• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The warmest year 2015 in the instrumental record and its comparison with year 1998

    2016-11-23 05:57:07ZHANGChaoLIShuanglinandWANJiangHua
    關(guān)鍵詞:時間尺度年際證實

    ZHANG Chao, LI Shuanglinand WAN Jiang-Hua

    aPlateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China;bInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;cClimate Change Research Center,Chinese Academy of Sciences, Beijing, China;dDepartment of Atmospheric Science, China University of Geosciences, Wuhan, China;eNational Climate Center, China Meteorological Administration, Beijing, China

    The warmest year 2015 in the instrumental record and its comparison with year 1998

    ZHANG Chaoa,b,c, LI Shuanglinb,c,dand WAN Jiang-Huae

    aPlateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China;bInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;cClimate Change Research Center,Chinese Academy of Sciences, Beijing, China;dDepartment of Atmospheric Science, China University of Geosciences, Wuhan, China;eNational Climate Center, China Meteorological Administration, Beijing, China

    The global annual averaged Surface Air Temperature Anomaly (SATA) in 2015 and its rank in the historical instrumental records are analyzed using the CRU, NASA, and NOAA datasets. All datasets indicate that 2015 is the warmest year, which is 0.74 °C warmer than normal years from 1961 to 1990 in the HadCRUT4 data-set. The most evident warm anomaly occurs over land, especially at high latitudes. The averaged SATA over land is 1.13 °C, which is 0.54 °C warmer than that over oceans(0.59 °C). Because an El Ni?o event occurred in 2015 and 1998 and 1998 is also the warmest year in the twentieth century, these two years are compared to explain the formation of the warmest climate. A statistical approach that is known as the Ensemble Empirical Mode Decomposition (EEMD)is employed to isolate the components with diferent timescales, which range from interannual to centennial and a long-term trend. In 2015 the developing El Ni?o may have contributed an anomaly of 0.10 °C, while this value is 0.18 °C for 1998. The contribution of the decadal-multidecadal variability and beyond to 2015 is 0.64 °C, which is signifcantly larger than that of the interannual anomaly components (0.10 °C). This indicates that the warmest climate in 2015 occurred in the context of the timescales beyond the interannual.

    ARTICLE HISTORY

    Revised 10 May 2016

    Accepted 24 May 2016

    SATA; the warmest year 2015;EEMD

    本文利用CRU、NASA和NOAA的近地面氣溫異常(SATA)數(shù)據(jù),對比分析了2015年和1998年的溫度異常分布特征,證實了2015年是有觀測記錄以來溫度最暖的一年,并進一步利用EEMD方法探討了不同時間尺度對2015年溫度異常的貢獻(xiàn)以及其溫度最暖的形成原因。結(jié)果表明,年代際及其以上的時間尺度和長期增暖趨勢對2015年年平均SATA貢獻(xiàn)為0.64°C,遠(yuǎn)遠(yuǎn)大于與ENSO信號相關(guān)的年際時間尺度的貢獻(xiàn)(為0.1°C),說明長時間尺度和全球長期變暖趨勢對2015年溫度異常的形成有重要貢獻(xiàn)。

    1. Introduction

    During the last century, the global annual averaged Surface Air Temperature Anomaly (SATA) has exhibited a warming trend (Cook et al. 2014). The trend has created a challenge to the environment, society, and economy of many countries and caused greater occurrences of extreme weather and climate events, such as fooding, drought, and heat waves (Hao, AghaKouchak, and Phillips 2013; Cook et al. 2014; Li, Zhang, and Yao 2015). Thus, global warming is a controversial research topic in various felds of the global environment and society.

    Global warming has been extensively investigated. During the frst ten years of the twenty-frst century, the global averaged air temperature did not exhibit an evident warming trend; instead, a neutral trend was observed. People referred to this trend as the hiatus of global warming (Bala 2013). The hiatus has attracted a substantial amount of attention, and various reasons have been proposed. The future evolution of this hiatus is concerning. Particularly, the emergence of the record warmest year 2015 has sparked a debate about the hiatus.

    Many media sources reported that 2015 is the warmest year in the instrumental records.1,2,3Why the warmest climate emerged in 2015 is not only intriguing for predicting interannual climate anomaly, but also important for projecting the future evolution of the hiatus. If the primary factor for the 2015 anomaly is physical forcing on the interannual timescale, it may provide no indication or implication of the tendency of the hiatus. Conversely, ifthe primary factor that is responsible for the 2015 anomaly consists of decadal components and beyond, it may imply that the hiatus is fading away. Thus, understanding the cause of the occurrence of the warmest air temperatures in 2015 is critical.

    The year 2015 resembles the year 1998 in two aspects. In addition to the warmer SATA, a developing El Ni?o event occurred in 2015. Similarly, 1998 is the warmest year in the twentieth century, and the strongest ENSO occurred in winter 1997—1998 (Bell et al. 1999; Lu 2005; Zhang and Li 2015). Previous studies suggest that an El Ni?o event elevates the global averaged air temperature (Bell et al. 1999; Lean and Rind 2008, 2009) and that the 1997/1998 El Ni?o event contributed a value of 0.23 °C to the average temperature from June 1997 to November 1997 (Lean and Rind 2008). Thus, we attempt to explain the formation of the anomalously warmer climate in 2015 by comparing it with the climate in 1998. We address the following questions: (1) Is the global averaged SATA in 2015 consistently the strongest anomaly in diferent observational or reanalysis datasets? Do diferences exist in the annual averaged SATA between the oceans and the continents, or in the seasonal averaged SATA between the four seasons? (2) What caused the occurrence of the warmest SATA in 2015? In comparison to year 1998, is the primary infuential factor in 2015 diferent?

