• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron delocalization enhances the thermoelectric performance of misfit layer compound(Sn1-xBixS)1.2(TiS2)2

    2022-11-21 09:40:26XinZhao趙昕XuanweiZhao趙軒為LiweiLin林黎蔚DingRen任丁BoLiu劉波andRanAng昂然
    Chinese Physics B 2022年11期
    關(guān)鍵詞:劉波

    Xin Zhao(趙昕) Xuanwei Zhao(趙軒為) Liwei Lin(林黎蔚) Ding Ren(任丁)Bo Liu(劉波) and Ran Ang(昂然)

    1Key Laboratory of Radiation Physics and Technology,Ministry of Education,Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,China

    2Institute of New Energy and Low-Carbon Technology,Sichuan University,Chengdu 610065,China

    The misfit layer compound(SnS)1.2(TiS2)2 is a promising low-cost thermoelectric material because of its low thermal conductivity derived from the superlattice-like structure. However,the strong covalent bonds within each constituent layer highly localize the electrons thereby it is highly challenging to optimize the power factor by doping or alloying. Here,we show that Bi doping at the Sn site markedly breaks the covalent bonds networks and highly delocalizes the electrons. This results in a high charge carrier concentration and enhanced power factor throughout the whole temperature range.It is highly remarkable that Bi doping also significantly reduces the thermal conductivity by suppressing the heat conduction carried by phonons,indicating that it independently modulates phonon and charge transport properties. These effects collectively give rise to a maximum ZT of 0.3 at 720 K.In addition, we apply the single Kane band model and the Debye–Callaway model to clarify the electron and phonon transport mechanisms in the misfit layer compound(SnS)1.2(TiS2)2.

    Keywords: misfit layer sulfide,electron delocalization,carrier mobility,chemical bond

    1. Introduction

    Over 60%fossil fuels input for power generation is being rejected as low-grade heat annually.[1]Thermoelectric materials are able to directly convert such a huge amount of heat into utilizable electricity[2]without releasing any chemical residuals, showing great potential to contribute to solving the energy problem at present.[3,4]The efficiency of a thermoelectric device primary depends on the figure of merit, namely,ZT, of the thermoelectric materials used, which is defined asZT=S2σT/κtot,[4]whereSrepresents Seebeck coefficient,σdenotes electrical conductivity, their productS2σis called power factor,Tis the absolute temperature,andκtotis the total thermal conductivity with contribution from both charge carriers(κele)and phonons(κlat).

    In the past decades, theZTvalues of representative thermoelectric compounds have been considerably improved by applying innovative strategies, such as optimizing electrical transport properties[5–10]or suppressingκlat.[11,12]However, the majority thermoelectric materials contain toxic or expensive elements. For extensive application, thermoelectric community currently puts interest on searching economically-viable, environmentally benign thermoelectric materials.[13–15]The surprising and promising examples are the discovery of Mg3Sb2[8,16–18]and SnSe[19–22]based compounds with intrinsically low thermal conductivity. The former shows exceptionally highZTvalue of~1.5 around room temperature,exceeded conventional expensive Bi2Te3.[8,16,17]The latter exhibits extraordinary performance over a broad temperature window. Besides, the study of the physical mechanisms of novel materials is also very important. The single crystal 1T-TaS2sample exhibits strong coupling between phonon excitation and commensurate charge-densitywave lattice,which provides a deep insight into close association between electronic correlation and dynamical motions of phonons.[23]These findings unambiguously highlight the importance of discovering new compounds.

    (SnS)1.2(TiS2)2is an n-type misfit layer semiconductor built by alternately stacking two atomically thin TiS2slabs with a van der Waals (vdW) gap and SnS monolayer along theccrystallographic direction. Given the abundant interface formed between the TiS2and SnS layer,it shows intrinsically low thermal conductivity compared with other thermoelectric sulfides.[24,25]However, it is highly challenging to optimize its power factor because the metal cation easily forms covalent bonds with sulfur, highly localizing the electrons. For example, (Sn0.96Sb0.04S)1.2(TiS2)2shows carrier concentration nearly the same to the pristine one.[26]Here, we reveal that Bi doping can effectively improve the carrier concentration without degrading the carrier mobility by delocalizing the surrounding electrons. This gives rise to an enhanced power factor over the entire temperature investigated. Remarkably,the heavy Bi atom also significantly decreases the lattice thermal conductivity by generating point defects.[27]As a result,(Sn0.96Bi0.04S)1.2(TiS2)2shows aZTvalue of 0.3 at 723 K,one of the highest values reported in this compound.

    2. Experimental details

    2.1. Synthesis and sample preparation

    The appropriate molar ratio of high purity elements of tin (99.99%, aladdin), titanium (99.99%, aladdin), sulfur (99.99%, aladdin) and bismuth (99.999%, aladdin) corresponding to (Sn1-xBixS)1.2(TiS2)2(x= 0,0.02,0.04,0.06)was sealed in a quartz tube under a high vacuum(~10-4Pa).To minimize the risk of explosion, the sealed tubes were slowly heated to 773 K and dwelled for 12 h, afterward the temperature was raised to 1073 K and allowed to react for 48 h,and naturally cooled down to ambient temperature. The obtained ingots were hand-ground into fine powders in air using an agate and pestle. The resulting fine powder was loaded into a graphite die mold and hot pressed at 923 K for 45 min under an axial pressure of 50 MPa in a dynamic vacuum. The density of the sample was determined by the geometrical dimensions and masses, showing all the samples have density higher than 97.3%of the theoretical value.

