• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device

    2022-03-12 07:44:30YangTan譚楊BinLiang梁彬andJianchunCheng程建春
    Chinese Physics B 2022年3期
    關(guān)鍵詞:建春

    Yang Tan(譚楊), Bin Liang(梁彬), and Jianchun Cheng(程建春)

    Key Laboratory of Modern Acoustics(Ministry of Education),Institute of Acoustics,Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: acoustic metamaterials,one-way wavefront manipulation,broadband planar device

    1. Introduction

    Since the invention of electrical diodes enabling rectifying of current, considerable efforts have been dedicated to research on one-way manipulation of other kinds of energy forms.[1-4]In acoustics, the attempts to break the symmetry in sound propagation began with the emergence of acoustic diode that used nonlinearity to break the limitation of reciprocity, offering the possibility to design novel functional devices that only allowed acoustic wave to pass along one particular direction and may enable special application in various scenarios.[5,6]Later, different mechanisms were proposed for the purpose of further improving the performance of acoustic one-way devices by breaking the spatial symmetry instead of the time reversal symmetry,[7-23]giving rise to different designs featuring broad working bandwidths,[7,8,10,12,13,19,23]high forward transmission efficiencies,[7,8,11,12,14]compact sizes,[9,13,15-17,20,22]planar profiles,[14-16,18,20]etc. In addition, acoustic asymmetric transport inPT-symmetric system[24,25]and topologically protected one-way sound propagation[26,27]have also been investigated. So far, it is still challenging to realize one-way manipulation for broadband airborne sound by using a planar and ultra-lightweight device. More importantly,most of the existing designs are only aiming at producing a different transmission efficiency for wave propagating along opposite directions,which limits their application potential in practical situations where the transmitted waves usually need to be modulated to form various wave fields on demand.

    In this study, we propose to realize a highly asymmetric manipulation of the wave field for airborne sound by designing a planar device that works for both normal and oblique incidences within a relatively broad frequency range. The rest of the paper is organized as follows. In Section 2, we introduce the schematic of the proposed model and elucidate the underlying mechanism of our design. Then in Section 3,we give a practical implementation of the proposed model by rationally arranging slits composed of different gases which ensures the low energy loss in forward transmission and light weight of the device. In Section 4, the asymmetric wavefront-steering performance of the resulting device is demonstrated numerically via distinct examples of anomalous refraction, unidirectional acoustic focusing and Bessel beam production,and some discussion on the results is also provided. Finally, a brief summary is given in Section 5.

    2. Design of planar device for unidirectional wavefront manipulation

    The schematic of our proposed design of the planar device capable of asymmetrically controlling the wavefront for broadband airborne sound is illustrated in Fig.1. Our model is composed of a metasurface(MS)and a layer of homogeneous medium (HM) with judiciously designed system parameters which include the phase gradient dφ/dxof MS and the refractive indexnhof HM (defined asnh=c0/ch, wherechandc0represent the sound speed of HM and the background medium,respectively). The metasurface is assumed to have an acoustic impedance well matching the background medium(chosen as air here for which the mass density isρ0=1.21 kg/m3and sound speed isc0=343 m/s)and low energy loss. We define the positive incidence(PI)as the incidence direction of plane wave that comes from the side of the homogeneous layer,along which the incident sound will be allowed to pass the system,and the incidence from the opposite side as the negative incidence(NI).These two opposite directions are marked by the blue and red arrows in Fig.1,respectively.

    Fig. 1. The schematic of the proposed planar unidirectional acoustic transmission device.The propagation trajectories of wave incident from two opposite directions with an incident angle of θi are marked by blue and red arrows.

    The mechanism underpinning our designed unidirectional wavefront-steering device can be understood as a broken of symmetry in the propagation trajectory of incident plane wave impinging on two sides of the system with broken spatial symmetry,giving rise to quite different angles of refraction for the PI and NI cases. Due to the broken spatial symmetry of our system,it would be possible to ensure the wave incident from the side of the homogeneous layer at an angle not exceeding the critical angle of the interface,while the reversed wave has an incident angle larger than the critical angle and undergoes a total reflection at the interface. This can be achieved by judiciously choosing the system parameters including the phase profile of the metasurface and the refractive index of the homogeneous medium,and further enables asymmetric manipulation of the transmitted wavefront if the phase gradient provided by the metasurface is controlled locally. Due to the simplicity of our proposed model, the propagation trajectory and critical angles for plane wave in the PI and NI cases can be analytically derived,which offers a fast and precise prediction of the working bandwidth of the resulting one-way device.

