• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network

    2022-06-29 08:55:12HaiYangMeng孟海洋ZiXiangXu徐自翔JingYang楊京BinLiang梁彬andJianChunCheng程建春
    Chinese Physics B 2022年6期
    關(guān)鍵詞:建春海洋

    Hai-Yang Meng(孟海洋) Zi-Xiang Xu(徐自翔) Jing Yang(楊京)Bin Liang(梁彬) and Jian-Chun Cheng(程建春)

    1Key Laboratory of Modern Acoustics,MOE,Institute of Acoustics,Department of Physics,Nanjing University,Nanjing 210093,China

    2Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: aerodynamic noise prediction,deep neural network,aeroacoustics

    1. Introduction

    Predicting the aerodynamic noise is of great significance for engineering fields of aeroacoustics and fluid mechanics. Besides expensive and complicated experiments,numerical simulation is also a general aerodynamic noise prediction method. With the development of aeroacoustics theory and computer science technology, methods based on computational fluid dynamics (CFD) and computational aeroacoustics (CAA) can solve flow problems numerically,predict acoustic fluctuations and simulate far-field acoustic propagation.[1–5]However, these methods are accompanied by some harsh requirements,[6]such as a good-quality time marching scheme, a suitably designed computation grid, and a set of radiation/outflow numerical treatments for use at the boundaries of the computation domain. These requirements demand enormous computing resources, which seriously affect the efficiency of aerodynamic noise prediction.The sound pressure level and directivity of far-field noise are the focus of research in practical engineering applications. Therefore, the establishment of a fast and accurate method to predict these attributes is of great significance to aeroacoustics prediction.

    With the rapid development of data science, data-driven machine learning methods have the potential to augment or replace the expensive high-fidelity analyses with less expensive approximations. So far, machine learning has been widely used in the fields of fluid mechanics,[7–13]nonlinear dynamics,[14–17]and materials science and engineering.[18–22]Sekaret al.[10]presented a data driven approach for the prediction of incompressible laminar steady flow field over airfoils based on the combination of deep Convolutional Neural Network and deep Multilayer Perceptron. Pathaket al.[15]used a parallel reservoir computing approach to predict large spatiotemporal chaotic systems. Yeet al.[20]proposed a machine learning based approach to predict the effective elastic properties of composites with arbitrary shapes and distributions of inclusions. In recent years, researchers have also begun to explore the application of machine learning in aeroacoustics. Taoet al.[23]introduced artificial neural network to airframe noise reduction design, which achieved a significant airframe noise reduction effect and excellent aerodynamic performance simultaneously. Sanayeet al.[24]launched a genetic algorithm-based multi-objective optimization scheme to improve the efficiency of small wind turbine airfoil noise reduction design. Liet al.[25]developed a data-driven fastpredicting model of rotorcraft trailing-edge broadband noise,which can predict noise for the overall sound pressure level from basic rotor parameters.Nevertheless,the deep neural network(DNN)method for fast and accurate prediction of aerodynamic noise still needs further development.

    In this paper, we develop a data-driven DNN framework for fast prediction of aerodynamic noise induced by the flow around a cylinder. The framework can predict noise for the overall sound pressure level (OASPL) under different inlet velocity and receiver’s spatial coordinates. The database for the network learning is generated using numerical simulation by solving Navier–Stokes equations and Ffowcs Williams–Hawkings (FW–H) acoustic analogy equations. Taking the receiver’s spatial coordinate(x,y)and inlet velocityU∞as inputs and OASPL as output, a neural network containing six fully connected layers is proposed with high consistency between prediction and the target OASPL. Moreover, the network shows good robustness, in extrapolate work conditions,the errors of prediction are below 0.82 dB. The directivity of aerodynamic noise predicted by the framework are basically consistent with the numerical simulation. Compared with traditional numerical methods, the trained DNN framework can get the results in only a few milliseconds, which greatly improves the efficiency of aerodynamic noise prediction. This work paves a novel way for fast prediction of aerodynamic noise with high accuracy and has application potential in acoustic field prediction.

    2. Theory model and numerical simulation

    2.1. Theory model

    In aerodynamic noise simulation, the acoustic analogy method is often used for OASPL and spectrum prediction of far-field noise. Here, the FW–H acoustic analogy theory[26]is introduced in the numerical simulation, and the Lighthill equation[27,28]is obtained through the equivalent transformation of the Navier–Stokes equation:obtained[26]

    wherec0is sound speed in the far-field,Ris the geometric distance between the sound source and the sound field point,Fiis the external force,S(τ)andV(τ)are the surface area and the volume of the entire space except for the solids,Vc(τ) is the solid volume,viandajare the velocity and acceleration vector component of the moving solid in theζcoordinate system,xirepresents displacement vector component of the observer,Maris the projection of the moving Mach number of the observer direction,and[]τ=τesymbol indicates that the quantity in parentheses will be computed atζcoordinate system and delay timeτe.