    2.2. Powder x-ray diffraction

    The pulverized samples were used for powder x-ray diffraction (XRD). The powder diffraction patterns were recorded with CuKα(λ=1.5418 ?A) radiation in a reflection geometry on an Inel diffractometer operating at 40 kV and 20 mA (DX-2700 x-ray diffractometer). All measured samples are single phase within the detection limit of our laboratory XRD instrument,showing none of detectable secondary phases and unreacted elements.

    2.3. Charge carrier transport

    The densified samples were cut into different shapes using a wire saw for charge and thermal transport properties measurement respectively. The rectangular bar with the dimension of 2×3×8 mm3was used for simultaneously measuring the electrical conductivity and Seebeck coefficient employing a CTApro instrument under a low-pressure helium atmosphere from 320 K to 720 K.The Hall charge carrier concentration and mobility were measured from 320 K to 720 K by a home-built apparatus with a unidirectional 1.5 T magnetic field under a high vacuum.

    2.4. Thermal conductivity

    Thermal diffusivities with respect to temperature were measured using disks with a diameter of 6 mm or 8 mm and a thickness of 1.5 mm using the laser flash diffusivity method on a Netzsch LFA 467 instrument. The surface of the disks was protected by a thin layer of graphite to minimize the thermal radiation at elevate temperature. The thermal conductivity was calculated by the equationκtot=ρ·D·Cp,whereρis the mass density,Dis the measured thermal diffusivity, andCprepresents the temperature-dependent heat capacity that can be determined byCp= [0.17078+(2.64876×10-5)×T]J·g-1·K-1,whereTis the absolute temperature. The electrical contribution to the total thermal conductivity was calculated based on the relationκele=LσT,whereLis the Lorenz number estimated using a single parabolic band(see supporting information for the details),σis the electrical conductivity,andTis the absolute temperature. Lattice thermal conductivityκlatwas calculated by the relationκlat=κtot-κele.

    2.5. Electronic structure calculation

    The first-principles calculations were performed by utilizing the Perdew–Burke–Ernzerhof (PBE)[28]formalism and generalized gradient approximation (GGA)[29,30]implemented in Viennaab initiosimulation package (VASP)[31,32]code. The plane-wave basis was truncated at the energy cutoff of 600 eV. To reduce the computational load, we only sampled the momentum space at theΓ-point and a 4×1×1 mesh.All geometry structures were fully relaxed until the calculated Hellmann–Feynman force on every atom were less than 0.03 eV·?A-1under the convergence condition of 10-4eV.

    3. Results and discussion

    Covalent bonds in(SnS)1.2(TiS2)2strongly trap the electrons so that softening these bonds may release the localized electrons. Note that, the bond dissociation energy for Bi–S is 315 kJ·mol-1, much lower than 467 kJ·mol-1for Sn–S and 387 kJ·mol-1for Sb–S.[33]This indicates Bi doping can weaken the covalent bonds and give rise to a higher carrier concentration than the Sb doped system. To verify our hypothesis,we synthesized samples with the composition of (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06) using hightemperature solid-state reaction.All the phases can be fully indexed as the misfit layer structure,showing neither detectable impurity phases nor unreacted residual within the resolution limit of lab XRD measurements (Fig. 1(a) and Fig. S1). To accurately determine the lattice parameter, we performed Rietveld refinement on the recorded XRD patterns(Fig.S2 and Table S1). The refined unit cell dimensions gradually shrink as the Bi content increases, suggesting that Bi atoms are homogenously dissolved over the matrix apparently (Fig. 1(b)).This finding agrees well with the microscopic elemental map collected by scanning electron microscopy equipped with an energy dispersive spectroscopy(SEM-EDS,Fig.S3).

    Fig. 1. (a) Powder XRD patterns of (Sn1-xBixS)1.2(TiS2) samples (x =0,0.02,0.04,0.06). (b)Lattice parameters with respect to the Bi content.

    Trivalent Bi3+substituting divalent Sn2+could increase charge carrier properties significantly. In accordance,we measured the temperature-dependent Hall carrier concentration and mobility for the (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06) samples. Note that although we measured all properties along both parallel and perpendicular to the hot press direction, we will mainly concentrate on those perpendicular to the press direction because it shows higherZT. The transport properties collected parallel to the press direction are shown in Fig.S4.As the concentration of Bi doping increases,we can see an enhancement of the electrical properties. This is consistent with the results observed in the in-plane, which also can confirm our hypothesis.

