• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells

    2022-11-21 09:40:12ZhengFang方正LiuYang楊柳YongbinJin靳永斌KaikaiLiu劉凱凱HuipingFeng酆輝平BingruDeng鄧冰如LingfangZheng鄭玲芳ChangcaiCui崔長(zhǎng)彩ChengboTian田成波LiqiangXie謝立強(qiáng)XipengXu徐西鵬andZhanhuaWei魏展畫
    Chinese Physics B 2022年11期

    Zheng Fang(方正) Liu Yang(楊柳) Yongbin Jin(靳永斌) Kaikai Liu(劉凱凱) Huiping Feng(酆輝平)Bingru Deng(鄧冰如) Lingfang Zheng(鄭玲芳) Changcai Cui(崔長(zhǎng)彩) Chengbo Tian(田成波)Liqiang Xie(謝立強(qiáng)) Xipeng Xu(徐西鵬) and Zhanhua Wei(魏展畫)

    1MOE Engineering Research Center for Brittle Materials Machining,Institute of Manufacturing Engineering,College of Mechanical Engineering and Automation,Huaqiao University,Xiamen 361021,China

    2Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,Institute of Luminescent Materials and Information Displays,College of Materials Science and Engineering,Huaqiao University,Xiamen 361021,China

    SnO2 is widely used as the electron transport layer(ETL)in perovskite solar cells(PSCs)due to its excellent electron mobility, low processing temperature, and low cost. And the most common way of preparing the SnO2 ETL is spincoating using the corresponding colloid solution. However, the spin-coated SnO2 layer is sometimes not so compact and contains pinholes,weakening the hole blocking capability. Here,a SnO2 thin film prepared through magnetron-sputtering was inserted between ITO and the spin-coated SnO2 acted as an interlayer. This strategy can combine the advantages of efficient electron extraction and hole blocking due to the high compactness of the sputtered film and the excellent electronic property of the spin-coated SnO2. Therefore,the recombination of photo-generated carriers at the interface is significantly reduced. As a result,the semitransparent perovskite solar cells(with a bandgap of 1.73 eV)based on this double-layered SnO2 demonstrate a maximum efficiency of 17.7%(stabilized at 17.04%)with negligible hysteresis. Moreover, the shelf stability of the device is also significantly improved,maintaining 95%of the initial efficiency after 800-hours of aging.

    Keywords: semitransparent perovskite solar cells,sputtering,interlayer,hole blocking

    1. Introduction

    Perovskite solar cells (PSCs) have achieved unprecedented power conversion efficiency(PCE)growth from 3.8%in 2009 to the current 25.7%.[1–8]The SnO2electron transport layer (ETL) has played a crucial role in improving the PCE of PSCs in the past few years. Due to the favorable properties such as large bandgap,better energy level alignment,high electron mobility, and good stability under ultraviolet (UV)light,SnO2has become a widely used ETL.[9–15]These properties make the SnO2-based PSCs exhibit more efficient light harvest, enhanced electron extraction, suppressed hysteresis,and improved UV stability.[16–18]

    Many methods have been developed for fabricating the uniform SnO2thin films, including solution spin-coating,[10]electrodeposition,[19]sputtering,[20]chemical bath deposition(CBD),[21]and atomic layer deposition (ALD).[22]Among them,spin-coating using SnO2nanocrystal precursor is widely used due to its high device efficiency, low hysteresis, low processing temperature,and good cost-effectiveness.[13]However,the spin-coated SnO2thin films frequently contain some undesired pinholes,which lead to direct contact between perovskite film and the ITO electrode, resulting in the recombination of carriers. Uniform and compact SnO2film can be obtained by magnetron sputtering, but the electron mobility and the device performance are not as good as that obtained by spin-coating.[20,23,24]The preparation of SnO2by ALD can accurately control the film thickness, which is suitable for large-area film preparation with good uniformity. However,the resultant device performance can not compete with the spin-coating one, and the cost of ALD is expensive.[22,25,26]Besides,CBD is suitable for large-area manufacturing,but the preparation process is complex.[7,21]

    To improve the quality of SnO2film by utilizing the existing facile fabrication methods, researchers have developed the double-layered ETL strategy.[27]For example, doublelayered ETLs with SnO2/fullerene (C60) or fullerene derivatives (PCBM) have been demonstrated. It was found that C60/PCBM can repair the defect of the SnO2film and suppress the charge recombination.[28,29]Junget al.designed a bilayer structure of SnO2/ZnO, which can effectively suppress the trap-assisted recombination in the interface between ETLs and PSCs.[30]Songet al.demonstrate a double-layered SnO2/NH4Cl-SnO2as an efficient ETL,which shows a better energy level alignment with the perovskite and enhanced electron extraction efficiency.[31]The double-layered ETL strategy can effectively overcome the pinhole issue of the spin-coated film because the additional layer can fill the formed pinholes.

