公司| 欧美最新免费一区二区三区| 成人国产av品久久久| 欧美日韩一区二区视频在线观看视频在线| 99九九线精品视频在线观看视频| 少妇精品久久久久久久| 超色免费av| 99久久综合免费| 免费人成在线观看视频色| 欧美日韩在线观看h| 亚洲国产最新在线播放| 人人妻人人爽人人添夜夜欢视频| 国产精品人妻久久久影院| 国产精品99久久99久久久不卡 | 大香蕉97超碰在线| 成年人免费黄色播放视频| 一本—道久久a久久精品蜜桃钙片| 精品一区二区三区视频在线| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久 | 欧美97在线视频| 91aial.com中文字幕在线观看| 午夜91福利影院| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 国产精品熟女久久久久浪| 人妻一区二区av| 久久久久久伊人网av| 少妇 在线观看| 亚洲经典国产精华液单| 多毛熟女@视频| 中文字幕亚洲精品专区| 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 久久这里有精品视频免费| 最新中文字幕久久久久| 最近2019中文字幕mv第一页| 免费观看在线日韩| 日日爽夜夜爽网站| 精品一区二区三卡| 亚洲熟女精品中文字幕| 观看美女的网站| 国产精品久久久久久久久免| 国产一区有黄有色的免费视频| 一个人看视频在线观看www免费| 免费高清在线观看日韩| 日韩制服骚丝袜av| 精品卡一卡二卡四卡免费| 久久精品国产a三级三级三级| 久久女婷五月综合色啪小说| 国产精品一国产av| 极品人妻少妇av视频| 国产精品久久久久久av不卡| 中文字幕亚洲精品专区| 一个人看视频在线观看www免费| 国产精品一区二区在线观看99| 3wmmmm亚洲av在线观看| 97超视频在线观看视频| 久久97久久精品| 国产在线一区二区三区精| 国产成人精品福利久久| 国产精品国产三级国产av玫瑰| 一边摸一边做爽爽视频免费| 我的老师免费观看完整版| 久久97久久精品| 日韩欧美一区视频在线观看| 日韩大片免费观看网站| 亚洲不卡免费看| 亚洲av国产av综合av卡| 国产老妇伦熟女老妇高清| 日本黄色日本黄色录像| 制服人妻中文乱码| 精品一区二区三卡| 色吧在线观看| 国产爽快片一区二区三区| a级毛片在线看网站| videossex国产| 色5月婷婷丁香| 一本—道久久a久久精品蜜桃钙片| 亚洲成人一二三区av| 制服丝袜香蕉在线| 王馨瑶露胸无遮挡在线观看| 久久久久国产网址| 18禁在线播放成人免费| 欧美变态另类bdsm刘玥| 高清av免费在线| 欧美成人午夜免费资源| 欧美日韩精品成人综合77777| av女优亚洲男人天堂| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 亚洲国产精品999| 中文精品一卡2卡3卡4更新| 亚洲av不卡在线观看| 国产精品 国内视频| 最后的刺客免费高清国语| 亚洲无线观看免费| 搡老乐熟女国产| 国产日韩欧美在线精品| 又大又黄又爽视频免费| 蜜桃国产av成人99| av播播在线观看一区| av女优亚洲男人天堂| 国产男女超爽视频在线观看| 国精品久久久久久国模美| 国产成人午夜福利电影在线观看| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 日韩伦理黄色片| 在线免费观看不下载黄p国产| 国产精品久久久久久久电影| 国产黄片视频在线免费观看| 亚洲无线观看免费| av天堂久久9| 欧美一级a爱片免费观看看| 26uuu在线亚洲综合色| 51国产日韩欧美| 国产av码专区亚洲av| 中文字幕av电影在线播放| 国产不卡av网站在线观看| 中文精品一卡2卡3卡4更新| 乱人伦中国视频| 成人手机av| 热99国产精品久久久久久7| videosex国产| 久久97久久精品| 亚洲国产精品999| 一级a做视频免费观看| 午夜福利视频在线观看免费| 国产成人免费观看mmmm| 黑人巨大精品欧美一区二区蜜桃 | 免费大片18禁| 亚洲性久久影院| av又黄又爽大尺度在线免费看| 欧美老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 欧美成人精品欧美一级黄| 国产极品天堂在线| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品一区二区三区在线| 亚洲成人手机| 亚洲经典国产精华液单| 亚洲精品av麻豆狂野| 亚洲国产精品999| 欧美另类一区| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 又黄又爽又刺激的免费视频.