    All samples show nearly constant Hall carrier concentration (nH) over the entire temperature range investigated, and their values monotonously increase with higher Bi concentration (Fig. 2(a)). It should be noted that the electron doping efficiency,namely,the number of electrons per Bi atom to the matrix is markedly higher than previously reported values for other dopants in(SnS)1.2(TiS2)-based materials. For example,x=0.04 sample showsnHof 1.8×1021cm-3at 300 K, indicating its electron doping efficiency amounts to 0.63 e-. In sharp contrast,(Sn0.96Sb0.04S)1.2(TiS2)exhibits annHclose to the matrix at 300 K as indicated by the green dashed line,[26]revealing Sb has negligible electron doping efficiency. These verify that Bi atom acts as an efficient electron donor to the(SnS)1.2(TiS2)lattice.

    Fig.2. Charge transport properties of the(Sn1-xBixS)1.2(TiS2)2 samples(x=0,0.02,0.04,0.06). (a)Temperature-dependent Hall carrier concentration nH. The experimental data of(Sn0.96Sb0.04S)1.2(TiS2)2 from previously report is included for comparison(green dashed line).[26] (b)Temperature dependent Hall mobility μH, (c) conductivity σ and (d) Seebeck coefficient. (e) Carrier concentration-dependent Seebeck coefficient at 320 K and 720 K.(f)Temperature-dependent power factor.

    Although Bi doping considerably increases thenH, it marginally reduces the charge carrier mobility (μH). In fact,all samples exhibit nearly identicalμHover the entire temperature range (Fig. 2(b)). Their values rapidly drop with the raising temperature, following the same power law trend of~T-1.5over the entire temperature range, which evident the phonon scattering dominates the charge carrier scattering.This observation confirms Bi uniformly spreading over the crystalline matrix,rather than forming secondary phases or aggregate at the grain boundary,otherwise theμHwould be significantly decreased. Indeed,it contrasts with the general understanding that increasing charge carrier concentration usually decreases with raisingnHbecause of enhanced carrier–carrier scattering, implying Bi doping marginally affects the charge carrier transport.

    Figure 2(c) shows the electrical conductivity (σ) with respect to temperature for the (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06)samples. Because Bi doping markedly improves thenHwith negligible degradingμHin the full temperature range,it gives rise to higherσat every single temperature point compared to the pristine sample. For example,theσof the title compound(Sn0.96Bi0.04S)1.2(TiS2)is~1100 S·cm-1and~300 S·cm-1at 300 K and 723 K, respectively, much higher than~900 S·cm-1and 250 S·cm-1at the same temperature for the pristine sample.

    The Seebeck coefficient(S)of all samples is negative over the entire temperature range, demonstrating they are n-type semiconductor(Fig.2(d)).Note that Bi doping marginally impacts the magnitude of Seebeck among samples because all the samples have very highnHon the order of~1021cm-3. To examine any possible modulation in electron effective massm*, we calculated the theoretical Pisarenko relation betweenSandnHfor undoped (SnS)1.2(TiS2) in the frame of single Kane band model by assuming that the phonon scattering governs the charge carrier scattering. The black and red lines denotem*=4meat 320 K andm*=5meat 720 K,respectively(Fig.2(e)).TheSvalues for all the samples in this work match well on the lines, suggesting that doped Bi does not alter the band structure in the vicinity of the Fermi level.

    Due to the doped Bi considerably increasesσwithout significantly reducingS,it optimizes the power factor particularly for the best composition(Sn0.96Bi0.04S)1.2(TiS2)(Fig.2(f)).In fact,the(Sn0.96Bi0.04S)1.2(TiS2)sample shows a power factor higher than the pristine one over the entire temperature range.Note that it is challenging to improve the power factor of misfit layer compounds because the highly distorted interface derived from the constituent layers typically leads to a very low electrical conductivity and thereby a low power factor.

    To better understand the enhanced charge transport properties in the (Sn1-xBixS)1.2(TiS2)2compounds, we carried out first-principles calculation within density functional theory regime. Given the high electron doping efficiency as we discussed earlier,the doped Bi atom was placed at the Sn site to mimic the experimental observation. We first analyzed the charge transfer in Bi doped (SnS)1.2(TiS2) for examining the possible charge transfer between Bi and the matrix. For clarity,we only display the charge transfer between one TiS2layer and its neighboring SnS slab(Fig.3(a)). The result shows that the electrons of Bi flow toward the nearest sulfur atom in the adjunct TiS2layer as indicated by the blue ellipsoid, forming electronic bridge to connect large van der Waals gap and facilitate the charge transfer over the matrix. For comparison,we also similarly calculated the Sb doped (SnS)1.2(TiS2). It reveals that the electrons from Sb atom are isolated between the van der Waals gap.

    Fig.3. The charge transfer analysis for(a)Bi and(b)Sb doped(SnS)1.2(TiS2). The Sn,Ti,S,Bi and Sb atoms are depicted by grey,blue,yellow,violet, and orange spheres, respectively. Blue ellipsoids surrounding the atoms denote a loss of electrons. Electron localization function (ELF)contour mapped along the〈100〉z(mì)one axis for(a)Bi and(b)Sb doped(SnS)1.2(TiS2). ELF values ranging from 0 to 1 are depicted by the color bar shown in(c), where blue color denotes the electrons with almost no localization or no electrons, and the red color corresponds to the perfect localization of electrons. The red arrow in (c) indicates Bi substituting Sn delocalized electrons. The black arrow in (d) points out the Sb atom forms covalent bond with adjunct sulfur atom,which heavily localized the electrons.

