• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Galerkin spectral method for tearing mode instability

    2022-11-21 09:28:06WuSun孫武JiaqiWang王嘉琦LaiWei魏來ZhengxiongWang王正洶DongjianLiu劉東劍andQiaolinHe賀巧琳
    Chinese Physics B 2022年11期
    關(guān)鍵詞:王正孫武

    Wu Sun(孫武) Jiaqi Wang(王嘉琦) Lai Wei(魏來) Zhengxiong Wang(王正洶)Dongjian Liu(劉東劍) and Qiaolin He(賀巧琳)

    1College of Physics&Key Laboratory of High Energy Density Physics and Technology,Sichuan University,Chengdu 610065,China

    2School of Physics,Dalian University of Technology,Dalian 116024,China

    3School of Mathematics,Sichuan University,Chengdu 610065,China

    Magnetic reconnection and tearing mode instability play a critical role in many physical processes. The application of Galerkin spectral method for tearing mode instability in two-dimensional geometry is investigated in this paper. A resistive magnetohydrodynamic code is developed, by the Galerkin spectral method both in the periodic and aperiodic directions.Spectral schemes are provided for global modes and local modes. Mode structures, resistivity scaling, convergence and stability of tearing modes are discussed. The effectiveness of the code is demonstrated, and the computational results are compared with the results using Galerkin spectral method only in the periodic direction. The numerical results show that the code using Galerkin spectral method individually allows larger time step in global and local modes simulations,and has better convergence in global modes simulations.

    Keywords: Galerkin spectral method,tearing mode instability,magnetic reconnection,magnetohydrodynamics

    1. Introduction

    Magnetic reconnection,the topological rearrangement of magnetic field lines, was proposed to explain solar flares by Giovanelli.[1]In astrophysical,[1–5]space,[6–9]and laboratory plasmas,[10–14]the phenomenon has been broadly observed, which converts the magnetic energy into thermal and kinetic energies of the plasma. Theoretically, there are two widely quoted theoretical magnetic reconnection mechanisms,namely Sweet–Parker model and Petschek model.[15,16]Magnetic reconnection is considered to play an important role in some processes, such as the solar flares,[2,17–21]the corona heating,[3]the coronal mass ejections (CMEs),[22]the magnetic substorms[23]and the disruption in tokamaks.[24,25]For solar flares, the CSHKP model is regarded as a standard model, in which the conversion of magnetic energy during the magnetic reconnection is thought to provide an origin for the released energy of solar flares.[17–20]Meanwhile, the extreme ultraviolet and x-ray observations also provide evidence of magnetic reconnection in solar flares.[21]In Earth’s magnetosphere, the magnetic substorms explosively release energy from the solar wind, and magnetic reconnection at the magnetotail is considered to be responsible for the magnetic substorms.[23]Magnetic reconnection can be triggered by tearing mode instability, which results in magnetic islands as a consequence of finite resistivity. As one of the important magnetohydrodynamics (MHD) instabilities, tearing mode instability has been widely observed in toroidal plasmas. The magnetic island can be driven by the nonlinear tearing mode,and causes energy loss,crash and disruption.[25]As a catastrophic loss of plasma control in tokamaks, the disruption leads to large heat loads and mechanical stresses on surrounding structures,even causes damage to the machine.[25]Hence,it is crucial to develop the theoretical and simulation study of the tearing mode instability so that the dynamics of many related processes can be well understood. The linear and nonlinear theories of the tearing mode were developed by Furthet al.[26]and Rutherford.[11]

    Spectral methods which originated in Ritz–Galerkin methods consist of Galerkin,tau and collocation methods.[27]The main difference between spectral methods,finite element methods and finite difference methods is that spectral methods use infinitely differentiable global functions as the trial functions to approach the solutions. The most frequently used trial functions are orthogonal polynomials. Spectral methods are global because the computation at any point depends on the information from the entire domain. The significant feature of spectral methods is that the convergence could be more rapid than any finite power of 1/N, whereNis the number of the terms in the orthogonal polynomials, while the solution is infinitely smooth.[27]Many schemes of spectral methods have been developed in the last few decades, especially in computational fluid dynamics.[27–29]Applications of spectral methods show good performance on many problems,such as compressible flows, incompressible flows, boundary layers, parallel flows and turbulence flows. For example, Serre and Pulicani proposed a high accuracy pseudospectral method for the computation of the three-dimensional Navier–Stokes equations inside a rotating cavity and the results have a good agreement with experimental and numerical studies.[30]

    In recent years, several MHD codes have been developed, such as NIMROD,[31]XTOR,[32]and CLT,[33]which have been widely used to study tearing modes. Finite element and finite difference methods are used frequently as the discrete forms in these codes. Spectral methods are also used in periodic directions, showing a good performance. For instance,NIMROD uses a Fourier representation in the toroidal direction, while the accuracy for derivatives in that direction is increased and several numerical tasks are eased. XTOR uses it in all the angular directions, and the linear algebra is much more efficient for the same spectral content.Another 3D MHD code CLT,developed in recent years,also uses spectral methods in theφdirection of a cylindrical coordinate system(R,φ,Z). The effectiveness of these codes has been demonstrated, and many physical problems were studied by using these codes.[34–39]Hence, the applications of spectral methods are noteworthy in MHD simulations of tearing mode instability. However,it seems that spectral methods are not used as the discrete form individually. For example, XTOR uses a finite difference method in the radial, NIMROD uses a highorder finite element method in the poloidal plane,which uses spectral elements with high-order basis functions inside each element. In these codes, Fourier representations are used in one or two directions,and the computations are performed in the spectrum space and the physical space.