    According to the generalized Snell’s law,[28]the angles of refraction provided by the metasurface in our designed planar device for the PI and NI cases can be calculated by

    whereθiandθtare the angles of incidence and refraction,nhandn0=1 are the refractive indexes of HM and air,k0is the wave number in air, and dφ/dxis the phase gradient of MS.Obviously,when the system parameters in the device are properly chosen such that

    the refraction angle is a real value for the PI case, which physically indicates that the acoustic energy of the airborne sound incident normally on the inserted layer of HM can pass through it and then modulated by MS to form the desired pattern on the transmitted side.For the NI case,on the other hand,the refraction angle has nonzero imaginary part since the transverse wave number is larger than the total wave number after passing through MS. Hence the plane wave coming from the opposite side is converted into the evanescent wave in HM and virtually blocked.It should be noted that,although plane wave becomes evanescent in HM for the NI case, HM needs to be thick enough to ensure sufficient attenuation of the evanescent wave alongy-axis. Equation(2)gives the theoretical working bandwidth of such unidirectional control of wavefront that is expected to have high forward transmission efficiency due to the good impedance match and has the capability to work for oblique incidence case, which will be verified via numerical simulations in the following.

    3. Implementation of impedance matched metasurface

    As a practical implementation of the proposed theoretical model shown in Fig. 1, we choose to build the acoustic metasurface by using multiple cut-through slits that are filled with two noble gases (argon and xenon) on a rigid thin plate.[29]The different regions of air, argon, and xenon can be separated by using polyethylene films (thin enough to be regarded as transparent to acoustic waves), as successfully realized in previous experiment.[6]The sound speed and acoustic impedance of these materials arecXe= 169 m/s,cAr=323 m/s,ZXe=996.1 Pa·s/m,ZAr=576.2 Pa·s/m.By simply modulating the filling ratio of these two gases,the phase shift of transmission wave changes accordingly. Notice that,the good impedance match and low energy loss of natural gases used in this specific design ensures near-unity forward transmission efficiency and well mimics the desired effective parameters to validate our above assumptions.In addition,due to the low dispersion of the gases and the transparency of the thin membrane separating different gases,the resulting device can work in a relatively broad frequency range and have ultralight weight,providing special functionality and flexibility important for practical scenarios.

    4. Unidirectional wavefront manipulation

    In the following, we will demonstrate the unique unidirectional wavefront-steering functionality of our proposed planar device, which is characterized by the fact that for the PI case the incident wave is manipulated flexibly to form the desired wavefront after being allowed to pass the system and, contrarily, the transmission of NI wave is still forbidden. Three typical examples will be showcased: asymmetric anomalous refraction,high-efficiency convergence of acoustic energy and production of Bessel beam.

    4.1. Asymmetric anomalous refraction

    For producing the anomalous refraction for plane wave with a wavelength ofλ0incident along the forward direction, one needs to establish a constant phase shift gradient(dφ/dx=2π/d). The schematic of the metasurface is shown in Fig. 2(a). Four slits with one filling with air and others filling with xenon and argon form a period. The slits are separated by rigid walls with width ofwand the width of the filling gases isa, and the width of one period is thusd=4(w+a).The thicknesses of the metasurface and the gases can be readily derived as follows:

    wherehAr,irepresents the thickness of argon in theith slit and the relative phase shift of theith slit is(i-1)π/2.

    We first consider a simple case of normal incidence of plane wave. In the current study we choose the structural parameters asd=4 cm,w=2 mm,p=8 mm andλ0=3.5 cm such that the first inequality of Eq.(2)is satisfied. The transmittance and phase shift are numerically calculated for each slit and the simulated results are shown in Fig.2(b). It is observed that the slits can be rationally designed to produce precise full-range control of phase shift and near-unity transmission efficiency,as marked by the blue and red dots in the figure, thanks to the well-matched acoustic impedance and low energy loss. On the other hand, the homogeneous medium layer is chosen to be filled with methane gas(cCH4=448 m/s,ZCH4= 294.3 Pa·s/m) with a thickness ofh= 1.7dsuch that the requirement ofch>c0d/λ0given by Eq. (2) is satisfied. Throughout the paper, the numerical simulations are performed by using full-wave simulation based on the finite element method(COMSOL Multiphysics).

    We have performed a series of numerical simulations to verify the functionality of producing unidirectional anomalous refraction of the designed device. Typical numerical results are illustrated in Fig. 2(c), which gives the simulated spatial distributions of acoustic pressure at the frequency off0=9800 Hz. The Floquet periodic boundary conditions are applied to the top and bottom boundaries of the system. It is clearly observed that for the NI case, the incident acoustic wave is subject to strong interference and converted into evanescent mode that cannot penetrate into the homogeneous medium layer,resulting in a total reflection on the interface between air and MS.In contrast,the incident plane wave in the PI case normally impinging on the HM is allowed to pass through the system and then leave with a refraction angle of 61°,which agrees well with the prescribed angle given in Eq.(1).It is also noticed that the output waveform is well preserved,which,in addition to the controllable refraction angle, would be highly desirable for the practical application of the resulting one-way devices such as in acoustic communications and imaging.

    Fig.2. (a)The schematic of the impedance-matching metasurface used in our design. (b)The transmittance(red dots)and phase shift(blue dots)of each slit(i=1,2,3,4). (c)The simulated sound pressure field of PI(left)and NI(right)at a particular frequency of f0=9800 Hz.

