• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of anomalous transport with temporal fractional transport equations in a bounded domain

    2023-12-02 09:22:16KaibangWu吳凱邦JiayanLiu劉嘉言ShijieLiu劉仕潔FengWang王豐LaiWei魏來QibinLuan欒其斌andZhengXiongWang王正洶
    Chinese Physics B 2023年11期
    關(guān)鍵詞:王正

    Kaibang Wu(吳凱邦), Jiayan Liu(劉嘉言), Shijie Liu(劉仕潔), Feng Wang(王豐),Lai Wei(魏來), Qibin Luan(欒其斌), and Zheng-Xiong Wang(王正洶)

    Key Laboratory of Materials Modification by Beams of Ministry of Education,School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords: anomalous transport,temporal fractional transport equation,Caputo fractional derivatives,memory effects,hollow temperature profiles

    1.Introduction

    The mechanism of anomalous particle transport is one of the most significant issues in magnetically confined plasmas.In ordinary transport theory,the Brownian random walk model states that interactions between particles occur via collisions,which can be modeled by the Langevin equation.With the assumption that random forces are independent of the particle displacementsr, the solution to the Langevin equation gives〈r2〉~t, meaning that the mean square displacement is linearly dependent on timet.However, in recent years, anomalous transport with a scaling law〈r2〉~tβ(β/=1) has been observed in many experiments and simulations.[1–7]The value ofβcan represent different processes: 0<β< 1 for subdiffusion,β= 1 for ordinary diffusion, and 1<β< 2 for super-diffusion.Sub- and super-diffusions refer to particles diffusing more slowly and more quickly than in ordinary diffusion.

    In magnetically confined plasmas,the Brownian random walk model based on collisions fails to explain experimental results due to collective behavior arising from the Coulomb force.In ordinary transport theory, the scaling law isD∝1/B2,[8]whereDis the diffusion coefficient andBis the magnitude of the magnetic field.However, Bohm experimentally determined the scaling law of diffusion to beD∝1/B,[9]which can be theoretically derived using the two-dimensional guiding center model.[10,11]In this model, due to theE×Bdrift motion of the guiding center,the velocity correlation can be transformed into an electric field correlation,which implies that the Coulomb force influences the diffusion process.

    In Refs.[12–15], the decorrelation trajectory (DCT)method was proposed as a method to calculate diffusion coefficients.In this method, a global ensemble is divided into many sub-ensembles.In each sub-ensemble, the fluctuating electrostatic potentialφ(x,t) has a fixed value at the starting point, i.e., atx= 0 and att= 0, and therefore the velocity of the guiding center of each sub-ensemble is expressed as ?φ(0,0)×ezas a result ofE×Bdrift.Furthermore, in each sub-ensemble, the decorrelation trajectory can be determined from the Hamiltonian equations of motion,along which the Eulerian correlation is calculated.Assuming that the Lagrangian velocity correlation in the sub-ensemble is equal to the Eulerian correlation, the diffusion coefficients can be calculated from the Lagrangian velocity correlation and related to the Kubo number defined asK ≡Vτc/λc,whereV,τc,andλcare the typical velocity of the particles, the correlation time,and the correlation length, respectively.Utilizing the DCT method yieldsD∝K2forK ?1,andD∝Kγ,γ<1 forK ?1.When the guiding center is undergoingE×Bdrift motion,the Kubo number can be written asK=ετc/(Bλ2c), whereεis the amplitude of electrostatic potential fluctuations.Therefore,K ?1 implies that the system has strong turbulence due to the large amplitude of potential fluctuations.As particles encounter strong potential fluctuations,they are trapped by the fluctuations and undergo periodic motion.[12,16]As a result,it is possible that they diffuse more slowly than in the ordinary model and the system is in a sub-diffusive process.

    In Refs.[12,17],the hybrid kinetic equations are utilized to obtain the evolution of the density profile,

    whereL(τ)is the Lagrangian velocity correlation.For an ordinary transport process, the amplitude of the fluctuation is small, implyingK ?1.Utilizing the DCT method yieldsL(τ)≈(ε/Bλc)2e-τ/τcsuch that the velocity correlation has an exponential decay and becomes insignificant asτ>τc.Sinceτccan be thought of as a short time scale,n(x,t-τ)≈n(x,t) can be assumed ift ?τc, meaning that the density profile at timetdoes not relate to its past history.However,for an anomalous transport process, strong turbulence with large amplitude of fluctuation (K ?1) has significant effect on particle motions, then the DCT method givesL(t)~t-γ(1<γ<2)stating that the velocity correlation has power law decay and the assumptionn(x,t-τ)≈n(x,t)is no longer applicable.Thus,the density profile at timetis influenced by its past history as illustrated on the right-hand side of Eq.(1),implying that memory effects do exist.Moreover, due toL(t)~t-γ,manipulating the integration in Eq.(1)yields scaling law〈r2〉~tα(α=2-γ).[12,17]Hence,the density evolution of an anomalous transport process can be modeled by the temporal fractional diffusion equation.

