葉飛, 朱皓, 鄭偉巧, 楊智香, 連璐, 楊盛松
?
超靈敏甲醛比色傳感器的設(shè)計與應(yīng)用
葉飛, 朱皓, 鄭偉巧, 楊智香, 連璐, 楊盛松
(福建皓爾寶新材料科技有限公司, 福建漳州 363000)
在金納米棒(AuNRs)-Ag+-甲醛(HCHO)體系中,HCHO快速將Ag+還原為Ag,Ag包裹在AuNRs表面形成Au@AgNRs,改變了AuNRs周圍的電介質(zhì)環(huán)境,導(dǎo)致縱向最大吸收波長(LPAB)紅移,同時伴隨著溶液的顏色發(fā)生顯著的變化。據(jù)此,發(fā)展了一種測定HCHO的快響應(yīng)、簡便、靈敏、選擇性的AuNRs比色傳感器。該比色傳感器的檢出限為6.3×10-11(gmL?1),比表面增強(qiáng)拉曼光譜法低,顯示很高的靈敏度;尤其是本比色傳感器用于水樣品中HCHO的測定,結(jié)果與固體基質(zhì)室溫磷光法相吻合,展示較高的實用性。此外,探討了測定HCHO的機(jī)理。
甲醛;AuNRs納米棒;比色傳感器;Au@Ag NRs核殼狀納米棒
HCHO對人體的影響是眾所周知的:刺激眼睛和上呼吸道,頭痛、惡心、嗜睡,皮膚過敏反應(yīng)[1]。在動物試驗實驗室中因其嚴(yán)重的毒理學(xué)性質(zhì)也是一個潛在的誘導(dǎo)有機(jī)體突變的物質(zhì)和致癌物質(zhì)[2]。世界衛(wèi)生組織(世衛(wèi)組織)住宅室內(nèi)區(qū)域規(guī)定HCHO的濃度不得超過82 ppb (十億分之幾)[3]。特別是在環(huán)境問題中為了獲得準(zhǔn)確、及時的分析結(jié)果,快速方法適用于現(xiàn)場大量樣品的分析[4]。因此,在環(huán)境水樣品推廣發(fā)展準(zhǔn)確測定微量HCHO的快速方法是至關(guān)重要的。
已報道了測定各種樣品中痕量HCHO的方法,如分光光度法[5]、熒光法[6]、毛細(xì)管色譜法[7]、流動注射催化法[8]、伏安法[9]、固體基質(zhì)室溫?zé)夥╗10]、共振熒光法[11]、化學(xué)發(fā)光[12],色譜法(GC)[13],催化熒光法[14]、表面增強(qiáng)拉曼光譜法[15]、高效液相色譜法(HPLC)[16]和電導(dǎo)生物傳感器[17]、氣體傳感器[18]、低溫傳感器[19]、微型室溫傳感器[20]等。然而,這些方法要么是昂貴,操作煩鎖或耗費時間,不適合現(xiàn)場分析。
為了解決這些難題,人們發(fā)展了無需特殊的儀器、依據(jù)肉眼可簡便、快速定量的比色法。由于金納米粒子對現(xiàn)場檢測的簡易性、靈敏和潛在應(yīng)用,在過去的20年里,注意力一直集中在基于視覺檢測方法的金納米粒子[21-23]。基于金納米粒子長的LPAB吸收帶對AuNR縱橫比(長/寬)的高度敏感,比色傳感器獲得了更多的關(guān)注[24-25]?;颂匦?,我們開發(fā)了一系列的AuNPs比色傳感器,用于有毒離子Hg2+[26]、Cr (VI)[27]、NO2–[28]、Pb2+[29]等檢測。上述提到的傳感器傳感器需要表面修飾,操作較為繁瑣。因此,必須開發(fā)一個簡便、成本效益和環(huán)境友好的比色傳感器現(xiàn)場檢測HCHO。
本文我們描述一個基于LPAW的紅移量(?λL)與CHCHO的線性關(guān)系以及溶液明顯的顏色變化的新奇的AuNRs比色傳感器的開發(fā)。這些發(fā)現(xiàn)在制造AuNRs傳感器和比色分析具有創(chuàng)新性。例如,表面增強(qiáng)拉曼光譜法(SERS)是基于4-氨基-5-肼基-3-巰基-1,2,4-苯三唑(AHMT)和HCHO衍生化反應(yīng)測定HCHO[15],而本AuNRs比色傳感器是基于LPAW的紅移量(?λL)與CHCHO的線性關(guān)系比色測定HCHO。