    It is worth noting that quantitative Bader charge transfer analysis shows that Bi donates 1.27 e-to the interacting S atom,coincidentally to the value of 1.28 e-of Sb transferred to the system. This supports our hypothesis that Bi doping weakly localized the electrons. We calculated the electron localization function(ELF)for both Bi and Sb doped systems(Figs.3(c)and 3(d)). This measures the electron localization in atomic and molecular systems, directly evaluating the chemical interaction between the adjunct atoms.[34]The magnitude of ELF increases from 0 to 1 which denotes the electron transiting from no localization to perfect localization and is visualized by the color code varying from blue to red color. The ELF contour mapped along the〈100〉z(mì)one axis of Bi doped system reveals the ELF value between Bi and S atoms smaller than 0.5 (Fig. 3(c)). This indicates that electrons surrounding Bi are highly mobile,consistent with our observation that incorporating Bi atom negligibly affectsμH.By contrast,electron localization domains are clearly observed between Sb and S atoms in Sb doped(SnS)1.2(TiS2)as indicated by the black arrow. This suggests that the Sb atom is prone to form covalent bond with nearby sulfur atom,trapping the free electrons and reducing the electron doping efficiency. In fact, the EFL results agree well with the fact that the Bi–S bond has lower enthalpy and dissociation energy than the Sb–S bond as we discussed in the previously section, confirming that the weak bond contributes to the exceptionally charge transfer of Bi.

    Figure 4(a)presents temperature-dependent total thermal conductivity(κtot)for the(Sn1-xBixS)1.2(TiS2)2samples(x=0,0.02,0.04,0.06). It is highly remarkable that all Bi-doped samples show suppressedκtotcompared with the pristine sample despite they exhibit much higherσthan the latter.This observation implies that the Bi doping significantly impedes heat conduction by phonons. As a result, we extracted the lattice thermal conductivityκlatby invoking the Widemann–Franz law to subtract electronic thermal conductivityκelefromκtot(see Appendix A for details). All doped samples show much lowerκlatthan the undoped one(Fig.4(b)). For example,theκlatat 320 K markedly decreases from~1.7 W·m-1·K-1for thex=0 sample to~1.2 W·m-1·K-1for thex=0.04 sample. To better understand the effect of Bi doping on thermal conductivity,we calculated the temperature-dependentκlatby the Debye–Callaway model. The black line represents the calculatedκlatfor the pristine sample (Fig. 4(b)), which only considers Umklapp (U) and normal (N) processes. The calculated results fit well with the experimental value, reflecting that the U and N processes dominate the phonon scattering. Since neither secondary phase nor element aggregation is present in the Bi doped samples, we further introduced point defects to the Bi doped system as indicated by the red dash line. The calculated value for thex= 0.04 sample lies far below the pristine one, supporting that the point defect contributes significantly to reducingκlat. In fact, the title compound (Sn0.96Bi0.04S)1.2(TiS2)2shows much lowerκlatthan that of previously reported thermoelectric sulfides(Fig.4(c)).Similarly,the out-of-planeκtotis reached 0.7 W·m-1·K-1for thex=0.04 sample at 723 K,as shown in Fig.S4(e).It should be noted that these data are close to our previous work about(Sn1-xSbxS)1.2(TiS2)2and reflect the good reproducibility of the series of works.[26]

    Fig. 4. Temperature-dependent (a) total thermal conductivity κtot and (b) lattice thermal conductivity κlat for (Sn1-xBixS)1.2(TiS2)2 (x =0,0.02,0.04,0.06). The black and red dashed lines correspond to the calculated temperature-dependent κlat for the pristine and x=0.04 samples using the Debye–Callaway model. (c)A κlat comparison with typical thermoelectric sulfides including TiS2[25] and PbS.[24]

    Fig. 5. Temperature-dependent ZT of (Sn1-xBixS)1.2(TiS2)2 (x =0,0.02,0.04,0.06)samples. The ZT values of pristine TiS2[25] and SnS[35]are given for comparison.

    Figure 5 shows the temperature-dependent dimensionless figure of merit,ZT, for the (Sn1-xBixS)1.2(TiS2)2samples (x= 0,0.02,0.04,0.06). The (Sn0.96Bi0.04S)1.2(TiS2)2exhibits higherZTvalues over the entire temperature range with a maximum reaching to 0.3 at 720 K. It is one of the highest among misfit layer compounds. The achieved performance out-performs previously reported TiS2and state-of-theart polycrystalline SnS,indicating its great potential as a lowcost thermoelectric material for power generation.

    4. Conclusions

    Misfit layer compounds emerge as promising low-cost thermoelectric sulfides. However, it is challenging to optimize its carrier concentration because dopants tend to form covalent bond with sulfur. We demonstrated that Bi weakly bonded with sulfur, delocalized the charge carrier and facilitated the charge transfer. Highly mobile electrons significantly enhanced electrical conductivity and power factor of(Sn0.96Bi0.04S)1.2(TiS2)2over the entire temperature range.The heavy Bi atom also exceptionally reducedκlatby introducing mass fluctuation. By virtue of the Bi doping on charge and thermal transport properties,(Sn0.96Bi0.04S)1.2(TiS2)2shows a maximumZTof 0.3 at 720 K,excelling many state-of-the-art thermoelectric sulfides including SnS and PbS.