    Due to the fact that the acoustic signals used in practical applications usually have finite bandwidth, it is necessary to investigate the performance of our design with fixed parameters when the frequency of incident wave deviates fromf0.We plot in Fig. 3(a) and Fig. 3(b) the typical results of simulated sound pressure field for two particular frequencies of 8765 Hz and 10500 Hz,respectively. As shown by the numerical results, for both the cases, the incident acoustic energy is allowed to pass through the device along positive direction while being virtually blocked as the incident direction is reversed,proving the effectiveness of the proposed one-way device. Furthermore, the waveform of the transmitted wave is well maintained,and the refraction angles agree well with the theoretical predictions in Eq.(1),which are about 78°and 55°at 8765 Hz and 10500 Hz,respectively.

    For a quantitative evaluation of the unidirectional transmission property of the proposed device within a certain range of driving frequency,we introduce a parameter of contrast ratio,defined as[13]

    whereTPIandTNIrefer to the energy transmittance in the PI and NI cases, respectively. Obviously, the value ofRcranges from 0 to 1, and a higherRcindicates that the acoustic transmission in the system is more asymmetric.

    For such a specific device with fixed structural parameters, the working bandwidth for normal incidence can be derived by rewriting Eq.(2)as follows:

    Fig.3. (a)and(b)Simulated spatial distribution of the acoustic pressure at 8675 Hz and 10500 Hz,respectively. (c)Simulated transmittance and(d)contrast ratio as functions of frequency for the PI and NI cases.

    Given the fact that the incident angle of incoming wave may varies in practice,it is important to inspect the angular dependence of the one-way performance of our designed device.For a clear view, we plot in Figs. 4(a) and 4(b) the 2D maps of transmittance and contrast ratio obtained from numerical simulations, respectively. An inverted V-shaped zone of high contrast ratio can be clearly observed, proving that our strategy is also capable of working for obliquely incident waves.The effective range of incident angle is closely related to the frequency.For the frequency lower than 9000 Hz,the working angle width is approximately 20°.

    We further investigate the formation of such an effective zone.Due to the periodicity of the metasurface with a constant phase shift gradient, the generalized Snell’s law, considering periodic gratings,should be modified as[31]

    In fact,m=-2 corresponds to the negative refractive phenomenon and the transmission wave becomes evanescent whileθi <θ(-2)c. As a consequence,acoustic wave is blocked when incident angle is between the two critical angles of different diffraction orders,i.e.,θ(0)c<θi <θ(-2)c. We plot these critical angles in Eqs.(7)and(8)as a function of frequency in Fig.4,where cyan for PI,blue for NI,and solid lines form=0 while dashed lines form=-2. Good agreement between the simulated results of transmittance with the above theoretical analyses can be observed in Figs.4(a)and 4(b),which clearly manifests that asymetric tramission arises from different critical angles for PI and NI caused by the broken spatial symmetry.

    Fig. 4. (a) Transmittance of PI (left), NI (right) and (b) the contrast ratio as a function of frequency and incident angle. (c) Frequency dependence ofthecriticalangles includingc,PI(cyansolid line), (bluesolidline),(cyan dashed line)and (blue dashed line),whichareplotted in(a)and(b)as well forcomparisonwith the simulated results.

    4.2. Unidirectional planar focusing lens and axicon

    Next,we will demonstrate the capability of the proposed device to manipulate the forward transmitted wavefront more diversely than simply bending its propagation direction while blocking the reversed wave. Considering the significance of energy focusing and beamforming in practical applications such as acoustic ultrasound imaging and therapy, we choose two distinctive examples of unidirectional acoustic focusing and one-way production of Bessel beam to demonstrate the performance of our device in 3D space for normal incidence.In this part,cylindrical coordinate is used withz-axis indicating the incident direction and the slits of MS are numbered alongρ-axis.

    4.2.1. Unidirectional planar focusing lens

    The schematic of designing a planar focusing lens is illustrated in Fig.5(a). One can readily derive the desired phase shift at an arbitrary point P(ρ) for producing a focus with a focal lengthF,

    whereFis the given focal length,λ0is the wavelength of incident wave in air. It should be noticed that,when phase shift expressed as Eq. (9) is used, there exists a critical distance

    Here, as an example, we setλ0= 4 cm,h0= 1.03λ0,F=30 cm,w=2 mm,p=8 mm. In addition, helium gas(cHe=970 m/s,ZHe=174 Pa·s/m)is employed as the HM to decreaseρc. The corresponding thickness of Argon in each slit is shown in Fig. 5(b) and the phase shift is conical (red dots)forρ <ρcwhile being hyperboloidal(blue dots)whereρ >ρc.

    Fig. 5. (a) Schematic diagram of the design of focusing lens. A hyperboloidal phase profile along ρ direction is utilized to focus acoustic plane wave to a single point at a distance F from the device. The blue spherical line with radius F is the desired equiphase surface.(b)The designed thickness of argon in each slit and the corresponding phase shift to be conical(red dots)and hyperboloidal(blue dots),respectively.

