• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal Oscillation?

    2016-11-23 05:57:00LINJianSheWUBoandZHOUTianJun
    關鍵詞:模擬出北半球大西洋

    LIN Jian-She, WU Boand ZHOU Tian-Jun

    aThe State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal Oscillation?

    LIN Jian-Shea,b, WU Boa,cand ZHOU Tian-Juna,c

    aThe State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    The interdecadal circumglobal teleconnection (ID-CGT) pattern is the dominant circulation mode over the NH during boreal summer on the interdecadal time scale. Its temporal evolution is synchronous with that of the Atlantic Multidecadal Oscillation (AMO). In this study, through analyzing the results of sensitivity experiments using fve AGCMs driven by specifed AMO-related SST anomalies (SSTAs) in the North Atlantic, the authors investigate whether the ID-CGT is excited by the AMO. Two out of the fve models simulate the barotropic stationary wave pattern located along the westerly jet, suggesting that the ID-CGT pattern should be excited, at least partially, by the AMO-related SSTAs. Model results suggest that the ID-CGT pattern plays a role in linking the AMO and NH summer land SAT perturbations on the interdecadal time scale.

    ARTICLE HISTORY

    Revised 22 May 2016

    Accepted 31 May 2016

    Interdecadal circumglobal teleconnection; Atlantic Multidecadal Oscillation;AGCMs

    年代際環(huán)球遙相關型(ID-CGT)是夏季北半球大氣環(huán)流年代際變化的主導模態(tài),其位相的時間演變與大西洋多年代際振蕩(AMO)基本同步。本研究利用5個大氣環(huán)流模式的敏感性試驗,研究給定AMO型的海表面溫度異常能否強迫出ID-CGT型響應。結(jié)果顯示,5個模式中的2個模擬出了沿西風急流分布的波列狀響應,表明ID-CGT至少部分是由AMO型的海溫異常所激發(fā)。此外,模式模擬的結(jié)果顯示,在年代際尺度上,AMO可能通過ID-CGT影響夏季北半球陸表氣溫。

    1. Introduction

    The Atlantic Multidecadal Oscillation (AMO) is an alternate basin-wide warming and cooling in the North Atlantic,with a periodicity of about 60—80 years (Delworth, Zhang,and Mann 2007; Kilbourne et al. 2008; Knudsen et al. 2011). It is one of the two leading modes of the internally generated interdecadal variability of the climate system (the other is the Interdecadal Pacifc Oscillation) (Liu 2012). The formation of the AMO primarily results from the interdecadal variation of the northward meridional heat transport associated with the Atlantic meridional overturning circulation (Marini and Frankignoul 2014).

    The AMO has considerable impacts on the summer climate in the NH. The positive phase of the AMO causes a warming of NH annual mean surface air temperature (SAT)(Zhang, Delworth, and Held 2007; DelSole, Tippett, and Shukla 2011), an increase in summer SAT in North America and Europe (Sutton and Hodson 2005), a decrease in summer precipitation over the U.S. Great Plains (McCabe, Palecki, and Betancourt 2004; Nigam, Guan, and Ruiz-Barradas 2011), and an increase in summer rainfall over the Sahel in northern Africa (Knight, Folland, and Scaife 2006;Mohino, Janicot, and Bader 2011). In addition, the AMO can also modulate the East Asian summer monsoon (Lu, Dong,and Ding 2006; Lu and Dong 2008; Yu et al. 2009) and the Indian summer monsoon (Goswami et al. 2006; Lu, Dong,and Ding 2006; Li et al. 2008; Wang, Li, and Luo 2009).