    Finally, in order to obtain OASPL, equation of state is used to construct the relationship between sound pressure andρ′:

    Here,fis the frequency,pref=2×10-5Pa is the reference sound pressure.fmin=20 Hz andfmax=20 kHz are the lower and upper limit of the studied sound frequency,respectively.

    2.2. Numerical simulation

    Aerodynamic noise induced by the flow around a cylinder is a common problem in aerospace,navigation,wind engineering and other practical projects.[29,30]The aerodynamic noise characteristics of the flow around a cylinder is one of the factors that must be considered in engineering design and is also the basis of noise reduction design.Referring the experimental model conducted by Revellet al.,[31]we carried out numerical simulation through CFD.The two-dimensional numerical simulation physical model of aerodynamic noise generated by the flow around a cylinder we established is shown in Fig.1. The diameter of the cylinder is 19 mm, left boundary is set as the velocity inlet andU∞=69.2 m/s,and the right boundary is set as the pressure outlet. The upper and lower boundary are set as the symmetry.Smagorinsky–Lilly model of large eddy simulation is used in numerical simulation. The fluid medium is an incompressible ideal gas with a temperature of 300 K and a viscosity ofμ=1.7894×10-5kg/(m·s). The calculated time step is set as 5×10-6s. In order to verify the correctness of the numerical simulation method, we further carried out the numerical simulation of the aerodynamic noise generated by the flow around the cylinder with reference to the experiments of Liet al.[32]As shown in Table 1, the first two rows represent the comparison of the numerical simulation results with the experimental results of Revellet al.,and the last three rows represent the comparison of the numerical simulation results with the experimental results of Liet al.All the relative errors of the OASPL are less than 4%,which verifies the correctness of our numerical simulation method.

    Table 1. Comparison of the OASPL obtained by experiments and numerical simulations.

    Fig. 1. The two-dimensional numerical simulation physical model of aerodynamic noise generated by the flow around a cylinder.

    3. Deep learning framework of aerodynamic noise prediction

    The fundamental idea of the conventional prediction methods is to simulate unsteady flow and calculate the flow field information,including the space distributions of pressure,velocity and density by CFD,then CAA is used to extract the sound source information according to the CFD calculation results to solve the problem of acoustic radiation and propagation. The result of conventional prediction methods is mainly related to the construction of the geometric model,the setting of boundary conditions and initial conditions,the selection of calculation domain, and so on. The mapping relationship between the results and initial conditions, boundary conditions,geometric models and calculation domain is highly nonlinear. In recent years, deep learning has shown great application potential in nonlinear regression problems. Theoretically,a three-layer neural network can approximate any nonlinear function. Therefore, we try to introduce deep learning into aerodynamic noise prediction to replace traditional numerical simulation methods.

    Here, we provide a deep learning method for aerodynamic noise prediction. The mapping relationship between input and output is constructed by DNN framework, so as to realize the rapid prediction of aerodynamic noise. As shown in Fig. 2, the method is divided into input module, nonlinear mapping module and output module.The function of the input module is mainly to provide input information for the method,including initial conditions,geometric models and calculation domain. Nonlinear mapping module is the core, which consists of several fully connected layers with a number of neurons in each layer, the number of neurons and hidden layers can be adjusted according to the complexity of the prediction problem. The first layer operates by constructing linear combination of the input module features and outputs the transformed features via a nonlinear activation function. The transformed output of the first layer is received by the second layer,and the operation continues layer by layer until the last layer,which connects the output module. In this way, the given input module features are mapped to the output module features in steps through a series of mappings. It is the main training part of the method and contains a lot of weights and biases.Finally,the output module provides the aerodynamic noise information we need.

    Fig.2. Schematic diagram of the method for aerodynamic noise prediction.

    4. Numerical experiments and results

    In Section 3,we provide a deep learning method for aerodynamic noise prediction. It aims to uncover the hidden relationship between physical model parameters and the aerodynamic noise information.Next,we will verify the feasibility of the proposed method. We firstly establish a dataset of aerodynamic noise generated by the flow around a cylinder by CFD simulation. Taking the receiver’s spatial coordinate(x,y)and inlet velocityU∞as input,and the OASPL as output,a neural network containing six fully connected layers is proposed with high consistency between prediction and the target OASPL.Through the numerical experiments, we show that the implemented network can predict the OASPL of noise accurately within a few milliseconds.