    Mathematically, the fractional derivatives are expressed as specific forms of integro-differential operators[18–20]that generalize the definition of conventional differentiation.There are many different types of fractional derivatives, including Riemann–Liouville, Gr¨unwald–Letnikov, and Caputo derivatives.In our work, we utilize the Caputo fractional derivative[21]

    where Γ(x) is the Gamma function.It can be proven that the above formula returns to an ordinary first-order derivative asα →1.The Caputo fractional derivative is useful for solving initial value problems because it preserves the form of the initial conditions.Theoretical methods for solving ordinary fractional differential equations with the Caputo fractional derivatives are summarized in Ref.[20].The development of a numerical method to calculate Caputo fractional derivatives is significant to the study of complex problems as well.The Gr¨unwald–Letnikov formula[19]and L1 formula[22]are the two main numerical formulae used to calculate Caputo fractional derivatives.If 0<α<1, the Gr¨unwald–Letnikov formula can be used to obtain the first-order accuracy[19]and the L1 formula can improve the accuracy of order 2-α.[23]In Ref.[24], the L1-2 formula was used to achieve an accuracy of order 3-αby means of quadratic interpolation.The algorithms of numerical solution to other types of temporal fractional derivatives are discussed in Ref.[25]to investigate the memory effects in fractional-order chaotic systems.

    The temporal fractional transport model in cylindrical coordinates has been studied in recent years in other academic fields.[26–31]In Ref.[12], the solution to the evolution of a density profile in an infinite domain in cylindrical coordinates in the absence of a source was derived.However,in real tokamaks,plasma particles are confined in a bounded domain and the solution to the diffusion equation can be expanded in terms of a series of orthogonal functions.In our work, we assume that a plasma system encounters a non-Markovian process with strong turbulence in a bounded domain.As mentioned in Refs.[12,16],plasma particles in a system with strong turbulence will be trapped by electric fields generated by large fluctuations.As a result,plasma particles diffuse slowly than ordinary.This kind of anomalous transport can be modeled using temporal fractional transport equations.Therefore,the goal of this work is to investigate memory effects on transport through numerical and analytical methods in a bounded domain.This paper is organized as follows: Section 2 briefly reviews the derivation of the temporal fractional diffusion equations.Section 3 compares the numerical results of density profiles under various orders of temporal fractional derivatives without sources and with uniform sources.At the end of Section 3,the application to off-axis heating processes is discussed.Section 4 presents a theoretical analysis, and Section 5 contains the summary and conclusions.

    2.Derivation of the temporal fractional transport equation

    In an ordinary transport process, particle jumps occur at regular, well-defined time intervals.However, in real situations, the time interval between successive jumps varies.Therefore, the continuous time random walk (CTRW) model can be introduced to generalize the Brownian random walk model.[32]In this model, particles are allowed to have an arbitrary jump length and waiting time expressed by probability distribution functions(PDFs).Furthermore,the temporal fractional diffusion equation can be derived from the master equation of this model.[33]In this paper, we concisely review the derivation of the temporal fractional transport equation from the CTRW model and the detailed derivation processes are provided in Refs.[12,32,33].Suppose that a particle is at positionx′at timet′,then stays atx′during a waiting timet-t′,and then jumps to positionx.We definef(x-x′)as the PDF of the jumpx-x′andψ(t-t′) as the PDF of the waiting timet-t′,such that the PDF of the process can be expressed asξ(x-x′,x′;t-t′;t′)=f(x-x′)ψ(t-t′).We further denote ?was the Laplace transform of functionwand ?vas the Fourier transform of functionvthrough

    In one-dimensional space with the fluid limit(k →0,s →0),we assume that the system has a characteristic timeτcand a characteristic lengthλcimplying〈t〉 =τcand〈x2〉 =λ2c.

    Hence, we have ?ψ(p)≈1-τcpand ?f(k)≈1-λ2ck2.Substituting them into Eq.(4)gives

    which returns to the ordinary diffusion equation.

    Ifα=1,the transport process is Markovian.If 0<α<1,the transport process is non-Markovian, and the memory effects have an influence on the transport process.In other words,αmeasures the influence level of the memory effects.

    In Refs.[12,17],it was shown that the temporal fractional transport equation can be derived by the DCT method.Based on the DCT method,the asymptotic form of velocity correlation can be assumed to readL(t)≈A0t-γ(1<γ<2),whereA0is a constant and Eq.(1)becomes

    Taking the Laplace transform on Eq.(14),we haveEquation(15a)can be rewritten as Eq.(16) is consistent with Eq.(12) ifα=2-γandDα=A0Γ(1-γ).Thus, the temporal fractional transport equation derived from the CTRW model is consistent with that derived from the DCT method.

    3.Numerical results

    In cylindrical coordinates,with a constant diffusion coefficient,the temporal fractional diffusion equation reads

    Note that the dimensionless variables are defined asr/a →r,t/t0→t,Dαtα0/a2→Dα, whereDαis the characteristic diffusion coefficient,ais the minor radius, andt0is the characteristic particle confinement time.Furthermore,the dimensionless variables of the source and the density are defined asSadd/S0→Saddandn/n0→n, wheren0is the characteristic diffusive scale of the density andS0=n0/tα0is the characteristic scale of the source.In Ref.[24],the authors developed the L1-2 formula,which expresses the temporal fractional partial derivative at timetiat positionrjas

    ifi≥2 and i?t=ti.Since the authors utilized the explicit scheme for the temporal fractional partial differential equation, we apply the Crank–Nicholson method to improve the numerical stability in our work and the spatial partial derivative can be approximated as

    so that we can investigate the effect ofαon the evolution of density profiles.Next,we numerically solve Eq.(13)with and without sources.

