• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device

    2022-03-12 07:44:30YangTan譚楊BinLiang梁彬andJianchunCheng程建春
    Chinese Physics B 2022年3期
    關(guān)鍵詞:建春

    Yang Tan(譚楊), Bin Liang(梁彬), and Jianchun Cheng(程建春)

    Key Laboratory of Modern Acoustics(Ministry of Education),Institute of Acoustics,Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: acoustic metamaterials,one-way wavefront manipulation,broadband planar device

    1. Introduction

    Since the invention of electrical diodes enabling rectifying of current, considerable efforts have been dedicated to research on one-way manipulation of other kinds of energy forms.[1-4]In acoustics, the attempts to break the symmetry in sound propagation began with the emergence of acoustic diode that used nonlinearity to break the limitation of reciprocity, offering the possibility to design novel functional devices that only allowed acoustic wave to pass along one particular direction and may enable special application in various scenarios.[5,6]Later, different mechanisms were proposed for the purpose of further improving the performance of acoustic one-way devices by breaking the spatial symmetry instead of the time reversal symmetry,[7-23]giving rise to different designs featuring broad working bandwidths,[7,8,10,12,13,19,23]high forward transmission efficiencies,[7,8,11,12,14]compact sizes,[9,13,15-17,20,22]planar profiles,[14-16,18,20]etc. In addition, acoustic asymmetric transport inPT-symmetric system[24,25]and topologically protected one-way sound propagation[26,27]have also been investigated. So far, it is still challenging to realize one-way manipulation for broadband airborne sound by using a planar and ultra-lightweight device. More importantly,most of the existing designs are only aiming at producing a different transmission efficiency for wave propagating along opposite directions,which limits their application potential in practical situations where the transmitted waves usually need to be modulated to form various wave fields on demand.

    In this study, we propose to realize a highly asymmetric manipulation of the wave field for airborne sound by designing a planar device that works for both normal and oblique incidences within a relatively broad frequency range. The rest of the paper is organized as follows. In Section 2, we introduce the schematic of the proposed model and elucidate the underlying mechanism of our design. Then in Section 3,we give a practical implementation of the proposed model by rationally arranging slits composed of different gases which ensures the low energy loss in forward transmission and light weight of the device. In Section 4, the asymmetric wavefront-steering performance of the resulting device is demonstrated numerically via distinct examples of anomalous refraction, unidirectional acoustic focusing and Bessel beam production,and some discussion on the results is also provided. Finally, a brief summary is given in Section 5.

    2. Design of planar device for unidirectional wavefront manipulation

    The schematic of our proposed design of the planar device capable of asymmetrically controlling the wavefront for broadband airborne sound is illustrated in Fig.1. Our model is composed of a metasurface(MS)and a layer of homogeneous medium (HM) with judiciously designed system parameters which include the phase gradient dφ/dxof MS and the refractive indexnhof HM (defined asnh=c0/ch, wherechandc0represent the sound speed of HM and the background medium,respectively). The metasurface is assumed to have an acoustic impedance well matching the background medium(chosen as air here for which the mass density isρ0=1.21 kg/m3and sound speed isc0=343 m/s)and low energy loss. We define the positive incidence(PI)as the incidence direction of plane wave that comes from the side of the homogeneous layer,along which the incident sound will be allowed to pass the system,and the incidence from the opposite side as the negative incidence(NI).These two opposite directions are marked by the blue and red arrows in Fig.1,respectively.

    Fig. 1. The schematic of the proposed planar unidirectional acoustic transmission device.The propagation trajectories of wave incident from two opposite directions with an incident angle of θi are marked by blue and red arrows.

    The mechanism underpinning our designed unidirectional wavefront-steering device can be understood as a broken of symmetry in the propagation trajectory of incident plane wave impinging on two sides of the system with broken spatial symmetry,giving rise to quite different angles of refraction for the PI and NI cases. Due to the broken spatial symmetry of our system,it would be possible to ensure the wave incident from the side of the homogeneous layer at an angle not exceeding the critical angle of the interface,while the reversed wave has an incident angle larger than the critical angle and undergoes a total reflection at the interface. This can be achieved by judiciously choosing the system parameters including the phase profile of the metasurface and the refractive index of the homogeneous medium,and further enables asymmetric manipulation of the transmitted wavefront if the phase gradient provided by the metasurface is controlled locally. Due to the simplicity of our proposed model, the propagation trajectory and critical angles for plane wave in the PI and NI cases can be analytically derived,which offers a fast and precise prediction of the working bandwidth of the resulting one-way device.