    This paper investigates a Galerkin spectral method for simulating tearing modes based on a 2-field reduced magnetohydrodynamics (RMHD) model in two-dimensional space.The main feature of our code is that the Galerkin spectral method is used both in periodic and aperiodic directions.Thus,computations are performed in the spectrum space, and we do not need to transform polynomials into values, or vice versa. The mode analysis and filtering are also more convenient. Three cases are simulated in this paper,namely,case I,II,and III,which represent the single tearing mode,the double tearing mode and them=1 global tearing mode with a slab geometry,respectively. This paper is organized as follows. In Section 2, the physical model we used is given. We present the numerical algorithm in Section 3. Section 4 presents the simulation results and influences of using spectral methods individually. In the final section,a brief conclusion is given.

    2. Physical model

    In this paper, a rectangular coordinate system (x,y) is used. For the MHD instabilities, especially the finite resistivity induced tearing mode, the system can be described by the resistive MHD model. In the slab model, the plasma is assumed to be equilibrium static so that the initial plasma velocityv0=0, and the plasma mass densityρis invariant because the flow is incompressible. For simplicity,ρis considered constant:ρ=1. The set of fundamental equations are given as follows:[40]

    whereψ,φ,S,U, andjz=-?2⊥ψare the magnetic flux function,stream function,Lundquist number,vorticity,andzcomponent of current density, respectively. The functionsψandUcan be expressed as

    The Lundquist numberS=τη/τa,whereτη=μ0L2/ηis the diffusion time due to the finite resistivity andτa=L/vais the Alfv′enic time. The characteristic lengthLis twenty times the current sheet width,va=BL/(μ0ρ)1/2is the Alfv′enic speed,BLis the magnetic field atx=L,μ0is the vacuum permeability, andηis the plasma resistivity. Variables are normalized asv/va→v,t/τa→t,B/BL →B,E/(vaBL)→E,J/(BL/μ0L)→J,ψ/(BLL)→ψ,φ/(vaL)→φ,U/(va/L)→U,andη/(μ0L2/τa)→η,whereEandJare the electric field and current density,respectively.

    By asymptotic expansion method, a functionfcan be represented asf(x,y,t)=f0+f1(x,y,t), where the subscript 0 and 1 denote equilibrium quantities and perturbations, respectively. For the equilibrium quantities independent ofy,we have

    3. Numerical algorithm

    In this MHD code,Galerkin spectral method is employed in all directions, and the 4th order Runge–Kutta scheme is used in the time-advance. The simulation domain is (0,b)×(0,c). Because Galerkin spectral method is used in all directions,computations are performed in the spectrum space.

    In Galerkin spectral method, the trial functions must fit the boundary conditions, and the test functions are the same as the trial functions. In this paper,the simulation includes local modes and global modes. Fourier functions are used as the trial functions in theydirection because of the periodic boundary conditions. Different boundary conditions were assumed according to the features of local modes and global modes.

    For case I, the plasma displacement of single tearing mode is localized around the rational surface,[41]thus the perfectly conducting wall boundary can be applied in thexdirection. For case II,the double tearing mode can exist when two rational surfaces are close enough.[41]Away from the rational surface, the perfectly conducting wall boundary condition is still suitable for case III.

    For cases I and II, half-wavelength sine series is used to fit the boundary condition,and the perturbed field can be represented as

    wheream,lis the coefficient,which is also the amplitude of the corresponding Fourier(m,l)component,wheremandldenote the mode numbers inyandxdirections.

    The trial functions and test functions can be chosen with above equations. In the Galerkin spectral method, equations(7)and(8)become

    wherefM,Nis the conjugate offM,N, equilibrium quantities and perturbations are represented as trial functions.

    With the orthogonality of the trial functions and test functions,equations(12)and(13)can be transformed to coefficient equations. Thus, the differential equations(7)and(8)can be solved in the spectrum space, and the derivations of coefficient equations are shown in the Appendix B.The coefficients of the stream functionφcan not be obtained directly,and it is necessary to solve Poisson’s equation at every time step. Fortunately,Uis represented by polynomials in this paper. Thus,the Poisson’s equation becomes a linear equation of the two coefficient vectors.