    3.1.Without sources

    Fig.1.Density profiles at times t =200 and t =400 without sources.Comparing the blue, green, red, and magenta curves at t =200 and t =400, it is found that a smaller α leads to slower particle diffusion.Thus,the value of α controls the diffusion rate of the density.

    3.2.With uniform sources

    Next,we investigate the evolution of density profiles with sources.In this situation,the particles diffuse and also increase in number due to the injection from the sources.As a result,the diffusion and source terms eventually balance out,so that the system arrives at a steady state.Hence,in the steady state

    we have

    which implies that the form of the density profile at the steady statensis independent ofαand depends onSadd.We assume that the initial conditionn(r,0)=0 and that the source term is a constant,i.e.,Sadd=const.Therefore,the solution to Eq.(22)is

    Thus,in the steady state,ns(r)=(1-r2)/4 and the total number of particles at steady stateNs=π/8 can be obtained ifDα=0.01 andSadd=0.01 are assumed.

    Figure 2 illustrates that all of the curves approachns(r)=(1-r2)/4 at different speeds depending onα.For instance,Fig.2(d)reveals that the magnitude ofNtotforα=0.8 is larger than that forα=0.2,indicating that a largerαleads to a faster approach of the density profile towardns(r).Moreover,from the magnitude ofNtotfor eachαat each moment, it is found that the density profiles grow faster at the beginning and then slow down.Detailed data are listed in Table 1.

    Thus,the simulation reveals that asα →1,the diffusion rate increases.As a result, the density decreases faster forα=0.8 than forα=0.2 without sources,and the density increases faster forα=0.8 than forα=0.2 with sources.

    Fig.2.The evolution of the density profiles at different moments and different α with Sadd =0.01.The black curves represent the density profile ns(r)=(1-r2)/4 in the steady state and each curve approaches ns with a different speed depending on α.

    Table 1.The total number of particles Ntot at different moments.

    3.3.Applications to magnetically confined plasmas

    So far,as mentioned in Subsections 3.1 and 3.2,it is found that as the temporal fractional orderαdeceases,the rate of diffusion decreases as well.Therefore,αcan be thought of as the measure of the memory effects.In the derivation of the temporal fractional transport equation, we start with the CTRW model of particles.Supposing that these particles carry energy, as they jump from positionx′to positionxduring a waiting timet-t′,energy transport may occur.Therefore,we may utilize the CTRW model to simulate the evolution of the temperature profile and Eq.(8)can be rewritten as

    whereTis the temperature,χαis the thermal conductivity,andHaddis the heating source.Hence, the memory effects on the anomalous transport of temperature can be investigated through Eq.(24).In early works, hollow temperature profiles were observed in steady states under off-axis heating,[34]and theories based on nonlocal transport by utilizing the spatial fractional transport equation in Markovian processes were developed.[35–38]In order to investigate memory effects on the formation of hollow temperature profiles under off-axis heating processes,we assume the heating source to be of the formHadd=Hee-(r-r0)2/a2,wherer0=0.75,a=0.05,andHeis a constant,such that

    The initial and boundary conditions are the same as those in the above section.Figure 3 shows the evolution of temperature profiles for variousα.In this work, the temperature profiles in the steady stateTs(r) can be obtained by solvingχα?2T+Hadd=0 using the finite difference method.

    Fig.3.When a plasma system is heated at its edge,a hollow temperature profile can result.In a steady state,the temperature profile Ts can be obtained using the finite difference scheme.However,for a system with α approaching zero,the memory effects weaken the heat conduction,such that the hollow temperature profile can be sustained for a longer time.

    Table 2.The temperature spread εe(t) for different α at different moments.

    When a plasma system undergoes an off-axis heating process, heat is first conducted from the location of the heating source.As shown in Fig.3, heat in a system withα=0.6 is conducted faster than that withα=0.2 andα=0.05, such that the temperature profile from the core tor0= 0.75 forα=0.6 is flatter than that forα=0.2 andα=0.05.Moreover,it is found that temperature profiles have local minima at the core for eachαand that the maxima are close to the position of the heating source.Hence,hollow temperature profiles are formed.In order to investigate memory effects on hollow temperature profiles,we further define the temperature spreadεe(t)as

    and the simulation results are listed in Table 2.

    4.Theoretical analysis

    The solution to the above equation can be derived through the Laplace transform.Therefore,we have

    The first term in the braces on the right-hand side of Eq.(33)is the solution in the absence of an additional source term,while the second term represents the effect of the additional source term on the solution.Moreover, Eq.(33) reveals that the solution can be expanded in a series of Bessel functions,unlike the solution for an unbounded domain derived in Ref.[12].Ifα →1,Eq.(13)returns to an ordinary diffusion equation and Eq.(33)becomes

    which is consistent with the solution to the ordinary diffusion equation.