    According to the generalized Snell’s law,[28]the angles of refraction provided by the metasurface in our designed planar device for the PI and NI cases can be calculated by

    whereθiandθtare the angles of incidence and refraction,nhandn0=1 are the refractive indexes of HM and air,k0is the wave number in air, and dφ/dxis the phase gradient of MS.Obviously,when the system parameters in the device are properly chosen such that

    the refraction angle is a real value for the PI case, which physically indicates that the acoustic energy of the airborne sound incident normally on the inserted layer of HM can pass through it and then modulated by MS to form the desired pattern on the transmitted side.For the NI case,on the other hand,the refraction angle has nonzero imaginary part since the transverse wave number is larger than the total wave number after passing through MS. Hence the plane wave coming from the opposite side is converted into the evanescent wave in HM and virtually blocked.It should be noted that,although plane wave becomes evanescent in HM for the NI case, HM needs to be thick enough to ensure sufficient attenuation of the evanescent wave alongy-axis. Equation(2)gives the theoretical working bandwidth of such unidirectional control of wavefront that is expected to have high forward transmission efficiency due to the good impedance match and has the capability to work for oblique incidence case, which will be verified via numerical simulations in the following.

    3. Implementation of impedance matched metasurface

    As a practical implementation of the proposed theoretical model shown in Fig. 1, we choose to build the acoustic metasurface by using multiple cut-through slits that are filled with two noble gases (argon and xenon) on a rigid thin plate.[29]The different regions of air, argon, and xenon can be separated by using polyethylene films (thin enough to be regarded as transparent to acoustic waves), as successfully realized in previous experiment.[6]The sound speed and acoustic impedance of these materials arecXe= 169 m/s,cAr=323 m/s,ZXe=996.1 Pa·s/m,ZAr=576.2 Pa·s/m.By simply modulating the filling ratio of these two gases,the phase shift of transmission wave changes accordingly. Notice that,the good impedance match and low energy loss of natural gases used in this specific design ensures near-unity forward transmission efficiency and well mimics the desired effective parameters to validate our above assumptions.In addition,due to the low dispersion of the gases and the transparency of the thin membrane separating different gases,the resulting device can work in a relatively broad frequency range and have ultralight weight,providing special functionality and flexibility important for practical scenarios.

    4. Unidirectional wavefront manipulation

    In the following, we will demonstrate the unique unidirectional wavefront-steering functionality of our proposed planar device, which is characterized by the fact that for the PI case the incident wave is manipulated flexibly to form the desired wavefront after being allowed to pass the system and, contrarily, the transmission of NI wave is still forbidden. Three typical examples will be showcased: asymmetric anomalous refraction,high-efficiency convergence of acoustic energy and production of Bessel beam.

    4.1. Asymmetric anomalous refraction

    For producing the anomalous refraction for plane wave with a wavelength ofλ0incident along the forward direction, one needs to establish a constant phase shift gradient(dφ/dx=2π/d). The schematic of the metasurface is shown in Fig. 2(a). Four slits with one filling with air and others filling with xenon and argon form a period. The slits are separated by rigid walls with width ofwand the width of the filling gases isa, and the width of one period is thusd=4(w+a).The thicknesses of the metasurface and the gases can be readily derived as follows:

    wherehAr,irepresents the thickness of argon in theith slit and the relative phase shift of theith slit is(i-1)π/2.

    We first consider a simple case of normal incidence of plane wave. In the current study we choose the structural parameters asd=4 cm,w=2 mm,p=8 mm andλ0=3.5 cm such that the first inequality of Eq.(2)is satisfied. The transmittance and phase shift are numerically calculated for each slit and the simulated results are shown in Fig.2(b). It is observed that the slits can be rationally designed to produce precise full-range control of phase shift and near-unity transmission efficiency,as marked by the blue and red dots in the figure, thanks to the well-matched acoustic impedance and low energy loss. On the other hand, the homogeneous medium layer is chosen to be filled with methane gas(cCH4=448 m/s,ZCH4= 294.3 Pa·s/m) with a thickness ofh= 1.7dsuch that the requirement ofch>c0d/λ0given by Eq. (2) is satisfied. Throughout the paper, the numerical simulations are performed by using full-wave simulation based on the finite element method(COMSOL Multiphysics).

    We have performed a series of numerical simulations to verify the functionality of producing unidirectional anomalous refraction of the designed device. Typical numerical results are illustrated in Fig. 2(c), which gives the simulated spatial distributions of acoustic pressure at the frequency off0=9800 Hz. The Floquet periodic boundary conditions are applied to the top and bottom boundaries of the system. It is clearly observed that for the NI case, the incident acoustic wave is subject to strong interference and converted into evanescent mode that cannot penetrate into the homogeneous medium layer,resulting in a total reflection on the interface between air and MS.In contrast,the incident plane wave in the PI case normally impinging on the HM is allowed to pass through the system and then leave with a refraction angle of 61°,which agrees well with the prescribed angle given in Eq.(1).It is also noticed that the output waveform is well preserved,which,in addition to the controllable refraction angle, would be highly desirable for the practical application of the resulting one-way devices such as in acoustic communications and imaging.

    Fig.2. (a)The schematic of the impedance-matching metasurface used in our design. (b)The transmittance(red dots)and phase shift(blue dots)of each slit(i=1,2,3,4). (c)The simulated sound pressure field of PI(left)and NI(right)at a particular frequency of f0=9800 Hz.