    As an alternative approach, here we develop a composite ETL by magnetron sputtering a SnO2interlayer(SP-SnO2)between ITO and the subsequently spin-coated SnO2film(SC-SnO2)to fabricate high-performance semitransparent perovskite solar cells (ST-PSCs). The SP-SnO2layer can effectively increase the film compactness and the blocking ability of the photo-generated holes, while the SC-SnO2enables efficient electrontransporting properties. This approach makes the composite ETL combine the advantages of sputtering and spin-coating. As a result, the ST-PSCs based on an optimized SP-SnO2thickness of~12 nm exhibited significantly increased open-circuit voltage (VOC) and fill factor (FF) and achieved a PCE of 17.7%with negligible hysteresis. In addition,the sputtered interlayer also improved the device’s stability. The device with SP-SnO2interlayer maintained 95% of the initial PCE after being stored for over 800 hours.

    2. Experimental details

    2.1. Materials

    Materials in experiments include tin (IV) oxide (SnO2,15% in H2O colloidal dispersion, Alfa Aesar), tin (IV) oxide target materials (ZhongNuo Advanced Material Technology Co., LTD), lead iodide (PbI2, 99.99%, TCI), formamidinium iodide (FAI, 99.99%, GreatcellSolar), methylamonium iodide (MAI, 98.0%, TCI), methylammonium chloride(MACl, 98.0%, TCI), 2,2′,7,7′-tetrakis (N,N-p-dimethoxyphenylamino)-9,9′-spirobifluorene (Spiro-OMeTAD, Sigma-Aldrich), lithium bis (trifluoromethanesulfonyl)imide (Li-TFSI, 99.95%, Sigma-Aldrich), N,N-dimethylformamide(DMF, 99.8%, Sigma-Aldrich), dimethyl sulfoxide (DMSO,99.9%, Sigma-Aldrich), isopropanol (IPA, 99.8%, Sigma-Aldrich), chlorobenzene (99.9%, Sigma-Aldrich), 4-tertbutylpyridine (4-TBP, 96%, Sigma-Aldrich), molybdenum(VI) oxide (MoO3, 99.97%, Lumtec), ITO targets (90 wt%In2O3, 10 wt% SnO2, ZhongNuo Advanced Material Technology Co.,LTD).All materials were used as received without further purification.

    2.2. Solution preparation

    The SnO2nanocrystal solution was obtained by diluting the SnO2colloidal solution with deionized water (v/v=1:2). The PbI2precursor solution was prepared by dissolving 437.0 mg of PbI2, 348.7 mg of PbBr2, and 24.7 mg of CsI in 1 mL mixed solvent of DMF and DMSO (v/v= 9 : 1).The organic salts solution was prepared by dissolving 67.4 mg of FAI, 25.8 mg of MAI, and 28.5 mg of MACl in 1 mL of IPA.The HTM solution was obtained by dissolving 90 mg of Spiro-OMeTAD in 1 mL of chlorobenzene with the addition of 36.1 μL of 4-TBP and 21.8 μL of Li-TFSI(520 mg·mL-1in acetonitrile).

    2.3. Fabrication of ST-PSC

    The patterned indium tin oxide (ITO) substrates were sequentially cleaned with water, acetone, isopropanol, and ethanol under sonication for 20 min,respectively.A thin SnO2film with different thicknesses (~6 nm, 12 nm, and 18 nm)was deposited by a sputtering system (Shen Yang Ke Cheng VacuumTechnology Co., LTD) at room temperature to form the first SnO2layer. SnO2target was used for the deposition,and pure oxygen was used as the reactive gas. The chamber for the sputtering process was first evacuated to a base pressure of below 5×10-4Pa before sputtering. During the sputtering process, the deposition rate was 0.1 ?A/s, and the cavity pressure was maintained at 0.15–0.2 Pa. After that,the substrates were treated with plasma treatment for 5 min. The diluted SnO2nanocrystal solution was spin-coated on the substrate at 4000 rpm for 30 s and followed by annealing on a hotplate at 150°C for 15 min in the air to form the second SnO2layer.

    The perovskite films were obtained through the two-step sequential deposition process in a glove box with an N2atmosphere. For the first step,the PbI2precursor solution was spincoated on SnO2substrates at 2000 rpm for 30 s, followed by an annealing process at 70°C for 1 min in the N2atmosphere.For the second step,the organic salts solution was spin-coated on the PbI2-coated substrates at 1700 rpm for 30 s and annealed in the air(the relative humidity is 10%–20%)at 150°C for 15 min. The hole-transport layer was deposited on the perovskite film by spin-coating the HTM solution at 3000 rpm for 30 s. For the front transparent electrode, a 20 nm thick MoOxbuffer layer was thermally evaporated on the substrate in a vacuum chamber (5×10-4Pa), and the deposition rate was 0.5 ?A/s. Then the ITO transparent electrode was formed by magnetron sputtering of 200 nm ITO using RF magnetron sputtering at 70°C.During the film deposition,the RF power was 50 W,the deposition rate was 0.5 ?A/s,and the cavity pressure was maintained at 0.15–0.16 Pa. Finally,a patterned Ag electrode with a thickness of 70 nm was thermally evaporated on the edge of the device to improve the conductivity of the electrode.