    2. Datasets and methods

    2.1. Datasets

    The monthly land SATA data-set and the monthly sea surface temperature anomaly data-set are obtained from the CRUTEM4 (Jones et al. 2012) and HadSST3 data-set(Kennedy et al. 2011), respectively. Both datasets are provided by the Climatic Research Unit (CRU) at the University of East Anglia. The monthly global SATA dataset is obtained from HadCRUT4, which is a collaborate product of Met Ofce Hadley Centre and CRU combining the CRUTEM4 and HadSST3 datasets (Morice et al. 2012). These anomalies are calculated relative to the 1961—1990 normal, have a horizontal resolution of 5° × 5° and cover the period from 1850 to 2015.

    To compare with the time series calculated from the CRU datasets, the time series from both the GISTEMP dataset (Hansen et al. 2010) produced by the Goddard Institute of Space Studies (GISS) at the National Aeronautics and Space Administration (NASA, with the base period: 1951—1980) and the MLOST data-set (Smith et al. 2008) provided by the National Climatic Data Center (NCDC) at National Oceanic and Atmospheric Administration (NOAA, with the base period: 1901—2000) are also used. The Extended Reconstructed Sea Surface Temperature V3b data-set(Smith et al. 2008), which has a horizontal resolution of 2° × 2°, covers the period from 1854 to 2015 and comes from NOAA, is also utilized to calculate the time series of annual averaged SATA with the base period from 1961 to 1990.

    2.2. Ensemble empirical mode decomposition

    To separate the components with diferent timescales consisting of the observed SATA series, the Ensemble empirical mode decomposition (EEMD) method is used (Wu and Huang 2009). The decomposition processes of the EEMD method are as follows:

    (1) Add a white noise series to the targeted data,

    X(t),

    whereX(t)is the initial data,Wj(t)is the jth realization of the white noise series, andXj(t)is the noise-added series and is utilized for the jth decomposition.

    (2) Decompose the data with added white noise into diferent components, which are referred to as the intrinsic mode functions (IMFs). The total number of IMFs ofX(t)is close to log2Y,where Y is the length ofX(t),

    where cjkand rjnis the kth and the nth (the residue) component, respectively, in the jth decomposition.

    (3) Repeat step 1 and step 2 again and again, but with diferent white noise series added each time.

    (4) Obtain the ensemble means of corresponding IMFs of the decompositions as the fnal result,

    where N is the ensemble size.

    The IMFs are extracted level by level: frst the highest-frequency local oscillations riding on the corresponding lower-frequency part of the data are extracted; second,the next level highest-frequency local oscillations of the residual of the data are extracted. This process continues until no complete oscillation can be identifed in the residual. In short, the EEMD is an adaptive method that will decompose data,X(t), into several series components with diferent timescales from interannual, decadal, multidecadal, and centennial, cj, and a long-term trend, rn, i.e.Defne the residual component, rn, as the overall adaptive trend (R), and consider the sum of R and the components,which pass the 0.01 signifcance test based on the a posteriori test method proposed by Wu and Huang (2004),as the multidecadal trend (Wu and Huang 2004; Wu et al. 2007). During the process of decomposition, the white noise with a standard deviation of 0.2 was added in each EEMD ensemble member and an ensemble size of 1000 was utilized.

    3. The spatial-temporal distribution of surface air temperature anomalies

    The time series of the annual averaged SATA in the diferent datasets are shown in Figure 1. The global averaged SATA in 2015 is 0.74 °C warmer than the climatological mean for the 1961—1990 base period in the HadCRUT4 data-set (Figure 1(a)). It is the warmest year in the analysis period and is warmer than year 1998, which is the warmest year in the twentieth century. The averaged SATA over land and oceans in 2015 is 1.13 and 0.59 °C in the CRUTEM4 and HadSST data-set, respectively, both ranking the 1st warmest year. The datasets from NASA and NOAA reveal similar results (Figure 1).

    The seasonal averaged SATA over the globe, land, and oceans from the HadCRUT4, CRUTEM4, and HadSST3 dataset, respectively, are shown in Figure 2. The global averaged SATA for the four seasons from winter 2014—2015 (i.e. December 2014 to February 2015) to autumn 2015 is 0.64,0.68, 0.72, and 0.80 °C, respectively. All SATAs are ranked frst. Compared with 1998, the global averaged SATA for the four seasons from winter to autumn is 0.09, 0.09, 0.1,and 0.44 °C cooler, respectively.

    The magnitude of SATA over land is greater than that over oceans. The summer and autumn seasonal SATA over land in 2015 both rank frst with an anomaly of 0.97 and 1.15 °C, whereas the winter and spring seasonal SATA both rank second with an anomaly of 1.14 and 1.03 °C,respectively. Over oceans, with the exception of winter 2014—2015, which ranks the third warmest year with an anomaly of 0.43 °C, the averaged SATAs during the three remaining seasons all rank frst with an anomaly of 0.52,0.63, and 0.71 °C, which may be related to the ongoing El Ni?o event.

    Figure 1.The evolution of the annual mean SATA over the (a)globe, (b) land, and (c) oceans. The red line indicates that the anomaly is calculated based on the CRU datasets with a base period of 1961—1990. The blue line is calculated from the NASA data-set with the base period of 1901—2000. The green line is calculated based on the NOAA data-set with the base period from 1951 to 1980 in (a) and (b) and the base period from 1961 to 1990 in (c). Units: °C.