    Due to the fact that the acoustic signals used in practical applications usually have finite bandwidth, it is necessary to investigate the performance of our design with fixed parameters when the frequency of incident wave deviates fromf0.We plot in Fig. 3(a) and Fig. 3(b) the typical results of simulated sound pressure field for two particular frequencies of 8765 Hz and 10500 Hz,respectively. As shown by the numerical results, for both the cases, the incident acoustic energy is allowed to pass through the device along positive direction while being virtually blocked as the incident direction is reversed,proving the effectiveness of the proposed one-way device. Furthermore, the waveform of the transmitted wave is well maintained,and the refraction angles agree well with the theoretical predictions in Eq.(1),which are about 78°and 55°at 8765 Hz and 10500 Hz,respectively.

    For a quantitative evaluation of the unidirectional transmission property of the proposed device within a certain range of driving frequency,we introduce a parameter of contrast ratio,defined as[13]

    whereTPIandTNIrefer to the energy transmittance in the PI and NI cases, respectively. Obviously, the value ofRcranges from 0 to 1, and a higherRcindicates that the acoustic transmission in the system is more asymmetric.

    For such a specific device with fixed structural parameters, the working bandwidth for normal incidence can be derived by rewriting Eq.(2)as follows:

    Fig.3. (a)and(b)Simulated spatial distribution of the acoustic pressure at 8675 Hz and 10500 Hz,respectively. (c)Simulated transmittance and(d)contrast ratio as functions of frequency for the PI and NI cases.

    Given the fact that the incident angle of incoming wave may varies in practice,it is important to inspect the angular dependence of the one-way performance of our designed device.For a clear view, we plot in Figs. 4(a) and 4(b) the 2D maps of transmittance and contrast ratio obtained from numerical simulations, respectively. An inverted V-shaped zone of high contrast ratio can be clearly observed, proving that our strategy is also capable of working for obliquely incident waves.The effective range of incident angle is closely related to the frequency.For the frequency lower than 9000 Hz,the working angle width is approximately 20°.

    We further investigate the formation of such an effective zone.Due to the periodicity of the metasurface with a constant phase shift gradient, the generalized Snell’s law, considering periodic gratings,should be modified as[31]

    In fact,m=-2 corresponds to the negative refractive phenomenon and the transmission wave becomes evanescent whileθi <θ(-2)c. As a consequence,acoustic wave is blocked when incident angle is between the two critical angles of different diffraction orders,i.e.,θ(0)c<θi <θ(-2)c. We plot these critical angles in Eqs.(7)and(8)as a function of frequency in Fig.4,where cyan for PI,blue for NI,and solid lines form=0 while dashed lines form=-2. Good agreement between the simulated results of transmittance with the above theoretical analyses can be observed in Figs.4(a)and 4(b),which clearly manifests that asymetric tramission arises from different critical angles for PI and NI caused by the broken spatial symmetry.

    Fig. 4. (a) Transmittance of PI (left), NI (right) and (b) the contrast ratio as a function of frequency and incident angle. (c) Frequency dependence ofthecriticalangles includingc,PI(cyansolid line), (bluesolidline),(cyan dashed line)and (blue dashed line),whichareplotted in(a)and(b)as well forcomparisonwith the simulated results.

    4.2. Unidirectional planar focusing lens and axicon

    Next,we will demonstrate the capability of the proposed device to manipulate the forward transmitted wavefront more diversely than simply bending its propagation direction while blocking the reversed wave. Considering the significance of energy focusing and beamforming in practical applications such as acoustic ultrasound imaging and therapy, we choose two distinctive examples of unidirectional acoustic focusing and one-way production of Bessel beam to demonstrate the performance of our device in 3D space for normal incidence.In this part,cylindrical coordinate is used withz-axis indicating the incident direction and the slits of MS are numbered alongρ-axis.

    4.2.1. Unidirectional planar focusing lens

    The schematic of designing a planar focusing lens is illustrated in Fig.5(a). One can readily derive the desired phase shift at an arbitrary point P(ρ) for producing a focus with a focal lengthF,

    whereFis the given focal length,λ0is the wavelength of incident wave in air. It should be noticed that,when phase shift expressed as Eq. (9) is used, there exists a critical distance

    Here, as an example, we setλ0= 4 cm,h0= 1.03λ0,F=30 cm,w=2 mm,p=8 mm. In addition, helium gas(cHe=970 m/s,ZHe=174 Pa·s/m)is employed as the HM to decreaseρc. The corresponding thickness of Argon in each slit is shown in Fig. 5(b) and the phase shift is conical (red dots)forρ <ρcwhile being hyperboloidal(blue dots)whereρ >ρc.

    Fig. 5. (a) Schematic diagram of the design of focusing lens. A hyperboloidal phase profile along ρ direction is utilized to focus acoustic plane wave to a single point at a distance F from the device. The blue spherical line with radius F is the desired equiphase surface.(b)The designed thickness of argon in each slit and the corresponding phase shift to be conical(red dots)and hyperboloidal(blue dots),respectively.