    Fig.4.The decay of the function Eα,1(-tα) with time for different α.The slopes of all curves are steep in the beginning and then become shallower.This is consistent with the simulation results,showing that the total number of particles decreases rapidly at the beginning and more slowly at later times.

    We next study the situation without an additional source,so the second term on the right-hand side of Eq.(33) can be ignored.Then the solution reads

    To investigate the effect ofαon the evolution of the density profile, we may setDαr2n= 1 for simplicity.Figure 4 shows that as time increases,Eα,1(-tα) decreases and eventually approaches zero.Moreover, it is found that the rate of decay depends onα.For instance,att=7,forα=0.99999,Eα,1(-tα)≈0,while forα=0.2,Eα,1(-tα)≈0.375.Hence,asαincreases,the decay rate of the density increases as well.

    The asymptotic behavior of the Mittag–Leffler function is

    From Eq.(36), whenαapproaches zero, the truncation time approaches infinity.Whenα →1,the truncation time goes to zero.Thus,the smaller theαis,the longer the system spends for achieving a rare density state.

    When a source is taken into consideration,the solution to Eq.(13)can be expressed as in Eq.(33).Ifα →1,corresponding to the ordinary diffusion equation,the factor(t-s)α-1in the integrand equals unity, so that this factor does not affect the density profiles.However, since 0<α<1, this factor cannot be disregarded.Moreover, the factorBn(t)(t-s)α-1arising from the source term implies that the density profile at positionrand timetis influenced by the past history of the source term through the factor(t-s)α-1.In other words,the factor(t-s)α-1strengthens the memory effects of the source term.Taking our work as an example, the initial conditionsn(r,0)=0 andSadd=constare assumed,soAn=0 andBnis independent of time.Therefore,combining Eqs.(28),(32),and(33),we obtain

    We further assumeDαr2n=1 so as to study the influence ofαon the density profiles,and the above equation becomes

    If we make Eq.(38) a function independent of time, i.e., in a steady state, the second term on the right-hand side should be much less than the first term, such that the second term can be ignored.Figure 2(d) shows that the density profile forα=0.2 has a larger difference fromns(r)=(1-r2)/4 than that forα=0.8, which implies that the value ofαdetermines how long a system needs to reach a steady state.To estimate the truncation time in order to ignore the second term on the right-hand side of Eq.(38), we may assume that the second term is 1% of the first term to obtain another truncation timettrun,s= [100/Γ(1-α)]1/α(s in the subscript denotes a steady state).Note that the form of this truncation time is the same as in Eq.(36),but the physical meanings are different.The ratio ofttrun,sforα=0.2 to that forα=0.8which means that the truncation timettrun,sforα= 0.2 is much greater than that forα=0.8.Thus, asαdecreases, the time required to reach a steady state increases.

    To investigate the evolution of temperature profiles under off-axis heating processes,we assume that the heating source has the formHadd=Hee-(r-r0)2/a2,wherer0=0.75,a=0.05,andHeis a constant,such that

    Substituting Eq.(39)into Eq.(24)and applying the initial conditionT(r,0)=0 yield

    After a plasma system is heated from the edge,the heat starts to be conducted by Fick’s law.Therefore, a hollow temperature profile is formed.As time passes, the temperature at the core increases and the hollow profile flattens.When the plasma system is in a steady state, the temperature profile does not evolve with time,consistent with the brown curves in Fig.5.However,the time required to reach the steady state increases asαdecreases.Hence,the smaller theαis,the longer the hollow temperature profile can exist.This can also be concluded from the formulattrun,s=[100/Γ(1-α)]1/α →∞forα →0, implying that asαapproaches zero, the system requires an infinite amount of time to reach the steady state and the hollow temperature profile can be observed indefinitely.

    Fig.5.The temperature profile in a steady state can be numerically calculated through the finite difference scheme as shown by the brown curve denoted as Ts.It can also be analytically derived from Eq.(43),as shown by the green curve denoted as Ts,ana.The source profile for the numerical calculation has the form Hadd=Hee-(r-r0)2/a2 instead of the Dirac delta function.

    5.Summary and conclusion

    In this work,we have investigated the effect of a temporal fractional derivative on transport in a Fickian process with and without sources.The fractional order of the temporal derivative in Eq.(13)can be derived from the CTRW model and the DCT method.Moreover,Eq.(2)states that the time evolution of the density is affected by its past history,which means that the memory effects have a significant influence on anomalous transport.Whenα →1,memory effects abate and disappear,reducing the fractional diffusion equation to the ordinary diffusion equation.

    When a source term is taken into account, the memory effects have an influence on the time needed to reach a steady state.As shown in Figs.2 and 3, asαincreases, the time required to achieve a steady state decreases.Hence,for a system in a sub-diffusive process with a source, the memory effects will prevent the system from reaching a steady state.Therefore, memory effects could be significant in allowing hollow temperature profiles to exist for a long time under off-axis heating.