    2.4. Characterization

    Scanning electron microscopy (SEM) was carried out on a field-emission scanning electron microscope (JEOL JSM-7610F).Ultraviolet-visible(UV-vis)transmittance spectroscopy and steady-state photoluminescence (PL) spectra of perovskite films were acquired on an instrument supplied by Xipu electronics equipped with an integration sphere in the glovebox. Time-resolved photoluminescence (TRPL) was measured by the FLS920(Edinburgh Instruments Ltd)with a pulsed excitation at 375 nm.Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were collected by the CHI660E electrochemical workstation. Space-chargelimited-current (SCLC) data were collected by the Keithley 2400 in the dark. Current density–voltage characterizations were measured using a digital source meter (Keithley 2400)under AM 1.5G conditions(EnliTech, AAA solar simulator).The scan rate was 250 mV·s-1(the voltage step was 10 mV and the delay time was 40 ms). The light intensity was calibrated using an NREL-calibrated Silicon solar cell equipped with an infrared cutoff filter (KG-5). The active area of the PSCs was 0.20 cm2. A black shadow mask with an effective area of 0.12 cm2was used to reduce the light scattering.External quantum efficiencies were carried out on an EQE system(EnliTech,QER666)without any bias light.

    3. Results and discussion

    The surface morphologies of the SC-SnO2and the SP-SnO2were recorded by SEM. As shown in Fig. 1(a),hundreds-of-nanometers-sized pinholes (black area) can be observed in the spin-coated SnO2film. In contrast, as shown in Fig.1(b),the SnO2film obtained by the magnetron sputtering is much more compact,showing pinhole-free morphology.We performed cyclic voltammetry to reveal the compactness of these two SnO2films working as electrodes. When using bare ITO as the electrode, as shown in Fig. 1(c), full oxidation and reduction peaks of the K3[Fe(CN)6]/K4[Fe(CN)6]redox couple are observed (the black line). After spin-coating a SnO2thin film on the ITO, the peak current density is significantly decreased but still resolvable. The S-shape current–voltage curve indicates a microelectrode behavior, consistent with the SEM result. For the SnO2film with the sputtered SnO2interlayer(SP-SnO2/SC-SnO2)the disappearance of the redox peaks can further confirm the pinhole-free characteristic, indicating the enhanced compactness.[21]The transmittance spectra of the SnO2films prepared by different processes are shown in Fig. 1(d). All of the SnO2films exhibit high transparency in the visible region. The transmittance of SPSnO2/SC-SnO2film shows a slight decrease at around 550 nm,which can be attributed to the incorporation of the additional SP-SnO2interlayer.

    To investigate the effect of different substrates on the defect state density of the perovskite films, we prepared electron-only devices with the structure of ITO/ETL/perovskite/PCBM/Ag (Fig. 2(a)), where PCBM is[6,6]-phenyl-C61-butyric acid methyl ester.Figure 2(b)shows the correspondingJ–Vcurves measured in the dark condition.The kink-point voltage is known as the trap-filled limit voltage (VTFL), which is used to calculate the trap density by the equation

    Fig.1. Characterization of SnO2 ETLs prepared by different processes. SEM image of(a)the SC-SnO2 and(b)SP-SnO2. (c)Cyclic voltammograms of the bare ITO,ITO/SC-SnO2 film,and ITO/SP-SnO2/SC-SnO2 films. The scan rate was 0.1 V/s and the electrolyte solution was 0.5 mM K4Fe(CN)6+0.5 mM K3Fe(CN)6 in 0.5 M aqueous KCl. A saturated calomel electrode (SCE) was used as the reference electrode. (d) The transmittance spectra of SC-SnO2,SP-SnO2,and SP-SnO2/SC-SnO2.

    Fig.2. (a)Schematic illustration of the electron-only device with a structure of ITO/ETL/perovskite/PCBM/Ag. (b)Space-charge-limited-current(SCLC)analysis of the electron-only devices. (c)Steady-state photoluminescence spectra and(d)time-resolved photoluminescence decay curves of perovskite films deposited on the bare glass,SC-SnO2 film,and SP-SnO2/SC-SnO2 film,respectively.

    whereeis the elementary charge,Lis the thickness of the perovskite film (~800 nm),ε0is the vacuum permittivity, andεis the relative permittivity.[32]The spacecharge-limited current (SCLC) results manifest that theVTFLfor SC-SnO2and SP-SnO2/SC-SnO2based devices is 0.24 V and 0.12 V, respectively. Hence the corresponding calculated trap density is 1.46×1015cm-3and 7.28×1014cm-3. The trap density of the perovskite film deposited on SP-SnO2/SC-SnO2is much lower than that on the SC-SnO2. This result implies that ETL with pinholes may lead to defective perovskite films. To evaluate the defects in the ETL, SCLC experiments adopting the device structure of ITO/ETL/Ag were also performed.The results in Fig.S1 show that theVTFLfor SC-SnO2and SP-SnO2/SC-SnO2based devices is 1.89 V and 1.43 V, respectively, which indicates that the trap density in the SP-SnO2/SC-SnO2is lower than that in the SC-SnO2.

    Table 1. Fitted parameters of TRPL results of wide-bandgap perovskite films without and with SP-SnO2 interlayer.

