• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal Oscillation?

    2016-11-23 05:57:00LINJianSheWUBoandZHOUTianJun
    關鍵詞:模擬出北半球大西洋

    LIN Jian-She, WU Boand ZHOU Tian-Jun

    aThe State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal Oscillation?

    LIN Jian-Shea,b, WU Boa,cand ZHOU Tian-Juna,c

    aThe State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    The interdecadal circumglobal teleconnection (ID-CGT) pattern is the dominant circulation mode over the NH during boreal summer on the interdecadal time scale. Its temporal evolution is synchronous with that of the Atlantic Multidecadal Oscillation (AMO). In this study, through analyzing the results of sensitivity experiments using fve AGCMs driven by specifed AMO-related SST anomalies (SSTAs) in the North Atlantic, the authors investigate whether the ID-CGT is excited by the AMO. Two out of the fve models simulate the barotropic stationary wave pattern located along the westerly jet, suggesting that the ID-CGT pattern should be excited, at least partially, by the AMO-related SSTAs. Model results suggest that the ID-CGT pattern plays a role in linking the AMO and NH summer land SAT perturbations on the interdecadal time scale.

    ARTICLE HISTORY

    Revised 22 May 2016

    Accepted 31 May 2016

    Interdecadal circumglobal teleconnection; Atlantic Multidecadal Oscillation;AGCMs

    年代際環(huán)球遙相關型(ID-CGT)是夏季北半球大氣環(huán)流年代際變化的主導模態(tài),其位相的時間演變與大西洋多年代際振蕩(AMO)基本同步。本研究利用5個大氣環(huán)流模式的敏感性試驗,研究給定AMO型的海表面溫度異常能否強迫出ID-CGT型響應。結(jié)果顯示,5個模式中的2個模擬出了沿西風急流分布的波列狀響應,表明ID-CGT至少部分是由AMO型的海溫異常所激發(fā)。此外,模式模擬的結(jié)果顯示,在年代際尺度上,AMO可能通過ID-CGT影響夏季北半球陸表氣溫。

    1. Introduction

    The Atlantic Multidecadal Oscillation (AMO) is an alternate basin-wide warming and cooling in the North Atlantic,with a periodicity of about 60—80 years (Delworth, Zhang,and Mann 2007; Kilbourne et al. 2008; Knudsen et al. 2011). It is one of the two leading modes of the internally generated interdecadal variability of the climate system (the other is the Interdecadal Pacifc Oscillation) (Liu 2012). The formation of the AMO primarily results from the interdecadal variation of the northward meridional heat transport associated with the Atlantic meridional overturning circulation (Marini and Frankignoul 2014).

    The AMO has considerable impacts on the summer climate in the NH. The positive phase of the AMO causes a warming of NH annual mean surface air temperature (SAT)(Zhang, Delworth, and Held 2007; DelSole, Tippett, and Shukla 2011), an increase in summer SAT in North America and Europe (Sutton and Hodson 2005), a decrease in summer precipitation over the U.S. Great Plains (McCabe, Palecki, and Betancourt 2004; Nigam, Guan, and Ruiz-Barradas 2011), and an increase in summer rainfall over the Sahel in northern Africa (Knight, Folland, and Scaife 2006;Mohino, Janicot, and Bader 2011). In addition, the AMO can also modulate the East Asian summer monsoon (Lu, Dong,and Ding 2006; Lu and Dong 2008; Yu et al. 2009) and the Indian summer monsoon (Goswami et al. 2006; Lu, Dong,and Ding 2006; Li et al. 2008; Wang, Li, and Luo 2009).

    Based on 20CR data, Wu, Zhou, and Li (2016) found that, during boreal summer, AMO-related SST anomalies(SSTAs) correspond to a wave train-like teleconnection pattern located along the NH westerly jet. The teleconnection pattern possesses some striking dynamic properties that resemble those of the conventional circumglobal teleconnection (CGT) pattern defned on the interannual timescale (hereafter, IA-CGT), including zonal wavenumber fve and the propagation along the waveguide associated with the westerly jet (Ding and Wang 2005). Given this resemblance, the interdecadal circumglobal teleconnectionpattern is referred to as the ID-CGT pattern (Wu, Lin, and Zhou 2016). However, the ID-CGT pattern shows three features that make it distinct from the IA-CGT. Firstly, the fve nodes of the ID-CGT shift westward relative to the latter by about 1/4 wavelength. Secondly, all fve nodes of the ID-CGT exhibit barotropic structures, whereas the IA-CGT has a baroclinic node. Thirdly, the ID-CGT (IA-CGT) is highly correlated with the AMO (Indian summer monsoon precipitation) index (Wu, Lin, and Zhou 2016).

    Though the temporal evolution of the ID-CGT is synchronous with that of the AMO, it is difcult to answer whether the ID-CGT is excited by the AMO purely through observational analysis. In this study, we explore this issue through analyzing the results of idealized numerical experiments. Our strategy is to assess the responses of multiple AGCMs to the specifed AMO-related SSTAs in the North Atlantic. It is found that some models reasonably simulate a wave train-like teleconnection pattern located along the NH westerly jet, suggesting the ID-CGT pattern is partly forced by SSTAs associated with the AMO.

    2. Data, analysis method, and experimentdesign

    2.1. Observational and reanalysis data

    The observational and reanalysis data used in the study include:

    (1) Geopotential height from the 20CR data-set for

    the period 1920—2012 (Compo et al. 2011);

    (2) Observational SST from the HadISSTv1.1 dataset for the period 1920—2012 (Rayner et al. 2003);

    (3) Observational land SAT from the CRU TS3.21 data-set for the period 1920—2012 (Jones and Harris 2013).