    Fig.6. (a)Spatial distribution of the normalized intensity field|p|2 for the PI case(left)and the NI case(right). (b)Longitudinal(along z-axis at ρ =0) and (c) transverse cross-section (along ρ-axis at z=F =0.3 m) intensity profile of PI (blue line) and NI (red line). Logarithmic coordinate for|p|2 is used here to clearly show the difference in order of magnitude. The black dashed line indicates the relative intensity of the incident plane wave and the magenta pentacle in(b)indicates the target focus position. (d)Longitudinal cross-section of the normalized transmission intensity field for the PI case(upper)and the NI case(lower)at λ =0.9λ0 (left)and λ =0.8λ0 (right).

    Figure 6(a)shows the typical simulated results of comparison between the normalized spatial distributions of acoustic intensity|p|2in the transmitted region for acoustic normally incident from two opposite sides. The numerical results show that for the PI case, the incident acoustic energy is focused with high efficiency into the prescribed focal region,as characterized by a strong amplification of acoustic intensity at the target region located approximately atz=0.3 m(see Fig.6(b)).For the NI case, contrarily, there is no appreciable enhancement of the acoustic intensity in the transmitted region, suggesting the effective elimination of the reversed wave. For a quantitative estimation of the performance of the designed unidirectional planar focusing lens, the normalized intensity distribution alongz-axis atρ=0 as well as alongρ-axis atz=F=0.3 m are shown in Figs. 6(b) and 6(c). We use the logarithmic coordinate for|p|2here to clearly show the difference of order of magnitude. The intensity of pressure at the focal point is two orders of magnitude higher than the one of incident wave for the PI case while one order lower for the NI case, proving the efficiency of the unidirectional focusing effect. We further investigate the effectiveness of the proposed device when the incident wave lengthλdeviates fromλ0. The transmission fields for the PI and NI cases atλ=0.9λ0andλ=0.8λ0are shown in Fig. 6(d). It is obvious that our device can still effectively focus the incident energy at the predesigned focal region for PI while blocking the sound energy of NI,except for slight variation in the focal length at different frequencies due to the dispersion of MS.

    4.2.2. One-way planar axicon

    As shown in Fig.7(a),to design a planar acoustic axicon with a base angleβ, the phase shift at the point P(ρ) should be conical and expressed as

    To ensure the unidirectional effect, according to Eq. (2), the base angle should satisfy sinβ >nh. Here we setβ=25°and other parameters just the same as those in the above subsection except the phase shift. The corresponding theoretical thickness of argon in each slit according to Eq.(10)is shown in Fig.7(b).

    Fig. 7. (a) Schematic diagram of the design of acoustic axicon. The blue cone-like line with base angle β is the desired equiphase surface.(b)The theoretical thickness of argon in each slit of the metasurface.

    Fig.8. (a)Spatial distribution of the normalized intensity field|p|2 for PI(left)and NI(right). (b)The intensity profile along ρ-axis in the plane located at z=0.7 m. (c)and(d)Longitudinal cross-section of the normalized transmission intensity filed at λ =0.9λ0 and λ =0.8λ0,respectively.

    The normalized intensity distribution|p|2in a longitudinal cross-section of PI and NI is shown in Fig.8(a). To quantify the performance of the device, in Fig. 8(b), we plot the transverse cross-section intensity distribution atz=0.7 m for comparison. A non-diffracting Bessel beam propagating with a relatively long distance can be observed for the PI case while the sound pressure is still nearly zero for the NI case,proving the effectiveness of the proposed mechanism, which enables the design of a planar unidirectional axicon. Similarly, simulations are also carried out when the incident wave length changes fromλ0.Typical results of transmission intensity field for incident wave withλ=0.9λ0andλ=0.8λ0are shown in Figs. 8(c) and 8(d), respectively. For both the cases, the non-diffracting Bessel beam for PI can be observed and the acoustic energy for NI is effectively blocked, confirming the broadband characteristic of our device.

    5. Conclusion

    In summary,we have proposed the design of a planar unidirectional wavefront-steering device for airborne sound by combining a metasurface and a layer of homogeneous medium which can all be implemented by using natural materials.Based on a mechanism that uses the broken spatial symmetry to produce different critical angles along opposite directions, the designed device can work in a relatively broad frequency range for both normal incidence and oblique incidence within a certain angle range, and maintain high contrast ratio and forward transmittance simultaneously. When ensuring the effectiveness of unidirectional transmission, the sound pressure distribution of PI can be manipulated flexibly, which is verified numerically via distinctive examples of unidirectional anomalous refraction,acoustic focusing and Bessel beam production.

    Notice that high-efficiency focusing of acoustic energy into the desired spatial region and production of nondiffractive beam are of both fundamental interests and practical significance in various applications ranging from acoustic non-destructive evaluation to ultrasound imaging.It can therefore be expected that the breaking of transmission symmetry of an acoustic focusing lens or an acoustic axicon would be intriguing,which not only overcomes the conventional limitations and may have the potential to revolutionize acoustic technologies in various fields such as acoustic imaging and therapy by effectively blocking the unwanted backscattered waves.

    Acknowledgements

    Project supported by National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006,11374157, and 81127901), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Innovation Special Zone of National Defense Science and Technology and High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures.