    To study the role of the SP-SnO2interlayer on the charge transfer, we monitored the steady photoluminescence (PL)of the perovskite films deposited on the different substrates(Fig.2(c)). PL spectra of perovskite films deposited on ETLs exhibit lower peak intensity than that deposited on the bare glass, indicating that both ETLs enable efficient electron injection at the ETL/perovskite interface. Moreover, the perovskite film deposited on the SP-SnO2/SC-SnO2film demonstrates the best electron-extraction ability. Figure 2(d) shows the time-resolved photoluminescence(TRPL)decay curves of perovskite films deposited on different substrates. The decay curves are fitted with a bi-exponential function, and the fitting parameters are provided in Table 1. The calculated average carrier lifetime(τavg)of the perovskite films deposited on glass and SC-SnO2film is 687.5 ns and 330.1 ns,respectively.In contrast,the perovskite film deposited on the SP-SnO2/SCSnO2film shows the fastest decay with aτavgof 271.5 ns,suggesting the most efficient charge transfer. These results are consistent with the steady-state PL results.

    Table 2. Photovoltaic parameters of ST-PSCs with SP-SnO2 interlayer.

    We fabricated the complete ST-PSCs based on the SPSnO2/SC-SnO2ETLs. The device structure of glass/ITO/SPSnO2/SC-SnO2/perovskite/Spiro-OMeTAD/MoO3/ITO is depicted in Fig. 3(a). The SP-SnO2interlayer was inserted between the commercialized ITO and the SC-SnO2. The crosssectional SEM image in Fig. 3(b) confirms the device structure. To investigate the dependence of the device performance on the interlayer thickness,a batch of complete ST-PSCs was fabricated, and the photovoltaic metrics were measured under simulated AM 1.5G conditions. The statistics of the photovoltaic performances are shown in Figs. 3(c)–3(f), and the photovoltaic parameters are summarized in Table 2. It can be observed that theVOCincreases obviously after inserting an SP-SnO2interlayer. The averageVOCincreases from 1.162 V to 1.189 V (from the control to 18 nm SP-SnO2). This indicates that the incorporated SP-SnO2effectively suppresses the carrier recombination. The short-circuit current density(JSC)slightly decreases with the increase of the interlayer thickness, and the averageJSCdecreases from 19.17 mA·cm-2to 18.86 mA·cm-2from the control to the 18 nm SP-SnO2based device. This result can be ascribed to the parasitic light absorption of the inserted SP-SnO2. For the FF,it first increases from 69.67% to 72.25% and 73.19% from the control to the device with 6 nm and 12 nm SP-SnO2and then decreases to 71.75%for the device with 18 nm SP-SnO2. As the compact SP-SnO2blocks the pinholes of the SC-SnO2,the FF and theVOCof the devices are expected to be enhanced due to the suppression of non-radiative recombination. However, when the interlayer thickness is too large, the series resistance will increase,which sacrifices the FF.Interestingly,it can be seen that the FF of the devices with SP-SnO2interlayer with all of the investigated thicknesses is higher than that of the control,implying that non-radiative recombination is the dominant issue that limits the FF of the device based on SC-SnO2. Combining the effect of the SP-SnO2interlayer onVOC,JSC, and FF,the ST-PSCs with 12-nm SP-SnO2demonstrate the best average PCE of 16.56%. We also explored the dependency of the device performance on the thicknesses of SC-SnO2coupled with 12 nm SP-SnO2. The thickness of SC-SnO2prepared by using the SnO2precursor solution with a concentration of 5 wt.% is about 25 nm. We tuned the thicknesses of the SCSnO2layer by altering the concentration of the SnO2solution(2.5%, 5%, and 7.5%). The statistics of the photovoltaic parameters in Fig. S2 and Table S1 show that the devices with 5%SnO2achieve the best photovoltaic performance.

    The hysteresis effect of these two types of devices is examined by the reverse (scanned from the open circuit to the short circuit) and forward (scanned from the short circuit to the open circuit)J–Vcurves (Fig. 4(a)). The detailed photovoltaic properties are shown in Table 3. We obtained a hysteresis index (HI) of 8.81% (PCEreverseis 17.70% and PCEforwardis 16.14%) for the SP-SnO2interlayer-based device, which is lower than that of the control (HI = 15.26%;PCEreverseis 16.91% and PCEforwardis 14.33%). The champion device demonstrates high efficiency of 17.70% with aJSCof 18.86 mA·cm-2,VOCof 1.219 V, and FF of 76.97%.The incident photon-to-electron conversion efficiency(IPCE)of these two devices is shown in Fig.4(b). The integratedJSCfor the control and the device with 12-nm SP-SnO2interlayer is 18.9 mA·cm-2and 19.0 mA·cm-2, respectively. This is well-matched with theJSCderived from theJ–Vcurves. The electrochemical impedance spectroscopy(EIS)was also conducted to further analyze the charge transport in the devices.The experiment was carried out in dark conditions under a 1.0 V voltage bias to reveal the recombination process. As shown in Fig.4(c),the device with SP-SnO2interlayer exhibit a much larger semicircle than that of the control device,indicating a much larger recombination resistance.[33]This means that the recombination process could be effectively suppressed as the SP-SnO2interlayer was implanted in the ETL.

    Fig.3. (a)Schematic diagram,and(b)cross-sectional SEM of ST-PSC device based on SP-SnO2/SC-SnO2 ETLs. Statistics of photovoltaic metrics of the ST-PSCs without(control)and with different thicknesses of SP-SnO2 interlayer. (c)VOC,(d)JSC,(e)FF,and(f)PCE.