    To compare with the Galerkin spectral method, we also implement finite difference collocation method.The code uses the finite difference method in thexdirection and the Fouriercollocation method in theydirection. The computational grid is vertically divided, and each term of sine series or cosine series in the Galerkin spectral code corresponds to one node in the finite difference collocation code. In theydirection,the fast-Fourier transform(FFT)is used to transform fields to Fourier functions, where derivation is easily computed, then the inverse FFT transforms the results back into the real coordinate space. The Poisson’s equation ofUis solved by transformingUinto a suitable function ofxandy.

    4. Simulation results

    In this section, the simulation results of the three cases are shown. By comparing with the linear theory,the effectiveness of the Galerkin spectral code is implemented. Then the influence of using the Galerkin spectral method is discussed by comparing the results of the Galerkin spectral code with the finite difference collocation code.

    4.1. Equilibrium and perturbation setting

    The simulation region is(0,1.5)×(0,1). The set of equilibrium magnetic field is

    wherexqis the peak position of the current sheet anddis the sheet width. We choosed=0.05. For case I,xq=0.75. For case II,xq=0.3.

    For case II,there are two current sheets,so the magnetic field is given by

    wherexq1andxq2are the peak positions of two current sheets,xq1=0.72,xq2=0.78.

    The initial perturbation is set as

    wheremis the mode number in theydirection and ?ψ1is the amplitude of the initial perturbation.

    The equilibrium parameter settings of case I, including the magnetic fieldB0, the magnetic fluxψ0and the current densityj0,are shown in Fig.1(a). As the trial functions have been chosen in Section 3,B0andj0can be transformed into truncated cosine series and sine series,respectively.

    The global modes also have been simulated. If there is more than one rational surface(k·B=0)and these surfaces are sufficiently close, the double tearing mode can exist because of the drive between each rational surface.[41]Thus,the equilibrium of case II has two close current sheets, as shown in Fig.1(b). Case III is simulated with suitable boundary conditions chosen in Section 3, and the equilibrium is plotted in Fig.1(c).

    Fig.1. Equilibrium profile of the three cases: (a)I,(b)II,and(c)III.

    4.2. Mode structure

    Figure 2(a) shows the mode structure of a linear single tearing mode. According to the Furth–Killeen–Rosenbluth(FKR)theory,[26]the mode is purely growing and symmetric.Priest showed the mode structure of the linear tearing mode in his paper,[24]which is in accordance with the result.

    The result of case III is reported in Fig.2(b). Them=1 tearing mode in cylindrical geometry is found when the safety factorq <1 at the center of the plasma, which results in a displacement of the entire plasma column instead of significant distortions of the flux surfaces.[42]The mode structure in Fig.2(b)shows the rapid decrease of the magnetic flux in the current sheet. Thus,case III is also tested.

    In Fig. 2(c), the linear result of case II is plotted, with a small surface distance. The mode structure of a large rational surface distance is shown in Fig.2(d). As the two graphs show, the two single tearing modes developed at each corresponding rational surfaces couple with each other when they are close enough. When the distance is sufficiently large, the modes decouple, and the double tearing mode becomes two single tearing modes.

    Fig.2. Mode structures: (a)case I with S=106, (b)case III with S=105,(c) case II with S =106, (d) case II with S =106 while xq1 =0.375 and xq2=1.125.

    4.3. Resistivity scaling of growth rates

    The scaling benchmark of the Galerkin spectral code and the finite difference collocation code are shown in Fig.3. The data are plotted in the double-logarithmic coordinates,and the theoretical scaling is plotted as a line. The scaling results of these two codes are in good agreement. In Fig.3(a),the scaling of growth rates of case I is shown,and the resistivity scaling is nearS-3/5over the range ofSfrom 105to 107. Figure 3(b)shows the result of case II,and the accurate range ofSis from 5×106to 107. The scaling of case III plotted in Fig.3(c)shows that the data provides a good fit to the theory whenSis near 105. Thus,the scaling results of the three cases are all in accordance with the theory.

    Fig.3. Resistivity scaling of growth rates for the three cases: (a)I,(b)II,and(c)III.

    4.4. Convergence benchmark

    The convergence in thexdirection is benchmarked in this part. As the spatial resolution increases, the data error of a numerical code should converge to zero.

    Figure 4 shows the growth rate convergence of the two codes under the same spatial resolutions, while the resistivities are chosen based on the scaling result. In Fig. 4(a), the convergence rates of the two codes are similar. For case II or III, it shows a significant difference that the convergence of the Galerkin spectral code is faster compared to the finite difference collocation code. As shown in Fig.4(b),the Galerkin spectral code reaches convergence when the number of grid points is larger than 600, while the convergence of the finite difference collocation code needs a larger grid number. For case III,the result in Fig.4(c)reveals much difference. Thus,the simulation indicates that the Galerkin spectral code has a better performance of the convergence in global modes simulations,which shows better accuracy.

    Fig.4. Convergence comparisons: (a)case I with S=106,(b)case II with S=106,(c)case III with S=105.