    Fig.6. (a)Spatial distribution of the normalized intensity field|p|2 for the PI case(left)and the NI case(right). (b)Longitudinal(along z-axis at ρ =0) and (c) transverse cross-section (along ρ-axis at z=F =0.3 m) intensity profile of PI (blue line) and NI (red line). Logarithmic coordinate for|p|2 is used here to clearly show the difference in order of magnitude. The black dashed line indicates the relative intensity of the incident plane wave and the magenta pentacle in(b)indicates the target focus position. (d)Longitudinal cross-section of the normalized transmission intensity field for the PI case(upper)and the NI case(lower)at λ =0.9λ0 (left)and λ =0.8λ0 (right).

    Figure 6(a)shows the typical simulated results of comparison between the normalized spatial distributions of acoustic intensity|p|2in the transmitted region for acoustic normally incident from two opposite sides. The numerical results show that for the PI case, the incident acoustic energy is focused with high efficiency into the prescribed focal region,as characterized by a strong amplification of acoustic intensity at the target region located approximately atz=0.3 m(see Fig.6(b)).For the NI case, contrarily, there is no appreciable enhancement of the acoustic intensity in the transmitted region, suggesting the effective elimination of the reversed wave. For a quantitative estimation of the performance of the designed unidirectional planar focusing lens, the normalized intensity distribution alongz-axis atρ=0 as well as alongρ-axis atz=F=0.3 m are shown in Figs. 6(b) and 6(c). We use the logarithmic coordinate for|p|2here to clearly show the difference of order of magnitude. The intensity of pressure at the focal point is two orders of magnitude higher than the one of incident wave for the PI case while one order lower for the NI case, proving the efficiency of the unidirectional focusing effect. We further investigate the effectiveness of the proposed device when the incident wave lengthλdeviates fromλ0. The transmission fields for the PI and NI cases atλ=0.9λ0andλ=0.8λ0are shown in Fig. 6(d). It is obvious that our device can still effectively focus the incident energy at the predesigned focal region for PI while blocking the sound energy of NI,except for slight variation in the focal length at different frequencies due to the dispersion of MS.

    4.2.2. One-way planar axicon

    As shown in Fig.7(a),to design a planar acoustic axicon with a base angleβ, the phase shift at the point P(ρ) should be conical and expressed as

    To ensure the unidirectional effect, according to Eq. (2), the base angle should satisfy sinβ >nh. Here we setβ=25°and other parameters just the same as those in the above subsection except the phase shift. The corresponding theoretical thickness of argon in each slit according to Eq.(10)is shown in Fig.7(b).

    Fig. 7. (a) Schematic diagram of the design of acoustic axicon. The blue cone-like line with base angle β is the desired equiphase surface.(b)The theoretical thickness of argon in each slit of the metasurface.

    Fig.8. (a)Spatial distribution of the normalized intensity field|p|2 for PI(left)and NI(right). (b)The intensity profile along ρ-axis in the plane located at z=0.7 m. (c)and(d)Longitudinal cross-section of the normalized transmission intensity filed at λ =0.9λ0 and λ =0.8λ0,respectively.

    The normalized intensity distribution|p|2in a longitudinal cross-section of PI and NI is shown in Fig.8(a). To quantify the performance of the device, in Fig. 8(b), we plot the transverse cross-section intensity distribution atz=0.7 m for comparison. A non-diffracting Bessel beam propagating with a relatively long distance can be observed for the PI case while the sound pressure is still nearly zero for the NI case,proving the effectiveness of the proposed mechanism, which enables the design of a planar unidirectional axicon. Similarly, simulations are also carried out when the incident wave length changes fromλ0.Typical results of transmission intensity field for incident wave withλ=0.9λ0andλ=0.8λ0are shown in Figs. 8(c) and 8(d), respectively. For both the cases, the non-diffracting Bessel beam for PI can be observed and the acoustic energy for NI is effectively blocked, confirming the broadband characteristic of our device.

    5. Conclusion

    In summary,we have proposed the design of a planar unidirectional wavefront-steering device for airborne sound by combining a metasurface and a layer of homogeneous medium which can all be implemented by using natural materials.Based on a mechanism that uses the broken spatial symmetry to produce different critical angles along opposite directions, the designed device can work in a relatively broad frequency range for both normal incidence and oblique incidence within a certain angle range, and maintain high contrast ratio and forward transmittance simultaneously. When ensuring the effectiveness of unidirectional transmission, the sound pressure distribution of PI can be manipulated flexibly, which is verified numerically via distinctive examples of unidirectional anomalous refraction,acoustic focusing and Bessel beam production.

    Notice that high-efficiency focusing of acoustic energy into the desired spatial region and production of nondiffractive beam are of both fundamental interests and practical significance in various applications ranging from acoustic non-destructive evaluation to ultrasound imaging.It can therefore be expected that the breaking of transmission symmetry of an acoustic focusing lens or an acoustic axicon would be intriguing,which not only overcomes the conventional limitations and may have the potential to revolutionize acoustic technologies in various fields such as acoustic imaging and therapy by effectively blocking the unwanted backscattered waves.

    Acknowledgements

    Project supported by National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006,11374157, and 81127901), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Innovation Special Zone of National Defense Science and Technology and High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures.