    猜你喜歡
    建春
    Controlling acoustic orbital angular momentum with artificial structures: From physics to application
    陸建春油畫作品欣賞
    參花(下)(2022年10期)2022-09-17 01:16:18
    Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
    祖父瓷
    意林彩版(2022年1期)2022-05-03 10:25:07
    Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
    鐘 斌 洪祖榮 曉 陽 程宣猷 孟柔國 韓建春 吳國林 倪桂珠 陳俊寶 張金華
    大江南北(2022年1期)2022-01-19 06:31:54
    過建春:慢加急性肝衰竭的中西醫(yī)結(jié)合診治
    肝博士(2020年4期)2020-09-24 09:21:12
    33 歲物流員破解世界級難題我只想找個對象成家
    北廣人物(2019年46期)2019-11-15 08:56:28
    給人生算出一個新高度
    “心靈捕手”的數(shù)字王國
    知識窗(2016年10期)2016-05-14 09:08:27
    欧美久久黑人一区二区| 男女午夜视频在线观看| 精品少妇久久久久久888优播| 美国免费a级毛片| 狂野欧美激情性xxxx| 日本精品一区二区三区蜜桃| 男男h啪啪无遮挡| 老司机午夜十八禁免费视频| 亚洲九九香蕉| 另类精品久久| 国产精品一区二区在线不卡| 亚洲熟女精品中文字幕| 国产真人三级小视频在线观看| 美女福利国产在线| 久9热在线精品视频| 亚洲国产精品999| 久久精品国产综合久久久| 午夜福利在线观看吧| 99re6热这里在线精品视频| 亚洲全国av大片| 欧美性长视频在线观看| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区久久| 国产亚洲精品久久久久5区| 精品亚洲成国产av| 777久久人妻少妇嫩草av网站| 老司机午夜十八禁免费视频| 久久免费观看电影| 国产男女超爽视频在线观看| 国产亚洲av片在线观看秒播厂| 精品国内亚洲2022精品成人 | 老司机亚洲免费影院| 久久久久久亚洲精品国产蜜桃av| 岛国毛片在线播放| 国产日韩欧美亚洲二区| 国产在视频线精品| 国产亚洲欧美精品永久| 国产成人精品久久二区二区91| 精品一品国产午夜福利视频| av免费在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 又大又爽又粗| 纵有疾风起免费观看全集完整版| 人妻一区二区av| 日韩制服丝袜自拍偷拍| 夜夜骑夜夜射夜夜干| 人人妻人人添人人爽欧美一区卜| 日韩大片免费观看网站| 黄片大片在线免费观看| 精品人妻熟女毛片av久久网站| av线在线观看网站| 亚洲va日本ⅴa欧美va伊人久久 | 99久久国产精品久久久| 岛国毛片在线播放| 日韩 欧美 亚洲 中文字幕| 久久久久国产精品人妻一区二区| 国产片内射在线| 国产黄频视频在线观看| 亚洲九九香蕉| 国产伦理片在线播放av一区| 久久久久久人人人人人| 久久综合国产亚洲精品| 国产欧美日韩一区二区精品| av有码第一页| 午夜免费成人在线视频| 老司机影院成人| 国产精品欧美亚洲77777| 老司机影院毛片| 亚洲成人国产一区在线观看| 亚洲伊人色综图| 亚洲欧美清纯卡通| 久久人人爽av亚洲精品天堂| 各种免费的搞黄视频| 亚洲精品久久久久久婷婷小说| videosex国产| 国产欧美日韩一区二区三区在线| 久久久国产一区二区| 最新的欧美精品一区二区| 欧美日韩成人在线一区二区| 女性生殖器流出的白浆| 午夜影院在线不卡| 一边摸一边做爽爽视频免费| 国产成人免费无遮挡视频| 免费不卡黄色视频| cao死你这个sao货| 成人亚洲精品一区在线观看| h视频一区二区三区| 国产深夜福利视频在线观看| 亚洲中文日韩欧美视频| 少妇人妻久久综合中文| 久久精品国产亚洲av高清一级| 亚洲国产成人一精品久久久| 欧美精品啪啪一区二区三区 | 国产成人av教育| 国产一区二区三区在线臀色熟女 | 最近最新免费中文字幕在线| 亚洲国产日韩一区二区| 久久久久视频综合| 国产精品 国内视频| 久久女婷五月综合色啪小说| 乱人伦中国视频| 一边摸一边做爽爽视频免费| 一本综合久久免费| 亚洲情色 制服丝袜| 麻豆av在线久日| 精品人妻熟女毛片av久久网站| 国产一级毛片在线| 免费日韩欧美在线观看| 亚洲色图综合在线观看| av片东京热男人的天堂| 日本av免费视频播放| 啦啦啦 在线观看视频| 国产日韩欧美在线精品| 国产在线一区二区三区精| 亚洲成人免费电影在线观看| 热99国产精品久久久久久7| 人妻人人澡人人爽人人| 亚洲欧美日韩高清在线视频 | av视频免费观看在线观看| 自线自在国产av| 亚洲精品中文字幕在线视频| 国产日韩欧美视频二区| 亚洲精品国产av成人精品| 成人影院久久| 午夜久久久在线观看| 