    4.5. Stability analysis

    The time step is limited by the numerical stability. Figure 5 shows the limited maximum time step of the two codes.The maximum time step Δtis compared under equal grids,and the resistivities are chosen based on the scaling result. As Fig.5(a)shows,the results of case I and II are the same. Compared with the finite difference collocation code,the Galerkin spectral code allows larger time step at small grid number,and Δtdecreases faster as the grid number increases.

    As the results in Fig.5(b),the maximum time step shows a relationship nearly Δt∝n-2with the grid number, so further computations are performed. In Fig. 6(a), the maximum time step of case I and II withS=104are shown. The smaller resistivity is chosen because of less computational cost, and there is still a square relationship. The influence of the timeadvance scheme is also discussed in Figs. 6(b) and 6(c), the relationships between Δtandnunder different schemes are sufficiently close.

    Fig.5. Maximum time step comparisons: (a)the same result of case I and II with S=106,(b)the result of case III with S=105.

    Fig.6. Maximum time step of case I and II with S=104: (a)4th order Runge–Kutta method,(b)2nd order Runge–Kutta method,(c)Euler method.

    4.6. Nonlinear results

    Considering the fine mode structure of tearing mode inxdirection,the nonlinear simulation of the single tearing mode is performed with-8≤m ≤8 and 1≤l ≤256. Because the boundary conditions are based on local modes,them=1 mode in this case is equal with them ≥2 modes in the cylinder geometry. The nonlinear simulation uses the same equilibrium profiles as that in case I, which is shown in Fig. 1(a). The perturbation is set as Eq.(16).

    Fig.7. Growth of magnetic flux perturbation in the current sheet.

    The filtering is performed by altering the expansion coefficients so that the expansion coefficients decay faster for the higherl.The computation is convenient because the equations are solved in the spectrum space.

    Figure 7 shows the magnetic flux perturbation,including modes from 0 to 8 and the sum of all modes.Them=1 perturbation drives the increase of highermmodes,and the growth is exponential in the linear stage. As the higher harmonic grows,the nonlinear interactions between different modes become stronger, and the exponential growth is drastically slowed in the nonlinear stage. And there is nonlinear saturation in the end of the linear stage. The results are in accordance with the features of the nonlinear tearing modes.

    Fig.8. Mode structures of m=0 mode and m=1 mode at different stages.

    The mode structures are shown in Fig.8,withm=1.The unstable mode structure in the linear staget <10 is shown by a black dot,the nonlinear evolution in the later stage 10<t <30 is shown by a red dash,and the saturate staget >30 is shown by a blue solid line. The structure is a good agreement with the theory.[24]Them=0 mode of magnetic flux perturbation att=10 is also plotted, showing a good agreement with the result of the previous studies.[43]Figure 9 shows the growth of the magnetic island width,and the flux perturbation is also plotted. The growth is exponential in the linear stage, then becomes linear,and tends to be zero. The saturated magnetic islands are given in Fig.10.

    Fig.9. Growth of magnetic island width(the black line)and perturbation of magnetic flux(the red dash line).

    Fig.10. Saturated magnetic islands.

    5. Conclusion

    A Galerkin spectral code is developed to simulate tearing modes, which is based on a 2-field RMHD model. Galerkin spectral method is used both in periodic and aperiodic directions. The partial differential equations are solved in the spectrum space,and mode analysis is more convenient in our code.In this paper,both local modes and global modes are simulated with proper boundary conditions. The trial functions are chosen to fit the boundary conditions,and the approximation error is estimated.

    The linear results of local and global tearing modes, as well as the nonlinear results of local tearing mode, provide a good fit to the theory. As a comparison, the finite difference collocation code which uses spectral methods in periodic directions is developed. The resistivity scaling results of the two codes are both in accordance with the theory. Compared with the finite difference collocation code,the Galerkin spectral code shows higher accuracy of global modes.The stability analysis demonstrates that the relationship between the maximum time step Δtand the grid numbernis nearly Δt∝n-2when the grid number is sufficiently large. Although the maximum time step of the Galerkin spectral code decreases faster as the grid number increases,still keeps advantages in a range

    where the grid number satisfies the convergence condition. In the future work, one will generalize the code to a 3D MHD code of cylindrical geometry or toroidal geometry.

    Appendix A: The estimate of approximation error

    The Fourier approximation has been discussed in some references.[27,44]The computational domain is (0,π)×(0,2π). DefineSNas the space of the Fourier series, andPN:L2(0,2π)→SNis the orthogonal projection uponSNin the inner product ofL2(0,2π):

    The coefficient equations can be composed of the above equations.

    Acknowledgments

    Project supported by the Sichuan Science and Technology Program (Grant No. 22YYJC1286), the China National Magnetic Confinement Fusion Science Program(Grant No.2013GB112005),and the National Natural Science Foundation of China(Grant Nos.12075048 and 11925501).