    4.1. Data preparation

    High-fidelity CFD simulation results will be treated as the ground truth in our DNN prediction approach.Combined with the numerical simulation in Subsection 2.2, we only change the inlet velocityU∞(m/s)and the receivers’coordinates(x,y)of the receivers to create the database. The data set is divided into two parts: for the first part, the spatial coordinate of 100 receivers are shown in Fig.3(a),U∞several values from 10 to 100(U∞: 10,20,30,40,50,60,70,80,90,and 100)are considered,a total of 1000 cases are created;for the second part,the spatial coordinates of 36 receivers are shown in Fig.3(b),U∞values are set as 35, 55, 75, 95, 105, and 115, a total of 216 cases are created. Then,the first part is randomly divided into training and validation dataset in the ratio of 9:1;the second part is served as test dataset. The receivers of the second part are designed to demonstrate the directivity of the sound source and verify the ability of the DNN framework to predict its directivity.

    Fig. 3. (a) The spatial coordinates of receivers (100 red dots) for the train data. (b)36 receivers(red dots)are set at equal spacing within a radius of 6 meters for the test data.

    4.2. DNN framework and results

    Based on above method, as shown in Fig. 4, the DNN framework is used to predict aerodynamic noise induced by flow around the cylinder. The (x,y) coordinates andU∞are presented as the inputs of the framework; hidden layers consist of four fully connected layers with 500 units in each layer,Dropout[33]is a structure that can be used to reduce neural network over-fitting,which is used after every fully connected layer,and the dropout rate is set as 1%;OASPL serves as the output. ReLU[34]activation function

    wherenis the batch size. And the parameters of the network are adjusted by backpropagation algorithm.[35,36]Adam optimizer combines the benefits of AdaGrad(for sparse gradients)and RMSProp (for online data) and doesn’t need to set step attenuation,which is used to converge our DNN framework.

    Fig.4. DNN framework used in the prediction of aerodynamic noise induced by flow around a cylinder.

    Iterative adjustments are made using training dataset to minimize the loss function. The configuration of the computer is Intel(R) Core (TM) i7-4790 CPU @ 3.60 GHz. It is realized on the Anaconda platform with python version 3.7.9. It is difficult to establish large-scale aerodynamic noise database because of the heavy workload of numerical simulation method. For the small training samples in this paper,in addition to adding Dropout structure between neural network layers,we further adopt early stopping technique to prevent over-fitting problems. Compute its performance on the validation dataset during training of the DNN framework and stop training when the performance degrades. The root-meansquare-error (RMSE) of results yielded by the DNN framework in the verification set is 0.99 dB. The results for the verification set predicted by the DNN framework are plotted against those generated by CFD simulation in Fig. 5. Those points are concentrated in the vicinity of the dashed liney=x,indicating that the proposed DNN framework can perfectly learn the nonlinear mapping between the coordinate location,inlet velocity and the OASPL.

    Fig.5. OASPLs of DNN framework prediction compared with CFD results.The black line(dashed)is the identity line serving as the reference.

    In the first part of the dataset, we only perform a simple validation of the prediction performance of the DNN framework. To further investigate the learning ability of the model,it was thoroughly tested with the second part of the dataset.The results of test dataset demonstrate that the DNN framework works well also for other inlet velocity and receivers that have not been encountered in the preceding training process.Meanwhile,the directivity of aerodynamic noise predicted by the framework is also in good agreement with the results of CFD simulation, as shown in Fig. 6. Noted thatU∞=105 andU∞=115 are outside the training inlet velocity range,the DNN model still has good prediction accuracy, which shows that the trained DNN framework avoids the problem of overfitting. In addition, RMSE is served as a test metric for our DNN model to quantify the predictive performance. Table 2 shows the RMSE of results predicted by DNN framework for the test dataset. All RMSEs are below 0.82 dB.Furthermore,we compare the time required by DNN method and traditional CFD method to predict OASPL at the same receivers under different inlet velocity conditions. The configuration of the computer is Intel(R)Core(TM)i7-4790 CPU@3.60 GHz.

    As shown in Table 3, compared to CFD numerical simulations, which take thousands of seconds to obtain results,DNN methods can complete predictions in milliseconds while maintaining accuracy. The calculation speed differs by four orders of magnitude, which highlights the advantages of the DNN approach in terms of computational speed and prediction accuracy.

    Table 2. RMSE of results predicted by DNN framework for the test dataset.