    It should be pointed out that non-local effects are also important to transport in Markovian processes, as investigated in Refs.[35–38].It would be interesting to consider both non-local and memory effects at the same time.In addition, the fractional orderαdepends on the Kubo numberK=ετc/(Bλ2c), which means that it depends on the magnetic fields and electrostatic fluctuations.In a real tokamak device,the magnetic field has spatial and temporal dependences,which implies thatαis a function of space and time.Moreover, asK ?1 implying weak magnetic field or large electrostatic fluctuations in a system,the memory effects become significant to impede transport processes.Hence, our future work will focus on anomalous transport with spatial-temporal variance of the fractional orderα.

    Acknowledgments

    This work was supported by the National Key R&D Program of China (Grant No.2022YFE03090000), the National Natural Science Foundation of China (Grant No.11925501),and the Fundamental Research Fund for the Central Universities(Grant No.DUT22ZD215).

    猜你喜歡
    王正
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear
    Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas
    Application of Galerkin spectral method for tearing mode instability
    Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas
    Analysis of anomalous transport based on radial fractional diffusion equation
    A brief review: effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks
    Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma
    Machine learning of turbulent transport in fusion plasmas with neural network
    金昌浩、王正油畫作品選
    免费黄频网站在线观看国产| 可以免费在线观看a视频的电影网站| 狠狠婷婷综合久久久久久88av| 亚洲国产看品久久| 丝袜在线中文字幕| 天天躁日日躁夜夜躁夜夜| 国产精品人妻久久久影院| 香蕉丝袜av| 美女午夜性视频免费| av电影中文网址| 日韩制服骚丝袜av| 性色av乱码一区二区三区2| 欧美激情 高清一区二区三区| 日韩中文字幕欧美一区二区 | 亚洲,一卡二卡三卡| 制服诱惑二区| 亚洲视频免费观看视频| 好男人电影高清在线观看| 一级毛片我不卡| 国产免费视频播放在线视频| 精品一区二区三区四区五区乱码 | 亚洲精品美女久久av网站| 亚洲国产成人一精品久久久| 精品卡一卡二卡四卡免费| 久久久久视频综合| 亚洲一区二区三区欧美精品| 中文字幕人妻丝袜一区二区| 国产精品国产三级国产专区5o| 日日爽夜夜爽网站| 成人国语在线视频| 日韩大码丰满熟妇| 午夜免费男女啪啪视频观看| 熟女少妇亚洲综合色aaa.| 国产精品国产三级专区第一集| 欧美人与善性xxx| 亚洲精品美女久久av网站| 日本欧美国产在线视频| 在线av久久热| 伊人亚洲综合成人网| 亚洲成av片中文字幕在线观看| 悠悠久久av| 最近手机中文字幕大全| 日本猛色少妇xxxxx猛交久久| 两性夫妻黄色片| 美女高潮到喷水免费观看| 一个人免费看片子| 性色av一级| 一区二区三区乱码不卡18| 夫妻午夜视频| 欧美日韩福利视频一区二区| 大型av网站在线播放| 蜜桃在线观看..