    猜你喜歡
    王正孫武
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear
    Analysis of anomalous transport based on radial fractional diffusion equation
    A brief review: effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks
    Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma
    Machine learning of turbulent transport in fusion plasmas with neural network
    金昌浩、王正油畫作品選
    《孫武專題研究》
    孫子研究(2018年5期)2018-04-30 07:55:28
    孫武練兵
    從《擒龐涓》看孫臏與孫武的師承關(guān)系
    軍事歷史(2002年4期)2002-08-21 07:47:56
    孫武何以不見名于《左傳》
    軍事歷史(1997年6期)1997-08-21 02:37:14
    国产又黄又爽又无遮挡在线| 99riav亚洲国产免费| 丰满人妻一区二区三区视频av | 听说在线观看完整版免费高清| 一区二区三区高清视频在线| 黄色日韩在线| 亚洲在线自拍视频| 欧美另类亚洲清纯唯美| 亚洲人与动物交配视频| 欧美一区二区亚洲| 国产一区二区亚洲精品在线观看| 香蕉av资源在线| 亚洲精品亚洲一区二区| 国产视频一区二区在线看| 激情在线观看视频在线高清| 少妇的逼水好多| 日韩大尺度精品在线看网址| www国产在线视频色| 18禁黄网站禁片午夜丰满| 成年人黄色毛片网站| 国产精品 国内视频| 91在线精品国自产拍蜜月 | 久久久久九九精品影院| 久久久久久久精品吃奶| 叶爱在线成人免费视频播放| 成人特级av手机在线观看| 宅男免费午夜| 精品国产美女av久久久久小说| 国产成人系列免费观看| 男女午夜视频在线观看| 欧美+亚洲+日韩+国产| 在线天堂最新版资源| 黄色日韩在线| 女同久久另类99精品国产91| 老司机深夜福利视频在线观看| 18+在线观看网站| 99久久精品一区二区三区| 日韩欧美国产在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区亚洲| 成人特级av手机在线观看| www.999成人在线观看| 欧美又色又爽又黄视频| 免费av不卡在线播放| 亚洲av五月六月丁香网| 国产免费男女视频| 久久精品国产亚洲av涩爱 | 老司机在亚洲福利影院| 内射极品少妇av片p| 久久久久久久久中文| 夜夜躁狠狠躁天天躁| 国产色爽女视频免费观看| 国产精品永久免费网站| 法律面前人人平等表现在哪些方面| 色av中文字幕| 精品日产1卡2卡| 婷婷丁香在线五月| 国产单亲对白刺激| 性欧美人与动物交配| 日本黄色片子视频| 国产日本99.免费观看| 热99re8久久精品国产| 欧美日韩一级在线毛片| 麻豆成人午夜福利视频| 成人av在线播放网站| 日韩有码中文字幕| 18禁裸乳无遮挡免费网站照片| 免费人成视频x8x8入口观看| av在线天堂中文字幕| 99在线人妻在线中文字幕| 国产私拍福利视频在线观看| 亚洲激情在线av| 国产欧美日韩一区二区三| 国产三级中文精品| 亚洲中文字幕一区二区三区有码在线看| 网址你懂的国产日韩在线| 国产精品国产高清国产av| 久久久久国产精品人妻aⅴ院| 特级一级黄色大片| 欧美精品啪啪一区二区三区| 亚洲最大成人中文| 岛国在线观看网站| 国产毛片a区久久久久| 免费看光身美女| 白带黄色成豆腐渣| 亚洲精品一卡2卡三卡4卡5卡| 99热精品在线国产| 熟女少妇亚洲综合色aaa.| 母亲3免费完整高清在线观看| 国内毛片毛片毛片毛片毛片| 国产一区二区在线av高清观看| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 国产精品美女特级片免费视频播放器| 久久人妻av系列| 日韩国内少妇激情av| 真人做人爱边吃奶动态| 亚洲久久久久久中文字幕| 三级毛片av免费| av片东京热男人的天堂| 亚洲最大成人手机在线| 99在线视频只有这里精品首页| 超碰av人人做人人爽久久 | www.999成人在线观看| 天堂√8在线中文| 亚洲精品粉嫩美女一区| 欧美性猛交黑人性爽| 国产一区二区三区在线臀色熟女| 一个人免费在线观看的高清视频| 精品久久久久久久毛片微露脸| 深爱激情五月婷婷| 国产精品爽爽va在线观看网站| or卡值多少钱| 午夜影院日韩av| 午夜免费成人在线视频| 亚洲中文字幕日韩| 国产精品影院久久| 欧美黄色片欧美黄色片| 国产精品美女特级片免费视频播放器| 老司机深夜福利视频在线观看| av国产免费在线观看| 国产精品 国内视频| 九色国产91popny在线| 