    Table 3. Comparison of prediction time between DNN framework and CFD method.

    Fig.6. In the test dataset,the prediction results of DNN framework are compared with the results of CFD software. When U∞(m/s) value equal to 35,55, 75, 95, 105, and 115, figures of the OASPL values predicted by DNN framework versus CFD results for 36 receivers are(a),(b), (c), (d), (e), and(f)respectively.

    5. Conclusion

    In conclusion,we propose a data-driven DNN method to tackle the challenge of predicting aerodynamic noise with high accuracy and efficiency. To verify the feasibility of the proposed method,a two-dimensional model of aerodynamic noise caused by flow around a cylinder is introduced and the corresponding dataset is built. A DNN framework is judiciously developed to predict the OASPL of above aerodynamic noise model. The prediction results show our framework can accurately and efficiently predict the OASPL of aerodynamic noise with given inlet velocity and calculated domain coordinates.Meanwhile,the directivity of aerodynamic noise predicted by the framework is basically consistent with that of numerical simulation. It is worth noting that only the two-dimensional case of aerodynamic noise generated by flow around a cylinder is discussed in this paper. Different from the aerodynamic noise problem caused by the flow around a cylinder,when predicting the aerodynamic noise of irregular bluff bodies such as aircraft landing gear and automobile rear-view mirrors,we must consider the flow field and sound field changes caused by the geometry changes of bluff body. Therefore,the geometric characteristics of the bluff body become one of the important characteristics that affect the aerodynamic noise caused by the flow around it. However, unlike the cylinder, the geometric features of irregular bluff bodies are difficult to be characterized by several geometric parameters. Fortunately, convolutional neural networks are widely used in the field of computer vision due to their excellent feature extraction capabilities.We can introduce the convolutional neural network(CNN)in the input module to extract the geometric features of the irregular bluff body as one of the inputs of the nonlinear module.Combined with CNN,the proposed DNN method can be easily extended to predict aerodynamic noise caused by the flow around more complex geometries. This work provides a novel way for fast and accurate prediction of aerodynamic noise,and has application potential in prediction of acoustic field.