| 亚洲国产av影院在线观看| 91精品国产九色| 日本与韩国留学比较| 狂野欧美白嫩少妇大欣赏| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 成人免费观看视频高清| av卡一久久| 日韩,欧美,国产一区二区三区| 亚洲情色 制服丝袜| 久久久欧美国产精品| 午夜久久久在线观看| 在线观看一区二区三区激情| 亚洲国产欧美在线一区| 青春草视频在线免费观看| 女人精品久久久久毛片| av在线老鸭窝| 亚州av有码| 乱码一卡2卡4卡精品| 亚洲怡红院男人天堂| 三上悠亚av全集在线观看| 欧美人与性动交α欧美精品济南到 | 婷婷色综合大香蕉| 美女视频免费永久观看网站| 美女主播在线视频| 国产精品蜜桃在线观看| 精品国产乱码久久久久久小说| 日本黄色片子视频| 欧美日韩视频精品一区| 女的被弄到高潮叫床怎么办| 国产欧美日韩综合在线一区二区| 国产爽快片一区二区三区| 欧美日韩精品成人综合77777| 国产无遮挡羞羞视频在线观看| 在线观看免费日韩欧美大片 | 日韩精品有码人妻一区| 国产精品久久久久久精品古装| 18在线观看网站| 亚洲五月色婷婷综合| 天天操日日干夜夜撸| 久久久久网色| 国产精品 国内视频| 国产 精品1| 国产免费一级a男人的天堂| 热99国产精品久久久久久7| 免费观看av网站的网址| 日本欧美国产在线视频| 边亲边吃奶的免费视频| 97精品久久久久久久久久精品| 美女大奶头黄色视频| 国产精品久久久久久精品电影小说| 满18在线观看网站| a 毛片基地| 久久久久久久久久久久大奶| 免费黄色在线免费观看| 国产精品偷伦视频观看了| 久久精品久久久久久久性| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 男人操女人黄网站| 蜜桃久久精品国产亚洲av| 精品国产一区二区久久| 麻豆乱淫一区二区| 永久网站在线| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 欧美日韩一区二区视频在线观看视频在线| 国产国拍精品亚洲av在线观看| 亚洲精品中文字幕在线视频| 在线天堂最新版资源| 黄色怎么调成土黄色| 一级毛片aaaaaa免费看小| 少妇人妻久久综合中文| 亚洲成人一二三区av| 成人毛片60女人毛片免费| 18禁在线无遮挡免费观看视频| 91精品一卡2卡3卡4卡| 色吧在线观看| 性色av一级| 国产免费一级a男人的天堂| 伦理电影免费视频| 久久精品久久久久久久性| 我的老师免费观看完整版| 精品国产国语对白av| 色5月婷婷丁香| 少妇的逼好多水| 亚洲少妇的诱惑av| 成人手机av| 人妻少妇偷人精品九色| 久久久久久久久久久免费av| 99九九在线精品视频| 欧美日韩综合久久久久久| 免费观看的影片在线观看| 国产免费一级a男人的天堂| 国产黄色视频一区二区在线观看| 91aial.com中文字幕在线观看| 91精品国产九色| 人人妻人人澡人人看| 精品亚洲成a人片在线观看| 精品午夜福利在线看| 中文字幕久久专区| 青春草亚洲视频在线观看| 欧美人与善性xxx| 黄色毛片三级朝国网站| 中文字幕人妻丝袜制服| 最近2019中文字幕mv第一页| 国产精品一国产av| 精品亚洲乱码少妇综合久久| 久久久国产一区二区| 国产又色又爽无遮挡免| 精品少妇久久久久久888优播| 日韩熟女老妇一区二区性免费视频| 丰满少妇做爰视频| 欧美精品人与动牲交sv欧美| 婷婷色av中文字幕| 草草在线视频免费看| 免费黄频网站在线观看国产| 国产精品欧美亚洲77777| 蜜桃在线观看..| 久久久久人妻精品一区果冻| 大香蕉久久网| 我要看黄色一级片免费的| 国产免费一级a男人的天堂| 免费黄色在线免费观看| av福利片在线| 欧美精品高潮呻吟av久久| 97在线视频观看| 色5月婷婷丁香| 91精品国产国语对白视频| 国产有黄有色有爽视频| 少妇 在线观看| 男人操女人黄网站| 国产亚洲av片在线观看秒播厂| 久久人人爽人人爽人人片va| 欧美老熟妇乱子伦牲交| 婷婷色av中文字幕| 国产 一区精品| 丝瓜视频免费看黄片| 色吧在线观看| 免费看不卡的av| 亚洲,一卡二卡三卡| 九九在线视频观看精品| 熟女人妻精品中文字幕| 欧美人与性动交α欧美精品济南到 | 亚洲国产欧美在线一区| 熟女av电影| 校园人妻丝袜中文字幕| 国产精品久久久久久久电影| 