亚洲国产av新网站| 久久精品亚洲av国产电影网| 中文字幕人妻丝袜制服| 国产精品二区激情视频| 搡老岳熟女国产| 狠狠精品人妻久久久久久综合| 韩国高清视频一区二区三区| 天天躁日日躁夜夜躁夜夜| 色视频在线一区二区三区| 精品一区二区三区av网在线观看 | 亚洲精品在线美女| 不卡av一区二区三区| 制服人妻中文乱码| 国产精品亚洲av一区麻豆| 成年人黄色毛片网站| 丝袜美腿诱惑在线| 十八禁网站网址无遮挡| 乱人伦中国视频| 亚洲专区国产一区二区| 夫妻午夜视频| 三级毛片av免费| 一级,二级,三级黄色视频| 美女脱内裤让男人舔精品视频| 高清视频免费观看一区二区| 亚洲国产看品久久| av线在线观看网站| 99热全是精品| av电影中文网址| 啦啦啦中文免费视频观看日本| 一级毛片电影观看| 91麻豆av在线| 午夜老司机福利片| 久久香蕉激情| 国产一区二区三区av在线| 91av网站免费观看| 亚洲中文av在线| 国产在线免费精品| 亚洲精品美女久久av网站| 精品国产一区二区三区四区第35| 日本91视频免费播放| 亚洲成人免费电影在线观看| a 毛片基地| 亚洲精品国产av成人精品| 丝袜美足系列| 免费在线观看日本一区| 国产99久久九九免费精品| 18禁黄网站禁片午夜丰满| 桃红色精品国产亚洲av| 电影成人av| 国产有黄有色有爽视频| 国产欧美亚洲国产| 欧美午夜高清在线| 午夜福利视频在线观看免费| 亚洲精品国产av蜜桃| 天堂俺去俺来也www色官网| 女性被躁到高潮视频| 咕卡用的链子| 久久 成人 亚洲| 亚洲欧美日韩高清在线视频 | 美女脱内裤让男人舔精品视频| 欧美午夜高清在线| 欧美97在线视频| 黑人巨大精品欧美一区二区蜜桃| 久久久精品区二区三区| 国产精品免费视频内射| 高清欧美精品videossex| 精品少妇内射三级| 久久国产亚洲av麻豆专区| 各种免费的搞黄视频| 亚洲伊人久久精品综合| 国产区一区二久久| 久久久久精品国产欧美久久久 | 美女扒开内裤让男人捅视频| 一级毛片电影观看| √禁漫天堂资源中文www| 色综合欧美亚洲国产小说| 欧美日韩视频精品一区| 亚洲人成77777在线视频| 国产福利在线免费观看视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩中文字幕国产精品一区二区三区 | 日韩中文字幕欧美一区二区| 欧美日韩精品网址| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠躁躁| 人妻一区二区av| 亚洲国产精品999| 在线观看www视频免费| 日本91视频免费播放| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 一区二区三区四区激情视频| 老司机靠b影院| 十八禁网站网址无遮挡| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区免费欧美 | 国产伦理片在线播放av一区| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 99精国产麻豆久久婷婷| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 99国产极品粉嫩在线观看| 日韩欧美免费精品| 国产成人免费观看mmmm| 精品久久久精品久久久| avwww免费| 国产黄频视频在线观看| 日本av手机在线免费观看| 一级黄色大片毛片| 久久久久视频综合| 香蕉国产在线看| 人人妻人人澡人人看| 男女高潮啪啪啪动态图| 久久青草综合色| 熟女少妇亚洲综合色aaa.| 精品久久蜜臀av无| 成人影院久久| 在线十欧美十亚洲十日本专区| 亚洲精品一卡2卡三卡4卡5卡 | 国产免费视频播放在线视频| 亚洲avbb在线观看| 这个男人来自地球电影免费观看| 免费不卡黄色视频| 国产精品一区二区在线不卡| 岛国在线观看网站| 少妇精品久久久久久久| 国产又色又爽无遮挡免| 亚洲精品中文字幕一二三四区 | 美女中出高潮动态图| 女性生殖器流出的白浆| 黄片大片在线免费观看| 爱豆传媒免费全集在线观看| 高清在线国产一区| 欧美 亚洲 国产 日韩一| 国产精品国产三级国产专区5o| 亚洲伊人色综图| 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 老司机午夜十八禁免费视频| 精品国产乱子伦一区二区三区 | 国产精品熟女久久久久浪| 少妇 在线观看| 欧美97在线视频| 国产精品国产av在线观看| a级毛片在线看网站| 国产男人的电影天堂91| 午夜福利视频精品| 一边摸一边做爽爽视频免费| 午夜视频精品福利| 80岁老熟妇乱子伦牲交| 永久免费av网站大全| 国产精品亚洲av一区麻豆| 久久综合国产亚洲精品| 精品少妇内射三级| 亚洲国产成人一精品久久久| 国产欧美日韩精品亚洲av| 久久人妻熟女aⅴ| 国产片内射在线| 真人做人爱边吃奶动态| 欧美 日韩 精品 国产| 欧美激情 高清一区二区三区| 最近最新中文字幕大全免费视频| 99精品久久久久人妻精品| 亚洲国产中文字幕在线视频| 伦理电影免费视频| 曰老女人黄片| 