| 狠狠精品人妻久久久久久综合| 丝袜脚勾引网站| 日日爽夜夜爽网站| 两人在一起打扑克的视频| 99国产精品一区二区蜜桃av | 免费少妇av软件| 亚洲欧美一区二区三区国产| 精品高清国产在线一区| 精品人妻1区二区| 91九色精品人成在线观看| svipshipincom国产片| 亚洲国产av新网站| 大话2 男鬼变身卡| 啦啦啦 在线观看视频| 日韩视频在线欧美| 狂野欧美激情性bbbbbb| 人妻人人澡人人爽人人| 桃花免费在线播放| 国产成人影院久久av| 免费高清在线观看日韩| 国产又爽黄色视频| 纯流量卡能插随身wifi吗| www日本在线高清视频| 一级毛片女人18水好多 | 色婷婷久久久亚洲欧美| 久久国产精品人妻蜜桃| 男女边摸边吃奶| 亚洲久久久国产精品| 在线观看人妻少妇| 女人高潮潮喷娇喘18禁视频| 久久精品久久久久久久性| 免费日韩欧美在线观看| 精品少妇久久久久久888优播| 777米奇影视久久| 日本一区二区免费在线视频| 久久99一区二区三区| 国产一区二区三区综合在线观看| 国产真人三级小视频在线观看| 三上悠亚av全集在线观看| 麻豆乱淫一区二区| 不卡av一区二区三区| 91精品国产国语对白视频| 天堂8中文在线网| 777米奇影视久久| 一级毛片 在线播放| 久久精品久久久久久噜噜老黄| 亚洲美女黄色视频免费看| 少妇人妻 视频| 成人三级做爰电影| 国产精品人妻久久久影院| 黄色片一级片一级黄色片| 成年人黄色毛片网站| 国产福利在线免费观看视频| 天天添夜夜摸| 十八禁网站网址无遮挡| 国产精品国产av在线观看| 免费在线观看完整版高清| 免费观看人在逋| bbb黄色大片| 我的亚洲天堂| 校园人妻丝袜中文字幕| 一级毛片电影观看| 国产视频首页在线观看| 国产成人免费无遮挡视频| 亚洲欧美日韩高清在线视频 | 建设人人有责人人尽责人人享有的| 国产精品熟女久久久久浪| 欧美性长视频在线观看| 高清欧美精品videossex| 日日爽夜夜爽网站| 亚洲精品av麻豆狂野| 丁香六月欧美| 亚洲中文日韩欧美视频| 亚洲 欧美一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲精品国产色婷婷电影| 亚洲国产中文字幕在线视频| 美女扒开内裤让男人捅视频| 国产女主播在线喷水免费视频网站| 亚洲成色77777| 久久精品人人爽人人爽视色| 狠狠精品人妻久久久久久综合| 热re99久久精品国产66热6| 青春草亚洲视频在线观看| 中文字幕最新亚洲高清| 日韩av免费高清视频| 国产精品亚洲av一区麻豆| 99精品久久久久人妻精品| 日韩av在线免费看完整版不卡| 免费观看av网站的网址| 亚洲九九香蕉| 中文字幕人妻丝袜制服| 高清视频免费观看一区二区| 少妇被粗大的猛进出69影院| 久久精品aⅴ一区二区三区四区| 97在线人人人人妻| 好男人电影高清在线观看| 国产精品一二三区在线看| 97精品久久久久久久久久精品| 日本午夜av视频| 欧美xxⅹ黑人| videosex国产| 大香蕉久久网| 久久鲁丝午夜福利片| 亚洲国产日韩一区二区| 国产精品九九99| 成人免费观看视频高清| 色94色欧美一区二区| 亚洲人成77777在线视频| 久久女婷五月综合色啪小说| 成在线人永久免费视频| 成人亚洲精品一区在线观看| 国产精品九九99| 成人亚洲精品一区在线观看| 在线精品无人区一区二区三| 成年人免费黄色播放视频| 亚洲精品美女久久久久99蜜臀 | 免费不卡黄色视频| 首页视频小说图片口味搜索 | 久久久久久免费高清国产稀缺| 丰满饥渴人妻一区二区三| 国产亚洲av高清不卡| 国产精品99久久99久久久不卡| 欧美性长视频在线观看| 我要看黄色一级片免费的| 欧美日韩国产mv在线观看视频| 高清不卡的av网站| 亚洲精品av麻豆狂野| 丁香六月欧美| 日本av手机在线免费观看| 日本av手机在线免费观看| 青春草亚洲视频在线观看| 人人澡人人妻人| 久久ye,这里只有精品| 制服人妻中文乱码| 国产高清videossex| 黑人猛操日本美女一级片| 一级片'在线观看视频| av又黄又爽大尺度在线免费看| 免费不卡黄色视频| 久久久久视频综合| 欧美黄色淫秽网站| 中文精品一卡2卡3卡4更新| 男男h啪啪无遮挡| 精品少妇一区二区三区视频日本电影| 一区二区三区乱码不卡18| 91麻豆av在线| 欧美精品一区二区大全| 赤兔流量卡办理| 美女视频免费永久观看网站| 好男人视频免费观看在线| 一本色道久久久久久精品综合| 久久精品成人免费网站| 中文字幕人妻丝袜一区二区| 亚洲精品一区蜜桃| 狂野欧美激情性bbbbbb| 91精品伊人久久大香线蕉| 熟女少妇亚洲综合色aaa.| 亚洲熟女精品中文字幕| 大陆偷拍与自拍| 亚洲人成网站在线观看播放| 亚洲精品国产av蜜桃| 精品亚洲成a人片在线观看| 日韩视频在线欧美| 久久av网站| 久久女婷五月综合色啪小说| 老鸭窝网址在线观看| 国产一区二区三区av在线| 成人国语在线视频| 天堂8中文在线网| 一本综合久久免费| 日韩一区二区三区影片| 精品人妻1区二区| 欧美黑人欧美精品刺激| 亚洲av电影在线进入| 色精品久久人妻99蜜桃| 亚洲av成人精品一二三区| 久久久精品94久久精品| 一级毛片女人18水好多 | 一本色道久久久久久精品综合| 只有这里有精品99| 七月丁香在线播放| 两个人看的免费小视频| 黄色毛片三级朝国网站| 日韩 亚洲 欧美在线| 悠悠久久av| 男人添女人高潮全过程视频| 黄色视频不卡| 大型av网站在线播放| 欧美人与性动交α欧美精品济南到| 日韩一卡2卡3卡4卡2021年| 成年美女黄网站色视频大全免费| 国产女主播在线喷水免费视频网站| 后天国语完整版免费观看| 桃花免费在线播放| 高清av免费在线| 免费在线观看日本一区| 大片免费播放器 马上看| 欧美久久黑人一区二区| 国产男女超爽视频在线观看| 91麻豆av在线| 亚洲第一av免费看| 天天躁狠狠躁夜夜躁狠狠躁| 18禁国产床啪视频网站| 丝袜美腿诱惑在线| 亚洲熟女精品中文字幕| 日本猛色少妇xxxxx猛交久久| 午夜91福利影院| 99热全是精品| 国产真人三级小视频在线观看| 性高湖久久久久久久久免费观看| 超色免费av| 午夜激情久久久久久久| 99久久综合免费| 国产亚洲一区二区精品| 少妇精品久久久久久久| 亚洲精品一二三| 免费女性裸体啪啪无遮挡网站| 免费观看a级毛片全部| www.