在方法學(xué)上有新的突破;該AuNRs比色傳感器在15分鐘內(nèi)肉眼觀察即可實現(xiàn)比色檢測,快速且簡便,有望用于在線 分析,而表面增強(qiáng)拉曼光譜法操作煩鎖、費時、不能用于現(xiàn)場檢測;該傳感器的靈敏度(LD: 6.3×10-11gmL?1)比文獻(xiàn)[15]的方法(LD: 1.5 ×10-10g mL–1)靈敏度高2.4倍,且未見AuNRs比色傳感器測定HCHO的文獻(xiàn)報道;這種快速、準(zhǔn)確、重現(xiàn)性與選擇性好的AuNRs比色傳感器用于水樣中痕量HCHO的測定,顯示其廣闊的應(yīng)用前景。
1.1 實驗材料
紫外可見分光光度計(島津UV–2550);pHS?3B型pH計;AE240電子分析天平。
HCHO工作液:量取0.27 mL 37%~40%甲醛溶液配制成1.00μg /mL的HCHO溶液作為工作液;AuNRs溶液按Xingchen Ye et.[30]的方法合成、0.10M/L AgNO3溶液、NaBH4、0.10 M/L L?抗壞血酸溶液;水楊酸、0.20 M/L十六烷基三甲基溴化銨(CTAB)溶液、NaOH、甘氨酸購自國藥集團(tuán)化學(xué)試劑有限公司(上海);水用高純水。
1.2 實驗方法
1.00 mL AuNRs,85 μL AgNO3,1.00 mL不同濃度的HCHO,0.050 M甘氨酸-NaOH緩沖液被加入10 ml容量瓶中,稀釋至刻度。50℃反應(yīng)10 min,冷卻至室溫。依次測量試劑空白的最大波長(λ1)與試液的最大波長(λ2),并求紅移量?λ(λ1?λ2)。
2.1 測定HCHO的機(jī)理
由圖.1 和表 1可見,在AuNRs-Ag+-甘氨酸-NaOH緩沖溶液中AuNRs分別于748 nm、555 nm出現(xiàn)LPAB和橫向最大吸收波(TPAB)。在AuNRs-Ag+-甘氨酸-NaOH 緩沖溶液體系中HCHO,導(dǎo)致AuNRs的LPAB發(fā)生紅移,可能是Ag+被HCHO還原的Ag0在AuNRs表面形成Au@Ag↓NRs[31-32](機(jī)理1)。
圖1 AuNRs-Ag+-甘氨酸-NaOH 緩沖液-HCHO體系UV-Vis 吸收光譜
表1 AuNRs-Ag+-甘氨酸-NaOH 緩沖液-HCHO體系UV-Vis 吸收光譜特性
HCHO + Ag+Ag0+ HCOOH (1)
AuNRs + Ag0Au@Ag↓NRs (2)
機(jī)理1 Au@Ag↓NRs的形成(1)為HCHO與Ag+的還原反應(yīng);(2)為Ag0包裹在AuNRs表面形成Au@Ag↓NRs。
基于AuNRs (圖2 a)的橫向部位的表面活性劑CTAB所產(chǎn)生的屏蔽效應(yīng),HCHO還原Ag+的產(chǎn)物Ag選擇性地在縱向兩端形成Au@Ag↓NRs (圖2b),導(dǎo)致AuNRs的縱橫比和形態(tài)發(fā)生改變。例如,最初AuNRs長度為20-30 nm (圖2a, 長方體的結(jié)構(gòu)),而加入HCHO后AuNRs的長度為40-50 nm左右(圖2b,啞鈴的結(jié)構(gòu)),AuNRs的外觀形態(tài)和粒徑的變化,有力地證明了HCHO加入AuNRs-Ag+-甘氨酸-NaOH緩沖液體系中確有Au@Ag↓NRs產(chǎn)物生成。
圖2 TEM 照片 (a) AuNRs 和(b) Au@Ag↓NR
隨著HCHO濃度增加,AuNRs的LPAB的?λ與HCHO濃度成正相關(guān),并且溶液的顏色有顯著改變(圖3)。據(jù)此可用AuNRs-Ag+非聚集比色傳感測定HCHO。
圖3 HCHO濃度與溶液顏色變化
2.2 測定HCHO最佳條件
2.2.1 反應(yīng)酸度
對于8.0 ngmL?1HCHO,隨著溶液酸度的降低?λ逐漸增大,當(dāng)體系pH達(dá)到9.58時,?λ達(dá)到最大,酸度的繼續(xù)降低,?λ逐漸減小,故選擇pH = 9.58為體系的最佳反應(yīng)媒介。