    Table 3. Photovoltaic parameters of the SC-SnO2 and SP-SnO2/SC-SnO2 based ST-PSCs under the reverse and forward scan.

    Stability is an important issue in PSCs. We examined the effect of the SP-SnO2on the device stability of the STPSCs. The short-term operational stability of PSCs was evaluated by monitoring the power output at the maximum power point(MPP)conditions under AM 1.5G solar simulator. MPP tracking of the device with SP-SnO2interlayer at 1.01 V shows a 5-minutes stabilized efficiency of 17.04% (Fig. 4(d)). The decline is much slower than the control. For the long-term shelf stability, we monitored the efficiency of the devices after storage for over 30 days in the drying cabinet(the relative humidity was about 10%) in the air (Fig. 4(e)). The device with the SP-SnO2interlayer displays better stability,retaining 95% of its initial PCE after 34 days. In contrast, the control device dropped to 84%of its initial PCE after the same time.These results indicate that the device stability of the ST-PSCs has been distinctly enhanced after inserting an SP-SnO2interlayer, most probably due to the suppressed recombination at the perovskite/ETL interface.

    4. Conclusion

    In summary, we provide a simple strategy of constructing the pinhole-free ETL for achieving efficient and stable STPSCs. This SP-SnO2/SC-SnO2ETL can integrate the advantages of SP-SnO2and SC-SnO2. The SP-SnO2interlayer can effectively increase the ETL’s compactness and the blocking ability for the photo-generated carriers, while the upper SCSnO2retains its efficient electron-extraction property. This improved ETL can significantly reduce the interfacial charge recombination, which contributes to improving theVOCand FF of the device. We obtained a high PCE of 17.70% with a stabilized efficiency of 17.04% and robust device stability for the ST-PSCs. This work provides a strategy for obtaining high-quality ETL to promote the efficiency and stability of perovskite solar cells.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 22179042,U21A2078, and 51902110), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2020J06021,2019J01057, and 2020J01064), Scientific Research Funds of Huaqiao University, and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(Grant Nos.ZQN-PY607 and ZQN-806).