    2.2. Analysis method

    Following Ting et al. (2009), the AMO index is defned as area-averaged SSTAs in the North Atlantic (0°—60°N,80°W—0°) with the global warming signal removed through regression analysis (Figure 1(a)). The global warming signal is represented by the near global mean SST (60°S—60°N). We focus on interdecadal variability, and an 8-yr running average is applied to the AMO index to flter out highfrequency signals. The circulation and SAT anomalies associated with the AMO are obtained through regressing against the normalized 8-yr running averaged AMO index. Because it is difcult to accurately estimate the efective sample size of the running averaged AMO index, we use a non-parameter method—the random-phase test—to estimate the statistical signifcance of the regression analyses (Ebisuzaki 1997).

    To investigate the propagation direction of wave energy associated with the ID-CGT, we analyze the wave-activity fux for stationary Rossby waves, as proposed by Takaya and Nakamura (2001). Its horizontal components in pressure coordinates are

    Here, overbars and primes denote mean states and deviations from the mean states, respectively; Subscript x and y represent zonal and meridional gradients; u = (u, v)denotes horizontal wind velocity; ψ represents eddy stream functions.

    2.3. Numerical experiment

    The idealized AGCM experiment results used in the study are from the experiments organized by the U.S. CLIVAR drought working group (Schubert et al. 2009). The AGCMs were driven by various constructed idealized SSTs. The original objective of these experiments was to investigate the physical mechanisms linking SST changes to drought. The fve AGCMs participating in the project were NASA NSIPP1, NCEP GFS, LDEO/NCAR CCM3, NCAR CAM3.5, and GFDL AM2.1 (Schubert et al. 2009).

    The experiments used in the study include: (1) a control run forced with seasonally varying climatological SST(named the PnAn run); and (2) a sensitivity run forced with SSTAs in the North Atlantic related to the positive phase of the AMO superposed on the seasonally varying climatological SST (named the PnAw run). The AMO-related SST anomaly was obtained by applying a rotated EOF analysis on the annual mean near global SSTA during 1901—2004. Because the AMO is an internally generated interdecadal mode, its spatial pattern is not very sensitive to the extraction method. The pattern correlation coefcient between AMO-related SSTAs used in the experiments and that in Figure 1(b) reaches 0.78 in the red box. Nearly all models were integrated for at least 50 years, except for the NCEP GFS runs, which were integrated for only 36 years. During the integrations, the boundary conditions had an annual cycle, but no interannual variations. However, interannual variability is still generated in atmospheric models due to various nonlinear processes. Hence, the outputs of the last 30 years of the model simulations used in the analyses are independent of each other and basically equivalent to 30-member ensembles. The diferences between the PnAw and PnAn runs represent the models' responses tothe AMO-related SSTAs. The signifcances of the models' responses are examined using the Student's t-test.

    Figure 1.(a) AMO index, defned as 8-yr running averaged SSTAs in the North Atlantic (0°—60°N, 80°W—0°), with the global warming signal removed. (b) Spatial pattern of the AMO, obtained through regression on the normalized AMO index (units: K). The red box denotes the area in which SSTAs are specifed to drive the AGCMs. Dots denote values attaining the 0.1 signifcance level.

    3. Results

    The AMO-related SSTAs show a basin-wide warming/cooling in the North Atlantic, with tropical and extratropical branches centered over the tropical North Atlantic and Labrador Sea, respectively (Figure 1(b)), consistent with previous studies (e.g. Sutton and Hodson 2005; Gastineau and Frankignoul 2015). The AMO-related SSTAs correspond to an ID-CGT pattern in the upper troposphere during boreal summer, which is located along the NH westerly jet,with a zonal wavenumber 5 pattern (Figure 2(a)). The wave energy associated with the ID-CGT propagates eastward along the waveguide associated with the westerly jet, indicating the importance of the role of extratropical atmospheric dynamics in the maintenance of the ID-CGT pattern. The fve nodes of the ID-CGT are centered over eastern Europe, southwest of Baikal, the northwestern Pacifc, and the western and eastern coasts of North America, respectively (Figure 2(a)). All fve nodes possess barotropic structures (Figure 2), indicating that the ID-CGT is not associated with tropical convection anomalies like the conventional IA-CGT pattern, because the tropical convective heating tends to drive baroclinic modes in terms of the Gill model(Gill 1980). In the upper troposphere, the ID-CGT pattern is dominated by positive geopotential height anomalies(Figure 2(a)); whereas in the lower troposphere, the magnitudes of the alternating positive and negative anomalies are comparable (Figure 2(c)). The zonal mean component of the ID-CGT pattern intensifes with height (fgure not shown).

    To investigate whether the ID-CGT pattern is excited by the AMO, we examine the responses of the fve AGCMs to the specifed AMO-related warm SSTAs in the North Atlantic. As shown in Figure 3, two of the fve models(NCAR CAM3.5 and GFDL AM2.1) reasonably reproduce a well-organized wave train-like pattern confned within the NH westerly jet. The wave pattern of CAM3.5 exhibits a zonal wavenumber 4 pattern and is completely out of the phase with the ID-CGT pattern derived from the 20CR data (Figure 3(a)). Hence, the pattern correlation of NH extratropical 200 hPa geopotential height (Z200)anomalies (30—70°N) between NCAR CAM3.5 and 20CR is only 0.15. However, the simulated wave pattern holds some dynamic properties that are consistent with the ID-CGT derived from 20CR, including the wave energypropagating eastward along the waveguide associated with the westerly jet and circumscribing the entire NH(Figure 3(a)), and the barotropic vertical structures of the four nodes of the wave pattern (Figure S1).