    Based on 20CR data, Wu, Zhou, and Li (2016) found that, during boreal summer, AMO-related SST anomalies(SSTAs) correspond to a wave train-like teleconnection pattern located along the NH westerly jet. The teleconnection pattern possesses some striking dynamic properties that resemble those of the conventional circumglobal teleconnection (CGT) pattern defned on the interannual timescale (hereafter, IA-CGT), including zonal wavenumber fve and the propagation along the waveguide associated with the westerly jet (Ding and Wang 2005). Given this resemblance, the interdecadal circumglobal teleconnectionpattern is referred to as the ID-CGT pattern (Wu, Lin, and Zhou 2016). However, the ID-CGT pattern shows three features that make it distinct from the IA-CGT. Firstly, the fve nodes of the ID-CGT shift westward relative to the latter by about 1/4 wavelength. Secondly, all fve nodes of the ID-CGT exhibit barotropic structures, whereas the IA-CGT has a baroclinic node. Thirdly, the ID-CGT (IA-CGT) is highly correlated with the AMO (Indian summer monsoon precipitation) index (Wu, Lin, and Zhou 2016).

    Though the temporal evolution of the ID-CGT is synchronous with that of the AMO, it is difcult to answer whether the ID-CGT is excited by the AMO purely through observational analysis. In this study, we explore this issue through analyzing the results of idealized numerical experiments. Our strategy is to assess the responses of multiple AGCMs to the specifed AMO-related SSTAs in the North Atlantic. It is found that some models reasonably simulate a wave train-like teleconnection pattern located along the NH westerly jet, suggesting the ID-CGT pattern is partly forced by SSTAs associated with the AMO.

    2. Data, analysis method, and experimentdesign

    2.1. Observational and reanalysis data

    The observational and reanalysis data used in the study include:

    (1) Geopotential height from the 20CR data-set for

    the period 1920—2012 (Compo et al. 2011);

    (2) Observational SST from the HadISSTv1.1 dataset for the period 1920—2012 (Rayner et al. 2003);

    (3) Observational land SAT from the CRU TS3.21 data-set for the period 1920—2012 (Jones and Harris 2013).

    2.2. Analysis method

    Following Ting et al. (2009), the AMO index is defned as area-averaged SSTAs in the North Atlantic (0°—60°N,80°W—0°) with the global warming signal removed through regression analysis (Figure 1(a)). The global warming signal is represented by the near global mean SST (60°S—60°N). We focus on interdecadal variability, and an 8-yr running average is applied to the AMO index to flter out highfrequency signals. The circulation and SAT anomalies associated with the AMO are obtained through regressing against the normalized 8-yr running averaged AMO index. Because it is difcult to accurately estimate the efective sample size of the running averaged AMO index, we use a non-parameter method—the random-phase test—to estimate the statistical signifcance of the regression analyses (Ebisuzaki 1997).

    To investigate the propagation direction of wave energy associated with the ID-CGT, we analyze the wave-activity fux for stationary Rossby waves, as proposed by Takaya and Nakamura (2001). Its horizontal components in pressure coordinates are

    Here, overbars and primes denote mean states and deviations from the mean states, respectively; Subscript x and y represent zonal and meridional gradients; u = (u, v)denotes horizontal wind velocity; ψ represents eddy stream functions.

    2.3. Numerical experiment

    The idealized AGCM experiment results used in the study are from the experiments organized by the U.S. CLIVAR drought working group (Schubert et al. 2009). The AGCMs were driven by various constructed idealized SSTs. The original objective of these experiments was to investigate the physical mechanisms linking SST changes to drought. The fve AGCMs participating in the project were NASA NSIPP1, NCEP GFS, LDEO/NCAR CCM3, NCAR CAM3.5, and GFDL AM2.1 (Schubert et al. 2009).

    The experiments used in the study include: (1) a control run forced with seasonally varying climatological SST(named the PnAn run); and (2) a sensitivity run forced with SSTAs in the North Atlantic related to the positive phase of the AMO superposed on the seasonally varying climatological SST (named the PnAw run). The AMO-related SST anomaly was obtained by applying a rotated EOF analysis on the annual mean near global SSTA during 1901—2004. Because the AMO is an internally generated interdecadal mode, its spatial pattern is not very sensitive to the extraction method. The pattern correlation coefcient between AMO-related SSTAs used in the experiments and that in Figure 1(b) reaches 0.78 in the red box. Nearly all models were integrated for at least 50 years, except for the NCEP GFS runs, which were integrated for only 36 years. During the integrations, the boundary conditions had an annual cycle, but no interannual variations. However, interannual variability is still generated in atmospheric models due to various nonlinear processes. Hence, the outputs of the last 30 years of the model simulations used in the analyses are independent of each other and basically equivalent to 30-member ensembles. The diferences between the PnAw and PnAn runs represent the models' responses tothe AMO-related SSTAs. The signifcances of the models' responses are examined using the Student's t-test.