精华液| 亚洲自偷自拍图片 自拍| 少妇粗大呻吟视频| 精品人妻在线不人妻| 色网站视频免费| 欧美日韩视频精品一区| 中文字幕最新亚洲高清| a级毛片黄视频| 亚洲国产精品国产精品| 九草在线视频观看| 亚洲五月婷婷丁香| 夫妻午夜视频| 一本综合久久免费| 嫩草影视91久久| 深夜精品福利| 国产精品久久久久久人妻精品电影 | 久久鲁丝午夜福利片| 国产成人精品无人区| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 80岁老熟妇乱子伦牲交| 国产黄色免费在线视频| 亚洲中文日韩欧美视频| 精品亚洲成a人片在线观看| 赤兔流量卡办理| 欧美激情高清一区二区三区| 婷婷色综合大香蕉| 成人影院久久| 色婷婷久久久亚洲欧美| 国产爽快片一区二区三区| kizo精华| 大话2 男鬼变身卡| 人人妻人人澡人人看| 国产人伦9x9x在线观看| 亚洲一区中文字幕在线| 国产日韩欧美在线精品| 美女脱内裤让男人舔精品视频| 日本午夜av视频| 精品一区在线观看国产| 手机成人av网站| 国产精品久久久av美女十八| 夫妻性生交免费视频一级片| 99香蕉大伊视频| 欧美日韩视频高清一区二区三区二| 99热全是精品| 日韩 欧美 亚洲 中文字幕| 美女脱内裤让男人舔精品视频| 久久精品久久久久久噜噜老黄| 啦啦啦视频在线资源免费观看| 韩国高清视频一区二区三区| 国产不卡av网站在线观看| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看av| 女性被躁到高潮视频| 日本五十路高清| 五月开心婷婷网| 操出白浆在线播放| 亚洲色图综合在线观看| 国产一级毛片在线| 在线精品无人区一区二区三| 日本av免费视频播放| 欧美少妇被猛烈插入视频| 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| 亚洲精品久久久久久婷婷小说| 热re99久久国产66热| 伊人久久大香线蕉亚洲五| 国产亚洲欧美在线一区二区| 欧美日韩福利视频一区二区| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美中文字幕日韩二区| 在线观看人妻少妇| videosex国产| 欧美人与性动交α欧美精品济南到| 国产一区二区 视频在线| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 满18在线观看网站| 免费久久久久久久精品成人欧美视频| 亚洲自偷自拍图片 自拍| 新久久久久国产一级毛片| 亚洲九九香蕉| 女人精品久久久久毛片| 亚洲中文日韩欧美视频| 亚洲图色成人| 亚洲av电影在线进入| 最新在线观看一区二区三区 | 欧美国产精品va在线观看不卡| 丝袜喷水一区| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频 | 一区二区三区精品91| 一区二区三区四区激情视频| 亚洲av在线观看美女高潮| 一级,二级,三级黄色视频| 免费一级毛片在线播放高清视频 | 亚洲av成人精品一二三区| 亚洲精品一卡2卡三卡4卡5卡 | 成人午夜精彩视频在线观看| 婷婷色综合大香蕉| 热99国产精品久久久久久7| 深夜精品福利| 亚洲av男天堂| av天堂在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲精品一区蜜桃| 各种免费的搞黄视频| tube8黄色片| 可以免费在线观看a视频的电影网站| av在线老鸭窝| 午夜久久久在线观看| 两个人免费观看高清视频| 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 两个人看的免费小视频| 看免费成人av毛片| 美女福利国产在线| 成在线人永久免费视频| 99国产精品一区二区三区| 少妇裸体淫交视频免费看高清 | 久久久精品区二区三区| 日本午夜av视频| 午夜视频精品福利| 国产成人91sexporn| 精品亚洲成a人片在线观看| 欧美黄色淫秽网站| 在线观看一区二区三区激情| 夫妻午夜视频| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密 | 老汉色av国产亚洲站长工具| 在线观看免费高清a一片| 久久女婷五月综合色啪小说| 又黄又粗又硬又大视频| 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的| 久久性视频一级片| 男人舔女人的私密视频| 欧美黄色淫秽网站| 欧美黑人精品巨大| 黄片播放在线免费| 久久久国产精品麻豆| 91九色精品人成在线观看| 国产伦人伦偷精品视频| 国产精品99久久99久久久不卡| 亚洲一区二区三区欧美精品| 亚洲精品国产区一区二| 亚洲国产av新网站| 丝袜喷水一区| 国产精品欧美亚洲77777| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美| 女人精品久久久久毛片| 午夜福利视频在线观看免费| 