    Figure 2.Atmospheric circulation anomalies associated with the AMO, derived from 20CR data: (a) JJA-mean 200 hPa geopotential height anomalies regressed on the normalized AMO index (color shading; units: m; JJA: June—July—August) and corresponding waveactivity fuxes (vectors; units: m2s-2). The contours are the climatological 200-hPa zonal wind in JJA (units: m s-1). (b, c) JJA-mean 500 and 700 hPa geopotential height anomalies regressed on the normalized AMO index. Dots denote values attaining the 0.1 signifcance level.

    The wave pattern of GFDL AM2.1 exhibits a wavenumber 5 pattern (Figure 3(c)). The longitudes of the three nodes over the Eurasian continent and northwestern Pacifc are generally consistent with those in the ID-CGT pattern, while the other two nodes over North America and the North Atlantic are not exactly in phase with the latter (Figure 3(c)). The pattern correlation of NH extratropical Z200 anomalies between GFDL AM2.1 and 20CR reaches 0.65. The wave energy associated with the wave pattern propagates eastward from the eastern North Atlantic to the northwestern Pacifc (Figure 3(c)). Nearly all nodes show barotropic vertical structures except for that centered in the northeastern Pacifc (Figure S2). Though the models' responses show some weaknesses, the results of CAM3.5 and GFDL AM2.1 suggest that the barotropic stationary wave train-like pattern propagating along the westerly jet can be partly excited by the AMO-related SST forcing.

    The atmospheric responses to extratropical SST forcing largely project on the atmospheric internal variability, which is primarily shaped by the interactions between transient eddy and large-scale fow (Kushnir et al. 2002). This explains why none of these models reproduce atmospheric circulation anomalies excited by the AMO perfectly.The uncertainties of the atmospheric responses to underlying AMO-related SSTAs in diferent AGCMs, including IAP/LASG AGCM, are also seen in Hodson et al. (2010).

    Figure 3.Diferences in the JJA-mean 200 hPa geopotential height anomalies between the sensitivity runs and control runs (color shading; units: m) and corresponding wave-activity fuxes (vectors; units: m2s-2): (a) NCAR CAM3.5; (b) LDEO/NCAR CCM3; (c) GFDL AM2.1; (d) NASA NSIPP1; (e) NCEP GFS. The contours are climatological 200 hPa zonal wind in JJA simulated by the control run (units: m s-1). Dots denote values attaining the 0.1 signifcance level.

    In observations, the land SAT anomalies associated with the AMO over the midlatitude Eurasian continent show alternate positive and negative variations, with positive anomalies over Eastern Europe and East Asia, and negative anomalies over Central Asia. Meanwhile, midlatitude North America is dominated by warm anomalies(Figure 4(a)) (Wu, Lin, and Zhou 2016). The warm (cold)land SAT anomalies derived from the CRU data generally correspond to overlying anticyclonic (cyclonic) anomalies,suggesting that the ID-CGT modulates land SAT along its path (Wu, Lin, and Zhou 2016). Thus, the ID-CGT pattern acts as a bridge linking the AMO with the NH midlatitude summer climate. For CAM3.5, because the simulated wave pattern is not exactly in phase with the ID-CGT pattern derived from 20CR, the land SAT responses are not exactly consistent with observations, especially over the Eurasian continent. For GFDL AM2.1, because the wave pattern is in phase with the ID-CGT from 20CR over the Eurasian continent, the corresponding warm land SAT anomalies are highly consistent with observations. One discrepancy is that the cold SAT anomaly in Central Asia is weaker than observed.

    4. Conclusion and discussion

    Figure 4.(a) Land SAT anomalies regressed on the normalized AMO index, derived from CRU. (b, c) Diferences in the land SAT between the sensitivity run and control run for NCAR CAM3.5 and GFDL AM2.1, respectively. Dots denote values attaining the 0.1 signifcance level.

    The ID-CGT pattern is a stationary teleconnection pattern on the interdecadal time scale. It is located along the westerly jet and exhibits a zonal wavenumber 5 pattern,resembling the conventional IA-CGT pattern. All of the fve nodes of the ID-CGT pattern hold barotropic vertical structures, suggesting that it is not excited by tropical convective heating like the conventional IA-CGT pattern. Though correlation analysis has indicated that the ID-CGT is closely associated with the AMO, it remained unknown as to whether the ID-CGT is excited by the AMO. In this study, we investigated this issue through analyzing the results of idealized numerical experiments. Five AGCMs were driven by specifed AMO-related SSTAs in the North Atlantic, coordinated by the U.S. CLIVAR drought working group. The analysis shows that two out of the fve models (NCAR CAM3.5 and GFDL AM2.1) can reproduce the wave patterns located along the westerly jet, supporting the notion that the ID-CGT is, at least partially, driven by AMO-related SSTAs. The models' responses also show some weaknesses. For NCAR CAM3.5, the wave pattern exhibits a zonal wavenumber 4 pattern and is not in phase with the ID-CGT pattern derived from the 20CR data. For GFDL AM2.1, though the simulated wave pattern exhibits a zonal wavenumber 5 pattern, only three nodes over the Eurasian continent and northwestern Pacifc are in phase with the ID-CGT. It has been reported that external forcing factors only trigger midlatitude atmospheric circulation perturbation, while the spatial pattern and maintenance are largely determined by the internal dynamics of interactions between waves and the mean state (e.g. Ding et al. 2011). Thus, we should not assume that the wave pattern excited by the AMO is exactly in phase with the observation. Which aspects of the basic state determine the shape of the ID-CGT pattern deserves further study through analyzing simulations by more models.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Basic Research Program of China [grant number 2012CB955202], the National Natural Science Foundation of China [grant numbers 41005040 and 41023002], and the R&D Special Fund for Public Welfare Industry (Meteorology) [grant number GYHY201506012].