免费黄频网站在线观看国产| 在线永久观看黄色视频| 啦啦啦 在线观看视频| 中国美女看黄片| 国产成人啪精品午夜网站| 国产成+人综合+亚洲专区| 精品高清国产在线一区| 不卡一级毛片| 另类亚洲欧美激情| 亚洲欧美精品自产自拍| 免费人妻精品一区二区三区视频| av一本久久久久| 男人爽女人下面视频在线观看| 亚洲成人免费电影在线观看| 青春草视频在线免费观看| 成在线人永久免费视频| 母亲3免费完整高清在线观看| 国产一区二区三区av在线| 法律面前人人平等表现在哪些方面 | 一级片'在线观看视频| 黄色a级毛片大全视频| 亚洲精品第二区| 巨乳人妻的诱惑在线观看| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看日韩| 又大又爽又粗| 久久ye,这里只有精品| 又紧又爽又黄一区二区| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 欧美精品一区二区免费开放| 国产高清videossex| 精品福利观看| 精品人妻在线不人妻| 日韩视频一区二区在线观看| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 亚洲成人免费电影在线观看| 中文字幕人妻丝袜一区二区| 亚洲av欧美aⅴ国产| 日韩大码丰满熟妇| 亚洲欧洲精品一区二区精品久久久| 夜夜骑夜夜射夜夜干| 在线观看www视频免费| 午夜免费观看性视频| 天天操日日干夜夜撸| 别揉我奶头~嗯~啊~动态视频 | 中文欧美无线码| 欧美一级毛片孕妇| 欧美国产精品va在线观看不卡| 久久久久久久大尺度免费视频| 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 黄色片一级片一级黄色片| 久久 成人 亚洲| 亚洲五月色婷婷综合| 国产av一区二区精品久久| 99国产精品免费福利视频| 久久精品成人免费网站| 亚洲第一欧美日韩一区二区三区 | 国产精品1区2区在线观看. | 亚洲国产精品一区三区| 99热全是精品| 国产xxxxx性猛交| 成人免费观看视频高清| 亚洲欧美精品自产自拍| 日韩有码中文字幕| √禁漫天堂资源中文www| 人人澡人人妻人| 韩国高清视频一区二区三区| 建设人人有责人人尽责人人享有的| 日本五十路高清| 久久天堂一区二区三区四区| 亚洲精品日韩在线中文字幕| 国产高清国产精品国产三级| 可以免费在线观看a视频的电影网站| 妹子高潮喷水视频| 国产91精品成人一区二区三区 | 亚洲国产日韩一区二区| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区免费欧美 | 一级,二级,三级黄色视频| 欧美中文综合在线视频| 亚洲中文字幕日韩| 国产精品二区激情视频| 国产一区二区在线观看av| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区激情| 在线观看免费日韩欧美大片| 精品国产乱子伦一区二区三区 | 亚洲精品日韩在线中文字幕| 国产成人av激情在线播放| 不卡一级毛片| 亚洲成人国产一区在线观看| 中文字幕人妻熟女乱码| 五月天丁香电影| 欧美日韩中文字幕国产精品一区二区三区 | 桃花免费在线播放| 麻豆乱淫一区二区| 国产av精品麻豆| 久久 成人 亚洲| 国产伦理片在线播放av一区| 男女国产视频网站| 少妇精品久久久久久久| 亚洲天堂av无毛| 国产精品一二三区在线看| 国产成人精品无人区| 夜夜骑夜夜射夜夜干| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 老汉色av国产亚洲站长工具| 亚洲国产中文字幕在线视频| 欧美97在线视频| 最新在线观看一区二区三区| 麻豆乱淫一区二区| 久久人妻福利社区极品人妻图片| 亚洲精品av麻豆狂野| 亚洲成av片中文字幕在线观看| 国产高清国产精品国产三级| 久久精品aⅴ一区二区三区四区| 久久久国产一区二区| 久久久国产欧美日韩av| 69精品国产乱码久久久| www日本在线高清视频| 天天添夜夜摸| 国产1区2区3区精品| 在线永久观看黄色视频| 久久久久久久久久久久大奶| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 久久久国产成人免费| av又黄又爽大尺度在线免费看| 淫妇啪啪啪对白视频 | 免费在线观看视频国产中文字幕亚洲 | 激情视频va一区二区三区| 成人免费观看视频高清| 亚洲欧洲日产国产| 亚洲 国产 在线| 久久中文字幕一级| 欧美另类一区| 嫩草影视91久久| 亚洲黑人精品在线| 国产人伦9x9x在线观看| 日韩欧美国产一区二区入口| 99国产精品一区二区蜜桃av | 青春草视频在线免费观看| 大香蕉久久成人网| 97在线人人人人妻| 男女免费视频国产| 国产成人a∨麻豆精品| 欧美97在线视频| 99热网站在线观看| 超碰97精品在线观看| 国产精品成人在线| 一边摸一边做爽爽视频免费| 香蕉丝袜av| 亚洲欧美日韩高清在线视频 | 99国产极品粉嫩在线观看| 最新的欧美精品一区二区| 色播在线永久视频| 日本黄色日本黄色录像| 欧美国产精品一级二级三级| 