    猜你喜歡
    建春
    Controlling acoustic orbital angular momentum with artificial structures: From physics to application
    陸建春油畫作品欣賞
    參花(下)(2022年10期)2022-09-17 01:16:18
    Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
    祖父瓷
    意林彩版(2022年1期)2022-05-03 10:25:07
    Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
    鐘 斌 洪祖榮 曉 陽 程宣猷 孟柔國 韓建春 吳國林 倪桂珠 陳俊寶 張金華
    大江南北(2022年1期)2022-01-19 06:31:54
    過建春:慢加急性肝衰竭的中西醫(yī)結(jié)合診治
    肝博士(2020年4期)2020-09-24 09:21:12
    33 歲物流員破解世界級難題我只想找個對象成家
    北廣人物(2019年46期)2019-11-15 08:56:28
    給人生算出一個新高度
    “心靈捕手”的數(shù)字王國
    知識窗(2016年10期)2016-05-14 09:08:27
    大陆偷拍与自拍| 精品少妇久久久久久888优播| 欧美在线一区亚洲| 国产日韩欧美在线精品| 女性被躁到高潮视频| 久久久久国产一级毛片高清牌| 一区二区三区精品91| 国产主播在线观看一区二区| 男男h啪啪无遮挡| 久久这里只有精品19| 亚洲七黄色美女视频| av在线app专区| 亚洲午夜精品一区,二区,三区| 国产精品免费大片| 中国美女看黄片| 99精品欧美一区二区三区四区| 18禁观看日本| 亚洲自偷自拍图片 自拍| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩视频精品一区| 久久av网站| 成人av一区二区三区在线看 | 国产1区2区3区精品| 午夜老司机福利片| 国产av精品麻豆| 久久久久久久国产电影| 搡老熟女国产l中国老女人| 亚洲国产欧美在线一区| 日韩人妻精品一区2区三区| 亚洲成人国产一区在线观看| 建设人人有责人人尽责人人享有的| 亚洲精品久久午夜乱码| 在线av久久热| 18在线观看网站| 天天添夜夜摸| 日韩欧美一区视频在线观看| 97人妻天天添夜夜摸| 国产人伦9x9x在线观看| 少妇的丰满在线观看| 国产伦人伦偷精品视频| 日韩欧美一区二区三区在线观看 | 妹子高潮喷水视频| 免费一级毛片在线播放高清视频 | 久热爱精品视频在线9| 一本—道久久a久久精品蜜桃钙片| 十八禁网站网址无遮挡| 国产精品影院久久| 免费日韩欧美在线观看| 国产片内射在线| 欧美人与性动交α欧美精品济南到| 国产欧美亚洲国产| 午夜福利视频在线观看免费| 超碰成人久久| 欧美大码av| 在线观看免费日韩欧美大片| 少妇裸体淫交视频免费看高清 | 美女高潮喷水抽搐中文字幕| 三上悠亚av全集在线观看| 中文字幕av电影在线播放| av片东京热男人的天堂| 亚洲美女黄色视频免费看| 色94色欧美一区二区| 久久天堂一区二区三区四区| 极品少妇高潮喷水抽搐| 精品福利观看| 9色porny在线观看| 国产麻豆69| 这个男人来自地球电影免费观看| 国产在线视频一区二区| 在线永久观看黄色视频| 成年av动漫网址| 欧美成人午夜精品| 咕卡用的链子| av国产精品久久久久影院| 国产成人免费观看mmmm| 亚洲精品久久久久久婷婷小说| www.av在线官网国产| 久久精品aⅴ一区二区三区四区| 少妇粗大呻吟视频| 亚洲国产精品成人久久小说| 大片免费播放器 马上看| 精品第一国产精品| 日韩大片免费观看网站| 最新在线观看一区二区三区| 亚洲av欧美aⅴ国产| 黄色视频不卡| 青春草视频在线免费观看| 欧美亚洲日本最大视频资源| 精品卡一卡二卡四卡免费| 多毛熟女@视频| 人人妻人人澡人人看| 亚洲一码二码三码区别大吗| 岛国毛片在线播放| 男人添女人高潮全过程视频| 欧美亚洲日本最大视频资源| 欧美性长视频在线观看| 淫妇啪啪啪对白视频 | 777米奇影视久久| 欧美在线一区亚洲| 国产又爽黄色视频| 中文字幕精品免费在线观看视频| 久久ye,这里只有精品| 成年女人毛片免费观看观看9 | 一本色道久久久久久精品综合| 1024视频免费在线观看| 亚洲精品国产精品久久久不卡| 亚洲精品久久成人aⅴ小说| 99久久人妻综合| 亚洲中文字幕日韩| 夜夜骑夜夜射夜夜干| 亚洲欧美日韩高清在线视频 | 美女主播在线视频| 亚洲一码二码三码区别大吗| 日韩熟女老妇一区二区性免费视频| 欧美变态另类bdsm刘玥| av在线老鸭窝| 天天躁夜夜躁狠狠躁躁| 欧美成人午夜精品| 不卡av一区二区三区| xxxhd国产人妻xxx| 午夜久久久在线观看| 在线观看免费午夜福利视频| 国产黄频视频在线观看| 性色av乱码一区二区三区2| 国产一区二区三区在线臀色熟女 | 丰满饥渴人妻一区二区三| 一边摸一边抽搐一进一出视频| 午夜日韩欧美国产| 国产片内射在线| 熟女少妇亚洲综合色aaa.