    Figure 3 shows a comparison of the spatial distributions of the year-averaged and seasonal-averaged SATAs of 2015 and 1998. In addition to a greater anomaly value over land than over ocean, the warmth at the higher latitudes is greater than the lower latitudes in 2015, especially north of 50°N, where the zonal mean of SATA exceeds 1.5 °C during the entire year, which is signifcantly higher than that of 1998. Regarding the diferent regions, the most prominent regions with warm anomalies include the central-western Eurasian continent, the western North America continent, the central-eastern tropical Pacifc and the northeastern Pacifc with anomalies that range from 0.5 to 3.5 °C. Seasonally, the warm anomalies over the Eurasian continent and western North America are most evident during winter 2014—2015 and weaken in the subsequent seasons. Over oceans, warm anomalies are also observed in the central-eastern tropical Pacifc and the north-eastern Pacifc in spring 2015 and became enhanced and are spatially extended in the subsequent summer and autumn.

    Figure 2.The time series of seasonal averaged SATA over the globe (left column), land (middle column), and oceans (right column). Units: °C.

    In comparison, the 1998 SATA over land is substantially warmer over the North American continent, especially during winter 1997—1998 and spring 1998, and signifcantly cooler over the northern Eurasian continent, especially during winter 1997—1998 and spring and autumn 1998 than the same seasons in 2015. Over oceans, signifcant warmth occurred in the central-eastern Pacifc during winter 1997—1998 and weakened in the subsequent seasons, which difers from the warmth in 2015. The negative SATAs that occurred over the northern Pacifc persisted during the four seasons of 1998, which is consistent with the anomalies in 2015.

    4. Possible causes

    In the above analysis, we discovered that the annual averaged SATA over the globe, land and oceans in 2015 were the warmest SATAs in the instrumental record. These three time series are analyzed to explain why 2015 is the warmest year. The EEMD method is employed to decompose one series into several series components with diferent timescales — interannual, decadal, multidecadal,centennial and a long-term trend — which are refected in diferent terms (Ci: the ith component after EEMD)(Ci) in Equation (4). Because the variations with diferent timescales can be traced to diferent physical reasons, this timescale decomposition may indicate the formation of the 2015 warmest anomaly.

    After the EEMD, seven components were isolated; their periodicities and the explained variance rates for the three time series are listed in Table 1. C1 and C2, which have visual periodicities in the range of 2—7 years, should refect the ENSO signal, whereas C3 with a periodicity of approximately 11 years should refect the solar cycle. Only C4—C6 refect the variability from the decadal component to the multidecadal component (Wu et al. 2007; Qian et al. 2009;Wu and Huang 2009; Qian et al. 2011). A statistical test suggests that the fourth (C4), the ffth (C5), and the last (R)components, which were isolated from the time series of the annual averaged SATA over the globe and oceans, and the C5 and R, which were isolated from the time series of the annual averaged SATA over land, were at a 99% confdence level (Table 1). This fnding suggests the importance of multidecadal and beyond components.

    Thus, the several terms refecting the diferent timescales, including a linear trend, the decadal (represented with a 9-yr running average), the overall adaptive trend(R in EEMD) and the multidecadal trend (the sum of R and the components that pass the 0.01 signifcance test) are plotted in Figure 4(a)—(d). A total of three terms (1850—1878,1910—1944, and 1975—2015) with a warming tendency and two terms (1879—1909 and 1945—1974) with a cooling tendency are observed. When overlapped with the overalladaptive trend, the multidecadal variation reproduces the primary trend feature in the annual SATA better than a linear trend (Wu et al. 2007), which is also evident from their explanation variance rate of approximately 90 and 80%,respectively, of the annual SATA series (Table 1).

    Figure 3.Comparison of the spatial distribution of the annual mean (the top row) and the seasonal mean of the SATA in four diferent seasons (from the second to the last row) in 2015 (left column) and 1998 (right column). The black curves in the right subpanel indicate the zonal mean. Units: °C.

    After removing the linear trend (red line in Figure 4(e)—(h)), the remaining series contains a dominant centennial timescale and a multidecadal timescale. When the overall adaptive trend is removed, multidecadal fuctuating patterns, which indicate cyclical variability on a shorter timescale than the overall adaptive trend, are observed(Wu et al. 2007). When the components from the decadal to centennial and the long-term trend are removed, the remaining SATAs in 2015 are not the warmest, which indicates a substantial contribution from the decadal to centennial components and beyond. The decadal background along with the global warming trend may both play important roles for the formation of the warmest SATA in 2015.

    Table 1.The periodicity (noted as ‘P', units: year) and the explained variance rate (‘Var', units: %) of the individual components derived by the EEMD method from the time series of the annual mean SATA over the globe (‘Globe'), land (‘Land'), and oceans (‘Ocean').

    Figure 4.Left column: a comparison of the time series (black solid line) of the annual mean SATA over the (a) globe, (b) land, and (c)oceans and their various trends (red: the linear trend; green: the overall adaptive trend; blue: the multidecadal trend; and red: the 9-year running mean). Right column: the residual with the linear trend removed (red), the residual with the overall adaptive trend removed(green), and the residual with the multidecadal trend removed (blue). A value of 0.25 °C is added or subtracted to the red solid lines and blue solid lines, respectively, to improve the readability of the lines.

    Then, the magnitude of the SATA in 2015 was compared with the interannual noise based on the idea of signal-tonoise ratio. The noise is estimated as the standard deviation of the residual series when the components with the timescales beyond the interannual (including the decadal,multidecadal, centennial, and the overall adaptive trend)are removed. The results suggest that the magnitudes of the remaining SATAs in 2015 and 1998 that exceed onestandard deviation can be treated as a signal, implying that the interannual components are also important.