    伦理电影免费视频| 香蕉久久夜色| 成人亚洲精品av一区二区| 国产麻豆成人av免费视频| 97超级碰碰碰精品色视频在线观看| 一级作爱视频免费观看| 免费观看人在逋| 琪琪午夜伦伦电影理论片6080| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 成人欧美大片| 伊人久久大香线蕉亚洲五| 欧美黑人欧美精品刺激| 真人一进一出gif抽搐免费| 正在播放国产对白刺激| 亚洲成人免费电影在线观看| 亚洲精品色激情综合| 亚洲国产欧美一区二区综合| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 一本久久中文字幕| 淫妇啪啪啪对白视频| 小说图片视频综合网站| 免费av毛片视频| 国产成人精品无人区| 成人国语在线视频| 亚洲最大成人中文| 午夜a级毛片| 18禁美女被吸乳视频| 非洲黑人性xxxx精品又粗又长| 一级毛片女人18水好多| 999久久久国产精品视频| 九色成人免费人妻av| 国产亚洲av嫩草精品影院| 日本在线视频免费播放| 国产乱人伦免费视频| 亚洲国产看品久久| 日本 欧美在线| 美女扒开内裤让男人捅视频| 在线观看66精品国产| 国产一区在线观看成人免费| 欧美黑人巨大hd| 成人亚洲精品av一区二区| 在线十欧美十亚洲十日本专区| 国产亚洲精品第一综合不卡| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 一级毛片女人18水好多| 99久久99久久久精品蜜桃| 老司机深夜福利视频在线观看| 国产成人av激情在线播放| 夜夜爽天天搞| 欧美人与性动交α欧美精品济南到| 欧美中文日本在线观看视频| 特大巨黑吊av在线直播| 成人一区二区视频在线观看| 精品国产亚洲在线| 国产成人影院久久av| 女生性感内裤真人,穿戴方法视频| 老汉色∧v一级毛片| 18禁黄网站禁片免费观看直播| 变态另类丝袜制服| 亚洲五月天丁香| 国内精品久久久久久久电影| 黑人欧美特级aaaaaa片| 日本在线视频免费播放| 午夜福利欧美成人| 国产亚洲精品久久久久久毛片| 欧美日本视频| 国产精品一区二区免费欧美| 久久人妻av系列| 中文字幕久久专区| 精品国内亚洲2022精品成人| 成熟少妇高潮喷水视频| 在线观看免费午夜福利视频| 桃红色精品国产亚洲av| 欧美在线一区亚洲| 亚洲欧美一区二区三区黑人| a级毛片在线看网站| 禁无遮挡网站| 欧美人与性动交α欧美精品济南到| av超薄肉色丝袜交足视频| 色精品久久人妻99蜜桃| 日韩高清综合在线| 国产精品久久久久久人妻精品电影| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av熟女| 欧美成人一区二区免费高清观看 | 香蕉丝袜av| 国内毛片毛片毛片毛片毛片| 日本a在线网址| 色精品久久人妻99蜜桃| 俺也久久电影网| 亚洲精华国产精华精| 国产精品久久视频播放| 日韩大码丰满熟妇| 精品欧美国产一区二区三| 欧美3d第一页| 午夜成年电影在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 成人永久免费在线观看视频| 天天躁夜夜躁狠狠躁躁| 国产精品一及| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 亚洲国产中文字幕在线视频| 精品高清国产在线一区| 亚洲午夜理论影院| 动漫黄色视频在线观看| 男女做爰动态图高潮gif福利片| 国产三级黄色录像| 午夜福利免费观看在线| 成在线人永久免费视频| 国产亚洲av嫩草精品影院| 午夜福利成人在线免费观看| 老熟妇乱子伦视频在线观看| 香蕉av资源在线| 成人手机av| 怎么达到女性高潮| 日韩成人在线观看一区二区三区| 日本一二三区视频观看| 国产成人av激情在线播放| 伊人久久大香线蕉亚洲五| 中文字幕熟女人妻在线| www.精华液| 中文亚洲av片在线观看爽| 九色成人免费人妻av| 亚洲欧美激情综合另类| 国产精品98久久久久久宅男小说| 天堂√8在线中文| 欧美色欧美亚洲另类二区| 亚洲最大成人中文| 亚洲熟妇熟女久久| 亚洲精品国产一区二区精华液| 全区人妻精品视频| 天天添夜夜摸| 精品久久久久久久久久久久久| 麻豆成人av在线观看| 18禁国产床啪视频网站| 国产69精品久久久久777片 | 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区| svipshipincom国产片| 三级男女做爰猛烈吃奶摸视频| 亚洲av美国av| 一级作爱视频免费观看| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 90打野战视频偷拍视频| aaaaa片日本免费| 成年版毛片免费区| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 久久久久久免费高清国产稀缺| 久久久久久国产a免费观看| 免费看日本二区| 欧美精品亚洲一区二区| 欧美一区二区国产精品久久精品 | 亚洲全国av大片| 亚洲av第一区精品v没综合| 国产人伦9x9x在线观看| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 亚洲第一电影网av| 午夜影院日韩av| 1024视频免费在线观看| 91在线观看av| 波多野结衣高清作品| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久久久电影 | 99精品欧美一区二区三区四区| 亚洲成人久久爱视频| 在线十欧美十亚洲十日本专区| 丰满人妻一区二区三区视频av | 成年免费大片在线观看| 小说图片视频综合网站| 黄频高清免费视频| 久久热在线av| 色在线成人网| 久9热在线精品视频| 国产亚洲精品一区二区www| 日韩欧美一区二区三区在线观看| 亚洲成人久久爱视频| 欧美 亚洲 国产 日韩一| 在线永久观看黄色视频| 久久久久久亚洲精品国产蜜桃av| 日本黄大片高清| 舔av片在线| 国产激情久久老熟女| 身体一侧抽搐| 一个人免费在线观看电影 | 成人国产综合亚洲| 国产黄a三级三级三级人| 久久精品国产99精品国产亚洲性色| 亚洲国产精品合色在线| 丰满人妻一区二区三区视频av | 国产伦人伦偷精品视频| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 