亚洲中文字幕日韩| 亚洲精品成人久久久久久| 高清日韩中文字幕在线| 久久久精品欧美日韩精品| 免费搜索国产男女视频| 女警被强在线播放| 蜜桃久久精品国产亚洲av| 啦啦啦观看免费观看视频高清| 色老头精品视频在线观看| 老熟妇仑乱视频hdxx| 国产高清激情床上av| 国产伦精品一区二区三区视频9 | 搡女人真爽免费视频火全软件 | 亚洲久久久久久中文字幕| 国产精品永久免费网站| 国产伦精品一区二区三区四那| 香蕉久久夜色| 亚洲精品一卡2卡三卡4卡5卡| 精品国产亚洲在线| 日本免费一区二区三区高清不卡| 亚洲精品亚洲一区二区| 在线观看一区二区三区| 国产精品av视频在线免费观看| 欧美午夜高清在线| 免费高清视频大片| 听说在线观看完整版免费高清| 国内毛片毛片毛片毛片毛片| 精品久久久久久久末码| 18禁黄网站禁片午夜丰满| 国产精品久久久久久久久免 | 午夜影院日韩av| 国产免费av片在线观看野外av| 一二三四社区在线视频社区8| 欧美一区二区亚洲| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品久久久com| 久久久久性生活片| 亚洲男人的天堂狠狠| 精品99又大又爽又粗少妇毛片 | 99久久99久久久精品蜜桃| 熟妇人妻久久中文字幕3abv| h日本视频在线播放| 不卡一级毛片| 日本五十路高清| avwww免费| 哪里可以看免费的av片| 丰满乱子伦码专区| 最近最新中文字幕大全免费视频| 免费观看的影片在线观看| 亚洲成人久久爱视频| 成人亚洲精品av一区二区| 国产综合懂色| 免费一级毛片在线播放高清视频| 国产免费男女视频| 色老头精品视频在线观看| 我的老师免费观看完整版| 午夜影院日韩av| 91麻豆精品激情在线观看国产| 亚洲精品粉嫩美女一区| 亚洲aⅴ乱码一区二区在线播放| 男人的好看免费观看在线视频| 亚洲国产色片| 首页视频小说图片口味搜索| 精品久久久久久久久久久久久| 蜜桃亚洲精品一区二区三区| xxxwww97欧美| 欧美另类亚洲清纯唯美| 精品99又大又爽又粗少妇毛片 | 亚洲成人久久爱视频| 男女那种视频在线观看| 精品一区二区三区人妻视频| 香蕉av资源在线| 久久精品91无色码中文字幕| 国产在视频线在精品| 亚洲电影在线观看av| 男女床上黄色一级片免费看| 美女 人体艺术 gogo| 国产亚洲精品综合一区在线观看| 婷婷精品国产亚洲av在线| 99国产综合亚洲精品| 久久久国产成人精品二区| www日本在线高清视频| 一a级毛片在线观看| 天天躁日日操中文字幕| 欧美大码av| 成人高潮视频无遮挡免费网站| 亚洲人成网站在线播放欧美日韩| 午夜两性在线视频| 国产99白浆流出| 人人妻人人澡欧美一区二区| 99久久精品热视频| a级毛片a级免费在线| 成人无遮挡网站| 成人av在线播放网站| 欧美日韩福利视频一区二区| 午夜激情欧美在线| 成人亚洲精品av一区二区| 亚洲不卡免费看| 午夜视频国产福利| 男女午夜视频在线观看| 91久久精品国产一区二区成人 | 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 97超级碰碰碰精品色视频在线观看| 人妻丰满熟妇av一区二区三区| 国产乱人视频| 色吧在线观看| 亚洲av一区综合| 极品教师在线免费播放| 中亚洲国语对白在线视频| 中文字幕精品亚洲无线码一区| aaaaa片日本免费| 人人妻人人看人人澡| 无遮挡黄片免费观看| 日本与韩国留学比较| 日韩av在线大香蕉| 欧美日本视频| 久久精品综合一区二区三区| 亚洲在线自拍视频| 他把我摸到了高潮在线观看| 欧美成人免费av一区二区三区| 精品电影一区二区在线| 精品欧美国产一区二区三| 国内精品美女久久久久久| 欧美性感艳星| 两个人看的免费小视频| 国产真实伦视频高清在线观看 | 欧美激情在线99| 亚洲中文日韩欧美视频| 五月玫瑰六月丁香| 99热这里只有精品一区| 日韩欧美精品v在线| 一本一本综合久久| 日本成人三级电影网站| 精品免费久久久久久久清纯| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 特大巨黑吊av在线直播| 精品久久久久久,| 别揉我奶头~嗯~啊~动态视频| 精品福利观看| 日日干狠狠操夜夜爽| 看片在线看免费视频| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 美女被艹到高潮喷水动态| av在线蜜桃| 美女黄网站色视频| 亚洲国产色片| 在线播放无遮挡| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 成人av一区二区三区在线看| 亚洲无线在线观看| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 久久这里只有精品中国| 亚洲最大成人手机在线| 看黄色毛片网站| 亚洲乱码一区二区免费版| 亚洲欧美一区二区三区黑人| 欧美中文综合在线视频| 