• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of anomalous transport based on radial fractional diffusion equation

    2022-05-05 01:49:08KaibangWU吳凱邦LaiWEI魏來(lái)andZhengxiongWANG王正洶
    Plasma Science and Technology 2022年4期
    關(guān)鍵詞:王正

    Kaibang WU (吳凱邦), Lai WEI (魏來(lái))and Zhengxiong WANG (王正洶)

    Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics,Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models, hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients(FDCs)are radially dependent or not.When a radially dependent FDCDα (r )<1is imposed,compared with the case underDα ( r)=1.0,it is observed that the position of the peak of the density profile is closer to the core.Further,it is found that when FDCs at the positions of source injections increase, the peak values of density profiles decrease.The non-local effect becomes significant as the order of fractional derivative α →1 and causes the uphill transport.However, as α →2, the fractional diffusion model returns to the standard model governed by Fick’s law.

    Keywords: anomalous transport, hollow profile, non-locality, fractional diffusion equation

    1.Introduction

    Understanding the mechanism of transport is one of the most significant issues in magnetically confined plasmas.The standard transport model states that the transport fluxΓ is proportional to the local gradient of a physical quantityX,e.g., temperature, density, or energy, with additional convective termXV.Γ can be written in the mathematical form Γ = -D?X+XV, whereDis the transport coefficient and Vis the convective velocity.Therefore,the transport equation has the form?tX= -?·Γ+S,whereSis a source.This implies that this model is based on a Markovian, Gaussian,uncorrelated process, because from the statistical point of view, if a system obeys the Gaussian distribution, the transport coefficient and convective velocity can be expressed asD=limt→∞σ2/tandV=limt→∞M/t,respectively, whereσ2is the variance andMis the mean.However, in magnetically confined plasmas, this model is insufficient to explain non-Markovian and non-Gaussian transport withσ2~tn,n≠1.For example,some experiments found non-local effect that when an edge cold pulse was imposed,the temperature at the core rose [1, 2].Some simulation results showed that the tracer particles are trapped in eddies or jump over several eddies in a single flight in a plasma with resistive pressuregradient-driven turbulence and the varianceσ2~tnwithn>1,which implies that the transport of tracer particles was super-diffusive and can be modeled by the fractional diffusion equation [3-5].In the plasma device TORPEX, suprathermal ions presented non-diffusive transport,forσ2~tnwithn>1 for super-diffusive orn<1 for sub-diffusive transport.The super-diffusive transport for suprathermal ions is related to large fluctuation, resulting in highly intermittent time traces,whereas the sub-diffusive transport does not present such intermittency [6, 7].Moreover, during off-axis electron cyclotron heating, the non-diffusive transport of temperature was observed in the DIII-D tokamak [8, 9], and hollow profiles of temperature were observed in the Rijnhuizen Tokamak Project[10].In the device HT-7 electron heat pinch was observed using off-axis ion cyclotron resonance frequency heating [11].Moreover, in Tore Supra, heat pinch effect was also observed and this effect was enhanced in low-density discharge [12].Further, hollow density profiles have been observed during the fueling processes in some devices[13, 14], and the related micro-turbulence studies have also been done [15-17], as well as the hollow profiles of impurities [18-20].Some simulations showed that tracer particles were trapped in eddies or jumped over several eddies in a single flight in a plasma with pressure-gradient-driven turbulence.

    In recent years,fractional calculus has been applied to study non-local,non-diffusive transport.Mathematically,the fractional derivatives are defined through specific forms of integro-differential operators [21, 22] that generalize the definition of conventional differentiation.The numerical method is a significant topic as well [23] to study transport in complex systems.The one-dimensional fractional transport model has been proposed to study non-diffusive transport in magnetically confined plasmas[24].In fact,the fractional transport models are closely related to the continuous time random walk(CTRW)models,which allow a particle at positionxto have a jumpΔxafter a waiting time Δtdescribed by the probability distribution functions (PDFs)η(Δx)andψ(Δt)ifΔxandΔtare independent random variables [25].Moreover, a system without characteristic scale means that the second and higher moments of the underlying PDF do not exist, implying that heavy tail distribution (Lévy distribution)is allowed.Therefore, with the CTRW model, the generalized master equation can be derived [26].Due to the heavy tail distribution, it can be presented that uphill transport means that the flux flows along the direction of density gradient in a bounded domain [26-28].The radial fractional transport equation in polar coordinates can be derived from the CTRW model by azimuthally averaging the two-dimensional Laplacian operator[29,30].Moreover,the radial fractional diffusion model is consistent with experiment results in some devices [31].Another numerical method for two-dimensional fractional diffusion equations is the iteration method [32], which has been applied to model electron cyclotron resonance heating experiments in LHD [33].