| 国产一区二区在线观看av| 国产成人一区二区三区免费视频网站| 国产欧美日韩一区二区精品| 最新的欧美精品一区二区| 国产免费福利视频在线观看| 亚洲av日韩精品久久久久久密| 人人妻人人澡人人爽人人夜夜| 国产日韩欧美在线精品| 婷婷成人精品国产| 手机成人av网站| 欧美日韩国产mv在线观看视频| 青春草亚洲视频在线观看| 国产极品粉嫩免费观看在线| 亚洲精品久久久久久婷婷小说| 国产伦人伦偷精品视频| 精品免费久久久久久久清纯 | av网站在线播放免费| 性少妇av在线| 国产区一区二久久| 久久精品久久久久久噜噜老黄| 嫁个100分男人电影在线观看| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区黑人| av网站免费在线观看视频| 91av网站免费观看| 国产精品av久久久久免费| 久久女婷五月综合色啪小说| 美女高潮喷水抽搐中文字幕| 久久久久精品人妻al黑| 国产91精品成人一区二区三区 | 极品少妇高潮喷水抽搐| 亚洲av成人不卡在线观看播放网 | 欧美在线一区亚洲| 狠狠狠狠99中文字幕| 精品国产乱码久久久久久男人| 最近中文字幕2019免费版| 男女之事视频高清在线观看| 最新的欧美精品一区二区| 国产成人免费观看mmmm| 国产一区二区 视频在线| 在线观看舔阴道视频| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 亚洲精品乱久久久久久| 亚洲精品av麻豆狂野| 欧美日韩av久久| 美女午夜性视频免费| 日韩三级视频一区二区三区| 亚洲av国产av综合av卡| 色婷婷av一区二区三区视频| 成年女人毛片免费观看观看9 | 青春草亚洲视频在线观看| 中文字幕精品免费在线观看视频| 欧美日韩亚洲高清精品| 18禁国产床啪视频网站| 亚洲九九香蕉| 欧美人与性动交α欧美精品济南到| 国产激情久久老熟女| 9191精品国产免费久久| 欧美日韩av久久| 亚洲精品国产av蜜桃| 免费少妇av软件| 亚洲视频免费观看视频| 亚洲九九香蕉| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 丰满迷人的少妇在线观看| 9191精品国产免费久久| 国产精品国产av在线观看| 丁香六月天网| 99re6热这里在线精品视频| 男女免费视频国产| 超色免费av| 精品久久蜜臀av无| e午夜精品久久久久久久| 各种免费的搞黄视频| 91老司机精品| 成年人午夜在线观看视频| 精品亚洲成a人片在线观看| 精品人妻在线不人妻| 国产精品国产av在线观看| 亚洲,欧美精品.| 18禁黄网站禁片午夜丰满| 久久久国产一区二区| 国产精品熟女久久久久浪| 欧美日韩精品网址| 亚洲国产欧美日韩在线播放| 黄网站色视频无遮挡免费观看| av天堂在线播放| 亚洲,欧美精品.| 成年人黄色毛片网站| 夫妻午夜视频| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 国产色视频综合| 99久久综合免费| 91成人精品电影| 免费观看av网站的网址| 十分钟在线观看高清视频www| 色老头精品视频在线观看| 1024香蕉在线观看| 少妇人妻久久综合中文| 欧美性长视频在线观看| 亚洲成人国产一区在线观看| 性少妇av在线| 国产无遮挡羞羞视频在线观看| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频| 欧美日韩精品网址| 美女脱内裤让男人舔精品视频| 欧美日韩亚洲国产一区二区在线观看 | 国产深夜福利视频在线观看| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| av在线app专区| a级毛片在线看网站| 黄色毛片三级朝国网站| 另类亚洲欧美激情| 亚洲成国产人片在线观看| 秋霞在线观看毛片| 黄色视频,在线免费观看| 国产成人啪精品午夜网站| 婷婷成人精品国产| 伊人亚洲综合成人网| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 免费人妻精品一区二区三区视频| 欧美 亚洲 国产 日韩一| 亚洲av美国av| av网站在线播放免费| 亚洲精品国产区一区二| 人成视频在线观看免费观看| 精品高清国产在线一区| 亚洲国产精品999| 99热网站在线观看| 欧美亚洲日本最大视频资源| 亚洲黑人精品在线| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久人人做人人爽| 视频区图区小说| 精品福利观看| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 亚洲国产av影院在线观看| 狂野欧美激情性bbbbbb| 欧美激情高清一区二区三区| av在线播放精品| 男女无遮挡免费网站观看| 久9热在线精品视频| 国产老妇伦熟女老妇高清| 捣出白浆h1v1| 亚洲精品国产色婷婷电影| 国产在线一区二区三区精| 麻豆av在线久日| 午夜91福利影院| 宅男免费午夜| 