亚洲国产高清在线一区二区三| 99精品欧美一区二区三区四区| 精品一区二区三区视频在线 | 天堂√8在线中文| 精品无人区乱码1区二区| 欧美乱色亚洲激情| 国产主播在线观看一区二区| 俺也久久电影网| 国产精品电影一区二区三区| 精品人妻1区二区| 69av精品久久久久久| 久久人妻av系列| 好男人电影高清在线观看| 国产伦人伦偷精品视频| 国内久久婷婷六月综合欲色啪| 日本黄大片高清| 欧美一区二区亚洲| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| eeuss影院久久| 欧美成人一区二区免费高清观看| 久久久久精品国产欧美久久久| 日本黄色视频三级网站网址| 19禁男女啪啪无遮挡网站| 两人在一起打扑克的视频| www日本在线高清视频| 欧美黄色片欧美黄色片| 一进一出抽搐动态| 精品国内亚洲2022精品成人| 国产午夜福利久久久久久| 九九热线精品视视频播放| 午夜福利在线观看吧| 国产激情欧美一区二区| 久久久久久久久大av| 亚洲男人的天堂狠狠| 国产成人系列免费观看| 成人鲁丝片一二三区免费| 神马国产精品三级电影在线观看| 一级黄片播放器| 欧美一区二区精品小视频在线| 给我免费播放毛片高清在线观看| 国产精品久久久久久久电影 | 12—13女人毛片做爰片一| 十八禁人妻一区二区| 婷婷精品国产亚洲av| 51午夜福利影视在线观看| 国产亚洲精品一区二区www| 露出奶头的视频| 亚洲欧美日韩高清在线视频| 亚洲18禁久久av| 国产在视频线在精品| 国产高清激情床上av| 色av中文字幕| 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| av国产免费在线观看| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 欧美色欧美亚洲另类二区| 欧美又色又爽又黄视频| 日本黄色片子视频| 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 久久精品夜夜夜夜夜久久蜜豆| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| www国产在线视频色| 亚洲 国产 在线| 老鸭窝网址在线观看| 在线观看舔阴道视频| 国产三级黄色录像| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 欧美中文综合在线视频| 高清日韩中文字幕在线| 午夜精品一区二区三区免费看| 男女床上黄色一级片免费看| 成人欧美大片| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区不卡视频| 岛国在线免费视频观看| av福利片在线观看| 免费观看的影片在线观看| 亚洲精品在线美女| 国产淫片久久久久久久久 | 在线视频色国产色| 校园春色视频在线观看| 久久久久久久久大av| 制服人妻中文乱码| 长腿黑丝高跟| 一区二区三区国产精品乱码| 黄色视频,在线免费观看| 9191精品国产免费久久| 香蕉丝袜av| 国产免费男女视频| 亚洲av熟女| 国产黄片美女视频| 男插女下体视频免费在线播放| 动漫黄色视频在线观看| 最近在线观看免费完整版| 我的老师免费观看完整版| 成人av在线播放网站| 日韩人妻高清精品专区| 最新在线观看一区二区三区| 男人舔女人下体高潮全视频| 尤物成人国产欧美一区二区三区| 波多野结衣高清作品| 国产精品 欧美亚洲| 午夜影院日韩av| 一本一本综合久久| 91九色精品人成在线观看| 99久久精品热视频| 国产中年淑女户外野战色| 午夜两性在线视频| 久久久久久大精品| 天堂网av新在线| 日韩欧美精品v在线| 麻豆国产av国片精品| 91九色精品人成在线观看| 91麻豆精品激情在线观看国产| 欧美黄色淫秽网站| 欧美一区二区精品小视频在线| 午夜老司机福利剧场| 久久精品综合一区二区三区| 十八禁人妻一区二区| 国产午夜精品论理片| 国产精品,欧美在线| 99久久综合精品五月天人人| 日本免费一区二区三区高清不卡| 嫩草影院入口| 亚洲无线观看免费| 一进一出好大好爽视频| 欧美丝袜亚洲另类 | 免费看十八禁软件| 99热精品在线国产| 免费av毛片视频| 性欧美人与动物交配| 麻豆久久精品国产亚洲av| 69人妻影院| 99久久精品一区二区三区| 久久精品国产亚洲av香蕉五月| 色尼玛亚洲综合影院| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添小说| 亚洲无线在线观看| 99国产精品一区二区三区| 免费人成视频x8x8入口观看| 国产极品精品免费视频能看的| 欧美日韩福利视频一区二区| 色在线成人网| 人妻久久中文字幕网| 亚洲美女视频黄频| 身体一侧抽搐| 亚洲无线在线观看| 淫妇啪啪啪对白视频| 在线观看一区二区三区| x7x7x7水蜜桃| 精品一区二区三区人妻视频| 99久久无色码亚洲精品果冻| 久久精品亚洲精品国产色婷小说| 