    Figure 1.(a) AMO index, defned as 8-yr running averaged SSTAs in the North Atlantic (0°—60°N, 80°W—0°), with the global warming signal removed. (b) Spatial pattern of the AMO, obtained through regression on the normalized AMO index (units: K). The red box denotes the area in which SSTAs are specifed to drive the AGCMs. Dots denote values attaining the 0.1 signifcance level.

    3. Results

    The AMO-related SSTAs show a basin-wide warming/cooling in the North Atlantic, with tropical and extratropical branches centered over the tropical North Atlantic and Labrador Sea, respectively (Figure 1(b)), consistent with previous studies (e.g. Sutton and Hodson 2005; Gastineau and Frankignoul 2015). The AMO-related SSTAs correspond to an ID-CGT pattern in the upper troposphere during boreal summer, which is located along the NH westerly jet,with a zonal wavenumber 5 pattern (Figure 2(a)). The wave energy associated with the ID-CGT propagates eastward along the waveguide associated with the westerly jet, indicating the importance of the role of extratropical atmospheric dynamics in the maintenance of the ID-CGT pattern. The fve nodes of the ID-CGT are centered over eastern Europe, southwest of Baikal, the northwestern Pacifc, and the western and eastern coasts of North America, respectively (Figure 2(a)). All fve nodes possess barotropic structures (Figure 2), indicating that the ID-CGT is not associated with tropical convection anomalies like the conventional IA-CGT pattern, because the tropical convective heating tends to drive baroclinic modes in terms of the Gill model(Gill 1980). In the upper troposphere, the ID-CGT pattern is dominated by positive geopotential height anomalies(Figure 2(a)); whereas in the lower troposphere, the magnitudes of the alternating positive and negative anomalies are comparable (Figure 2(c)). The zonal mean component of the ID-CGT pattern intensifes with height (fgure not shown).

    To investigate whether the ID-CGT pattern is excited by the AMO, we examine the responses of the fve AGCMs to the specifed AMO-related warm SSTAs in the North Atlantic. As shown in Figure 3, two of the fve models(NCAR CAM3.5 and GFDL AM2.1) reasonably reproduce a well-organized wave train-like pattern confned within the NH westerly jet. The wave pattern of CAM3.5 exhibits a zonal wavenumber 4 pattern and is completely out of the phase with the ID-CGT pattern derived from the 20CR data (Figure 3(a)). Hence, the pattern correlation of NH extratropical 200 hPa geopotential height (Z200)anomalies (30—70°N) between NCAR CAM3.5 and 20CR is only 0.15. However, the simulated wave pattern holds some dynamic properties that are consistent with the ID-CGT derived from 20CR, including the wave energypropagating eastward along the waveguide associated with the westerly jet and circumscribing the entire NH(Figure 3(a)), and the barotropic vertical structures of the four nodes of the wave pattern (Figure S1).

    Figure 2.Atmospheric circulation anomalies associated with the AMO, derived from 20CR data: (a) JJA-mean 200 hPa geopotential height anomalies regressed on the normalized AMO index (color shading; units: m; JJA: June—July—August) and corresponding waveactivity fuxes (vectors; units: m2s-2). The contours are the climatological 200-hPa zonal wind in JJA (units: m s-1). (b, c) JJA-mean 500 and 700 hPa geopotential height anomalies regressed on the normalized AMO index. Dots denote values attaining the 0.1 signifcance level.