精品一区二区三区四区五区乱码| 天天躁日日躁夜夜躁夜夜| 国产av一区二区精品久久| 欧美成狂野欧美在线观看| 亚洲av片天天在线观看| 欧美在线黄色| 中亚洲国语对白在线视频| 一区二区三区四区激情视频| 日韩精品免费视频一区二区三区| 麻豆av在线久日| 亚洲成人手机| 99国产精品免费福利视频| av又黄又爽大尺度在线免费看| 欧美日韩黄片免| 亚洲七黄色美女视频| 免费在线观看日本一区| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 国产日韩欧美视频二区| 啪啪无遮挡十八禁网站| 一本大道久久a久久精品| 男女床上黄色一级片免费看| svipshipincom国产片| 99国产极品粉嫩在线观看| 这个男人来自地球电影免费观看| 岛国在线观看网站| 少妇裸体淫交视频免费看高清 | 涩涩av久久男人的天堂| 午夜精品久久久久久毛片777| 一边摸一边抽搐一进一出视频| 国产三级黄色录像| 丰满迷人的少妇在线观看| 搡老岳熟女国产| 日本一区二区免费在线视频| 啦啦啦啦在线视频资源| 又大又爽又粗| 777久久人妻少妇嫩草av网站| 五月开心婷婷网| 欧美久久黑人一区二区| 久久亚洲精品不卡| 大码成人一级视频| 免费黄频网站在线观看国产| 午夜老司机福利片| 欧美亚洲日本最大视频资源| 国产精品成人在线| 亚洲成人免费电影在线观看| 国产亚洲欧美在线一区二区| 亚洲精品久久午夜乱码| 免费在线观看完整版高清| 亚洲欧洲日产国产| 青春草视频在线免费观看| 两人在一起打扑克的视频| 成人av一区二区三区在线看 | 日韩中文字幕欧美一区二区| 日韩人妻精品一区2区三区| 男男h啪啪无遮挡| 美女高潮喷水抽搐中文字幕| 精品一区在线观看国产| 一区福利在线观看| 777米奇影视久久| 丝瓜视频免费看黄片| 久久九九热精品免费| 精品福利观看| 美女大奶头黄色视频| 老司机深夜福利视频在线观看 | 国产精品久久久久久精品电影小说| 黄色视频,在线免费观看| 中文字幕av电影在线播放| 深夜精品福利| 亚洲av电影在线观看一区二区三区| 日韩电影二区| 色综合欧美亚洲国产小说| 日本五十路高清| 亚洲欧美一区二区三区黑人| 日韩免费高清中文字幕av| 亚洲精品国产精品久久久不卡| 久久热在线av| a级片在线免费高清观看视频| 午夜激情久久久久久久| 搡老岳熟女国产| 欧美一级毛片孕妇| videos熟女内射| 五月开心婷婷网| 欧美少妇被猛烈插入视频| 丰满人妻熟妇乱又伦精品不卡| 国产无遮挡羞羞视频在线观看| 国产亚洲精品第一综合不卡| 久久性视频一级片| 水蜜桃什么品种好| 亚洲七黄色美女视频| netflix在线观看网站| avwww免费| 两人在一起打扑克的视频| 成年av动漫网址| 超色免费av| 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 成人18禁高潮啪啪吃奶动态图| 免费黄频网站在线观看国产| 操出白浆在线播放| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 午夜视频精品福利| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 免费观看a级毛片全部| 不卡一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 久热爱精品视频在线9| 母亲3免费完整高清在线观看| 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| 黄色视频在线播放观看不卡| 1024视频免费在线观看| 亚洲欧美激情在线| 成年人黄色毛片网站| 啦啦啦啦在线视频资源| 国产精品成人在线| 黄色 视频免费看| 啦啦啦 在线观看视频| 成人黄色视频免费在线看| 国产欧美日韩一区二区精品| 人妻久久中文字幕网| 老汉色∧v一级毛片| 亚洲成人国产一区在线观看| videos熟女内射| 亚洲黑人精品在线| 淫妇啪啪啪对白视频 | 日韩视频一区二区在线观看| 精品一区二区三区四区五区乱码| 五月天丁香电影| 欧美另类一区| 麻豆av在线久日| 法律面前人人平等表现在哪些方面 | 国产欧美日韩综合在线一区二区| 欧美另类一区| www日本在线高清视频| 国产成人系列免费观看| 久久99一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 免费日韩欧美在线观看| 日韩欧美一区二区三区在线观看 | 老司机福利观看| 97精品久久久久久久久久精品| 亚洲久久久国产精品| 亚洲国产av影院在线观看| 亚洲自偷自拍图片 自拍| 久热这里只有精品99| 99香蕉大伊视频| 99久久综合免费| 亚洲国产看品久久| 一级片免费观看大全| 久久久国产一区二区| 日韩精品免费视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 飞空精品影院首页| tocl精华| 另类精品久久| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 十分钟在线观看高清视频www| 