圖4 體系的pH值
2.2.2 試劑用量
探討了AuNRs和AgNO3用量對體系?λ的影響。實驗中假設(shè)AuNRs產(chǎn)率為100%。隨著AuNRs用量的增加體系的?λ值逐漸降低(圖5A),而隨著AgNO3用量的增加體系的?λ值逐漸增大(圖5 B),當(dāng)AuNRs用量為0.60 mL、AgNO3的用量為85.0 μL時,?λ最大并且線性范圍最寬。
2.2.3 反應(yīng)條件
由圖6 A,B見,?λ隨著反應(yīng)溫度和時間的增加而增大;當(dāng)反應(yīng)在50oC、15 min時體系的?λ達(dá)到最大;此后,?λ隨著反應(yīng)溫度和時間的減小而變小。
圖6 反應(yīng)溫度(A, 反應(yīng)時間: 15 min)和時間(反應(yīng)溫度: 50?C)
2.2.4 靜置時間
圖7表明,在上述條件下,靜置時間為5-30 min時,體系?λ保持不變,顯示傳感器的穩(wěn)定性好。因此,測定HCHO的最佳條件為1.00 mL AuNRs, 85.0 μL 0.01 M AgNO3,1.00 mL甘氨酸-NaOH 緩沖液,pH = 9.58, 50oC, 15min。
圖7 靜置時間
2.3 方法的靈敏度與精密度
本法與文獻(xiàn)方法[15]的線性范圍、工作曲線的回歸方程(圖8)、相關(guān)系數(shù)、相對標(biāo)準(zhǔn)偏差(RSD)%(0.20×10–9g mL ?1和0.20×10–9g mL ?1的HCHO進(jìn)行6次平行測定)、檢出限(LOD,對試劑空白進(jìn)行11次的平行測定,以3Sb/k計)和量化限(LOQ,以10Sb/k)等比較于表2,表面增強(qiáng)拉曼光譜的操作煩鎖、費時、不能用于現(xiàn)場檢測,而AuNRs比色傳感器比表面增強(qiáng)拉曼光譜法的靈敏度高,有望用于低含量的樣品中HCHO的現(xiàn)場檢測。
表2 分析方法比較
圖8 比色傳感器工作曲線
2.4 實際樣品測定
根據(jù)文獻(xiàn)[33]的方法對樣品進(jìn)行酸化處理。即九龍江不同河段的水樣和自來水10.00 mL水樣中加入5 mL 65% HNO3并且煮沸20 min,以去除共存的有機(jī)物質(zhì)且使Fe2+轉(zhuǎn)化為Fe3+。用NaOH-glycine buffer將溶液pH值調(diào)節(jié)為9.58,加熱20 min,使溶液中Fe3+, Cr(Ⅲ)和Cu2+沉淀下來,用0.45 μM的過濾膜除去其雜質(zhì),收集濾液,水稀釋至100mL,備用。取1.00 mL試液,用AuNRs-Ag+傳感器測定HCHO含量。同時做加標(biāo)回收實驗,并與固體基質(zhì)室溫磷光法[10]檢測結(jié)果相比較,結(jié)果列于表3。
表3 水樣中甲醛含量分析
如表3 所示, 用本法和固體基質(zhì)室溫磷光法對比測定了水樣中HCHO的含量,結(jié)果相吻合。河水大于自來水中HCHO的含量,由此預(yù)測河水可能被污染。由此可見,本方法可用于水樣中HCHO含量的測定和預(yù)報HCHO污染。
本文開發(fā)的測定HCHO的AuNRs比色傳感器具有靈敏、選擇性好、無需表面修飾、操作簡便,靈活、實用和等獨特優(yōu)點,適用于低含量的樣品中HCHO的現(xiàn)場檢測,對維護(hù)人體健康和人類良好的生存環(huán)境具有潛在的應(yīng)用前景。
[1] Li Q, Oshima M, Motomizu S. Flow-injection spectrofluorometric determination of trace amounts of formaldehyde in water after derivatization with acetoacetanilide [J]. Talanta, 2007, 72(5): 1675-1680.