    The transport coefficients in general are not spatial-temporal invariant.Besides,the non-local effect plays a significant role in causing anomalous transport.Hence, the goal of this work is to investigate the effects of radially dependent FDCs on density profiles as well as the origin of non-locality through numerical methods.The paper is organized as follows:section 2 reviews the derivation details of the radial fractional transport model,section 3 compares the numerical results of density profiles under various fractional transport coefficients and source profiles,section 4 presents the origin of non-local effect via numerical study, and section 5 contains the summary and conclusions.

    2.Radial fractional diffusion model

    In[29-31],the radial fractional transport equation for densityn(r,t)with FDCDαin a bounded domain 0

    where is the fractional Laplacian operator and the kernelK α(r,r′)is given by

    where2F1(i,j;k;z)is Gauss’s hypergeometric function[34]andr>=max {r,r′}as well asr<=min {r,r′}.Moreover,γα=π22-αΓ (1-α/ 2)/Γ(α/2).Note that the word‘fractional’denotesthat thefractional derivative isinvolvedinthe diffusion flux written as

    which is different from the standard diffusion flux-Dd?n/?r,whereDdis the standard diffusion coefficient.Parameterαis the order of the fractional derivative with interval1<α<2, implyingαis a fraction.The proportionality coefficientαDis the fractional diffusion coefficient.Whenα= 2,equation(1)returns to the standard radial diffusion equation based on Fick’s law.The purpose of the mask functionαH r( )is to guarantee that the integration on the right-hand side of equation (2)is finite if the boundary conditionsn(a)and?rn(a)are nonzero.Therefore, the mask functionHα(r)can be written as

    subjected to the boundary conditions

    and the parameterbin equation (4)decides the width of boundary layer.WhenαH(r)is imposed, the densityn(r,t)away from the boundary layer is independent of the boundary conditions, sinceHα(r)anddHα(r)/drapproaches zero near the boundary layer.To satisfy the boundary conditions, we need an additional term for boundary layer with the form of conventional diffusion such that the fractional Laplacian operator is well-posed.Thus, when an FDC is radially dependent, the fractional diffusion equation has the form

    The first and the second terms on the right-hand side of equation (6)give the divergences of uphill and downhill transport fluxes, respectively.As mentioned in [29, 30], the uphill flux arises from non-local effect inside the boundary layer, and the downhill flux comes from the standard diffusion at the boundary layer.Moreover,when there is no source in the system, in a steady state the two fluxes should be balanced.Since the downhill flux is generated in the boundary layer,ζplays the role to decide its strength.Therefore, the parameterζdecides the strength of the boundary layer.

    Thus, when standard diffusion model and a source are taken into account, the diffusion equation reads

    and the particle flux is defined as

    whereSis a source.We further define the total number of particlesthe peak value of a density profilenp≡max(n), and its positionrp.

    3.Numerical results

    In this section, equation (7)is solved numerically based on an explicit finite difference scheme.The dimensionless variables are defnied asr/a→r,b/a→b,t/t0→t,Dα t0/aα→Dα,Ddt0/a2→Dd,ζ/a2-α→ζ,whereais the minor radius,t0=a2/Dd0is the characteristic scale of the diffusion time(particle confinement time), andDd0=a2/t0is the characteristic diffusion coeffciient.For the source and density terms, the dimensionless variables are defnied asS/S0→Sandn/n0→n,wheren0=a2S0/Dd0is the characteristic diffusive scale of density andS0is the characteristic scale of the source term.In addition, the mask function can be written asHα(r)=1 -exp[ - (r-1)2/b2].

    To investigate the influence of parameterbon density profiles in steady states, with the average density asb→0,the average density and the difference between them are calculated through

    andΔ〈n〉 = 〈n〉 - 〈n〉 ∣b→0,respectively.The source profile isS=Sscexp(-r2/0.22),whereSscis a constant such thatThe source is on-axis injected in order that we can investigate how the boundary layer itself could affect the density profiles in interior domain.As shown in figure 1,since〈n〉∣b→0approaches an asymptotic value due to∣Δ〈n〉 ∣→0regardless of value ofα,the relative error can be expressed as ∣Δ〈n〉 ∣/〈n〉∣b→0×100%.For example, ifα=1.1 andb=0.035, then the relative error ∣Δ〈n〉∣/nasym×100% ≈2.0% is obtained.Since there are few theoretical methods on how to decideαand the boundary layer widthb,the choice of values ofαandbin our work depends on experimental data.Therefore, to study the effect of nonlocality on density profiles and by referring to experimental data [13], we choose α = 1.1, b =0.025, which results in about 1.37% relative error.

    All of the numerical results are presented in the steady states,and therefore the initial condition ofn (r ,t)is arbitrary.The boundary conditions aren (r=1,t)=0.05and due to the symmetry of the system,? n /?r∣r=0=0is set.The azimuthally symmetric (ring shape)source profile is assumed to have the form S =Snf (r ),whereSnis a constant such thatTo better model the experiment of off-axis fueling, the locations of source injections are away from the core.Figure 2 shows fractional and standard diffusions with red and blue curves, respectively.Note that the standard model applied in this section is

    Figure 1.Sensitivity of the average values of〈 n〉 to the parameter b.The calculation of the relative error is described in the text.In this figure,ζ = 1.0 is chosen.