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303700),the National Natural Science Foundation of China (Grants Nos.12174190,11634006,12074286,and 81127901),the Innovation Special Zone of the National Defense Science and Technology, High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures,and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    猜你喜歡
    建春海洋
    陸建春油畫作品欣賞
    參花(下)(2022年10期)2022-09-17 01:16:18
    祖父瓷
    意林彩版(2022年1期)2022-05-03 10:25:07
    Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
    High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
    出發(fā),去看看未來的海洋
    過建春:慢加急性肝衰竭的中西醫(yī)結(jié)合診治
    肝博士(2020年4期)2020-09-24 09:21:12
    海洋的路
    愛的海洋
    琴童(2017年7期)2017-07-31 18:33:48
    第一章 向海洋出發(fā)
    《海洋之歌》
    亚洲精品久久国产高清桃花| 非洲黑人性xxxx精品又粗又长| 国产免费av片在线观看野外av| 日韩欧美精品v在线| www.自偷自拍.com| 精品不卡国产一区二区三区| 精品国产亚洲在线| 女同久久另类99精品国产91| 国产精品1区2区在线观看.| 欧美不卡视频在线免费观看 | 国产三级在线视频| 三级国产精品欧美在线观看 | 小说图片视频综合网站| 亚洲专区国产一区二区| 亚洲va日本ⅴa欧美va伊人久久| 看片在线看免费视频| 成人精品一区二区免费| 亚洲天堂国产精品一区在线| 国产av一区在线观看免费| 美女扒开内裤让男人捅视频| 久久午夜亚洲精品久久| 免费看十八禁软件| 麻豆国产av国片精品| 国产成人精品久久二区二区91| 精品久久久久久久末码| 日日干狠狠操夜夜爽| 国产黄a三级三级三级人| 1024香蕉在线观看| 欧美午夜高清在线| 国产av一区二区精品久久| 精品电影一区二区在线| 夜夜看夜夜爽夜夜摸| 不卡av一区二区三区| 国产99久久九九免费精品| 无人区码免费观看不卡| 久久久国产成人精品二区| 欧美3d第一页| 三级毛片av免费| 俺也久久电影网| 亚洲aⅴ乱码一区二区在线播放 | 中出人妻视频一区二区| www.www免费av| 中文字幕人成人乱码亚洲影| 欧美成人午夜精品| 亚洲一区中文字幕在线| 欧美不卡视频在线免费观看 | 12—13女人毛片做爰片一| 婷婷精品国产亚洲av在线| 人人妻,人人澡人人爽秒播| 国语自产精品视频在线第100页| 看片在线看免费视频| 亚洲人成电影免费在线| 国产av又大| 亚洲精品中文字幕一二三四区| 99久久精品热视频| 日韩中文字幕欧美一区二区| 国产亚洲av高清不卡| 国产激情偷乱视频一区二区| 亚洲avbb在线观看| 18禁黄网站禁片午夜丰满| 在线观看午夜福利视频| 久久中文字幕一级| 十八禁网站免费在线| 草草在线视频免费看| 国产av在哪里看| 97人妻精品一区二区三区麻豆| 黄色 视频免费看| 老司机深夜福利视频在线观看| 日日爽夜夜爽网站| 亚洲成a人片在线一区二区| 99国产精品一区二区蜜桃av| 国产精品日韩av在线免费观看| 在线十欧美十亚洲十日本专区| 男男h啪啪无遮挡| 国产成人精品久久二区二区免费| 久久 成人 亚洲| 91大片在线观看| 日本在线视频免费播放| 国产片内射在线| 亚洲国产中文字幕在线视频| 99热6这里只有精品| 麻豆av在线久日| 一边摸一边抽搐一进一小说| 香蕉丝袜av| a级毛片a级免费在线| 久久99热这里只有精品18| 日本熟妇午夜| 中文字幕高清在线视频| 日本黄色视频三级网站网址| 日韩免费av在线播放| 欧美av亚洲av综合av国产av| 国产一区在线观看成人免费| 国产一区二区在线观看日韩 | 欧美3d第一页| 国产欧美日韩一区二区精品| 成人手机av| 美女 人体艺术 gogo| 亚洲avbb在线观看| 一级毛片女人18水好多| 免费一级毛片在线播放高清视频| 中文字幕高清在线视频| 国产av麻豆久久久久久久| 精品国产乱子伦一区二区三区| 看免费av毛片| 成人欧美大片| 