    References

    Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui,R. J. Allan, X. Yin, B. E. Gleason, et al. 2011. “The Twentieth Century Reanalysis Project.” Quarterly Journal of the Royal Meteorological Society 137: 1—28.

    DelSole, T., M. K. Tippett, and J. Shukla. 2011. “A Signifcant Component of Unforced Multidecadal Variability in the Recent Acceleration of Global Warming.” Journal of Climate 24: 909—926.

    Delworth, T. L., R. Zhang, and M. E. Mann. 2007. “Decadal to Centennial Variability of the Atlantic from Observations and Models.” Ocean Circulation: Mechanisms and Impacts-Past and Future Changes of Meridional Overturning 173: 131—148.

    Ding, Q. H., and B. Wang. 2005. “Circumglobal Teleconnection in the Northern Hemisphere Summer.” Journal of Climate 18: 3483—3505.

    Ding, Q., B. Wang, J. M. Wallace, and G. Branstator. 2011. “Tropicalextratropical Teleconnections in Boreal Summer: Observed Interannual Variability.” Journal of Climate 24: 1878—1896.

    Ebisuzaki, W. 1997. “A Method to Estimate the Statistical Signifcance of a Correlation When the Data Are Serially Correlated.” Journal of Climate 10: 2147—2153.

    Gastineau, G., and C. Frankignoul. 2015. “Infuence of the North Atlantic SST Variability on the Atmospheric Circulation during the Twentieth Century.” Journal of Climate 28: 1396—1416.

    Gill, A. E. 1980. “Some Simple Solutions for Heat-induced Tropical Circulation.” Quarterly Journal of the Royal Meteorological Society 106: 447—462.

    Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta. 2006. “A Physical Mechanism for North Atlantic SST Infuence on the Indian Summer Monsoon.” Geophysical Research Letters 33: L02706.

    Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura,and T. Zhou. 2010. “Climate Impacts of Recent Multidecadal Changes in Atlantic Ocean Sea Surface Temperature: A Multimodel Comparison.” Climate Dynamics 34: 1041—1058.

    Jones, P., and I. Harris. 2013. University of East Anglia Climatic Research Unit, CRU TS3. 21: Climatic Research Unit (CRU) Timeseries (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901-Dec. 2012). Harwell Oxford: NCAS British Atmospheric Data Centre.

    Kilbourne, K. H., T. M. Quinn, R. Webb, T. Guilderson, J. Nyberg, and A. Winter. 2008. “Paleoclimate Proxy Perspective on Caribbean Climate since the Year 1751: Evidence of Cooler Temperatures and Multidecadal Variability.” Paleoceanography 23: PA3220.

    Knight, J. R., C. K. Folland, and A. A. Scaife. 2006. “Climate Impacts of the Atlantic Multidecadal Oscillation.” Geophysical Research Letters 33: L17706.

    Knudsen, M. F., M. S. Seidenkrantz, B. H. Jacobsen, and A. Kuijpers. 2011. “Tracking the Atlantic Multidecadal Oscillation through the Last 8,000 Years.” Nature Communications 2: 178.

    Kushnir, Y., W. A. Robinson, I. Blade, N. M. J. Hall, S. Peng, and R. Sutton. 2002. “Atmospheric GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation.” Journal of Climate 15: 2233—2256.

    Li, S., J. Perlwitz, X. Quan, and M. P. Hoerling. 2008. “Modelling the Infuence of North Atlantic Multidecadal Warmth on the Indian Summer Rainfall.” Geophysical Research Letters 35: L05804.

    Liu, Z. 2012. “Dynamics of Interdecadal Climate Variability: A Historical Perspective.” Journal of Climate 25: 1963—1995.

    Lu, R., and B. Dong. 2008. “Response of the Asian Summer Monsoon to Weakening of Atlantic Thermohaline Circulation.”Advances in Atmospheric Sciences 25: 723—736.

    Lu, R., B. Dong, and H. Ding. 2006. “Impact of the Atlantic Multidecadal Oscillation on the Asian Summer Monsoon.”Geophysical Research Letters 33: L24701.

    Marini, C., and C. Frankignoul. 2014. “An Attempt to Deconstruct the Atlantic Multidecadal Oscillation.” Climate Dynamics 43: 607—625.

    McCabe, G. J., M. A. Palecki, and J. L. Betancourt. 2004. “Pacifc and Atlantic Ocean Infuences on Multidecadal Drought Frequency in the United States.” Proceedings of the National Academy of Sciences of the United States of America 101: 4136—4141.

    Mohino, E., S. Janicot, and J. Bader. 2011. “Sahel Rainfall and Decadal to Multi-decadal Sea Surface Temperature Variability.” Climate Dynamics 37: 419—440.

    Nigam, S., B. Guan, and A. Ruiz-Barradas. 2011. “Key Role of the Atlantic Multidecadal Oscillation in 20th Century Drought and Wet Periods over the Great Plains.” Geophysical Research Letters 38: L16713.

    Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland,L. V. Alexander, D. P. Rowell, E. C. Kent, et al. 2003. “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century.”Journal of Geophysical Research: Atmospheres 108. Article No. 4407. doi:10.1029/2002jd002670.

    Schubert, S., D. Gutzler, H. Wang, A. Dai, T. Delworth, C. Deser,K. Findell, et al. 2009. “A US CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-related SST Forcing Patterns: Overview and Results.”Journal of Climate 22: 5251—5272.

    Sutton, R. T., and D. L. R. Hodson. 2005. “Atlantic Ocean Forcing of North American and European Summer Climate.” Science 309: 115—118.

    Takaya, K., and H. Nakamura. 2001. “A Formulation of a Phase-Independent Wave-activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow.”Journal of the Atmospheric Sciences 58: 608—627.