美女高潮喷水抽搐中文字幕| 老司机福利观看| 嫩草影视91久久| 18禁裸乳无遮挡免费网站照片| 免费看光身美女| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 亚洲18禁久久av| 亚洲不卡免费看| 亚洲成人精品中文字幕电影| 欧美日韩福利视频一区二区| 91字幕亚洲| 国产成人欧美在线观看| 亚洲激情在线av| 美女被艹到高潮喷水动态| 极品教师在线免费播放| 亚洲无线观看免费| 国内毛片毛片毛片毛片毛片| 波多野结衣巨乳人妻| 99精品欧美一区二区三区四区| 欧美丝袜亚洲另类 | 亚洲人成伊人成综合网2020| 国产精品综合久久久久久久免费| 亚洲成av人片免费观看| 夜夜看夜夜爽夜夜摸| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 中国美女看黄片| 精品福利观看| 国产真实乱freesex| 无遮挡黄片免费观看| av黄色大香蕉| 丰满乱子伦码专区| 免费无遮挡裸体视频| 真人一进一出gif抽搐免费| 国产三级中文精品| 欧洲精品卡2卡3卡4卡5卡区| 19禁男女啪啪无遮挡网站| 成人永久免费在线观看视频| 在线观看午夜福利视频| 亚洲精品亚洲一区二区| 国产成人啪精品午夜网站| 天堂√8在线中文| 国产伦一二天堂av在线观看| 一边摸一边抽搐一进一小说| 日韩人妻高清精品专区| 亚洲人成网站在线播| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 久久精品91无色码中文字幕| 欧美+亚洲+日韩+国产| 老司机福利观看| 男女床上黄色一级片免费看| 国产午夜精品论理片| 最后的刺客免费高清国语| 久久精品人妻少妇| 法律面前人人平等表现在哪些方面| www.999成人在线观看| 欧美乱色亚洲激情| 日本一二三区视频观看| 久久人人精品亚洲av| 国产av一区在线观看免费| 国产一区二区激情短视频| 成人高潮视频无遮挡免费网站| 成年人黄色毛片网站| 午夜影院日韩av| 最新美女视频免费是黄的| or卡值多少钱| 欧美区成人在线视频| 国产麻豆成人av免费视频| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕久久专区| 成人午夜高清在线视频| 国产高潮美女av| 精品午夜福利视频在线观看一区| 国产欧美日韩精品亚洲av| 搞女人的毛片| 免费看十八禁软件| 日本黄色视频三级网站网址| 日韩亚洲欧美综合| 国内精品美女久久久久久| 亚洲成av人片免费观看| 999久久久精品免费观看国产| 性色avwww在线观看| 免费av不卡在线播放| 午夜老司机福利剧场| 日本成人三级电影网站| 成人无遮挡网站| 日本黄色视频三级网站网址| 欧美乱妇无乱码| 悠悠久久av| 可以在线观看的亚洲视频| 亚洲 国产 在线| 日韩欧美在线二视频| 丰满乱子伦码专区| av福利片在线观看| aaaaa片日本免费| 一进一出好大好爽视频| 91九色精品人成在线观看| 日韩欧美精品免费久久 | 精品久久久久久久毛片微露脸| av天堂中文字幕网| 久久久久性生活片| 91麻豆精品激情在线观看国产| 国产午夜精品论理片| 久久久久九九精品影院| 亚洲国产精品sss在线观看| 99热这里只有是精品50| 搡老妇女老女人老熟妇| 精品一区二区三区人妻视频| 一卡2卡三卡四卡精品乱码亚洲| 国产av不卡久久| 欧美激情久久久久久爽电影| 国产真实乱freesex| 亚洲美女视频黄频| 看黄色毛片网站| 国产成人影院久久av| 免费看a级黄色片| 精品久久久久久久久久免费视频| 天美传媒精品一区二区| 老熟妇仑乱视频hdxx| 亚洲avbb在线观看| or卡值多少钱| 在线天堂最新版资源| 久久草成人影院| 久久精品影院6| 白带黄色成豆腐渣| 午夜激情欧美在线| 亚洲,欧美精品.| 国产精品99久久久久久久久| 麻豆成人午夜福利视频| 国产主播在线观看一区二区| 韩国av一区二区三区四区| 给我免费播放毛片高清在线观看| 亚洲精品成人久久久久久| 日韩欧美三级三区| 免费看光身美女| 一进一出抽搐动态| 18禁黄网站禁片免费观看直播| 丰满人妻熟妇乱又伦精品不卡| 久久中文看片网| 亚洲av成人精品一区久久| 国产成人福利小说| 国产亚洲精品av在线| 亚洲欧美日韩卡通动漫| 日本成人三级电影网站| 1024手机看黄色片| 亚洲 国产 在线| 性欧美人与动物交配| 亚洲美女视频黄频| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 亚洲最大成人中文| 在线观看免费午夜福利视频| 亚洲激情在线av| 免费看光身美女| 中文字幕精品亚洲无线码一区| 精品乱码久久久久久99久播| 国产精品国产高清国产av| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区久久| 国产乱人伦免费视频| 99精品久久久久人妻精品| 精品国产美女av久久久久小说| 国产成+人综合+亚洲专区| 日韩有码中文字幕|