    Appendix A

    Density of state mass calculation

    The density of state mass(m*)is calculated according to the following equations[36,37]using the Seebeck coefficient(S)and carrier concentration(nH):

    whereμis the reduced Fermi level,Fj(μ) is the Fermi integral,kBis the Boltzmann constant,his the Planck constant,andλ=0 is the scattering parameter corresponding to acoustic phonon scattering.

    Lorenz number calculation

    The Lorenz numberLwas obtained by single parabolic band(SPB)model with acoustic scattering(λ=0 for acoustic phonon scattering):

    The disorder scattering parameterΓcalcis calculated by the model of Slack[43]and by Abeles[42]assumingΓcalc=ΓM+ΓS,whereΓMandΓSare mass fluctuations scattering parameter and strain field fluctuations scattering parameter, respectively. The mass and strain fluctuation scattering parameters are determined by[40]

    Acknowledgments

    This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702100), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China(Grant No.2020SCUNL112).

    猜你喜歡
    劉波
    汪安陽 劉波設(shè)計(jì)作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國(guó)畫家(2023年1期)2023-02-16 07:57:50
    Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100?
    Retrieval of multiple scattering contrast from x-ray analyzer-based imaging*
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動(dòng)手
    “故事大王”講故事
    大連大學(xué)美術(shù)學(xué)院劉波繪畫作品選
    女人的復(fù)仇
    av福利片在线| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 精品电影一区二区在线| 后天国语完整版免费观看| 欧美日韩黄片免| 久久精品成人免费网站| 欧美日韩精品网址| 亚洲五月天丁香| 757午夜福利合集在线观看| 男女之事视频高清在线观看| 日韩免费高清中文字幕av| 国产精品自产拍在线观看55亚洲| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 精品高清国产在线一区| 桃色一区二区三区在线观看| 操出白浆在线播放| 在线观看日韩欧美| 日本免费一区二区三区高清不卡 | 宅男免费午夜| av天堂久久9| 久久中文看片网| 亚洲精品久久午夜乱码| 国产黄a三级三级三级人| 久久 成人 亚洲| 露出奶头的视频| 亚洲专区字幕在线| 狠狠狠狠99中文字幕| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| av网站免费在线观看视频| 亚洲五月色婷婷综合| 岛国视频午夜一区免费看| 99精品久久久久人妻精品| 亚洲 国产 在线| 国产97色在线日韩免费| 男女下面进入的视频免费午夜 | 一级毛片女人18水好多| 91九色精品人成在线观看| 久久草成人影院| 电影成人av| 亚洲精品美女久久av网站| 亚洲成人精品中文字幕电影 | 少妇的丰满在线观看| 亚洲片人在线观看| 精品久久久久久久久久免费视频 | 亚洲七黄色美女视频| 成人特级黄色片久久久久久久| 在线观看日韩欧美| 日本欧美视频一区| 天堂影院成人在线观看| 精品一区二区三区av网在线观看| 高潮久久久久久久久久久不卡| 国产麻豆69| 一级,二级,三级黄色视频| 十八禁网站免费在线| 搡老岳熟女国产| 国产精品香港三级国产av潘金莲| 亚洲欧美激情在线| 老司机午夜十八禁免费视频| 一区二区日韩欧美中文字幕| 久久 成人 亚洲| 老鸭窝网址在线观看| 一进一出抽搐gif免费好疼 | 天堂俺去俺来也www色官网| 精品一区二区三区四区五区乱码| 最好的美女福利视频网| 国产精品成人在线| 超碰成人久久| 真人一进一出gif抽搐免费| 亚洲成人精品中文字幕电影 | 在线国产一区二区在线| 欧美在线一区亚洲| 每晚都被弄得嗷嗷叫到高潮| 