    Ting, M., Y. Kushnir, R. Seager, and C. Li. 2009. “Forced and Internal Twentieth-century SST Trends in the North Atlantic.”Journal of Climate 22: 1469—1481.

    Wang, Y. M., S. L. Li, and D. H. Luo. 2009. “Seasonal Response of Asian Monsoonal Climate to the Atlantic Multidecadal Oscillation.” Journal of Geophysical Research-Atmospheres 114: D02112.

    Wu, B., T. Zhou, and T. Li. 2016. “Impacts of the Pacifc-Japan and Circumglobal Teleconnection Patterns on Interdecadal Variability of the East Asian Summer Monsoon.” Journal of Climate 29: 3253—3271.

    Wu, B., J. Lin, and T. Zhou. 2016. “Interdecadal Circumglobal Teleconnection Pattern during Boreal Summer.” Atmospheric Science Letters 17: 446—452.

    Yu, L., Y. Gao, H. Wang, D. Guo, and S. Li. 2009. “The Responses of East Asian Summer Monsoon to the North Atlantic Meridional Overturning Circulation in an Enhanced Freshwater Input Simulation.” Chinese Science Bulletin 54: 4724—4732.

    Zhang, R., T. L. Delworth, and I. M. Held. 2007. “Can the Atlantic Ocean Drive the Observed Multidecadal Variability in Northern Hemisphere Mean Temperature?” Geophysical Research Letters 34: L02709.

    年代際環(huán)球遙相關型; 大西洋多年代際振蕩; 大氣環(huán)流模式

    2 May 2016

    CONTACT WU Bo wubo@mail.iap.ac.cn

    The supplemental data for this article is available online at http://dx.doi.org/10.1080/16742834.2016.1233800.