老汉色av国产亚洲站长工具| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清 | 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av| av有码第一页| 亚洲人成网站高清观看| 草草在线视频免费看| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 丝袜美腿诱惑在线| 国产激情偷乱视频一区二区| 88av欧美| 欧美中文综合在线视频| 最好的美女福利视频网| 国产熟女午夜一区二区三区| 婷婷精品国产亚洲av| 亚洲熟妇熟女久久| 久久国产精品人妻蜜桃| 日韩 欧美 亚洲 中文字幕| 在线观看日韩欧美| 动漫黄色视频在线观看| 成人午夜高清在线视频| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看| 日本撒尿小便嘘嘘汇集6| 又紧又爽又黄一区二区| 亚洲欧美一区二区三区黑人| 国产亚洲精品综合一区在线观看 | 日日爽夜夜爽网站| 香蕉av资源在线| 国产97色在线日韩免费| 亚洲成人久久性| 国产成人精品久久二区二区91| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 久久性视频一级片| 小说图片视频综合网站| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 中出人妻视频一区二区| 亚洲av成人不卡在线观看播放网| 在线观看午夜福利视频| 色老头精品视频在线观看| 琪琪午夜伦伦电影理论片6080| 丰满人妻熟妇乱又伦精品不卡| 国产野战对白在线观看| 免费在线观看黄色视频的| 欧美日韩精品网址| 性色av乱码一区二区三区2| 亚洲欧美日韩高清在线视频| 国产精品,欧美在线| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 日韩精品中文字幕看吧| 丝袜美腿诱惑在线| 99久久99久久久精品蜜桃| 亚洲18禁久久av| 精品午夜福利视频在线观看一区| 午夜福利18| 久久久国产成人免费| 成年版毛片免费区| 99国产精品一区二区蜜桃av| 亚洲一区二区三区不卡视频| videosex国产| 国产1区2区3区精品| 他把我摸到了高潮在线观看| 欧美成人免费av一区二区三区| 老熟妇仑乱视频hdxx| 色播亚洲综合网| 亚洲av中文字字幕乱码综合| 五月玫瑰六月丁香| 午夜久久久久精精品| 精品久久久久久,| 最近在线观看免费完整版| 欧美激情久久久久久爽电影| 亚洲九九香蕉| 日韩欧美在线乱码| 国产黄a三级三级三级人| 久久午夜综合久久蜜桃| 精品国产美女av久久久久小说| 又爽又黄无遮挡网站| 悠悠久久av| 色精品久久人妻99蜜桃| 婷婷亚洲欧美| 亚洲av熟女| 91九色精品人成在线观看| 中文字幕人妻丝袜一区二区| 最新美女视频免费是黄的| 午夜a级毛片| 很黄的视频免费| 身体一侧抽搐| 色精品久久人妻99蜜桃| 午夜激情av网站| 搡老妇女老女人老熟妇| 国产午夜精品论理片| 亚洲av日韩精品久久久久久密| 国产成人av激情在线播放| 免费av毛片视频| 亚洲精品国产一区二区精华液| 日韩欧美精品v在线| 免费在线观看黄色视频的| 999久久久精品免费观看国产| 国模一区二区三区四区视频 | 美女免费视频网站| 久久草成人影院| www.自偷自拍.com| 18禁黄网站禁片午夜丰满| 日本黄色视频三级网站网址| 日韩高清综合在线| 亚洲中文字幕日韩| 99riav亚洲国产免费| 婷婷精品国产亚洲av| 岛国在线免费视频观看| 国产精品国产高清国产av| av在线天堂中文字幕| 成人一区二区视频在线观看| 国产欧美日韩精品亚洲av| 正在播放国产对白刺激| 国产精品一及| 男女那种视频在线观看| 亚洲18禁久久av| 久久人妻av系列| 丰满的人妻完整版| 最近最新中文字幕大全电影3| 99久久精品热视频| 成人18禁在线播放| 少妇被粗大的猛进出69影院| 午夜成年电影在线免费观看| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 99热只有精品国产| 中文字幕久久专区| 亚洲精品国产精品久久久不卡| 国产高清videossex| 精品久久久久久,| 成年免费大片在线观看| 欧美av亚洲av综合av国产av| 国产亚洲欧美98| 18禁观看日本| 免费在线观看成人毛片| 精品人妻1区二区| x7x7x7水蜜桃| 久久久国产欧美日韩av| 亚洲欧美精品综合久久99| 少妇人妻一区二区三区视频| 国产成人欧美在线观看| 国产又色又爽无遮挡免费看| 日本在线视频免费播放| 国产精品,欧美在线| 一本精品99久久精品77| 1024香蕉在线观看| 黄色丝袜av网址大全| 一区福利在线观看| 国产人伦9x9x在线观看| 国产成年人精品一区二区| 久久久久久久久免费视频了| 国产高清视频在线观看网站| 啦啦啦观看免费观看视频高清| 久久久久久久久久黄片| 91老司机精品| 九色成人免费人妻av| 成人欧美大片| 一个人免费在线观看的高清视频| 在线国产一区二区在线| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 一个人免费在线观看的高清视频| 亚洲一区二区三区不卡视频| av视频在线观看入口| 两性午夜刺激爽爽歪歪视频在线观看 | 男人的好看免费观看在线视频 | 午夜激情福利司机影院| 2021天堂中文幕一二区在线观| x7x7x7水蜜桃| 搡老岳熟女国产| 少妇的丰满在线观看| 无遮挡黄片免费观看| 亚洲第一欧美日韩一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 高清在线国产一区| 91麻豆精品激情在线观看国产| 伦理电影免费视频| 亚洲国产欧洲综合997久久,| 久久久久久久久免费视频了| 亚洲国产欧美人成| 香蕉久久夜色| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 1024视频免费在线观看| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 国产精品影院久久| 又爽又黄无遮挡网站| 精华霜和精华液先用哪个| 精品久久久久久成人av| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 