    El Ni?o typically contributes to an elevated global mean SATA (Lean and Rind 2008, 2009). In the EEMD, C1 and C2 refect the ENSO-related signals. The sum of C1 and C2 was 0.10 °C in 2015, which suggests that the developing El Ni?o may contribute 0.10 °C to the global annual SATA in 2015. The value of 0.18 °C in 1998 indicates a substantial contribution from the strong El Ni?o event. A similar contribution value (0.2 °C) has been obtained in a previous study (Lean and Rind 2008). C3 represents the contribution from the 11-year periodic solar cycle of 0.04 and 0.01 °C in 2015 and 1998, respectively. In 2015, the components with the multidecadal timescales (C4—C6 with periodicities from 30.0 to 168.2 years) and the overall adaptive trend contribute a value of 0.09 and 0.51 °C. In 1998, the values are 0.03 and 0.32 °C, which are signifcantly smaller than the values in 2015, suggest that the multidecadal components have contributed a greater fraction to 2015 than 1998; the opposite situation occurs for the interannual components.

    5. Summary

    In the study, we confrmed that 2015 is the warmest year using several datasets. The annual SATA over the globe,land, and oceans were analyzed based on the CRU datasets; the results were compared with the results for 1998. Considering that the observed SATA consists of components with diferent timescales and may originate from various physical processes, the EEMD method was employed to decompose the SATA series and discuss the potential causes. The primary conclusions are summarized as follows:

    (1) The global annual averaged SATA in 2015 is 0.74 °C warmer than the 1961—1990 base period. It is not only the warmest, but also 0.2 °C warmer than year 1998. In 2015, the annual averaged SATA is greater over high latitudes than low latitudes, over land than over oceans. Strong warmer SATAs occurred on the central Eurasian continent, the western North American continent, the central-eastern tropical Pacifc Ocean,and the north-eastern Pacifc Ocean.

    (2) The roles of the diferent timescale components in 2015 are not the same as in 1998. The decadal and trend background may have played a more important role in 2015 than in 1998. The interannual components have contributed an anomaly value of 0.10 and 0.18 °C to the global annual SATA in 2015 and 1998, respectively. The decadal variability and beyond have contributed an anomaly value of 0.64 °C in year 2015,whereas the value was 0.36 °C in 1998.

    (3) These results have important meaning for not only understanding the formation of the SATA in 2015, but also projecting the future trend of the warming hiatus in the beginning decade of the century because the contribution of the decadal-multidecadal variability and beyond to 2015 is much greater than that of the interannual components. This indicates that the developing El Ni?o is important to the formation of the warmest climate in 2015; however,it is not the primary factor. This evidence also suggests that the substantial importance of the decadal-multidecadal variability and beyond,and the potentially lower possibility of interannual external forcing, implying that substantial warming in years such as 2015 may occur more frequently and the ‘warming hiatus' may be fading away.

    The EEMD method was developed as a data-adaptive flter for nonlinear and nonstationary time series analysis(Wu and Huang 2009; Qian et al. 2011). It improves the efciency of representing signals in data. However, it also has an ‘end efect', which occurs near the ends where cubic spline ftting can have large swings and eventually propagate inward (Huang et al. 1998). Due to the ‘end efect',the conclusions based on the EEMD method may require further validation.

    Notes

    1. http://www.climatecentral.org/news/2015-warmestyear-more-certain-19548.

    2. http://www.thedailybeast.com/articles/2015/05/16/2015-is-the-hottest-year-on-record.html.

    3. http://www.aljazeera.com/news/2015/11/2015-sethottest-year-record-151125154306485.html.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 41421004] and the National Key Basic Research and Development Program of China [grant numbers 2016YFA0601802 and 2015CB453202].

    References

    Bala, G. 2013. “Why the Hiatus in Global Warming in the Last Decade?” Current Science 105 (8): 1031—1032.

    Bell, G. D., M. S. Halpert, C. F. Ropelewski, V. E. Kousky, A. V. Douglas, R. C. Schnell, and M. E. Gelman. 1999. “ClimateAssessment for 1998.” Bulletin of the American Meteorological Society 80 (5): S1—S48.

    Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats. 2014. “Global Warming and 21st Century Drying.” Climate Dynamics 43(9—10): 2607—2627. doi:10.1007/s00382-014-2075-y.

    Hansen, J., R. Ruedy, M. Sato, and K. Lo. 2010. “Global Surface Temperature Change.” Reviews of Geophysics 48: RG4004. doi:10.1029/2010rg000345.

    Hao, Z. C., A. AghaKouchak, and T. J. Phillips. 2013. “Changes in Concurrent Monthly Precipitation and Temperature Extremes.” Environmental Research Letters 8 (3): 1—7. doi:10.1088/1748-9326/8/3/034014.

    Huang, N. E., Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng,N. C. Yen, C. C. Tung, and H. H. Liu. 1998. “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis.” Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences 454(1971): 903—995.

    Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon,and C. P. Morice. 2012. “Hemispheric and Large-scale Landsurface Air Temperature Variations: An Extensive Revision and an Update to 2010.” Journal of Geophysical Research-Atmospheres 117: D05127. doi:10.1029/2011jd017139.

    Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby. 2011. “Reassessing Biases and Other Uncertainties in Sea Surface Temperature Observations Measured in situ since 1850: 2. Biases and Homogenization.”Journal of Geophysical Research-Atmospheres 116: D14104. doi:10.1029/2010jd015220.

    Lean, J. L., and D. H. Rind. 2008. “How Natural and Anthropogenic Infuences Alter Global and Regional Surface Temperatures: 1889 to 2006.” Geophysical Research Letters 35 (18): L18701. doi:10.1029/2008gl034864.