丁香六月天网| 丰满人妻熟妇乱又伦精品不卡| 国产伦理片在线播放av一区| 国产成人啪精品午夜网站| 午夜精品国产一区二区电影| 成人国语在线视频| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| 日韩 欧美 亚洲 中文字幕| 夫妻午夜视频| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 女人久久www免费人成看片| 亚洲中文日韩欧美视频| 男女之事视频高清在线观看| 国产精品久久久久久精品电影小说| 十八禁人妻一区二区| 动漫黄色视频在线观看| 18禁黄网站禁片午夜丰满| 波多野结衣av一区二区av| 国产男人的电影天堂91| 国产精品久久久人人做人人爽| 久久午夜综合久久蜜桃| 午夜福利免费观看在线| 国产精品久久久久成人av| 亚洲国产日韩一区二区| 黑人操中国人逼视频| 亚洲欧美一区二区三区黑人| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 丝瓜视频免费看黄片| 一进一出抽搐动态| 亚洲欧美色中文字幕在线| 欧美国产精品一级二级三级| 国产欧美亚洲国产| 99久久99久久久精品蜜桃| 免费观看人在逋| 国产精品一区二区精品视频观看| 制服诱惑二区| 极品少妇高潮喷水抽搐| www.精华液| 国产伦理片在线播放av一区| 亚洲成人手机| 永久免费av网站大全| 一级黄色大片毛片| 日韩有码中文字幕| 精品亚洲成国产av| 久久午夜综合久久蜜桃| 老司机影院毛片| av不卡在线播放| 国产黄色免费在线视频| 亚洲国产欧美日韩在线播放| av片东京热男人的天堂| 两个人免费观看高清视频| 高潮久久久久久久久久久不卡| 国产一区二区三区在线臀色熟女 | a在线观看视频网站| 美女视频免费永久观看网站| 亚洲免费av在线视频| 一区二区日韩欧美中文字幕| 丁香六月欧美| 丝袜美腿诱惑在线| 国产精品国产三级国产专区5o| 在线观看免费午夜福利视频| 亚洲第一av免费看| 亚洲国产精品一区三区| 亚洲av日韩精品久久久久久密| 不卡av一区二区三区| 最新的欧美精品一区二区| 欧美 日韩 精品 国产| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 国产成人免费无遮挡视频| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区精品| 国产真人三级小视频在线观看| 黄色a级毛片大全视频| 叶爱在线成人免费视频播放| 亚洲三区欧美一区| 18禁黄网站禁片午夜丰满| 国产淫语在线视频| 久久99热这里只频精品6学生| 亚洲av电影在线进入| 777久久人妻少妇嫩草av网站| 如日韩欧美国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 午夜成年电影在线免费观看| 国产在线免费精品| 午夜激情av网站| 中文字幕人妻熟女乱码| 天天躁狠狠躁夜夜躁狠狠躁| 黑人欧美特级aaaaaa片| 黄频高清免费视频| 啦啦啦啦在线视频资源| 大码成人一级视频| 日韩三级视频一区二区三区| 国产精品熟女久久久久浪| 久久九九热精品免费| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 国产成人精品在线电影| 手机成人av网站| 99精品久久久久人妻精品| 国产又爽黄色视频| 黄色怎么调成土黄色| 免费观看av网站的网址| 亚洲熟女毛片儿| 亚洲成国产人片在线观看| 国产一卡二卡三卡精品| 99九九在线精品视频| 又大又爽又粗| 乱人伦中国视频| 久久午夜综合久久蜜桃| 大陆偷拍与自拍| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲精品一区二区www | 日本av免费视频播放| 国产视频一区二区在线看| 国产精品av久久久久免费| 午夜免费鲁丝| 欧美午夜高清在线| 久久久久国产一级毛片高清牌| 亚洲伊人色综图| 一进一出抽搐动态| 亚洲国产成人一精品久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区激情视频| 中国美女看黄片| 久久精品亚洲熟妇少妇任你| 香蕉丝袜av| 国产成人精品久久二区二区免费| 91麻豆精品激情在线观看国产 | 久久中文字幕一级| 国产亚洲av高清不卡| 亚洲av男天堂| 欧美黄色片欧美黄色片| 搡老熟女国产l中国老女人| 成年人黄色毛片网站| 国产又爽黄色视频| 91精品国产国语对白视频| 久久精品成人免费网站| av线在线观看网站| 国产精品一区二区在线不卡| 天天添夜夜摸| 精品国产超薄肉色丝袜足j| 午夜激情久久久久久久| av有码第一页| 黄网站色视频无遮挡免费观看| 精品欧美一区二区三区在线| 国产欧美亚洲国产| 久热爱精品视频在线9| 99热国产这里只有精品6| 蜜桃在线观看..| 无限看片的www在线观看| 中文欧美无线码| 精品一区二区三卡| 高潮久久久久久久久久久不卡| 一级片免费观看大全| 亚洲成人免费av在线播放| 亚洲精品久久午夜乱码| 久久天躁狠狠躁夜夜2o2o|