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    模擬出北半球大西洋
    北半球最強“星空攝影師”開工啦
    軍事文摘(2023年24期)2023-12-19 06:50:06
    清涼一夏
    南北半球天象
    軍事文摘(2019年18期)2019-09-25 08:09:22
    春 夜
    科教新報(2019年12期)2019-09-10 06:54:57
    大西洋海雀,你真倔
    飛越大西洋
    暢游于大西洋彼岸
    學生天地(2017年11期)2017-05-17 05:51:00
    放射夕陽之光
    中華手工(2016年4期)2016-04-20 03:10:35
    聲音從哪里來
    好孩子畫報(2014年2期)2014-03-07 21:57:37
    大西洋底來的人·第二集 不速之客
    海洋世界(2014年2期)2014-02-27 15:25:31
    成人亚洲精品av一区二区| 欧美人与性动交α欧美精品济南到| 欧美av亚洲av综合av国产av| 午夜福利视频1000在线观看| 在线观看www视频免费| 亚洲avbb在线观看| 最近最新免费中文字幕在线| 99re在线观看精品视频| 成人永久免费在线观看视频| 欧美色欧美亚洲另类二区| 91成年电影在线观看| 亚洲全国av大片| netflix在线观看网站| 亚洲欧美激情综合另类| 久久中文字幕人妻熟女| 国产精品影院久久| 精品国产乱子伦一区二区三区| 女警被强在线播放| 欧美激情极品国产一区二区三区| 18禁观看日本| 好看av亚洲va欧美ⅴa在| 日韩一卡2卡3卡4卡2021年| 欧美日韩亚洲综合一区二区三区_| 一级a爱片免费观看的视频| 亚洲 欧美一区二区三区| aaaaa片日本免费| 黑丝袜美女国产一区| 亚洲av成人不卡在线观看播放网| 国产99久久九九免费精品| 久久久国产成人免费| 亚洲无线在线观看| 最好的美女福利视频网| 韩国av一区二区三区四区| xxxwww97欧美| 90打野战视频偷拍视频| 亚洲美女黄片视频| 国产精品1区2区在线观看.| 国产人伦9x9x在线观看| 欧美乱妇无乱码| 岛国视频午夜一区免费看| 亚洲专区中文字幕在线| 亚洲人成网站高清观看| 国产精品美女特级片免费视频播放器 | 国产人伦9x9x在线观看| 两性夫妻黄色片| 亚洲狠狠婷婷综合久久图片| 日本五十路高清| 日日摸夜夜添夜夜添小说| 免费人成视频x8x8入口观看| 亚洲欧美精品综合一区二区三区| 91老司机精品| 三级毛片av免费| 日韩视频一区二区在线观看| av欧美777| 亚洲精品国产区一区二| 一级毛片高清免费大全| 国产97色在线日韩免费| 国产精品久久久久久人妻精品电影| 99热只有精品国产| 国产野战对白在线观看| 亚洲国产精品合色在线| 亚洲第一电影网av| 精品久久久久久久末码| 久久久国产欧美日韩av| 女同久久另类99精品国产91| 精品久久久久久久久久免费视频| 免费在线观看黄色视频的| 国产黄色小视频在线观看| 欧美黄色片欧美黄色片| 999久久久国产精品视频| 一本综合久久免费| 制服人妻中文乱码| 国产真实乱freesex| 欧美zozozo另类| 亚洲第一青青草原| www.自偷自拍.com| 在线观看66精品国产| 国产99久久九九免费精品| 校园春色视频在线观看| 久久久久九九精品影院| 女性生殖器流出的白浆| 日韩精品免费视频一区二区三区| 12—13女人毛片做爰片一| 亚洲欧美日韩高清在线视频| 非洲黑人性xxxx精品又粗又长| 欧美激情高清一区二区三区| 国产精品久久久人人做人人爽| 国产成人欧美| 成人国产综合亚洲| 国产99久久九九免费精品| 日韩欧美在线二视频| bbb黄色大片| 国产伦人伦偷精品视频| 亚洲精品美女久久av网站| 一级a爱片免费观看的视频| 亚洲国产高清在线一区二区三 | 精品第一国产精品| 很黄的视频免费| 国产伦人伦偷精品视频| 国产午夜精品久久久久久| 波多野结衣av一区二区av| 精品国产超薄肉色丝袜足j| 欧美zozozo另类| 国产免费av片在线观看野外av| 日韩免费av在线播放| 日韩国内少妇激情av| 精品国产国语对白av| 九色国产91popny在线| 亚洲成a人片在线一区二区| 一区二区三区精品91| 91av网站免费观看| 亚洲男人天堂网一区| 一级a爱片免费观看的视频| ponron亚洲| 婷婷精品国产亚洲av| 久久 成人 亚洲| 色尼玛亚洲综合影院| 美女 人体艺术 gogo| 给我免费播放毛片高清在线观看| 国产一区二区三区在线臀色熟女| 亚洲一区二区三区色噜噜| 91九色精品人成在线观看| 最近最新中文字幕大全电影3 | 日本 欧美在线| 久久香蕉国产精品| 他把我摸到了高潮在线观看| av中文乱码字幕在线| 女同久久另类99精品国产91| 午夜日韩欧美国产| 淫妇啪啪啪对白视频| 美女扒开内裤让男人捅视频| 久久久久国产一级毛片高清牌| 欧美成狂野欧美在线观看| 亚洲精品中文字幕一二三四区| 亚洲熟妇中文字幕五十中出| 亚洲国产毛片av蜜桃av| 精品人妻1区二区| 国产精品1区2区在线观看.| 两性午夜刺激爽爽歪歪视频在线观看 | 日日爽夜夜爽网站| svipshipincom国产片| 成人国语在线视频| 欧美日韩福利视频一区二区| 一本久久中文字幕| 亚洲国产精品成人综合色| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美在线一区二区| 免费av毛片视频| 中文字幕人成人乱码亚洲影| 自线自在国产av| 一进一出抽搐gif免费好疼| 国产精品国产高清国产av| 国产成+人综合+亚洲专区| 欧美精品啪啪一区二区三区| 欧美一级a爱片免费观看看 | 琪琪午夜伦伦电影理论片6080| 岛国视频午夜一区免费看| 精华霜和精华液先用哪个| 久久精品人妻少妇| 亚洲精品中文字幕在线视频| 亚洲人成网站在线播放欧美日韩| 国产免费男女视频| 日日夜夜操网爽| 我的亚洲天堂| 九色国产91popny在线| 国内久久婷婷六月综合欲色啪| 午夜福利视频1000在线观看| 亚洲精品色激情综合| 91麻豆精品激情在线观看国产| 精品国产一区二区三区四区第35| 亚洲成人精品中文字幕电影| 999久久久国产精品视频| 日韩中文字幕欧美一区二区| 婷婷亚洲欧美| www日本在线高清视频| 亚洲av成人一区二区三| 一级毛片女人18水好多| 精品第一国产精品| 欧美大码av| 成人欧美大片| 又黄又粗又硬又大视频| 亚洲国产日韩欧美精品在线观看 | 国产精品久久视频播放| 