    Lean, J. L., and D. H. Rind. 2009. “How Will Earth's Surface Temperature Change in Future Decades?” Geophysical Research Letters 36: L15708. doi:10.1029/2009gl038932.

    Li, X., H. C. Zhang, and J. L. Yao, 2015. “Spatial-temporal Distribution and Trend Analysis of Drought in Henan Province.” [in Chinese.] Journal of Northwest Normal University(Natural Science) 51 (02): 85—91, 104.

    Lu, R. Y. 2005. “Impact of Atlantic Sea Surface Temperatures on the Warmest Global Surface Air Temperature of 1998.”Journal Geophysical Research-Atmospheres 110 (D5): D05103. doi:10.1029/2004jd005203.

    Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones. 2012. “Quantifying Uncertainties in Global and Regional Temperature Change Using an Ensemble of Observational Estimates: The HadCRUT4 Data Set.” Journal Geophysical Research-Atmospheres 117: 1—58. doi:10.1029/2011jd017187.

    Qian, C., C. B. Fu, Z. H. Wu, and Z. W. Yan. 2009. “On the Secular Change of Spring Onset at Stockholm.” Geophysical Research Letters 36: L12706. doi:10.1029/2009gl038617.

    Qian, C., Z. H. Wu, C. B. Fu, and D. X. Wang. 2011. “On Changing El Ni?o: A View from Time-varying Annual Cycle, Interannual Variability, and Mean State.” Journal of Climate 24 (24): 6486—6500. doi:10.1175/Jcli-D-10-05012.1.

    Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore. 2008. “Improvements to NOAA's Historical Merged Land—Ocean Surface Temperature Analysis (1880—2006).” Journal of Climate 21 (10): 2283—2296. doi:10.1175/2007JCLI2100.1.

    Wu, Z. H., and N. E. Huang. 2004. “A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method.” Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences 460 (2046): 1157—1611.

    Wu, Z. H., and N. E. Huang. 2009. “Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method.”Advances in Adaptive Data Analysis 01 (01): 1—41. doi:10.1142/ S1793536909000047.

    Wu, Z. H., N. E. Huang, S. R. Long, and C. K. Peng. 2007. “On the Trend, Detrending, and Variability of Nonlinear and Nonstationary Time Series.” Proceedings of the National Academy of Sciences of the United States of America 104 (38): 14889—14894. doi:10.1073/pnas.0701020104.

    Zhang, C., and S. L. Li. 2015. “Why is the El Ni?o Event during the 2014 Winter Not a Strong One?” [in Chinese.] Chinese Science Bulletin 60 (20): 1941—1951. doi:10.1360/N972015-00128.