久久国产精品人妻蜜桃| 国产在线精品亚洲第一网站| 老司机深夜福利视频在线观看| 日韩精品中文字幕看吧| 亚洲欧美精品综合一区二区三区| 国语自产精品视频在线第100页| 婷婷精品国产亚洲av| 999精品在线视频| 黑人巨大精品欧美一区二区mp4| 久久久久国产精品人妻aⅴ院| 国产免费男女视频| 亚洲国产欧美网| 亚洲va日本ⅴa欧美va伊人久久| 757午夜福利合集在线观看| 一二三四在线观看免费中文在| 一级黄色大片毛片| 每晚都被弄得嗷嗷叫到高潮| 每晚都被弄得嗷嗷叫到高潮| 成人特级黄色片久久久久久久| 999精品在线视频| 国产99白浆流出| 亚洲欧洲精品一区二区精品久久久| 久久久久久久久久黄片| 老汉色av国产亚洲站长工具| 国产高清视频在线观看网站| 日本精品一区二区三区蜜桃| 亚洲激情在线av| 波多野结衣高清作品| 90打野战视频偷拍视频| 欧美黑人欧美精品刺激| 亚洲狠狠婷婷综合久久图片| 亚洲国产欧美一区二区综合| 国产成人av教育| 国内久久婷婷六月综合欲色啪| 国产成人啪精品午夜网站| 亚洲 欧美一区二区三区| 国产熟女xx| 全区人妻精品视频| 在线观看66精品国产| 成人一区二区视频在线观看| 欧美日韩福利视频一区二区| 后天国语完整版免费观看| 美女扒开内裤让男人捅视频| 免费在线观看视频国产中文字幕亚洲| 亚洲 国产 在线| 美女黄网站色视频| 叶爱在线成人免费视频播放| 麻豆成人午夜福利视频| 国产成人av激情在线播放| 久久久久国产精品人妻aⅴ院| 日本黄大片高清| 亚洲自拍偷在线| 国产主播在线观看一区二区| 露出奶头的视频| 一边摸一边抽搐一进一小说| 最新在线观看一区二区三区| 最近最新中文字幕大全电影3| 中文字幕高清在线视频| 精品少妇一区二区三区视频日本电影| 亚洲国产精品sss在线观看| 国产三级黄色录像| 久久亚洲真实| 热99re8久久精品国产| xxx96com| 亚洲自偷自拍图片 自拍| 日本黄大片高清| 国内揄拍国产精品人妻在线| 午夜福利免费观看在线| 给我免费播放毛片高清在线观看| 最新在线观看一区二区三区| 国产精品永久免费网站| 色综合婷婷激情| 欧美三级亚洲精品| 亚洲成人中文字幕在线播放| 亚洲精品美女久久av网站| 免费观看人在逋| 国产成人影院久久av| 欧美3d第一页| 看免费av毛片| 日本成人三级电影网站| avwww免费| 露出奶头的视频| 久久性视频一级片| 最新在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 91老司机精品| 欧美最黄视频在线播放免费| 亚洲午夜精品一区,二区,三区| 亚洲欧美精品综合一区二区三区| 男人舔女人的私密视频| 男女做爰动态图高潮gif福利片| 欧美日韩亚洲综合一区二区三区_| 久久人妻福利社区极品人妻图片| 深夜精品福利| 亚洲狠狠婷婷综合久久图片| 毛片女人毛片| 国内久久婷婷六月综合欲色啪| 国产成+人综合+亚洲专区| 一区二区三区高清视频在线| 精品乱码久久久久久99久播| 色精品久久人妻99蜜桃| 三级毛片av免费| 法律面前人人平等表现在哪些方面| 丁香六月欧美| 免费在线观看影片大全网站| 99热只有精品国产| 又大又爽又粗| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久婷婷人人爽人人干人人爱| 国产午夜精品久久久久久| 亚洲国产欧美一区二区综合| 色综合欧美亚洲国产小说| 国产精品野战在线观看| 国产乱人伦免费视频| 国产三级中文精品| 国产一区在线观看成人免费| 亚洲国产看品久久| 宅男免费午夜| cao死你这个sao货| 99热这里只有精品一区 | 又爽又黄无遮挡网站| 亚洲天堂国产精品一区在线| 香蕉久久夜色| 999久久久精品免费观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产清高在天天线| 香蕉丝袜av| 给我免费播放毛片高清在线观看| 免费看日本二区| 久久久精品大字幕| 亚洲精品av麻豆狂野| 一级毛片精品| 三级国产精品欧美在线观看 | 草草在线视频免费看| 久久精品91无色码中文字幕| 成熟少妇高潮喷水视频| 中文字幕av在线有码专区| 久久久久久免费高清国产稀缺| 美女大奶头视频| 国产精品精品国产色婷婷| 亚洲五月天丁香| 无人区码免费观看不卡| 高清在线国产一区| 真人做人爱边吃奶动态| 国产精品综合久久久久久久免费| 久久人人精品亚洲av| 久久精品国产亚洲av香蕉五月| 亚洲av五月六月丁香网| 又黄又粗又硬又大视频| 欧美乱码精品一区二区三区| 精品少妇一区二区三区视频日本电影| 亚洲av成人一区二区三| 亚洲va日本ⅴa欧美va伊人久久| bbb黄色大片| 成人欧美大片| 精品少妇一区二区三区视频日本电影| 午夜福利18| 床上黄色一级片| 岛国在线免费视频观看| 操出白浆在线播放| 黄色毛片三级朝国网站| 亚洲成人免费电影在线观看| 欧美午夜高清在线| 亚洲av电影在线进入| 丝袜人妻中文字幕| 日本一区二区免费在线视频| 欧美极品一区二区三区四区| xxx96com| 亚洲一区二区三区不卡视频| 久久亚洲精品不卡| 99精品久久久久人妻精品| 好看av亚洲va欧美ⅴa在| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 可以在线观看的亚洲视频| 两个人看的免费小视频| 成人av一区二区三区在线看| 亚洲九九香蕉| 精品日产1卡2卡| 国内精品一区二区在线观看| 男人舔女人下体高潮全视频| 一个人免费在线观看的高清视频| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 国产成人欧美在线观看| 特级一级黄色大片| 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 亚洲免费av在线视频| 国产激情偷乱视频一区二区| 精品国产亚洲在线| 亚洲,欧美精品.