这个男人来自地球电影免费观看| 精品久久久久久久毛片微露脸| 99re在线观看精品视频| 人人妻,人人澡人人爽秒播| 国产亚洲精品一区二区www| 中文在线观看免费www的网站 | 午夜福利在线观看吧| 国产亚洲精品久久久久5区| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区三| 亚洲欧美日韩无卡精品| 午夜福利在线在线| 每晚都被弄得嗷嗷叫到高潮| 99久久99久久久精品蜜桃| 久久久久久久久免费视频了| 91麻豆av在线| 成年免费大片在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本 欧美在线| 亚洲一码二码三码区别大吗| 99热6这里只有精品| 中亚洲国语对白在线视频| 国产伦人伦偷精品视频| 国产一区二区三区在线臀色熟女| 国产黄a三级三级三级人| 他把我摸到了高潮在线观看| 国产在线观看jvid| 亚洲自拍偷在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲色图av天堂| 欧美绝顶高潮抽搐喷水| 国产乱人伦免费视频| 日韩精品青青久久久久久| 精华霜和精华液先用哪个| 一进一出抽搐gif免费好疼| 国产精品亚洲av一区麻豆| 午夜免费激情av| a级毛片在线看网站| 最近最新免费中文字幕在线| 中亚洲国语对白在线视频| 中亚洲国语对白在线视频| 日本 欧美在线| 视频在线观看一区二区三区| 视频在线观看一区二区三区| 午夜福利在线观看吧| 99久久无色码亚洲精品果冻| 午夜亚洲福利在线播放| 精品国产乱码久久久久久男人| 日本免费a在线| 制服丝袜大香蕉在线| 国产亚洲精品久久久久5区| 成在线人永久免费视频| 一夜夜www| 亚洲国产精品成人综合色| 国产伦人伦偷精品视频| 亚洲av第一区精品v没综合| 大型av网站在线播放| 一级片免费观看大全| 欧美一区二区精品小视频在线| 亚洲人成网站高清观看| 亚洲精品国产一区二区精华液| 成人亚洲精品av一区二区| 日本在线视频免费播放| svipshipincom国产片| 国产片内射在线| 久久久久久久久免费视频了| 高潮久久久久久久久久久不卡| 一级毛片女人18水好多| 三级毛片av免费| 在线看三级毛片| 老司机午夜福利在线观看视频| 首页视频小说图片口味搜索| 在线看三级毛片| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合久久99| 亚洲avbb在线观看| 国产人伦9x9x在线观看| 国产在线精品亚洲第一网站| 人人澡人人妻人| 免费在线观看日本一区| 韩国av一区二区三区四区| 少妇熟女aⅴ在线视频| 日本三级黄在线观看| 99热6这里只有精品| 国产亚洲欧美精品永久| 91老司机精品| 中文资源天堂在线| 色老头精品视频在线观看| 侵犯人妻中文字幕一二三四区| 日本黄色视频三级网站网址| 悠悠久久av| 自线自在国产av| 欧美av亚洲av综合av国产av| 欧美午夜高清在线| 免费高清视频大片| 国产av不卡久久| 欧美激情极品国产一区二区三区| av在线天堂中文字幕| 欧美成人一区二区免费高清观看 | 在线播放国产精品三级| 人妻丰满熟妇av一区二区三区| 一本大道久久a久久精品| 国产一区二区三区视频了| 久久欧美精品欧美久久欧美| 久久狼人影院| 国产av不卡久久| 日日干狠狠操夜夜爽| 两人在一起打扑克的视频| 丁香六月欧美| 美女国产高潮福利片在线看| 中文亚洲av片在线观看爽| 亚洲自拍偷在线| 岛国视频午夜一区免费看| 一级片免费观看大全| 色综合欧美亚洲国产小说| 丰满人妻熟妇乱又伦精品不卡| 国产99久久九九免费精品| 搞女人的毛片| 亚洲精品一卡2卡三卡4卡5卡| 12—13女人毛片做爰片一| 美女大奶头视频| 国产成人系列免费观看| 久久婷婷人人爽人人干人人爱| 老汉色av国产亚洲站长工具| 一个人观看的视频www高清免费观看 | 亚洲男人的天堂狠狠| 观看免费一级毛片| 国产精品 欧美亚洲| 国产精品野战在线观看| 国产视频一区二区在线看| 在线免费观看的www视频| 成人三级黄色视频| 欧美亚洲日本最大视频资源| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久综合精品五月天人人| 久久人妻av系列| 久久精品国产综合久久久| 色老头精品视频在线观看| 一区二区三区激情视频| 99国产极品粉嫩在线观看| 精品久久久久久,| 在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 天天添夜夜摸| 久久久久久大精品| 欧美性猛交黑人性爽| 两个人视频免费观看高清| 天堂√8在线中文| 亚洲片人在线观看| 19禁男女啪啪无遮挡网站| 日韩av在线大香蕉| 99国产精品一区二区蜜桃av| 日本 欧美在线| 日韩一卡2卡3卡4卡2021年| 久久 成人 亚洲| 国产99久久九九免费精品| www日本在线高清视频| 国产亚洲av高清不卡| 美女午夜性视频免费| 免费高清视频大片| 少妇裸体淫交视频免费看高清 | 熟女电影av网| 精华霜和精华液先用哪个| 国产高清激情床上av| 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 久久久久久亚洲精品国产蜜桃av| 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频| 欧美性长视频在线观看| 亚洲精品国产区一区二| 欧美日本亚洲视频在线播放| 婷婷六月久久综合丁香| 制服丝袜大香蕉在线| 一级作爱视频免费观看| 午夜久久久久精精品| 我的亚洲天堂| 看免费av毛片| 国产成+人综合+亚洲专区| 男人舔女人的私密视频| 欧美黑人精品巨大| 久久精品人妻少妇| 国产午夜福利久久久久久| 久久精品夜夜夜夜夜久久蜜豆 | 黑人操中国人逼视频| 精品福利观看| 亚洲国产毛片av蜜桃av| 女生性感内裤真人,穿戴方法视频| a在线观看视频网站| 亚洲成国产人片在线观看| 欧美久久黑人一区二区| 欧美绝顶高潮抽搐喷水| 成人av一区二区三区在线看| 在线永久观看黄色视频| 久久精品国产亚洲av高清一级| 美女 人体艺术 gogo| 国产又黄又爽又无遮挡在线| 日韩精品中文字幕看吧| 午夜福利在线在线| 国内少妇人妻偷人精品xxx网站 | 中亚洲国语对白在线视频| 观看免费一级毛片| 国产亚洲精品av在线| 白带黄色成豆腐渣| 色哟哟哟哟哟哟| 香蕉av资源在线| 精品免费久久久久久久清纯| 很黄的视频免费| 啦啦啦韩国在线观看视频| 少妇 在线观看| 