    SATA; 2015最熱年; EEMD

    25 March 2016

    CONTACT LI Shuanglin shuanglin.li@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    時間尺度年際證實
    時間尺度上非完整系統(tǒng)的Noether準(zhǔn)對稱性與守恒量
    時間尺度上Lagrange 系統(tǒng)的Hojman 守恒量1)
    北緯30°中層頂區(qū)域鈉與鐵原子層的結(jié)構(gòu)和年際變化
    交直流混合微電網(wǎng)多時間尺度協(xié)同控制
    能源工程(2021年1期)2021-04-13 02:06:12
    大連市暴雨多時間尺度研究分析
    亞洲夏季風(fēng)的年際和年代際變化及其未來預(yù)測
    與北大西洋接壤的北極海冰和年際氣候變化
    去哪兒、攜程互咬一路廝打至商務(wù)部沈丹陽證實收到舉報材料
    IT時代周刊(2015年9期)2015-11-11 05:51:27
    基于M-K法對圖們江干流含沙量年際變化的分析
    薄軌枕的效力得到證實
    午夜福利高清视频| 69人妻影院| 亚洲精品一区av在线观看| 老司机深夜福利视频在线观看| av片东京热男人的天堂| 母亲3免费完整高清在线观看| 在线观看一区二区三区| 亚洲一区二区三区不卡视频| 天天一区二区日本电影三级| 波多野结衣巨乳人妻| 免费人成在线观看视频色| 高清在线国产一区| 女人被狂操c到高潮| tocl精华| 久久亚洲真实| 国产精品自产拍在线观看55亚洲| 免费av毛片视频| 亚洲自拍偷在线| 亚洲精品在线美女| 国产熟女xx| 亚洲一区二区三区不卡视频| 真人做人爱边吃奶动态| 99热这里只有是精品50| 最新在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 男女下面进入的视频免费午夜| 欧美日韩综合久久久久久 | 国产精华一区二区三区| 国产一区二区亚洲精品在线观看| 美女大奶头视频| 三级男女做爰猛烈吃奶摸视频| 久久久久精品国产欧美久久久| 免费看十八禁软件| 国产一区二区在线av高清观看| 色哟哟哟哟哟哟| 99久久精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 色av中文字幕| 在线观看美女被高潮喷水网站 | 亚洲国产色片| x7x7x7水蜜桃| 国产av一区在线观看免费| 好看av亚洲va欧美ⅴa在| 亚洲电影在线观看av| 精品久久久久久,| 天堂动漫精品| 一夜夜www| 搡老妇女老女人老熟妇| 性色avwww在线观看| x7x7x7水蜜桃| 校园春色视频在线观看| 99久久成人亚洲精品观看| 最新美女视频免费是黄的| 国产伦一二天堂av在线观看| 亚洲中文字幕日韩| 国产av在哪里看| 欧美午夜高清在线| 色综合站精品国产| a在线观看视频网站| 免费在线观看成人毛片| 精品99又大又爽又粗少妇毛片 | 97超视频在线观看视频| 超碰av人人做人人爽久久 | 欧美乱色亚洲激情| 夜夜看夜夜爽夜夜摸| 1000部很黄的大片| 99久久久亚洲精品蜜臀av| 日本黄大片高清| 午夜福利在线在线| 日韩精品青青久久久久久| 91久久精品国产一区二区成人 | 岛国视频午夜一区免费看| 亚洲av成人不卡在线观看播放网| 国内精品一区二区在线观看| 成人一区二区视频在线观看| 精品久久久久久久久久久久久| 99久久综合精品五月天人人| 蜜桃久久精品国产亚洲av| 久久久精品大字幕| 欧美高清成人免费视频www| 成人高潮视频无遮挡免费网站| 99久久九九国产精品国产免费| 一区二区三区激情视频| 亚洲av成人不卡在线观看播放网| 在线观看av片永久免费下载| 免费在线观看影片大全网站| 一进一出抽搐gif免费好疼| 国产午夜精品久久久久久一区二区三区 | 又黄又粗又硬又大视频| xxx96com| av黄色大香蕉| 熟女少妇亚洲综合色aaa.| 日韩欧美在线二视频| 国产aⅴ精品一区二区三区波| 亚洲在线自拍视频| 亚洲在线观看片| 国产成人av激情在线播放| 天堂网av新在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 18禁裸乳无遮挡免费网站照片| 久久性视频一级片| 99久久无色码亚洲精品果冻| 日韩欧美精品免费久久 | 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 最近在线观看免费完整版| 无人区码免费观看不卡| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色| 亚洲男人的天堂狠狠| 精品99又大又爽又粗少妇毛片 | 又粗又爽又猛毛片免费看| 又粗又爽又猛毛片免费看| 久久国产乱子伦精品免费另类| 欧美三级亚洲精品| 久久久久久人人人人人| 成人三级黄色视频| 国产三级在线视频| 久久国产乱子伦精品免费另类| 亚洲精品成人久久久久久| 国产不卡一卡二| 丰满的人妻完整版| 国产三级黄色录像| 国产精品,欧美在线| 国产精品久久久人人做人人爽| 国产精品三级大全| av视频在线观看入口| 在线观看美女被高潮喷水网站 | 国产一区二区在线观看日韩 | 桃红色精品国产亚洲av| bbb黄色大片| 午夜激情欧美在线| 操出白浆在线播放| 欧美另类亚洲清纯唯美| 少妇的逼水好多| 久久久久久人人人人人| 免费电影在线观看免费观看| 狠狠狠狠99中文字幕| 欧美日韩一级在线毛片| av片东京热男人的天堂| 老司机午夜十八禁免费视频| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院| 日本五十路高清| 男女床上黄色一级片免费看| 国产三级黄色录像| 亚洲精华国产精华精| 久99久视频精品免费| 51国产日韩欧美| 狂野欧美白嫩少妇大欣赏| 久久精品国产99精品国产亚洲性色| 欧美一级a爱片免费观看看| 亚洲av五月六月丁香网| 国产不卡一卡二| 偷拍熟女少妇极品色| www.www免费av| 热99re8久久精品国产| 亚洲一区高清亚洲精品| www.