一区二区av电影网| 天天影视国产精品| 精品一区在线观看国产| 国产一区二区三区综合在线观看| 丰满少妇做爰视频| 国产精品久久久久久人妻精品电影 | 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 国产av国产精品国产| 老司机影院毛片| 亚洲国产欧美网| 欧美xxⅹ黑人| 久久国产精品影院| 嫁个100分男人电影在线观看 | 伊人亚洲综合成人网| 日韩一区二区三区影片| 久久精品亚洲av国产电影网| 777久久人妻少妇嫩草av网站| 亚洲av日韩在线播放| 少妇 在线观看| 波多野结衣一区麻豆| av线在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品一区二区大全| 久久久精品区二区三区| 国产麻豆69| 少妇 在线观看| 成年美女黄网站色视频大全免费| 一级黄色大片毛片| 操出白浆在线播放| 国产日韩欧美在线精品| 成人18禁高潮啪啪吃奶动态图| 国产欧美亚洲国产| 欧美 亚洲 国产 日韩一| 色精品久久人妻99蜜桃| 晚上一个人看的免费电影| 国产成人91sexporn| 美女中出高潮动态图| 成人18禁高潮啪啪吃奶动态图| 啦啦啦 在线观看视频| 91九色精品人成在线观看| 欧美在线一区亚洲| 国产成人欧美| e午夜精品久久久久久久| 男人添女人高潮全过程视频| 人人澡人人妻人| 久久女婷五月综合色啪小说| 曰老女人黄片| 两性夫妻黄色片| av天堂在线播放| 亚洲国产中文字幕在线视频| 精品人妻熟女毛片av久久网站| netflix在线观看网站| 亚洲欧美精品自产自拍| 激情视频va一区二区三区| 日韩制服骚丝袜av| 午夜免费观看性视频| 亚洲精品久久午夜乱码| 狠狠婷婷综合久久久久久88av| 久久久久国产精品人妻一区二区| 日韩伦理黄色片| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产色婷婷电影| 国产精品九九99| 老司机深夜福利视频在线观看 | 欧美大码av| 亚洲中文av在线| 欧美人与性动交α欧美软件| 一区二区三区精品91| 老熟女久久久| 欧美国产精品一级二级三级| 五月开心婷婷网| 国产老妇伦熟女老妇高清| 成年人黄色毛片网站| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 亚洲欧美中文字幕日韩二区| 观看av在线不卡| 国产日韩欧美在线精品| 色视频在线一区二区三区| 亚洲九九香蕉| 亚洲中文字幕日韩| 七月丁香在线播放| 亚洲第一青青草原| 人妻人人澡人人爽人人| 嫁个100分男人电影在线观看 | 欧美少妇被猛烈插入视频| 岛国毛片在线播放| 亚洲国产精品成人久久小说| 99香蕉大伊视频| 欧美在线黄色| 脱女人内裤的视频| 久久精品国产亚洲av高清一级| 啦啦啦啦在线视频资源| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三 | 欧美人与善性xxx| 午夜福利影视在线免费观看| 免费人妻精品一区二区三区视频| 国产亚洲精品第一综合不卡| 青春草亚洲视频在线观看| 成人亚洲欧美一区二区av| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久小说| 青春草视频在线免费观看| 久久精品久久精品一区二区三区| 国产av精品麻豆| 99国产精品一区二区三区| 在线看a的网站| 亚洲精品成人av观看孕妇| 国产麻豆69| 免费看不卡的av| 精品国产国语对白av| 亚洲精品久久久久久婷婷小说| av天堂在线播放| 制服人妻中文乱码| 一级毛片黄色毛片免费观看视频| 啦啦啦啦在线视频资源| 国产一区亚洲一区在线观看| 国产在线视频一区二区| 亚洲午夜精品一区,二区,三区| 欧美日韩一级在线毛片| 国产淫语在线视频| 99国产精品99久久久久| 久久精品成人免费网站| 精品亚洲成a人片在线观看| 丰满迷人的少妇在线观看| 免费观看人在逋| 婷婷色av中文字幕| 久久久国产一区二区| www.av在线官网国产| 九色亚洲精品在线播放| 日韩一卡2卡3卡4卡2021年| 国产91精品成人一区二区三区 | 美女福利国产在线| 亚洲av国产av综合av卡| 丁香六月天网| 日本av手机在线免费观看| 国产成人精品久久二区二区91| 久久久久久久国产电影| www.熟女人妻精品国产| 99精国产麻豆久久婷婷| 另类精品久久| 2018国产大陆天天弄谢| 久久久国产精品麻豆| 99热全是精品| 亚洲成国产人片在线观看| 十八禁网站网址无遮挡| 欧美日韩av久久| 日韩一卡2卡3卡4卡2021年| 午夜福利,免费看| 老司机影院成人| 视频区图区小说| 国产一卡二卡三卡精品| 免费在线观看视频国产中文字幕亚洲 | 国产麻豆69| 亚洲成人国产一区在线观看 | 久久性视频一级片| 国产免费又黄又爽又色| 美女福利国产在线| 久久99精品国语久久久| 国产xxxxx性猛交| 亚洲,一卡二卡三卡| 老鸭窝网址在线观看| 亚洲少妇的诱惑av| 日本av手机在线免费观看| 欧美精品人与动牲交sv欧美| 日本五十路高清| 黄色怎么调成土黄色| 老鸭窝网址在线观看| 精品亚洲成a人片在线观看| 校园人妻丝袜中文字幕| 国产精品 国内视频| 亚洲国产精品国产精品| 人人妻人人添人人爽欧美一区卜| 欧美精品一区二区大全| 午夜免费成人在线视频| 久久久久久久精品精品| 男女边摸边吃奶| 欧美精品高潮呻吟av久久| 91精品国产国语对白视频| 只有这里有精品99| 国产精品香港三级国产av潘金莲 | 视频在线观看一区二区三区|