国产成人欧美| 俄罗斯特黄特色一大片| 两个人看的免费小视频| 青春草视频在线免费观看| 国产麻豆69| 亚洲精品国产区一区二| 国产有黄有色有爽视频| 男女国产视频网站| 欧美在线黄色| 亚洲国产av影院在线观看| 日韩中文字幕欧美一区二区| 欧美xxⅹ黑人| 99国产精品99久久久久| 久久毛片免费看一区二区三区| 日本一区二区免费在线视频| 亚洲av片天天在线观看| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 超碰97精品在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区在线不卡| 国产亚洲精品第一综合不卡| 中文欧美无线码| 岛国在线观看网站| 一个人免费在线观看的高清视频 | 又黄又粗又硬又大视频| 人人妻人人爽人人添夜夜欢视频| 一本色道久久久久久精品综合| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区91| 50天的宝宝边吃奶边哭怎么回事| 国产成人系列免费观看| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 99国产精品99久久久久| 国产精品久久久人人做人人爽| 丰满少妇做爰视频| 高清视频免费观看一区二区| 最新在线观看一区二区三区| 悠悠久久av| 国产精品偷伦视频观看了| 亚洲专区字幕在线| 久久久国产精品麻豆| 青春草亚洲视频在线观看| 天天影视国产精品| 少妇人妻久久综合中文| 999久久久精品免费观看国产| 国产福利在线免费观看视频| 国产成人免费无遮挡视频| 国产精品久久久人人做人人爽| 99热网站在线观看| 亚洲精品国产区一区二| 美女大奶头黄色视频| 咕卡用的链子| www.999成人在线观看| 一级片'在线观看视频| 在线亚洲精品国产二区图片欧美| 亚洲精品日韩在线中文字幕| 欧美人与性动交α欧美软件| 国产一区二区激情短视频 | 美女视频免费永久观看网站| 久久久久久久久久久久大奶| 午夜福利影视在线免费观看| 蜜桃在线观看..| 成年女人毛片免费观看观看9 | 精品少妇黑人巨大在线播放| 欧美另类一区| 久久狼人影院| 女人精品久久久久毛片| 婷婷成人精品国产| 中亚洲国语对白在线视频| 久久人人爽人人片av| 久久久久国内视频| 欧美精品亚洲一区二区| 纵有疾风起免费观看全集完整版| 国产精品熟女久久久久浪| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 午夜免费观看性视频| 首页视频小说图片口味搜索| 少妇粗大呻吟视频| 十八禁人妻一区二区| 成年人午夜在线观看视频| 国产成人精品在线电影| 高潮久久久久久久久久久不卡| 国产av一区二区精品久久| 亚洲国产欧美在线一区| av在线app专区| 精品国产一区二区久久| 女人被躁到高潮嗷嗷叫费观| 免费高清在线观看视频在线观看| 欧美日韩av久久| 51午夜福利影视在线观看| 亚洲av成人一区二区三| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| 久热这里只有精品99| 国产激情久久老熟女| 美女午夜性视频免费| 老司机午夜福利在线观看视频 | 91老司机精品| 国产一卡二卡三卡精品| www.熟女人妻精品国产| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 丁香六月天网| 国产精品秋霞免费鲁丝片| 每晚都被弄得嗷嗷叫到高潮| 久久性视频一级片| 一级黄色大片毛片| 欧美精品一区二区免费开放| 欧美成人午夜精品| 欧美精品人与动牲交sv欧美| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 亚洲av片天天在线观看| 久久久久精品人妻al黑| 成人影院久久| 欧美激情 高清一区二区三区| 精品一区在线观看国产| 日韩欧美一区视频在线观看| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久| 大码成人一级视频| 精品视频人人做人人爽| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 99久久99久久久精品蜜桃| 亚洲精品中文字幕一二三四区 | 国产精品久久久久成人av| 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人欧美在线观看 | 日韩大片免费观看网站| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 国产麻豆69| 精品人妻一区二区三区麻豆| 老司机午夜福利在线观看视频 | 欧美精品啪啪一区二区三区 | av片东京热男人的天堂| 欧美精品高潮呻吟av久久| 国产激情久久老熟女| 精品乱码久久久久久99久播| 黑人欧美特级aaaaaa片| 国产精品二区激情视频| 亚洲欧美一区二区三区久久| 国产精品一区二区在线观看99| 精品高清国产在线一区| 90打野战视频偷拍视频| 9191精品国产免费久久| 免费女性裸体啪啪无遮挡网站|