    Figure 2.Profiles in steady states.Panel(a)shows the particle density and source profiles,and panel(b)illustrates the particle flux and source profiles.The blue and red curves correspond to standard and fractional diffusion models by ignoring Dα and Dd ,respectively.The magenta dashed curve is the source profile and

    One of the most significant features of radial fractional transport is the hollow density profile, as shown in figure 2 with the red curve.For fractional transport, the peak of the density profile is away from the origin and there exists a local minimum at the core whereas, for classical diffusion, there exists a local maximum at the origin of the density profile.Moreover, because? n /?r > 0 for the red curve in the interval r< 0.72, and the fluxes are positive for both fractional and standard diffusions as shown in figures 2(a)and(b), the fractional transport exhibits uphill transport in this interval.However, for classical diffusion, the uphill transport does not exist because the flux always flows opposite to the density gradient.Besides,the total number of particles for the red curve is greater than that for the blue, which might be responsible for the fact that particles in the fractional transport diffuse slower than in the standard transport model.

    We next investigate the effect of radially dependent diffusion coefficients on density profiles.Generally speaking,the transport coefficient is not a constant in magnetically confined plasmas; it might depend on the topology of magnetic field, the collisional frequency, and so on.Some experiments showed that diffusion coefficients of particles increase from the core to the edge[35].From equation(7),the slope of an FDC would affect the density profile.Hence,four kinds of FDCs are assumed: concave down, concave up,linearly increasing, and constant.If FDCs are concave down,they increase faster near the core whereas, if FDCs are concave up, they increase slower near the core.

    The colored curves in figure 3 are profiles of FDCs, and their corresponding density and flux profiles are illustrated in figure 4.We ignore the last term on the right-hand side of equation (7)in order to investigate anomalous transport purely arisen from fractional transport.For source profiles,f (r )= e-(r-rn)2/0.12is set,where rn=0.25,0.50,and0.75 are positions of source injections forS1,S2,andS3, respectively.All of simulation results are summarized as in table 1.Note that in table 1,the total number of particlesthe peak value of a density profilenp≡max(n ),and its positionrpare defined.

    Figure 4 shows that the uphill transport exists,regardless of whether the FDCs are radially dependent or not.In the standard diffusion model, density profiles are peaked at the core.However, for fractional diffusion, the density profiles are peaked away from the origin.The positions of peaks of density profilesrps are around the source injection positions for fractional diffusion,as shown in figures 4(a)-(c),and they decrease if FDCs are radially monotonically increasing.Moreover,from table 1,it is found that the larger the FDC at the position of particle injection is, the smaller thenpis.Furthermore, for concave up profiles of FDCs, the total number of particles is larger than that for concave down ones.

    Figure 3.The fractional diffusion coeffciients applied in this work.The blue, magenta, green, red, and brown curves correspond to FDCs Dα=1.0,-0.99 (1-r)1.5+1,,0.99r+0.01, and0.99r1.5+0.01,respectively.The gray lines represent the positions of particle injections.

    Figure 4.The density,source,and particle fulx profiles in steady states for the diffusion coefficients shown in figure 2.For the source proflies presented by the gray curve,we assumewhere rn=0.25, 0.5, and 0.75for figures 4(a)-(c),respectively.Figure 4(d)shows particle fluxes in steady sates.

    Figure 5. andwhere andare grid points corresponding to r =0.1, 0.3, 0.5, 0.7, and 0.9, with blue, red, green, black, and magenta curves, respectively.When α →2, the values for each curve are zero except when k =l such thatwhereas for α →1, each curve has acertain value even if k ≠l, and that results in non-local effect.

    Figure 6.Areas AM under curves corresponding to each k of M ′kl.

    To compare with real experiment data, we setDd0=0.1 m2· s-1,S0=1019m-3·s-1,a=1 m,andn0=1020m-3,then density approximately reaches 5 ×1019m-3at the core and 1020m-3near the edge as shown in fgiure 4(c), which is consistent with experiment data after L-H transition as shown in figure 1(b)of[13] in order of magnitude.

    When a system is in steady state,from equations(7)and(8)in the interior of the domain, we obtain

    where

    From figure 4(d)and equation(10),the particle fluxes are positive, which means that particles flow outward.Besides,becauseis fixed, the maximum value ofΓ increases as the position of source injection approaches the origin.