熟女人妻精品国产| 国产成人a区在线观看| 黄色日韩在线| 国产乱人视频| 国产野战对白在线观看| av天堂在线播放| 成人高潮视频无遮挡免费网站| 757午夜福利合集在线观看| av在线蜜桃| 男女午夜视频在线观看| 亚洲国产精品999在线| av国产免费在线观看| 免费高清视频大片| 国内毛片毛片毛片毛片毛片| 成人午夜高清在线视频| 免费人成视频x8x8入口观看| av女优亚洲男人天堂| 日日夜夜操网爽| 日韩人妻高清精品专区| www.999成人在线观看| 最近最新中文字幕大全免费视频| 欧美日韩福利视频一区二区| 日韩大尺度精品在线看网址| 欧美乱色亚洲激情| 999久久久精品免费观看国产| 宅男免费午夜| 天美传媒精品一区二区| 国产成人aa在线观看| 国产成人av激情在线播放| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 脱女人内裤的视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 色综合站精品国产| 最近在线观看免费完整版| 成人鲁丝片一二三区免费| 成人18禁在线播放| 日韩精品中文字幕看吧| 好男人电影高清在线观看| 丰满的人妻完整版| 深夜精品福利| 国产国拍精品亚洲av在线观看 | 一个人观看的视频www高清免费观看| 久99久视频精品免费| 特大巨黑吊av在线直播| 久久久久精品国产欧美久久久| av专区在线播放| 国产一级毛片七仙女欲春2| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 十八禁网站免费在线| 亚洲av一区综合| 精品一区二区三区视频在线 | 欧美一区二区精品小视频在线| 岛国视频午夜一区免费看| 18禁美女被吸乳视频| 一区二区三区免费毛片| 欧美日韩亚洲国产一区二区在线观看| a级一级毛片免费在线观看| 在线观看av片永久免费下载| 亚洲av电影在线进入| xxxwww97欧美| 国产探花在线观看一区二区| 97碰自拍视频| 国产精品自产拍在线观看55亚洲| 色视频www国产| 午夜免费男女啪啪视频观看 | 国产三级中文精品| 深爱激情五月婷婷| 可以在线观看的亚洲视频| 午夜免费男女啪啪视频观看 | 99热只有精品国产| 超碰av人人做人人爽久久 | 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 性色av乱码一区二区三区2| 夜夜躁狠狠躁天天躁| 亚洲精品成人久久久久久| 久久久国产成人免费| 亚洲av五月六月丁香网| 90打野战视频偷拍视频| 精品国内亚洲2022精品成人| 免费电影在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 色在线成人网| 亚洲人成伊人成综合网2020| 国产精品综合久久久久久久免费| 午夜免费激情av| 国产探花极品一区二区| 丰满乱子伦码专区| 看免费av毛片| 精品乱码久久久久久99久播| 99久久综合精品五月天人人| 午夜影院日韩av| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 亚洲av一区综合| 99热精品在线国产| 99精品欧美一区二区三区四区| 成年女人毛片免费观看观看9| 12—13女人毛片做爰片一| 欧美成人a在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美日本视频| 亚洲av日韩精品久久久久久密| 一本精品99久久精品77| 久久这里只有精品中国| 99久国产av精品| 好男人电影高清在线观看| 俺也久久电影网| 天天一区二区日本电影三级| 国内毛片毛片毛片毛片毛片| 少妇的逼水好多| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 久久国产乱子伦精品免费另类| 一级作爱视频免费观看| 黄色成人免费大全| 欧美在线一区亚洲| 岛国在线观看网站| 在线观看美女被高潮喷水网站 | 久久精品国产亚洲av涩爱 | 国产真实乱freesex| 国产精品99久久99久久久不卡| 亚洲狠狠婷婷综合久久图片| 麻豆一二三区av精品| 宅男免费午夜| 国产在视频线在精品| 五月伊人婷婷丁香| 又爽又黄无遮挡网站| 精品不卡国产一区二区三区| 最近最新中文字幕大全免费视频| 老司机深夜福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| av欧美777| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看| 母亲3免费完整高清在线观看| 国产伦在线观看视频一区| 国产av不卡久久| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 桃色一区二区三区在线观看| 此物有八面人人有两片| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 亚洲欧美一区二区三区黑人| 搞女人的毛片| 欧美日韩乱码在线| 久久精品国产亚洲av涩爱 | 三级毛片av免费| 国内精品美女久久久久久| 18美女黄网站色大片免费观看| 99国产精品一区二区三区| 淫秽高清视频在线观看| 国产激情欧美一区二区| 亚洲精品粉嫩美女一区| av专区在线播放| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| 黄色视频,在线免费观看| 国产综合懂色| 日本五十路高清| 18美女黄网站色大片免费观看| 成人欧美大片| 欧美在线黄色| 男插女下体视频免费在线播放| 日日夜夜操网爽| 久久人人精品亚洲av| 十八禁人妻一区二区| 啦啦啦观看免费观看视频高清| 人人妻,人人澡人人爽秒播| 母亲3免费完整高清在线观看| 久久精品国产亚洲av涩爱 | 久久性视频一级片| 亚洲中文字幕一区二区三区有码在线看| 免费看十八禁软件| 全区人妻精品视频| 毛片女人毛片| 精品国产超薄肉色丝袜足j| 日韩高清综合在线| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 18美女黄网站色大片免费观看| 国产黄片美女视频| 性色av乱码一区二区三区2| 国产午夜精品论理片| 噜噜噜噜噜久久久久久91| a级一级毛片免费在线观看| 九色成人免费人妻av| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 亚洲av成人av| 免费人成在线观看视频色| 亚洲熟妇中文字幕五十中出| 成人一区二区视频在线观看| 欧美一区二区国产精品久久精品| 久久久久久久久中文| 19禁男女啪啪无遮挡网站| 午夜精品一区二区三区免费看| 岛国视频午夜一区免费看| 真实男女啪啪啪动态图| 亚洲国产欧洲综合997久久,| 可以在线观看毛片的网站| 亚洲av成人av| 一级毛片高清免费大全| 听说在线观看完整版免费高清| 看片在线看免费视频| 国产成人福利小说| 欧美高清成人免费视频www| 亚洲av电影在线进入| 免费av观看视频| 乱人视频在线观看| 伊人久久精品亚洲午夜| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 国产伦人伦偷精品视频| 岛国在线观看网站| 一区二区三区免费毛片| 国产午夜福利久久久久久| 欧美乱妇无乱码| 身体一侧抽搐| 久99久视频精品免费| 大型黄色视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 日韩免费av在线播放| 久久久色成人| 色哟哟哟哟哟哟| 男插女下体视频免费在线播放| 国产精品1区2区在线观看.