可以免费在线观看a视频的电影网站| 亚洲成人国产一区在线观看| 色综合婷婷激情| 最近最新免费中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 成人亚洲精品av一区二区 | 亚洲成a人片在线一区二区| 一进一出好大好爽视频| 午夜91福利影院| 黄片大片在线免费观看| 亚洲美女黄片视频| 精品久久久久久久久久免费视频 | 国产精品偷伦视频观看了| 亚洲伊人色综图| 搡老乐熟女国产| 国产av精品麻豆| 久久久久久免费高清国产稀缺| 桃色一区二区三区在线观看| 精品乱码久久久久久99久播| 无限看片的www在线观看| 香蕉国产在线看| av欧美777| 亚洲色图综合在线观看| 最近最新中文字幕大全免费视频| 黄色 视频免费看| 国内久久婷婷六月综合欲色啪| 黄色视频,在线免费观看| 精品一区二区三区视频在线观看免费 | 80岁老熟妇乱子伦牲交| 国产亚洲精品综合一区在线观看 | 欧美激情 高清一区二区三区| 精品久久久精品久久久| 国产色视频综合| 欧美日本亚洲视频在线播放| 脱女人内裤的视频| 午夜福利在线观看吧| 久久国产乱子伦精品免费另类| 久久久久久久午夜电影 | 中文字幕人妻丝袜一区二区| 亚洲国产精品合色在线| 在线观看免费午夜福利视频| 亚洲第一青青草原| 美女国产高潮福利片在线看| x7x7x7水蜜桃| 长腿黑丝高跟| 亚洲熟女毛片儿| 国产亚洲欧美精品永久| 露出奶头的视频| 国产高清视频在线播放一区| 伦理电影免费视频| 最近最新中文字幕大全免费视频| 亚洲伊人色综图| 国产精品野战在线观看 | 亚洲午夜理论影院| 欧美乱妇无乱码| 他把我摸到了高潮在线观看| 色婷婷久久久亚洲欧美| av片东京热男人的天堂| 久久香蕉国产精品| 两个人免费观看高清视频| 日韩 欧美 亚洲 中文字幕| 韩国精品一区二区三区| 丝袜在线中文字幕| 国产亚洲精品久久久久久毛片| 侵犯人妻中文字幕一二三四区| 国产av一区在线观看免费| 亚洲黑人精品在线| 在线观看免费视频网站a站| 午夜福利影视在线免费观看| 老司机午夜十八禁免费视频| 久久久精品欧美日韩精品| ponron亚洲| 看片在线看免费视频| 免费在线观看黄色视频的| 啦啦啦 在线观看视频| 欧美老熟妇乱子伦牲交| 中国美女看黄片| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 色在线成人网| 国内毛片毛片毛片毛片毛片| 三级毛片av免费| 黄片播放在线免费| 久久久久久人人人人人| a级片在线免费高清观看视频| 在线观看午夜福利视频| 国产成人啪精品午夜网站| 精品国产国语对白av| 老熟妇仑乱视频hdxx| 天堂动漫精品| 一夜夜www| 国产精华一区二区三区| 国产成人啪精品午夜网站| 亚洲国产欧美网| 嫩草影视91久久| 亚洲性夜色夜夜综合| 亚洲免费av在线视频| 精品久久久精品久久久| 日本黄色视频三级网站网址| 岛国视频午夜一区免费看| 午夜福利在线观看吧| 国产精品久久电影中文字幕| 夜夜看夜夜爽夜夜摸 | 久久久久九九精品影院| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 国产又色又爽无遮挡免费看| 免费搜索国产男女视频| 欧美大码av| 精品一区二区三区视频在线观看免费 | 国产精品香港三级国产av潘金莲| 国产黄a三级三级三级人| 亚洲一卡2卡3卡4卡5卡精品中文| 怎么达到女性高潮| 不卡一级毛片| 国产成人精品在线电影| 国产欧美日韩一区二区精品| 国产成人免费无遮挡视频| 精品电影一区二区在线| 香蕉丝袜av| 精品午夜福利视频在线观看一区| 水蜜桃什么品种好| avwww免费| 一级片免费观看大全| 精品久久蜜臀av无| 午夜91福利影院| avwww免费| www.www免费av| 国产高清国产精品国产三级| 在线观看免费视频日本深夜| 午夜福利,免费看| 精品福利永久在线观看| 制服人妻中文乱码| 黑人巨大精品欧美一区二区mp4| 人人妻人人爽人人添夜夜欢视频| 国产黄色免费在线视频| 久久热在线av| 不卡一级毛片| 长腿黑丝高跟| 女警被强在线播放| 香蕉久久夜色| 国产精品98久久久久久宅男小说| 丰满饥渴人妻一区二区三| 成人三级黄色视频| 精品熟女少妇八av免费久了| 亚洲国产精品合色在线| 91成年电影在线观看| 级片在线观看| 男女下面进入的视频免费午夜 | 日韩精品免费视频一区二区三区| av片东京热男人的天堂| 午夜精品国产一区二区电影| 桃红色精品国产亚洲av| 91在线观看av| 亚洲精品国产精品久久久不卡| 校园春色视频在线观看| 成人国产一区最新在线观看| 久久精品91无色码中文字幕| 91在线观看av| 国产亚洲欧美在线一区二区| 夜夜躁狠狠躁天天躁| 国产一区在线观看成人免费| 老司机午夜十八禁免费视频| 三上悠亚av全集在线观看| 免费搜索国产男女视频| 欧美性长视频在线观看| 国产精品自产拍在线观看55亚洲| 黄片播放在线免费| 亚洲视频免费观看视频| 久久久国产成人精品二区 | 亚洲一区高清亚洲精品| 国产深夜福利视频在线观看| 国产色视频综合| 又黄又爽又免费观看的视频| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| 日本wwww免费看| 午夜两性在线视频| 午夜福利在线观看吧| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看的高清视频| 一级毛片精品| 亚洲久久久国产精品| 精品午夜福利视频在线观看一区| 色在线成人网| 操美女的视频在线观看| 色哟哟哟哟哟哟| 大型av网站在线播放| 男男h啪啪无遮挡| 