| 欧美成人一区二区免费高清观看 | 日韩欧美三级三区| 亚洲 国产 在线| 宅男免费午夜| 久久久久国内视频| 啦啦啦观看免费观看视频高清| 日韩精品青青久久久久久| 99精品欧美一区二区三区四区| 两性夫妻黄色片| 中文字幕最新亚洲高清| 脱女人内裤的视频| 亚洲成人久久性| 99热只有精品国产| 日韩av在线大香蕉| 一卡2卡三卡四卡精品乱码亚洲| 夜夜躁狠狠躁天天躁| 老司机在亚洲福利影院| 久久国产乱子伦精品免费另类| 国产av不卡久久| 毛片女人毛片| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 婷婷精品国产亚洲av在线| 亚洲,欧美精品.| 中国美女看黄片| x7x7x7水蜜桃| 成熟少妇高潮喷水视频| 亚洲一区二区三区不卡视频| 亚洲av成人精品一区久久| 国产精品影院久久| 性色av乱码一区二区三区2| av片东京热男人的天堂| 高清在线国产一区| 成人高潮视频无遮挡免费网站| av中文乱码字幕在线| 国产黄a三级三级三级人| 午夜免费激情av| 亚洲欧洲精品一区二区精品久久久| 国产午夜福利久久久久久| 在线永久观看黄色视频| 男人的好看免费观看在线视频 | 我的老师免费观看完整版| 18禁国产床啪视频网站| a级毛片在线看网站| 欧美一级毛片孕妇| 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 亚洲精华国产精华精| 午夜精品在线福利| 波多野结衣巨乳人妻| 欧美中文综合在线视频| 亚洲中文字幕一区二区三区有码在线看 | 国产视频内射| 国产伦一二天堂av在线观看| 亚洲乱码一区二区免费版| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 不卡av一区二区三区| 国产精品久久久av美女十八| 国产高清有码在线观看视频 | 91九色精品人成在线观看| 亚洲最大成人中文| 美女免费视频网站| 国产真人三级小视频在线观看| 黄色视频不卡| 午夜福利免费观看在线| 国产视频内射| 国产精品永久免费网站| 午夜日韩欧美国产| 手机成人av网站| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区91| 欧美3d第一页| 久久精品亚洲精品国产色婷小说| 欧美一级毛片孕妇| 黑人欧美特级aaaaaa片| 午夜福利高清视频| 色综合站精品国产| 制服诱惑二区| 国产激情欧美一区二区| 久久久久久免费高清国产稀缺| 老汉色av国产亚洲站长工具| 99久久国产精品久久久| 国产午夜精品论理片| 天天躁狠狠躁夜夜躁狠狠躁| 大型av网站在线播放| 美女扒开内裤让男人捅视频| av福利片在线观看| 老汉色av国产亚洲站长工具| 精品午夜福利视频在线观看一区| 人妻夜夜爽99麻豆av| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 日日爽夜夜爽网站| 亚洲美女黄片视频| 大型av网站在线播放| 国产97色在线日韩免费| 欧美性长视频在线观看| av国产免费在线观看| 免费搜索国产男女视频| 欧美大码av| 精品一区二区三区视频在线观看免费| 国产av不卡久久| 黄色片一级片一级黄色片| 国产精品一区二区免费欧美| 男人舔奶头视频| 精品国产乱码久久久久久男人| 欧洲精品卡2卡3卡4卡5卡区| 国语自产精品视频在线第100页| 国产精品久久久久久亚洲av鲁大| 久久久国产精品麻豆| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 少妇人妻一区二区三区视频| 久久久久久久午夜电影| 欧美3d第一页| 欧美精品亚洲一区二区| 国产精品一及| 免费在线观看黄色视频的| 亚洲国产欧美网| 午夜日韩欧美国产| 国产亚洲精品综合一区在线观看 | 色综合站精品国产| 国产精品精品国产色婷婷| 中国美女看黄片| av欧美777| 村上凉子中文字幕在线| 天堂av国产一区二区熟女人妻 | 亚洲免费av在线视频| 午夜久久久久精精品| 亚洲成av人片在线播放无| 久久精品亚洲精品国产色婷小说| 国内精品一区二区在线观看| 99久久久亚洲精品蜜臀av| 午夜福利在线在线| 久久人妻福利社区极品人妻图片| 欧美极品一区二区三区四区| 亚洲在线自拍视频| 国产三级在线视频| 亚洲av成人av| 亚洲黑人精品在线| 国产一区二区在线av高清观看| 亚洲激情在线av| 我要搜黄色片| 欧美性猛交黑人性爽| 国产真实乱freesex| 久久久精品大字幕| 日韩免费av在线播放| 色综合站精品国产| 成人国语在线视频| 曰老女人黄片| 久久精品国产亚洲av香蕉五月| 久久精品国产亚洲av高清一级| 