亚洲熟妇熟女久久| 在线观看舔阴道视频| 亚洲九九香蕉| 精品福利观看| 欧美成狂野欧美在线观看| 久久久久久人人人人人| 在线看三级毛片| 美女大奶头视频| 欧美成人免费av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 国产又色又爽无遮挡免费看| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 国产成人精品久久二区二区免费| 51午夜福利影视在线观看| 欧美激情久久久久久爽电影| 俺也久久电影网| 免费在线观看影片大全网站| 非洲黑人性xxxx精品又粗又长| 日韩欧美精品v在线| 99热这里只有精品一区 | 亚洲无线在线观看| 国产精品乱码一区二三区的特点| av超薄肉色丝袜交足视频| 亚洲国产高清在线一区二区三| 久久香蕉激情| 亚洲自拍偷在线| 特大巨黑吊av在线直播| 久久中文看片网| 亚洲欧美日韩高清在线视频| 亚洲性夜色夜夜综合| 搞女人的毛片| 这个男人来自地球电影免费观看| 成人av一区二区三区在线看| 亚洲一区高清亚洲精品| 日本 av在线| 午夜久久久久精精品| 久久久水蜜桃国产精品网| 91在线观看av| 亚洲国产欧美一区二区综合| 老司机靠b影院| aaaaa片日本免费| 国产不卡一卡二| 久久国产精品人妻蜜桃| 日韩国内少妇激情av| 日韩欧美免费精品| av福利片在线观看| 精品熟女少妇八av免费久了| 亚洲国产精品sss在线观看| svipshipincom国产片| 国产高清视频在线观看网站| 中文资源天堂在线| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 18禁黄网站禁片午夜丰满| 少妇人妻一区二区三区视频| 天堂影院成人在线观看| 床上黄色一级片| 欧美乱色亚洲激情| 夜夜爽天天搞| 午夜视频精品福利| 亚洲欧美精品综合久久99| 亚洲成人国产一区在线观看| 看黄色毛片网站| 国产成人精品无人区| 动漫黄色视频在线观看| 久久久久性生活片| 国产精品久久久人人做人人爽| 脱女人内裤的视频| 久久人妻福利社区极品人妻图片| 老司机在亚洲福利影院| 亚洲色图 男人天堂 中文字幕| 女人高潮潮喷娇喘18禁视频| 法律面前人人平等表现在哪些方面| 国产精品免费一区二区三区在线| 日韩欧美在线乱码| 色精品久久人妻99蜜桃| 91字幕亚洲| 成人亚洲精品av一区二区| 亚洲精品色激情综合| 久久精品国产综合久久久| av视频在线观看入口| 精品一区二区三区视频在线观看免费| 非洲黑人性xxxx精品又粗又长| 精华霜和精华液先用哪个| 国产精品一区二区免费欧美| 久久中文字幕人妻熟女| 久久香蕉精品热| 免费在线观看成人毛片| 色综合亚洲欧美另类图片| 免费一级毛片在线播放高清视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美3d第一页| 欧美黄色片欧美黄色片| 一本综合久久免费| 国产精品 国内视频| 国产高清视频在线播放一区| 人妻久久中文字幕网| 亚洲精品美女久久久久99蜜臀| 国产精品亚洲美女久久久| 亚洲五月天丁香| 一区二区三区高清视频在线| 夜夜夜夜夜久久久久| 香蕉av资源在线| 亚洲av片天天在线观看| 欧美黑人巨大hd| 午夜福利高清视频| 精品午夜福利视频在线观看一区| 一二三四社区在线视频社区8| 特级一级黄色大片| 欧美成狂野欧美在线观看| 日韩欧美精品v在线| 最近最新中文字幕大全电影3| 舔av片在线| 黑人巨大精品欧美一区二区mp4| 最近在线观看免费完整版| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 午夜亚洲福利在线播放| 身体一侧抽搐| 成人三级做爰电影| 亚洲精品粉嫩美女一区| 欧美精品啪啪一区二区三区| 午夜精品久久久久久毛片777| 啦啦啦免费观看视频1| 成人18禁高潮啪啪吃奶动态图| 午夜福利免费观看在线| av免费在线观看网站| 无人区码免费观看不卡| 女人高潮潮喷娇喘18禁视频| 精品第一国产精品| 性色av乱码一区二区三区2| 亚洲精品中文字幕在线视频| 欧美成人免费av一区二区三区| 老汉色av国产亚洲站长工具| 激情在线观看视频在线高清| 欧美极品一区二区三区四区| 日韩三级视频一区二区三区| www日本在线高清视频| 成人手机av| 欧美+亚洲+日韩+国产| 97超级碰碰碰精品色视频在线观看| 美女大奶头视频| 日韩欧美在线二视频| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 亚洲欧美日韩无卡精品| 国产单亲对白刺激| 久久久久久人人人人人| 国产亚洲av嫩草精品影院| 变态另类成人亚洲欧美熟女| 1024视频免费在线观看| 精品少妇一区二区三区视频日本电影| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 日本一二三区视频观看| 亚洲精品在线美女| 老鸭窝网址在线观看| 超碰成人久久| 岛国在线免费视频观看| 少妇熟女aⅴ在线视频| 亚洲五月天丁香| 亚洲精品在线美女| 麻豆国产av国片精品| 身体一侧抽搐| 免费在线观看黄色视频的| 国产亚洲精品第一综合不卡| 精品久久久久久成人av| 欧美黄色片欧美黄色片| 窝窝影院91人妻| 亚洲九九香蕉| 日韩精品中文字幕看吧| 91国产中文字幕| 99国产极品粉嫩在线观看| 欧美成人免费av一区二区三区| 黄色女人牲交| 怎么达到女性高潮| 舔av片在线| 又黄又爽又免费观看的视频| 日韩高清综合在线| 亚洲全国av大片| www国产在线视频色| 国产一区二区在线观看日韩 | 久久久久亚洲av毛片大全| 久久草成人影院| 黄片小视频在线播放| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 色老头精品视频在线观看| 午夜福利视频1000在线观看| 日本黄色视频三级网站网址| 中文字幕精品亚洲无线码一区| 丁香欧美五月| 精品第一国产精品| 国产三级黄色录像| 在线十欧美十亚洲十日本专区| www.www免费av| 黄色 视频免费看| 免费在线观看成人毛片| 亚洲美女视频黄频| 久久国产精品人妻蜜桃| 亚洲无线在线观看| 日韩精品中文字幕看吧| 一本一本综合久久| 国产野战对白在线观看| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看|