    4.Effect of non-locality on density profiles

    In the standard diffusion model,from Fick’s law,particle flux is proportional to the gradient of density, which can be expressed in mathematical form asΓd= -Dd?n/?r.In the fractional diffusion model, when the order of fractional derivativeα→2, the fractional diffusion model returns to the standard diffusion model [28].That is,F=asα→2, which impliesr′K α(r,r′)→δ(r-r′).In other words,r′Kα(r,r′)becomes localized and non-local effect is insignificant.This can be confirmed by numerical calculation.From [28, 29], if we divide [0, 1] withN+1 grid points, and grid sizeh≡ 1 /N, then equation (10)can be approximated as

    wheren0is the density at the origin,andk=1, 2,… ,N-1.We therefore have

    To investigate the effect of non-locality,we can fixlandα, and plotM′kl≡h2-αMklversus grid pointskas shown in figure 5.From figure 5(a),M′kl→δk-lasα→2,which meansF(r,t)→n(r,t)in equation (12).Thus,equation (10)can be written as

    which is equivalent to Fick’s model of diffusion.

    However,as shown in fgiure 5(b),M′klhas a certain value even ifk≠l.This is the origin of non-locality which should be taken into account when transport is analyzed.That is,F(r0,t)at a given pointr0is influenced by the values of density at other points,not justn(r0,t).From equation(12),Fkis related to the areaAMunder the curve ofM′klfor a givenk.Supposing that the observed density profile is a constant or concave down,the position of the peak of the corresponding particle flux will be near the boundary becauseAMdecreases askincreases as shown in figure 6,which is contradictory to the fact that particle flux peaks in interior domain.Thus, we conclude that the density profiles will be convex from the origin at first and reach maximum values at certain locations in steady states.

    From equation (10), we have

    whereΓeff≡Γ/Dαis effective flux.Compared with the location of the peak of the fluxΓ, if a monotonically increasing fractional diffusion coefficientDα(r)<1exists in the interior domain, from equation (14), the location of the peak of an effective flux is closer to the core under the same source profile.Thus, the positions of the peaks of density profiles also move to the core.

    In standard transport process, it can be described by the Brownian random walk model and the Gaussian probability distribution function is obtained.Therefore, the auto-correlation is exponential decay and the second moment is fniite.The former denotes short-range interactions;the latter shows that the system has a characteristic length, whereas, for a system with algebraically decaying distribution functiona significant feature is the existence of heavy tail distribution,and the Lévy flight random walk model is utilized to derive equations(1)-(3).Therefore,the auto-correlation is algebraically decaying and the second moment is infinite, which means that the displacements between two consecutive steps have correlation, and the system is scale free due to the absence of characteristic length.Moreover, because of heavy tail distribution,there is small probability for the occurrence of large fluctuations,which results in non-local effect.

    5.Conclusion

    In this work,the fractional diffusion coefficients are assumed to be radially increasing functions from the core to the edge,which could model diffusion processes in real experiments.It is found that the hollow density profiles are formed regardless of whether the FDCs are radially dependent or not.Therefore, in some intervals, uphill transports can be observed.The peak values of density profiles are related to FDCs at the locations of source injections.That is, the smaller the FDC is at the position of particle injection,the greater thenpis.From figure 4 and table 1,as well as comparing with the position of the peak of density proflie withDα=1.0,we fnid that the positions of the peaks of density proflies are closer to the core under the same source proflie with radially dependent FDCsDα(r)<1.0.Moreover,a larger amount of particles can be obtained under a radially dependent FDC with a concave up proflie, which means the confniement time is longer and is beneficial for fusion reaction.

    Table 1.The total number of particles N, peak values of density profiles np, and their corresponding positionsrp are summarized.

    The non-local effect becomes significant if the order of fractional derivativesα→1.From the statistical point of view, an algebraically decaying distribution function possesses heavy tail distribution, which implies that large fluctuations exist to generate the non-local effect.For standard transport model (α→2), the Gaussian distribution function decays faster, such that small fluctuations dominate,demonstrating the absence of non-local effect.

    A continuous time random walk (CTRW)model was proposed in[25].This model is the generalization of the Brownian random walk model.In[26-28],the authors investigated particle transport through the CTRW model and observed uphill transports.Moreover,in[28],the fractional transport equations could be derived from the CTRW model in fluid limit.In[24,29-33],the authors applied fractional transport equations to model thermal transport and confirmed the existence of uphill transports.Note that in [30, 31], the authors utilized a radially fractional transport equation to model hollow temperature profiles as shown in figure 4 of [31].In our work, the factional transport equation is applied to model diffusion process, and the simulation results are consistent with real experiment data in order of magnitude.Thus,the fractional transport model can be applied in both particle and thermal transports.

    There are some experiments in which a cold pulse is suddenly launched at the edge of tokamak, and the temperature at the core simultaneously raises.Therefore, it strongly presents a non-local effect in thermal transport in plasmas.Since we focus on the formation of hollow density profiles and anomalous particle transport, anomalous thermal transport and mechanism of fast propagation of cold pulse will be explored in a future study.

    Acknowledgments

    The authors thank Dr Patrick Diamond for his comments on this work.This work is supported by the National MCF Energy R&D Program of China (No.2019YFE03090300),National Natural Science Foundation of China (No.11925501), and Fundamental Research Funds for the Central Universities (No.DUT21GJ204).