国产成+人综合+亚洲专区| 久久精品91蜜桃| 色综合婷婷激情| 搞女人的毛片| 一级毛片女人18水好多| 午夜激情av网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久婷婷成人综合色麻豆| 此物有八面人人有两片| 成人欧美大片| 成人永久免费在线观看视频| 国产成人系列免费观看| 欧美性猛交╳xxx乱大交人| 日本撒尿小便嘘嘘汇集6| 美国免费a级毛片| 波多野结衣高清无吗| www.999成人在线观看| 一区二区三区精品91| 国内久久婷婷六月综合欲色啪| 精品不卡国产一区二区三区| 欧美 亚洲 国产 日韩一| 此物有八面人人有两片| www.999成人在线观看| 香蕉国产在线看| 国产久久久一区二区三区| 久久精品亚洲精品国产色婷小说| 男女午夜视频在线观看| 亚洲精品美女久久久久99蜜臀| 99久久久亚洲精品蜜臀av| 99精品欧美一区二区三区四区| 午夜福利在线观看吧| 亚洲男人的天堂狠狠| 亚洲欧美精品综合一区二区三区| 麻豆成人av在线观看| 国产精品久久电影中文字幕| 韩国av一区二区三区四区| 日韩精品青青久久久久久| 免费一级毛片在线播放高清视频| 精品久久久久久久久久久久久 | 免费观看精品视频网站| 熟女电影av网| 黄片小视频在线播放| 大香蕉久久成人网| 成年女人毛片免费观看观看9| 很黄的视频免费| 91老司机精品| 成人特级黄色片久久久久久久| 国产三级在线视频| 亚洲熟妇熟女久久| 国产熟女午夜一区二区三区| 成人午夜高清在线视频 | 国内揄拍国产精品人妻在线 | 一级a爱片免费观看的视频| 国产精品精品国产色婷婷| www.www免费av| 中文字幕最新亚洲高清| 国产精品亚洲一级av第二区| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品中文字幕看吧| 黄色女人牲交| 午夜精品在线福利| 亚洲人成网站高清观看| 亚洲熟女毛片儿| 亚洲久久久国产精品| 十八禁网站免费在线| 亚洲熟妇中文字幕五十中出| 久9热在线精品视频| 91在线观看av| 男女午夜视频在线观看| 满18在线观看网站| 欧美中文综合在线视频| 白带黄色成豆腐渣| 日本三级黄在线观看| 国产精品国产高清国产av| 久久狼人影院| 亚洲精品一区av在线观看| 18禁黄网站禁片免费观看直播| 免费观看人在逋| 一个人观看的视频www高清免费观看 | 国产精品影院久久| 国产黄a三级三级三级人| 校园春色视频在线观看| 日韩欧美 国产精品| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产日本99.免费观看| 无人区码免费观看不卡| 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 亚洲国产欧洲综合997久久, | 国产欧美日韩一区二区精品| 级片在线观看| 999久久久国产精品视频| 久久中文字幕一级| 亚洲一区高清亚洲精品| 免费在线观看成人毛片| 亚洲自偷自拍图片 自拍| av在线播放免费不卡| 成人国产一区最新在线观看| 国产一卡二卡三卡精品| 嫩草影院精品99| 国产极品粉嫩免费观看在线| 老司机福利观看| 美女扒开内裤让男人捅视频| 成人亚洲精品av一区二区| 亚洲国产高清在线一区二区三 | 日韩精品中文字幕看吧| 国产一区在线观看成人免费| 黄色视频,在线免费观看| 亚洲五月婷婷丁香| 亚洲天堂国产精品一区在线| 可以免费在线观看a视频的电影网站| 老熟妇乱子伦视频在线观看| 欧美 亚洲 国产 日韩一| 搞女人的毛片| 午夜福利高清视频| 热re99久久国产66热| 日本五十路高清| 国产精品爽爽va在线观看网站 | 窝窝影院91人妻| 久久精品人妻少妇| а√天堂www在线а√下载| 色av中文字幕| 欧美精品亚洲一区二区| 无遮挡黄片免费观看| 淫秽高清视频在线观看| 99久久综合精品五月天人人| 亚洲一区二区三区色噜噜| 免费观看人在逋| 亚洲欧美激情综合另类| 亚洲自偷自拍图片 自拍| 丁香欧美五月| 久久久久九九精品影院| 久久 成人 亚洲| 好看av亚洲va欧美ⅴa在| av免费在线观看网站| 亚洲男人天堂网一区| 久久性视频一级片| 亚洲国产精品久久男人天堂| 免费在线观看影片大全网站| 国产一区二区三区在线臀色熟女| 99热这里只有精品一区 | 亚洲片人在线观看| 欧美色视频一区免费| 超碰成人久久| 免费av毛片视频| 桃红色精品国产亚洲av| 50天的宝宝边吃奶边哭怎么回事| 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 亚洲第一电影网av| 成人国产一区最新在线观看| 欧美午夜高清在线| 91成人精品电影| 日本免费a在线| 国产成人av激情在线播放| 在线观看免费视频日本深夜| 午夜福利免费观看在线| 精品久久久久久成人av| 熟女电影av网| 欧美激情高清一区二区三区| 久久伊人香网站| 麻豆久久精品国产亚洲av| 18禁美女被吸乳视频| 青草久久国产| 国产亚洲精品久久久久5区| xxx96com| av欧美777| 国产成人av教育| 免费在线观看视频国产中文字幕亚洲| 欧美 亚洲 国产 日韩一| 亚洲真实伦在线观看| 这个男人来自地球电影免费观看| 久久人妻av系列| 女同久久另类99精品国产91| 亚洲 国产 在线| 欧美在线一区亚洲| 脱女人内裤的视频| 手机成人av网站| 日韩中文字幕欧美一区二区| 俄罗斯特黄特色一大片| 级片在线观看| 亚洲成人精品中文字幕电影| 欧美乱妇无乱码| 中文字幕最新亚洲高清| 中亚洲国语对白在线视频| 天堂动漫精品| 伦理电影免费视频| 99re在线观看精品视频| av福利片在线| 欧美精品亚洲一区二区| 国产精品自产拍在线观看55亚洲| 日本三级黄在线观看| 韩国精品一区二区三区| 日本 欧美在线| 一级毛片高清免费大全| 91麻豆精品激情在线观看国产| a在线观看视频网站| 久久久久久久久中文| 国产精品免费一区二区三区在线| 欧美黄色淫秽网站| 黄色 视频免费看| 免费人成视频x8x8入口观看| 一级毛片精品| 精品国产美女av久久久久小说| 可以在线观看的亚洲视频| 变态另类成人亚洲欧美熟女| 亚洲熟妇熟女久久| √禁漫天堂资源中文www| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看 | 两性夫妻黄色片| 麻豆久久精品国产亚洲av| 一边摸一边抽搐一进一小说| 在线国产一区二区在线| 美女高潮到喷水免费观看| 国产激情偷乱视频一区二区| 嫩草影院精品99| 亚洲一区二区三区不卡视频|