99热6这里只有精品| av福利片在线| 国产免费又黄又爽又色| 人人澡人人妻人| 波野结衣二区三区在线| 下体分泌物呈黄色| 观看av在线不卡| 日本91视频免费播放| 国国产精品蜜臀av免费| 国产在线视频一区二区| 一本大道久久a久久精品| 伊人亚洲综合成人网| 男女边吃奶边做爰视频| 免费大片黄手机在线观看| 插阴视频在线观看视频| 亚洲一区二区三区欧美精品| 蜜桃久久精品国产亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 日韩成人伦理影院| 18禁在线无遮挡免费观看视频| 边亲边吃奶的免费视频| 欧美成人精品欧美一级黄| 18禁裸乳无遮挡动漫免费视频| 午夜免费观看性视频| av在线播放精品| 肉色欧美久久久久久久蜜桃| 久久99热6这里只有精品| 精品久久久久久电影网| 少妇被粗大的猛进出69影院 | 国产老妇伦熟女老妇高清| av播播在线观看一区| 精品人妻一区二区三区麻豆| 伦理电影免费视频| 欧美最新免费一区二区三区| 久久精品夜色国产| 亚洲国产av新网站| 午夜视频国产福利| 热re99久久国产66热| 成人毛片a级毛片在线播放| 蜜桃国产av成人99| av又黄又爽大尺度在线免费看| 久久av网站| 久久午夜福利片| 亚洲激情五月婷婷啪啪| 国产深夜福利视频在线观看| 黑人猛操日本美女一级片| 免费大片黄手机在线观看| 五月天丁香电影| 亚洲色图 男人天堂 中文字幕 | 亚洲精品一二三| 好男人视频免费观看在线| 91午夜精品亚洲一区二区三区| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频 | 精品一品国产午夜福利视频| xxxhd国产人妻xxx| 一级毛片黄色毛片免费观看视频| 麻豆精品久久久久久蜜桃| 久久久久久久久大av| kizo精华| 性色avwww在线观看| 亚洲精品视频女| 免费黄网站久久成人精品| 亚洲欧洲日产国产| 亚洲经典国产精华液单| 亚洲欧美日韩另类电影网站| 日韩伦理黄色片| 秋霞伦理黄片| 91久久精品国产一区二区成人| 中文天堂在线官网| 成年av动漫网址| 男女边吃奶边做爰视频| 国产成人精品在线电影| 秋霞在线观看毛片| 最近最新中文字幕免费大全7| 熟女av电影| 最近手机中文字幕大全| 日本av免费视频播放| 一级爰片在线观看| xxxhd国产人妻xxx| 人成视频在线观看免费观看| 九九爱精品视频在线观看| 激情五月婷婷亚洲| 免费av不卡在线播放| 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 亚洲欧美成人精品一区二区| 大片免费播放器 马上看| 亚洲精品久久久久久婷婷小说| 久久精品国产鲁丝片午夜精品| 在线观看国产h片| 狠狠婷婷综合久久久久久88av| 久久精品久久久久久久性| 国产一区亚洲一区在线观看| 人妻制服诱惑在线中文字幕| 国产 精品1| 少妇人妻久久综合中文| 人人妻人人爽人人添夜夜欢视频| 老司机亚洲免费影院| 日韩伦理黄色片| 少妇的逼水好多| 亚洲综合精品二区| 欧美日韩视频精品一区| 久久婷婷青草| 国模一区二区三区四区视频| 欧美亚洲 丝袜 人妻 在线| 又黄又爽又刺激的免费视频.| 久久青草综合色| 纵有疾风起免费观看全集完整版| 亚洲美女搞黄在线观看| av天堂久久9| 天堂中文最新版在线下载| 国产精品蜜桃在线观看| 一级毛片电影观看| 亚洲成人av在线免费| 国产69精品久久久久777片| 国产精品人妻久久久影院| 日本黄色日本黄色录像| 亚洲精品国产av成人精品| 午夜福利网站1000一区二区三区| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 如何舔出高潮| 又大又黄又爽视频免费| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 熟女av电影| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 少妇熟女欧美另类| 久久精品国产自在天天线| 国产在线一区二区三区精| 午夜激情久久久久久久| 伦精品一区二区三区| 午夜福利影视在线免费观看| 汤姆久久久久久久影院中文字幕| 在线亚洲精品国产二区图片欧美 | 97精品久久久久久久久久精品| 天天躁夜夜躁狠狠久久av| 亚洲精品456在线播放app| 日日撸夜夜添| 精品视频人人做人人爽| 视频中文字幕在线观看| 久久精品人人爽人人爽视色| 一二三四中文在线观看免费高清| 一个人看视频在线观看www免费| videossex国产|