    猜你喜歡
    王正
    Analysis of anomalous transport with temporal fractional transport equations in a bounded domain
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear
    Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas
    Application of Galerkin spectral method for tearing mode instability
    Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas
    A brief review: effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks
    Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma
    Machine learning of turbulent transport in fusion plasmas with neural network
    金昌浩、王正油畫作品選
    在线十欧美十亚洲十日本专区| 99热这里只有精品一区| 欧美xxxx黑人xx丫x性爽| 午夜亚洲福利在线播放| 美女xxoo啪啪120秒动态图 | 亚洲av日韩精品久久久久久密| 久久99热这里只有精品18| 国内少妇人妻偷人精品xxx网站| 国产乱人视频| 好男人电影高清在线观看| 国产高潮美女av| 九九在线视频观看精品| 一本综合久久免费| 国产成人啪精品午夜网站| 99久国产av精品| 中文字幕免费在线视频6| 亚洲不卡免费看| 亚洲男人的天堂狠狠| 欧美丝袜亚洲另类 | 国产精品av视频在线免费观看| 91字幕亚洲| av专区在线播放| 欧美3d第一页| 熟女人妻精品中文字幕| 最近中文字幕高清免费大全6 | 欧美乱色亚洲激情| 91久久精品国产一区二区成人| 亚洲18禁久久av| 精品久久国产蜜桃| 亚洲最大成人av| 91在线精品国自产拍蜜月| 十八禁人妻一区二区| 简卡轻食公司| 精品无人区乱码1区二区| 别揉我奶头~嗯~啊~动态视频| 欧美色视频一区免费| 99riav亚洲国产免费| 亚洲av第一区精品v没综合| 一区二区三区高清视频在线| 欧美最新免费一区二区三区 | 国产毛片a区久久久久| 757午夜福利合集在线观看| 麻豆一二三区av精品| 午夜久久久久精精品| 日日夜夜操网爽| 亚洲一区二区三区不卡视频| 国产精品亚洲一级av第二区| 国产精品一及| 欧美成狂野欧美在线观看| 观看免费一级毛片| 波野结衣二区三区在线| 黄片小视频在线播放| 色精品久久人妻99蜜桃| 亚洲人成网站在线播| 日本熟妇午夜| 国产高清激情床上av| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产99精品国产亚洲性色| 在线播放无遮挡| 国产三级中文精品| 欧美性感艳星| 在线看三级毛片| 亚洲av中文字字幕乱码综合| 亚洲 国产 在线| 国产一区二区亚洲精品在线观看| 免费在线观看亚洲国产| 欧美日韩国产亚洲二区| 97人妻精品一区二区三区麻豆| 在线观看美女被高潮喷水网站 | 不卡一级毛片| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 我的老师免费观看完整版| 五月玫瑰六月丁香| 午夜激情福利司机影院| 亚洲va日本ⅴa欧美va伊人久久| 成人三级黄色视频| 亚洲精品影视一区二区三区av| 精品久久久久久成人av| 亚洲第一区二区三区不卡| 欧美黄色片欧美黄色片| 国产美女午夜福利| 久久久久久久久久成人| 久久久成人免费电影| 中亚洲国语对白在线视频| 国产久久久一区二区三区| 亚洲色图av天堂| 最新中文字幕久久久久| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 亚洲国产高清在线一区二区三| 国产私拍福利视频在线观看| 亚洲成av人片免费观看| 日韩欧美在线乱码| 精华霜和精华液先用哪个| 69人妻影院| 成人亚洲精品av一区二区| 国产精品国产高清国产av| 五月伊人婷婷丁香| 久久亚洲真实| 夜夜躁狠狠躁天天躁| 欧美一区二区精品小视频在线| 亚洲国产欧洲综合997久久,| 老司机午夜十八禁免费视频| 99久久九九国产精品国产免费| 草草在线视频免费看| 亚洲五月天丁香| 99久久精品国产亚洲精品| 老女人水多毛片| 免费看光身美女| 日韩免费av在线播放| 久久精品综合一区二区三区| 欧美中文日本在线观看视频| 在线a可以看的网站| 高清日韩中文字幕在线| 精品熟女少妇八av免费久了| 伊人久久精品亚洲午夜| 宅男免费午夜| 非洲黑人性xxxx精品又粗又长| 18+在线观看网站| 最好的美女福利视频网| 岛国在线免费视频观看| 国产色爽女视频免费观看| 三级国产精品欧美在线观看| 国产精品自产拍在线观看55亚洲| 中文字幕免费在线视频6| 熟女电影av网| 女生性感内裤真人,穿戴方法视频| 