久久中文看片网| 人妻久久中文字幕网| 成人国产一区最新在线观看| 一区二区三区精品91| 不卡av一区二区三区| 国产精品日韩av在线免费观看 | 夜夜看夜夜爽夜夜摸 | 成人永久免费在线观看视频| 亚洲av日韩精品久久久久久密| 精品第一国产精品| 亚洲精品一二三| 婷婷丁香在线五月| 村上凉子中文字幕在线| aaaaa片日本免费| 亚洲精品中文字幕在线视频| 亚洲人成电影观看| 国产精品一区二区精品视频观看| 狠狠狠狠99中文字幕| netflix在线观看网站| 亚洲熟妇中文字幕五十中出 | 五月开心婷婷网| 欧美久久黑人一区二区| 久久精品国产清高在天天线| 男女高潮啪啪啪动态图| 午夜福利一区二区在线看| 久久久国产成人精品二区 | 国产成人啪精品午夜网站| 欧美日本亚洲视频在线播放| 操美女的视频在线观看| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 999久久久国产精品视频| 亚洲五月婷婷丁香| 黄网站色视频无遮挡免费观看| 国产精品久久久久久人妻精品电影| 亚洲欧美一区二区三区久久| 国产精品自产拍在线观看55亚洲| 9191精品国产免费久久| 久久久国产精品麻豆| 黄色a级毛片大全视频| 日韩欧美一区视频在线观看| 日韩欧美在线二视频| 亚洲国产精品999在线| 亚洲欧美激情综合另类| 亚洲av成人不卡在线观看播放网| 国产精品秋霞免费鲁丝片| 亚洲国产欧美日韩在线播放| 久久午夜亚洲精品久久| 久久婷婷成人综合色麻豆| 亚洲人成电影观看| 亚洲 欧美 日韩 在线 免费| 国产成人影院久久av| 精品久久久精品久久久| 国产精品av久久久久免费| 国产1区2区3区精品| 88av欧美| 一级毛片女人18水好多| 久久久水蜜桃国产精品网| 两个人看的免费小视频| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 另类亚洲欧美激情| 国产高清国产精品国产三级| 99热只有精品国产| 黑人欧美特级aaaaaa片| 88av欧美| 久久青草综合色| 中文字幕人妻丝袜一区二区| 看免费av毛片| 久久香蕉国产精品| 美女福利国产在线| 午夜福利在线免费观看网站| 在线观看舔阴道视频| 一个人免费在线观看的高清视频| 欧美日韩国产mv在线观看视频| av有码第一页| 亚洲国产欧美网| 国产亚洲欧美在线一区二区| 丝袜美足系列| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 久久久水蜜桃国产精品网| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 我的亚洲天堂| 欧美激情极品国产一区二区三区| 成人精品一区二区免费| 亚洲狠狠婷婷综合久久图片| 亚洲欧美一区二区三区久久| 免费女性裸体啪啪无遮挡网站| 91九色精品人成在线观看| 嫩草影院精品99| 亚洲午夜理论影院| 中文字幕人妻丝袜制服| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 欧美激情久久久久久爽电影 | 欧洲精品卡2卡3卡4卡5卡区| 80岁老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 国产91精品成人一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久人人做人人爽| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 亚洲精品久久午夜乱码| 亚洲av日韩精品久久久久久密| 成人精品一区二区免费| 叶爱在线成人免费视频播放| www日本在线高清视频| 一夜夜www| 色婷婷久久久亚洲欧美| a级毛片在线看网站| 一二三四在线观看免费中文在| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线观看吧| 一边摸一边做爽爽视频免费| 国产欧美日韩一区二区精品| 国产深夜福利视频在线观看| 国产成人欧美在线观看| 日本 av在线| www.熟女人妻精品国产| 国产精品二区激情视频| 在线观看免费高清a一片| 90打野战视频偷拍视频| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看日本一区| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 久热爱精品视频在线9| 国产成人影院久久av| 精品一区二区三区视频在线观看免费 | 正在播放国产对白刺激| www.999成人在线观看| 日日夜夜操网爽| 美女高潮到喷水免费观看| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 亚洲色图av天堂| 久久精品91无色码中文字幕| 色哟哟哟哟哟哟| 国产欧美日韩综合在线一区二区| 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| 在线观看一区二区三区| 久久人妻av系列| 国产一区二区三区综合在线观看| 99久久99久久久精品蜜桃| 91av网站免费观看| 老熟妇乱子伦视频在线观看| 大香蕉久久成人网| 欧美一区二区精品小视频在线| 国产精品秋霞免费鲁丝片| 亚洲成人免费av在线播放| 首页视频小说图片口味搜索| 国产精品香港三级国产av潘金莲| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 国产1区2区3区精品| 俄罗斯特黄特色一大片| 欧美日韩精品网址| 午夜精品在线福利| 