[2] Salthammer T, Mentese S, Marutzky R. Formaldehyde in the Indoor Environment [J]. Chem Rev., 2010, 110(4): 2536-2572.
[3] Allouch A, Guglielmino M, Bernhardt P, Serra CA, Le Calvé S. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection [J]. Sensors Actuators B Chem., 2013, 181: 551-558.
[4] Zhang Z, Zhao C, Ma Y, Li G. Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy [J]. Analyst, 2014, 139(14): 3614-3621.
[5] Wang T, Gao X, Tong J, Chen L. Determination of formaldehyde in beer based on cloud point extraction using 2, 4-dinitrophenylhydrazine as derivative reagent [J]. Food Chem., 2012, 131(4): 1577-1582.
[6] Wang L, Zhou C-L, Chen H-Q, Chen J-G, Fu J, Ling B. Determination of formaldehyde in aqueous solutions by a novel fluorescence energy transfer system [J]. Analyst, 2010, 135(8): 2139-2143.
[7] Uralets, VP, Rijks, JA, Leclercq, PA. Syn-anti-isomerisation of 2, 4 - dinitrobenzene hydrazine of volatile carbonyl compounds in capillary gas chromatographic-mass spectrometric analyses [J]. Chromatogr, 1980, 194(2): 135-138.
[8] Zhi-Qi Zhang,Hong-Tao Yan,Xuan-Feng Yue.Catalytic determination of trace formaldehyde with a flow injection system using the indicator reaction between crystal violet and bromate [J]. Microchimica Acta, 2004, 146(3-4): 259-263.
[9] Ming Yang,Xiao-Gang Zhang,Hu-Lin Li. Differential-pulse voltammetric determination of trace formaldehyde using magnetic microspheres and magnetic electrode [J]. Analyst, 2001, 126: 676-678.
[10] LIU Jia-Ming, YANG Tian-Long, ZHU Guo-Hui, CHEN Hai-Ling, LI Ping-Ping, LIN Xuan, HUANG Xiao-Mei[J]. Determination of trace formaldehyde by solid substrate-room temperature phosphorescence quenching method based on the rose bengal-potassium bromate-tween-80 system [J]. Spectrochimica Acta, Part A, 69 2008(69): 1004-1009.
[11] TAN Guang-Hui, LI Gui-Rong, ZHOU Jin. Determination of trace formaldehyde by resonance fluorescence spectrometry of pyronine Y. Chinese Journal of spectroscopy laboratory [J]. 2010, 27(4): 1436-1439.
[12] Han S, Wang J, Jia S. Determination of formaldehyde based on the enhancement of the chemiluminescence produced by CdTe quantum dots and hydrogen peroxide [J]. MicrochimActa, 2014, 181(1-2): 147–153.
[13] Sugaya N, Nakagawa T, Sakurai K, Morita M, Onodera S. Analysis of aldehydes in water by head space-GC/MS [J]. Health Sci. 2001, 47(1): 21-27.
[14] Guirong Li, Lijuan Han. Determination of formaldehyde in aquatic products by a sensitive catalytic fluorescence method [J]. Anal. Methods, 2014(6): 426-432.
[15] Pinyi Ma, Fanghui Liang, Di Wang, Qingqing Yang, Yaying Ding, Yong Yu, Dejiang Gao, Daqian Song, Xinghua Wang. Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS [J]. Microchim Acta, 2015(182): 863-869.
[16] Jingchan Zhao, Gailing Wang, Ting Cao, Zhian Guo. Development of a Novel Derivate Assay for Formaldehyde Determination by HPLC in Beer Samples [J]. Food Anal. Methods, 2015, DOI 10.1007/s12161-015-0183-x.
[17] Thanh-Thuy, Nguyen-Boisse, Jo?lle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples [J]. Anal Bioanal Chem, 2014(406): 1039-1048.
[18] Na Wang, Xianfeng Wang, Yongtang Jia, Xiaoqi Li, Jianyong Yu, Bin Ding. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection [J]. Carbohydrate Polymers, 2014(108): 192-199.
[19] R. PANDEESWARI and B. G. JEYAPRAKASH. CeO2thin film as a low-temperature formaldehyde sensor in mixed vapour environment [J]. Bull. Mater. Sci., 2014, 37(6): 1293-1299.
[20] Xinghua Chang, Mi Peng, Junfeng Yang, Teng Wang, Yu liu, Jie Zheng, Xingguo Li. A miniature room temperature formaldehyde sensor with high sensitivity and selectivity using CdSO4modified ZnO nanoparticles [J]. RSC Adv., 2015(5): 75098-75104.