精品无人区乱码1区二区| 亚洲一区二区三区不卡视频| 久久久久久久久大av| 美女大奶头视频| 91久久精品国产一区二区成人| 又爽又黄a免费视频| 女同久久另类99精品国产91| 好男人电影高清在线观看| 国产精品一及| 国产亚洲欧美在线一区二区| 色精品久久人妻99蜜桃| 国产成人aa在线观看| 日本三级黄在线观看| 特级一级黄色大片| 91午夜精品亚洲一区二区三区 | 国产精品,欧美在线| 精品熟女少妇八av免费久了| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 国产精品伦人一区二区| 色哟哟哟哟哟哟| 国产一区二区三区在线臀色熟女| av黄色大香蕉| 亚洲 国产 在线| 日日干狠狠操夜夜爽| 中文字幕人妻熟人妻熟丝袜美| 身体一侧抽搐| 亚洲av一区综合| 精品久久久久久久久久久久久| 动漫黄色视频在线观看| 超碰av人人做人人爽久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av二区三区四区| 免费高清视频大片| 人妻久久中文字幕网| 欧美另类亚洲清纯唯美| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 亚洲久久久久久中文字幕| 亚洲成人免费电影在线观看| 日本免费a在线| 蜜桃久久精品国产亚洲av| 永久网站在线| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 免费人成在线观看视频色| 亚洲欧美日韩无卡精品| 最后的刺客免费高清国语| 看片在线看免费视频| 搡老岳熟女国产| 桃红色精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看| 长腿黑丝高跟| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 国产成人福利小说| 午夜久久久久精精品| 欧美又色又爽又黄视频| 男人的好看免费观看在线视频| 日韩欧美在线乱码| 色综合亚洲欧美另类图片| 熟女人妻精品中文字幕| 午夜两性在线视频| 亚洲av第一区精品v没综合| 国产成人a区在线观看| 婷婷精品国产亚洲av在线| 精品久久久久久久末码| 成人永久免费在线观看视频| 亚洲内射少妇av| 欧美极品一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频| 久久久久免费精品人妻一区二区| 久久人人爽人人爽人人片va | 久久久久久九九精品二区国产| 岛国在线免费视频观看| 9191精品国产免费久久| 国产精品一区二区三区四区久久| 日韩欧美在线二视频| 亚洲专区中文字幕在线| 一本久久中文字幕| 欧美日韩国产亚洲二区| 亚洲自偷自拍三级| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美国产一区二区入口| 久久九九热精品免费| 内射极品少妇av片p| 亚洲自偷自拍三级| 亚洲第一电影网av| 深夜a级毛片| 好男人在线观看高清免费视频| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 国产又黄又爽又无遮挡在线| 精品久久久久久久久亚洲 | 日日摸夜夜添夜夜添小说| 亚洲片人在线观看| 中文字幕精品亚洲无线码一区| h日本视频在线播放| a级毛片a级免费在线| 久久久久精品国产欧美久久久| 午夜福利在线在线| 欧美色视频一区免费| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 又黄又爽又刺激的免费视频.| 搡老岳熟女国产| 日韩有码中文字幕| 99视频精品全部免费 在线| 国产精品自产拍在线观看55亚洲| 可以在线观看毛片的网站| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 久久精品91蜜桃| 91在线精品国自产拍蜜月| 国产成人a区在线观看| 久久精品国产自在天天线| 久久久国产成人免费| 国产精品国产高清国产av| 九九热线精品视视频播放| av黄色大香蕉| 久久这里只有精品中国| 国产成人欧美在线观看| 国产高潮美女av| 久久午夜福利片| 在线观看舔阴道视频| 97超视频在线观看视频| 黄色丝袜av网址大全| 午夜福利18| 麻豆国产av国片精品| 成年版毛片免费区| 性色av乱码一区二区三区2| 免费人成在线观看视频色| 九九久久精品国产亚洲av麻豆| 97超级碰碰碰精品色视频在线观看| 午夜福利在线观看免费完整高清在 | 亚洲人成伊人成综合网2020| 日韩中文字幕欧美一区二区| 欧美成人一区二区免费高清观看| 99久久九九国产精品国产免费| 国产精品爽爽va在线观看网站| 国产在线精品亚洲第一网站| 丰满的人妻完整版| 久久精品国产亚洲av天美| 村上凉子中文字幕在线| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看免费完整高清在 | 日韩欧美在线乱码| 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕 | 免费观看精品视频网站| www.