国产区一区二久久| 亚洲av成人精品一区久久| 精品第一国产精品| 国产精品久久视频播放| 韩国av一区二区三区四区| 日韩三级视频一区二区三区| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲欧洲精品一区二区精品久久久| 午夜福利高清视频| 51午夜福利影视在线观看| 人人妻人人看人人澡| 午夜福利18| 长腿黑丝高跟| 长腿黑丝高跟| 欧美中文日本在线观看视频| 成人国产综合亚洲| 久久精品国产清高在天天线| 免费在线观看成人毛片| 不卡一级毛片| 国产欧美日韩精品亚洲av| 久久草成人影院| 亚洲一区二区三区不卡视频| 国产爱豆传媒在线观看 | 国产av又大| 国产精品一区二区三区四区免费观看 | 亚洲国产欧美网| 88av欧美| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 欧美成人一区二区免费高清观看 | 少妇熟女aⅴ在线视频| 亚洲国产欧洲综合997久久,| 脱女人内裤的视频| 叶爱在线成人免费视频播放| 一级毛片女人18水好多| 欧美在线黄色| 狠狠狠狠99中文字幕| 少妇的丰满在线观看| 熟女电影av网| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 久久久久久九九精品二区国产 | 好看av亚洲va欧美ⅴa在| 亚洲国产精品合色在线| 亚洲中文av在线| 91大片在线观看| av国产免费在线观看| aaaaa片日本免费| 不卡一级毛片| a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产99精品国产亚洲性色| avwww免费| 精品久久久久久久久久免费视频| 91成年电影在线观看| 亚洲最大成人中文| 男插女下体视频免费在线播放| 日韩免费av在线播放| 色综合欧美亚洲国产小说| 宅男免费午夜| 国产成人精品久久二区二区免费| 欧美zozozo另类| 亚洲国产高清在线一区二区三| 日本一区二区免费在线视频| 啦啦啦免费观看视频1| www.熟女人妻精品国产| 国产黄a三级三级三级人| 国产成+人综合+亚洲专区| 色精品久久人妻99蜜桃| 此物有八面人人有两片| 校园春色视频在线观看| 长腿黑丝高跟| 国内精品一区二区在线观看| 国产欧美日韩一区二区精品| 欧美av亚洲av综合av国产av| 黄色a级毛片大全视频| 久久久久久久精品吃奶| 无限看片的www在线观看| 午夜福利在线观看吧| 精品国产亚洲在线| 两人在一起打扑克的视频| 国内揄拍国产精品人妻在线| 免费在线观看日本一区| 搡老妇女老女人老熟妇| 日本黄色视频三级网站网址| 99久久精品国产亚洲精品| 男女做爰动态图高潮gif福利片| 脱女人内裤的视频| 欧美zozozo另类| 国产高清视频在线播放一区| 欧美另类亚洲清纯唯美| 亚洲成人中文字幕在线播放| 久久久国产成人精品二区| 在线播放国产精品三级| 精品久久久久久久人妻蜜臀av| 男人舔女人下体高潮全视频| 可以免费在线观看a视频的电影网站| 波多野结衣高清无吗| 男人的好看免费观看在线视频 | 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区| 国产野战对白在线观看| 一进一出抽搐动态| 三级国产精品欧美在线观看 | 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 久久久国产精品麻豆| 国产探花在线观看一区二区| 日韩欧美一区二区三区在线观看| 成人亚洲精品av一区二区| 国产视频内射| 国产乱人伦免费视频| 一本综合久久免费| 亚洲精品色激情综合| 日日爽夜夜爽网站| 人成视频在线观看免费观看| 老熟妇仑乱视频hdxx| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久av美女十八| 日本在线视频免费播放| 琪琪午夜伦伦电影理论片6080| 亚洲色图av天堂| 非洲黑人性xxxx精品又粗又长| 91麻豆精品激情在线观看国产| 亚洲av片天天在线观看| 一边摸一边抽搐一进一小说| 午夜免费成人在线视频| 日韩欧美国产在线观看| 欧美性猛交╳xxx乱大交人| 欧美三级亚洲精品| 狂野欧美激情性xxxx| 中文字幕人妻丝袜一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久久久久人妻蜜臀av| 麻豆av在线久日| av天堂在线播放| 日韩欧美国产在线观看| 国产黄色小视频在线观看| 妹子高潮喷水视频| 婷婷丁香在线五月| 国产午夜精品久久久久久| 国产乱人伦免费视频| 99久久精品国产亚洲精品| 五月玫瑰六月丁香| 欧美日韩瑟瑟在线播放| 欧美日韩一级在线毛片| 草草在线视频免费看| 亚洲av成人一区二区三| 男人的好看免费观看在线视频 | 欧美在线黄色| 波多野结衣巨乳人妻| 久久精品成人免费网站| 精品一区二区三区视频在线观看免费| 好男人在线观看高清免费视频| 国产三级中文精品| 国产成人av教育| 久久欧美精品欧美久久欧美| 成年免费大片在线观看| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| 国产不卡一卡二| 久久久久精品国产欧美久久久| 99久久精品热视频|