午夜免费成人在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费av片在线观看野外av| 国产精品一区二区免费欧美| videosex国产| 又黄又爽又免费观看的视频| 国产精品偷伦视频观看了| 黄网站色视频无遮挡免费观看| 成年人免费黄色播放视频| 国产区一区二久久| 男女之事视频高清在线观看| 老司机午夜十八禁免费视频| 欧美最黄视频在线播放免费 | av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| a在线观看视频网站| 欧美精品啪啪一区二区三区| 男女之事视频高清在线观看| 欧美乱码精品一区二区三区| 国产精品九九99| 一级毛片女人18水好多| 99精品欧美一区二区三区四区| 国产高清国产精品国产三级| 国产av一区二区精品久久| www.精华液| 一a级毛片在线观看| 久久久国产一区二区| 亚洲第一av免费看| 欧美一级毛片孕妇| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成网站在线播放欧美日韩| 亚洲一码二码三码区别大吗| 久久热在线av| 国产91精品成人一区二区三区| 黄色丝袜av网址大全| 在线观看免费视频网站a站| 国产成人欧美在线观看| av天堂在线播放| 无人区码免费观看不卡| 日本免费一区二区三区高清不卡 | 国产av又大| 国产亚洲av高清不卡| 日韩av在线大香蕉| 欧美精品啪啪一区二区三区| 丝袜美腿诱惑在线| netflix在线观看网站| 视频区欧美日本亚洲| 一级毛片高清免费大全| 欧美激情极品国产一区二区三区| 我的亚洲天堂| 99精品欧美一区二区三区四区| 最新美女视频免费是黄的| 亚洲激情在线av| 欧洲精品卡2卡3卡4卡5卡区| 午夜a级毛片| 亚洲精品国产一区二区精华液| 无遮挡黄片免费观看| 中出人妻视频一区二区| 神马国产精品三级电影在线观看 | 亚洲,欧美精品.| 热re99久久国产66热| 99国产精品一区二区蜜桃av| 悠悠久久av| 久久草成人影院| 日韩欧美三级三区| 亚洲一区二区三区不卡视频| 1024视频免费在线观看| www.自偷自拍.com| 成人18禁在线播放| 国产精品爽爽va在线观看网站 | 最近最新中文字幕大全电影3 | 无遮挡黄片免费观看| 搡老乐熟女国产| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 国产高清激情床上av| 一级毛片女人18水好多| 在线看a的网站| 欧美亚洲日本最大视频资源| 精品欧美一区二区三区在线| 亚洲av成人av| 亚洲国产精品合色在线| 99精品久久久久人妻精品| 巨乳人妻的诱惑在线观看| 夜夜躁狠狠躁天天躁| 日本免费a在线| 亚洲精品在线美女| 中出人妻视频一区二区| 欧美日本中文国产一区发布| 亚洲一区中文字幕在线| 操出白浆在线播放| 日韩欧美一区视频在线观看| 男男h啪啪无遮挡| a级毛片在线看网站| 自线自在国产av| 精品久久久久久成人av| 琪琪午夜伦伦电影理论片6080| 欧美日韩精品网址| 国产成人一区二区三区免费视频网站| 少妇被粗大的猛进出69影院| netflix在线观看网站| 18禁裸乳无遮挡免费网站照片 | 色婷婷久久久亚洲欧美| 一级作爱视频免费观看| 久久狼人影院| 黄色毛片三级朝国网站| 免费搜索国产男女视频| 韩国精品一区二区三区| 中文字幕最新亚洲高清| 91av网站免费观看| 老汉色∧v一级毛片| 久久草成人影院| 欧美日本中文国产一区发布| 老熟妇乱子伦视频在线观看| 无人区码免费观看不卡| 午夜免费观看网址| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区精品| 国产精品香港三级国产av潘金莲| 一区二区三区国产精品乱码| 18美女黄网站色大片免费观看| 国产男靠女视频免费网站| 欧美久久黑人一区二区| 18禁美女被吸乳视频| 欧美日韩黄片免| av网站在线播放免费| 亚洲精品粉嫩美女一区| 欧美日韩精品网址| 性少妇av在线| 国产精品二区激情视频| 一边摸一边抽搐一进一出视频| bbb黄色大片| 1024香蕉在线观看| 欧美人与性动交α欧美软件| 午夜精品久久久久久毛片777| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区免费| 中国美女看黄片| 村上凉子中文字幕在线| 免费在线观看日本一区| 日韩人妻精品一区2区三区| 欧美+亚洲+日韩+国产| 最新美女视频免费是黄的| 亚洲av第一区精品v没综合| 一进一出抽搐gif免费好疼 | 成人亚洲精品一区在线观看| 久久香蕉精品热| 大码成人一级视频| 亚洲精品粉嫩美女一区| 在线观看66精品国产| 成人国语在线视频| 19禁男女啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 国产一区在线观看成人免费| 精品高清国产在线一区| 久久精品亚洲av国产电影网| 巨乳人妻的诱惑在线观看| 一区二区三区国产精品乱码| 嫁个100分男人电影在线观看| 巨乳人妻的诱惑在线观看| 一区二区三区国产精品乱码| 在线观看免费日韩欧美大片| 丁香欧美五月| 精品高清国产在线一区| 成人手机av| avwww免费| 欧美日韩国产mv在线观看视频| 后天国语完整版免费观看| 80岁老熟妇乱子伦牲交| 高清欧美精品videossex| 国产极品粉嫩免费观看在线| 亚洲第一青青草原| 曰老女人黄片| 亚洲成a人片在线一区二区| 亚洲熟妇熟女久久| 又紧又爽又黄一区二区| 91麻豆av在线| videosex国产| 欧美精品亚洲一区二区|