色视频.com| 国产亚洲精品综合一区在线观看| 国产精品人妻久久久久久| 每晚都被弄得嗷嗷叫到高潮| 久久久久久大精品| 亚洲一区高清亚洲精品| 少妇高潮的动态图| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| 搞女人的毛片| 久久久成人免费电影| 国产av一区在线观看免费| 九九在线视频观看精品| 国产一区二区在线av高清观看| 国产日本99.免费观看| 久久久久国产精品人妻aⅴ院| 欧美午夜高清在线| 国产精品美女特级片免费视频播放器| 国产精品亚洲美女久久久| 亚洲精品成人久久久久久| 亚洲av熟女| 男女那种视频在线观看| 在线观看av片永久免费下载| 一进一出好大好爽视频| 国产黄片美女视频| 中文字幕人成人乱码亚洲影| 亚洲欧美日韩卡通动漫| 淫秽高清视频在线观看| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| 在线免费观看不下载黄p国产 | 特级一级黄色大片| 超碰av人人做人人爽久久| 少妇的逼水好多| 一a级毛片在线观看| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看| 日本成人三级电影网站| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影| 丝袜美腿在线中文| 国产精品乱码一区二三区的特点| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添av毛片 | aaaaa片日本免费| 国产高清视频在线播放一区| av女优亚洲男人天堂| 精品一区二区三区视频在线观看免费| 亚洲五月婷婷丁香| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 久久亚洲精品不卡| 欧美极品一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 婷婷丁香在线五月| 久久精品国产自在天天线| 免费看日本二区| 国产野战对白在线观看| 男人狂女人下面高潮的视频| 欧美在线黄色| 欧美另类亚洲清纯唯美| 国产伦精品一区二区三区视频9| 极品教师在线视频| 亚洲片人在线观看| 久久久久精品国产欧美久久久| 草草在线视频免费看| 亚洲久久久久久中文字幕| 欧美bdsm另类| 亚洲国产精品久久男人天堂| 久久久成人免费电影| 日本在线视频免费播放| 国产私拍福利视频在线观看| 国产在线精品亚洲第一网站| 哪里可以看免费的av片| 日本一本二区三区精品| 波多野结衣高清无吗| 国产伦人伦偷精品视频| 十八禁网站免费在线| 美女cb高潮喷水在线观看| 成人精品一区二区免费| 国产野战对白在线观看| 一边摸一边抽搐一进一小说| 啦啦啦观看免费观看视频高清| 成人国产一区最新在线观看| 成人午夜高清在线视频| 九色国产91popny在线| 日韩精品青青久久久久久| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 成年女人看的毛片在线观看| 极品教师在线免费播放| 中文字幕人妻熟人妻熟丝袜美| av中文乱码字幕在线| 嫁个100分男人电影在线观看| 国产精品亚洲美女久久久| 精品午夜福利在线看| 极品教师在线视频| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 麻豆一二三区av精品| 免费av毛片视频| 两人在一起打扑克的视频| 午夜两性在线视频| 最近中文字幕高清免费大全6 | 一级作爱视频免费观看| 亚洲专区国产一区二区| 美女xxoo啪啪120秒动态图 | 亚洲精品粉嫩美女一区| 国产69精品久久久久777片| 搞女人的毛片| 亚洲国产精品成人综合色| 久久久久久久久久成人| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 亚洲综合色惰| 免费在线观看日本一区| 一个人免费在线观看的高清视频| 国产精品99久久久久久久久| www.999成人在线观看| www.熟女人妻精品国产| 91午夜精品亚洲一区二区三区 | 嫩草影院新地址| 欧美高清性xxxxhd video| 亚洲电影在线观看av| 90打野战视频偷拍视频| 夜夜夜夜夜久久久久| 99视频精品全部免费 在线| 国产精品自产拍在线观看55亚洲| 中文在线观看免费www的网站| 悠悠久久av| 免费人成视频x8x8入口观看| 亚洲三级黄色毛片| 91av网一区二区| 在现免费观看毛片| 日本免费一区二区三区高清不卡| x7x7x7水蜜桃| 婷婷色综合大香蕉| 国产在视频线在精品| 日本精品一区二区三区蜜桃| 午夜视频国产福利| 观看美女的网站| 久久久久国产精品人妻aⅴ院| 日韩欧美免费精品| 国产精品不卡视频一区二区 | 麻豆av噜噜一区二区三区| 我的老师免费观看完整版| 69人妻影院| 成人一区二区视频在线观看| 一区福利在线观看| bbb黄色大片| 久久香蕉精品热| 嫩草影院新地址| 久久久久久久久中文| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 嫩草影院入口| 12—13女人毛片做爰片一| 小蜜桃在线观看免费完整版高清| 美女xxoo啪啪120秒动态图 | 麻豆国产av国片精品| 国产三级中文精品| 色av中文字幕| 国产成年人精品一区二区| 真人做人爱边吃奶动态| 观看美女的网站| 亚洲欧美日韩东京热| 黄色视频,在线免费观看| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 亚洲一区高清亚洲精品| 国产精品一区二区性色av| 亚洲七黄色美女视频| 麻豆一二三区av精品| 久久中文看片网| 欧美3d第一页| 国产极品精品免费视频能看的| 狠狠狠狠99中文字幕| 午夜视频国产福利| 久久人人爽人人爽人人片va | 成人特级黄色片久久久久久久| 欧美日本亚洲视频在线播放| 久9热在线精品视频| 日韩欧美国产一区二区入口| 欧美另类亚洲清纯唯美| 亚洲熟妇中文字幕五十中出| 国产欧美日韩精品一区二区| 国产黄色小视频在线观看| 在线a可以看的网站| 午夜精品久久久久久毛片777| 2021天堂中文幕一二区在线观| 国产精品久久电影中文字幕| 哪里可以看免费的av片| 国产探花极品一区二区| 性色avwww在线观看| 在线观看av片永久免费下载| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 午夜免费男女啪啪视频观看 | 最近视频中文字幕2019在线8| 亚洲欧美日韩东京热| 嫁个100分男人电影在线观看| 又粗又爽又猛毛片免费看| 婷婷丁香在线五月| 国产高清视频在线观看网站| 欧美+日韩+精品| 欧美成人一区二区免费高清观看| 日韩免费av在线播放| 国产精品久久久久久久久免 | 精品久久久久久成人av| АⅤ资源中文在线天堂| 久久精品国产亚洲av涩爱 | av天堂在线播放| 亚洲久久久久久中文字幕| 十八禁网站免费在线| 国产精品亚洲美女久久久| 一边摸一边抽搐一进一小说| 日韩精品青青久久久久久| 欧美极品一区二区三区四区| 久久人人爽人人爽人人片va | 久久久久久大精品| 亚洲av二区三区四区| 简卡轻食公司| avwww免费| 啦啦啦观看免费观看视频高清| 在线观看美女被高潮喷水网站 | 欧美zozozo另类| 身体一侧抽搐| 极品教师在线视频| 久久人人爽人人爽人人片va | 90打野战视频偷拍视频| 亚洲av二区三区四区| 久99久视频精品免费| 五月伊人婷婷丁香| 脱女人内裤的视频| 欧美激情在线99| 免费在线观看影片大全网站| 精品午夜福利视频在线观看一区| 久久人人爽人人爽人人片va | 亚洲狠狠婷婷综合久久图片| 欧美激情国产日韩精品一区| 久久久久久久精品吃奶| av天堂中文字幕网| 亚洲最大成人手机在线| 精品人妻偷拍中文字幕| 国产视频内射| 精品人妻1区二区| 99久久精品国产亚洲精品| 午夜福利18| 色av中文字幕| 国产蜜桃级精品一区二区三区| 日韩欧美国产在线观看| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 久久久久久大精品| 搞女人的毛片| 欧美成人a在线观看| 又紧又爽又黄一区二区| 高清毛片免费观看视频网站| 成人特级黄色片久久久久久久| 欧美色视频一区免费| 好男人电影高清在线观看| 成人鲁丝片一二三区免费| 午夜福利欧美成人| 丰满人妻熟妇乱又伦精品不卡| 99久久精品热视频| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 中文字幕人妻熟人妻熟丝袜美| 91麻豆精品激情在线观看国产| 又黄又爽又刺激的免费视频.| 亚洲熟妇熟女久久| 久久久久久久久中文| 俄罗斯特黄特色一大片| 成人高潮视频无遮挡免费网站| 亚洲精品影视一区二区三区av| 亚洲人成网站在线播放欧美日韩| 最近在线观看免费完整版| 波多野结衣高清无吗| 国产精品亚洲av一区麻豆| 午夜a级毛片| 九色国产91popny在线| 精品久久国产蜜桃| 国产伦在线观看视频一区| 女人十人毛片免费观看3o分钟| 国产精品1区2区在线观看.| 日韩欧美精品免费久久 | 国产成人影院久久av| 一进一出抽搐gif免费好疼| 国产中年淑女户外野战色| 午夜福利18| 别揉我奶头 嗯啊视频| 男女床上黄色一级片免费看| 麻豆一二三区av精品| 制服丝袜大香蕉在线| .国产精品久久| 久久久色成人| 神马国产精品三级电影在线观看| 夜夜夜夜夜久久久久| www.色视频.com| 久久久久久久久久成人| 别揉我奶头~嗯~啊~动态视频| 婷婷六月久久综合丁香| 91狼人影院| 真人一进一出gif抽搐免费| 日本 av在线| 9191精品国产免费久久| 欧美乱妇无乱码| 日本 av在线| 色5月婷婷丁香| 99在线视频只有这里精品首页| 国产主播在线观看一区二区| 国产熟女xx| 99在线视频只有这里精品首页| 草草在线视频免费看| 亚洲一区二区三区不卡视频| 午夜精品久久久久久毛片777| 久久久成人免费电影| 熟妇人妻久久中文字幕3abv| 精品人妻熟女av久视频| 我的女老师完整版在线观看| 在线十欧美十亚洲十日本专区| 午夜激情欧美在线| 亚洲自偷自拍三级| 一个人看的www免费观看视频| 99热这里只有是精品在线观看 | 久久久久久久久久成人| 亚洲人成电影免费在线| 他把我摸到了高潮在线观看| 欧美绝顶高潮抽搐喷水| 狂野欧美白嫩少妇大欣赏| 亚洲av美国av| 免费无遮挡裸体视频|