| 丝袜美腿在线中文| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| 看黄色毛片网站| 成年女人永久免费观看视频| 日韩欧美在线乱码| 九九热线精品视视频播放| 99久久精品一区二区三区| 国产三级黄色录像| 午夜免费男女啪啪视频观看 | 国产精品亚洲av一区麻豆| 人人妻,人人澡人人爽秒播| x7x7x7水蜜桃| 免费看a级黄色片| aaaaa片日本免费| 国产乱人视频| 最新在线观看一区二区三区| 在线观看一区二区三区| 制服人妻中文乱码| 亚洲精品粉嫩美女一区| 搡老熟女国产l中国老女人| 国产伦人伦偷精品视频| 国语自产精品视频在线第100页| 日韩欧美精品免费久久 | 国产成年人精品一区二区| 免费观看精品视频网站| 嫩草影院精品99| 又黄又粗又硬又大视频| 亚洲五月天丁香| 全区人妻精品视频| 国产美女午夜福利| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 3wmmmm亚洲av在线观看| 国产在视频线在精品| 天堂动漫精品| netflix在线观看网站| 观看美女的网站| 成年版毛片免费区| 亚洲成av人片免费观看| 神马国产精品三级电影在线观看| 蜜桃亚洲精品一区二区三区| 国产蜜桃级精品一区二区三区| 国产综合懂色| 久久精品综合一区二区三区| 国产精品99久久久久久久久| 久久亚洲真实| 国产一区二区三区视频了| 18禁黄网站禁片午夜丰满| 一个人观看的视频www高清免费观看| 手机成人av网站| 十八禁人妻一区二区| 亚洲成人久久性| 99热6这里只有精品| 亚洲国产精品sss在线观看| 亚洲av电影不卡..在线观看| 丰满人妻一区二区三区视频av | 精品国产美女av久久久久小说| 久久久久精品国产欧美久久久| 中文字幕人妻丝袜一区二区| 在线播放无遮挡| 亚洲欧美一区二区三区黑人| 国产亚洲精品久久久久久毛片| 亚洲最大成人手机在线| 午夜福利在线在线| 午夜福利在线在线| 人妻久久中文字幕网| 午夜免费观看网址| 麻豆一二三区av精品| 日本免费a在线| 国产黄片美女视频| 久久久久九九精品影院| 久久精品人妻少妇| 成熟少妇高潮喷水视频| 岛国视频午夜一区免费看| 少妇的逼水好多| 亚洲七黄色美女视频| 欧美日韩综合久久久久久 | 国产高清视频在线播放一区| 性色avwww在线观看| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 欧美日韩国产亚洲二区| 亚洲性夜色夜夜综合| 一级毛片高清免费大全| 国产精品三级大全| 国产探花在线观看一区二区| 免费电影在线观看免费观看| 亚洲不卡免费看| 最新中文字幕久久久久| 老司机午夜福利在线观看视频| 午夜两性在线视频| 亚洲五月婷婷丁香| 999久久久精品免费观看国产| 成年人黄色毛片网站| av在线蜜桃| 熟女人妻精品中文字幕| 国产三级中文精品| 色视频www国产| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 女人高潮潮喷娇喘18禁视频| 桃色一区二区三区在线观看| 91av网一区二区| 人妻久久中文字幕网| 久久精品国产亚洲av香蕉五月| 级片在线观看| 一二三四社区在线视频社区8| 欧美最黄视频在线播放免费| 19禁男女啪啪无遮挡网站| 午夜免费男女啪啪视频观看 | 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 蜜桃亚洲精品一区二区三区| 午夜福利欧美成人| 国产成人啪精品午夜网站| www.色视频.com| 成人18禁在线播放| 国产精品久久久人人做人人爽| 色尼玛亚洲综合影院| 麻豆国产97在线/欧美| 亚洲欧美日韩东京热| 欧美乱妇无乱码| 村上凉子中文字幕在线| 黑人欧美特级aaaaaa片| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区免费观看 | 欧美成人免费av一区二区三区| 亚洲av美国av| 国产免费男女视频| 久久午夜亚洲精品久久| 18禁黄网站禁片免费观看直播| 99热这里只有是精品50| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 成年免费大片在线观看| 精品乱码久久久久久99久播| 国产伦在线观看视频一区| 高清毛片免费观看视频网站| 最好的美女福利视频网| 国产高清三级在线| 欧美性感艳星| 精品国产亚洲在线| 亚洲精品456在线播放app | 最新中文字幕久久久久| 日日摸夜夜添夜夜添小说| 国产精品久久久久久人妻精品电影| 国产高潮美女av| 99久久综合精品五月天人人| 国产av不卡久久| 成人国产综合亚洲| 国产美女午夜福利| 99久久精品热视频| 亚洲国产欧美网| 日韩高清综合在线| 色在线成人网| 国产色婷婷99| 91久久精品国产一区二区成人 | 午夜免费激情av| 午夜福利18| 九色国产91popny在线| 日韩欧美免费精品| 三级国产精品欧美在线观看| 色av中文字幕| 欧美性猛交黑人性爽| 麻豆成人av在线观看| 非洲黑人性xxxx精品又粗又长| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| 亚洲五月婷婷丁香| 亚洲成人中文字幕在线播放| 日日夜夜操网爽| 嫩草影院入口| 最好的美女福利视频网| 国产成人av激情在线播放| 岛国在线免费视频观看| 在线观看av片永久免费下载| 国内久久婷婷六月综合欲色啪| 嫩草影院精品99| 久久精品91蜜桃| 精品午夜福利视频在线观看一区| 女生性感内裤真人,穿戴方法视频| 一个人看的www免费观看视频| 国产中年淑女户外野战色| 宅男免费午夜| 天天一区二区日本电影三级| 亚洲人成电影免费在线| 久久久成人免费电影| 香蕉久久夜色| 桃红色精品国产亚洲av| 啦啦啦免费观看视频1| 国产激情偷乱视频一区二区| 欧美黑人巨大hd| 男女午夜视频在线观看| 啦啦啦观看免费观看视频高清| 色播亚洲综合网| av中文乱码字幕在线| 亚洲在线观看片| 一个人观看的视频www高清免费观看| 波多野结衣高清无吗| 真实男女啪啪啪动态图| 两个人视频免费观看高清| 伊人久久大香线蕉亚洲五| 国产又黄又爽又无遮挡在线| 亚洲七黄色美女视频| 成人国产一区最新在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲七黄色美女视频| 亚洲 国产 在线| 久久人妻av系列| 日日干狠狠操夜夜爽| 日韩精品青青久久久久久| 国产又黄又爽又无遮挡在线| 狠狠狠狠99中文字幕| 男人舔奶头视频| 黑人欧美特级aaaaaa片| 免费人成视频x8x8入口观看| 精品人妻1区二区| 看免费av毛片| 成人无遮挡网站| 亚洲精品成人久久久久久|