[21] Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing [J]. Chem. Rev., 2012(112): 2739-2779.
[22] Liu, D., Wang, Z., Jiang, X. Gold Nanoparticles for the Colorimetric and Fluorescent Detection of Ions and Small Organic Molecules [J]. Nanoscale, 2011(3): 1421-1433.
[23] Wang, G., Wang, Y., Chen, L., Choo, J. Nanomaterial-Assisted Aptamers for Optical Sensing[J]. Biosens Bioelectron, 2010(25): 1859-1868.
[24] M. Coronado-Puchau, L. Saa, M. Grzelczak, V. Pavlov and L. M. Liz-Marzan. Enzymatic modulation of gold nanorod growth and application to nerve gas detection [J]. Nano Today, 2013, 8(5): 461-468.
[25] J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan and P. Mulvaney. Gold nanorods: synthesis, characterization and applications [J]. Coord. Chem. Rev., 2005, 249(17): 1870-1901.
[26] R. Matthew, E. H. Florencio, D. C. Andres. Pushing the limits of mercury sensors with gold nanorods [J]. Anal. Chem., 2006 (78): 445-451.
[27] F. M. Li, J. M. Liu, X. X. Wang, L. P. Lin, W. L. Cai, Y. N. Zeng, L. H. Zhang, S. Q. Lin. Non-Aggregation based Label Free Colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods [J]. Sens. Actuators, B. Chem. 2011(155): 817-822.
[28] N. Xiao, C. X. Yu. Rapid-response and highly sensitive noncross-linking colorimetric nitrite sensor using 4-aminothiophenol modi?ed gold nanorods [J]. Anal. Chem. , 2010(82): 3659-3663.
[29] C.V. Durgadas, V. N. Lakshmi, C.P. Sharma, K. Sreenivasan. Sensing of lead ions using glutathione mediated end to end assembled gold nanorod chains [J]. Sens. Actuators, B. Chem., 2011(156): 791-797.
[30] X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, C. B. Murray. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives [J]. Nano., 2012(6): 2804-2817.
[31] H. Lee, S.M. Dellatore, W. M. Miller, P. B. Messersmith. Mussel-Inspired surface chemistry for multifunctional coatings [J]. Sci., 2007(318): 426-430.
[32] R. Liu, T. S. Zhong, C. X. Lei. Current development of dopamine electrochemical sensors [J]. Chem. Sens., 2011(31): 10-16.
[33] O.D. Uluozlu, M. Tuzen, D. Mendil, B. Kahveci, M. Soylak. 3-Ethyl-4-(p-chlorobenzylidenamino-4,5-dihydro
-1H-1,2,4-triazol-5-one (EPHBAT) as precipitant for carrier element free coprecipitation and speciation of chromium (III) and chromium (VI) [J]. J. Hazard. Mater., 2009(172): 395-399.
(責(zé)任編輯:馬圳煒)
Design of ultra-sensitive formaldehyde colorimetric sensor and its application
YE Fei, ZHU Hao, ZHENG Wei-qiao, YANG Zhi-xiang, LIAN Lu, YANG Sheng-song
(Fujian hao er bao new material technology co., LTD, Zhangzhou 363000, China)
Formaldehyde (HCHO) could reduce Ag+to Ag on the surface of gold nanorods (AuNRs) to form Au core-Ag shell nanorods (Au@AgNRs) in AuNRs-Ag+-HCHO system, which caused dielectric function to change. Thus, a responsive, simple, sensitive and selective AuNRs colorimetric sensor for the determination of HCHO has been developed based on the linear relationship between ?λLPABand the concentration of HCHO. The limit of detection (LOD) of this sensor is 6.3×10-10(gmL?1), which is much lower than that of resonance fluorescence spectrometry, showing its high sensitivity. What’s more, the sensor has been applied to the detection of HCHO in water samples with the results agreeing well withresonance fluorescence spectrometry, showing its great practicality. Furthermore, mechanism for the detection of HCHO was also discussed.
Formaldehyde; Gold nanorods; colorimetric sensor; Au core-Ag shell nanorods
1673-1417(2016)04-0010-07
10.13908/j.cnki.issn1673-1417.2016.04.0003
O629.8
A
2016-06-10
葉飛(1964—),男,工程師,研究方向:建筑材料研發(fā)、生產(chǎn)。