    The wave pattern of GFDL AM2.1 exhibits a wavenumber 5 pattern (Figure 3(c)). The longitudes of the three nodes over the Eurasian continent and northwestern Pacifc are generally consistent with those in the ID-CGT pattern, while the other two nodes over North America and the North Atlantic are not exactly in phase with the latter (Figure 3(c)). The pattern correlation of NH extratropical Z200 anomalies between GFDL AM2.1 and 20CR reaches 0.65. The wave energy associated with the wave pattern propagates eastward from the eastern North Atlantic to the northwestern Pacifc (Figure 3(c)). Nearly all nodes show barotropic vertical structures except for that centered in the northeastern Pacifc (Figure S2). Though the models' responses show some weaknesses, the results of CAM3.5 and GFDL AM2.1 suggest that the barotropic stationary wave train-like pattern propagating along the westerly jet can be partly excited by the AMO-related SST forcing.

    The atmospheric responses to extratropical SST forcing largely project on the atmospheric internal variability, which is primarily shaped by the interactions between transient eddy and large-scale fow (Kushnir et al. 2002). This explains why none of these models reproduce atmospheric circulation anomalies excited by the AMO perfectly.The uncertainties of the atmospheric responses to underlying AMO-related SSTAs in diferent AGCMs, including IAP/LASG AGCM, are also seen in Hodson et al. (2010).

    Figure 3.Diferences in the JJA-mean 200 hPa geopotential height anomalies between the sensitivity runs and control runs (color shading; units: m) and corresponding wave-activity fuxes (vectors; units: m2s-2): (a) NCAR CAM3.5; (b) LDEO/NCAR CCM3; (c) GFDL AM2.1; (d) NASA NSIPP1; (e) NCEP GFS. The contours are climatological 200 hPa zonal wind in JJA simulated by the control run (units: m s-1). Dots denote values attaining the 0.1 signifcance level.

    In observations, the land SAT anomalies associated with the AMO over the midlatitude Eurasian continent show alternate positive and negative variations, with positive anomalies over Eastern Europe and East Asia, and negative anomalies over Central Asia. Meanwhile, midlatitude North America is dominated by warm anomalies(Figure 4(a)) (Wu, Lin, and Zhou 2016). The warm (cold)land SAT anomalies derived from the CRU data generally correspond to overlying anticyclonic (cyclonic) anomalies,suggesting that the ID-CGT modulates land SAT along its path (Wu, Lin, and Zhou 2016). Thus, the ID-CGT pattern acts as a bridge linking the AMO with the NH midlatitude summer climate. For CAM3.5, because the simulated wave pattern is not exactly in phase with the ID-CGT pattern derived from 20CR, the land SAT responses are not exactly consistent with observations, especially over the Eurasian continent. For GFDL AM2.1, because the wave pattern is in phase with the ID-CGT from 20CR over the Eurasian continent, the corresponding warm land SAT anomalies are highly consistent with observations. One discrepancy is that the cold SAT anomaly in Central Asia is weaker than observed.

    4. Conclusion and discussion

    Figure 4.(a) Land SAT anomalies regressed on the normalized AMO index, derived from CRU. (b, c) Diferences in the land SAT between the sensitivity run and control run for NCAR CAM3.5 and GFDL AM2.1, respectively. Dots denote values attaining the 0.1 signifcance level.

    The ID-CGT pattern is a stationary teleconnection pattern on the interdecadal time scale. It is located along the westerly jet and exhibits a zonal wavenumber 5 pattern,resembling the conventional IA-CGT pattern. All of the fve nodes of the ID-CGT pattern hold barotropic vertical structures, suggesting that it is not excited by tropical convective heating like the conventional IA-CGT pattern. Though correlation analysis has indicated that the ID-CGT is closely associated with the AMO, it remained unknown as to whether the ID-CGT is excited by the AMO. In this study, we investigated this issue through analyzing the results of idealized numerical experiments. Five AGCMs were driven by specifed AMO-related SSTAs in the North Atlantic, coordinated by the U.S. CLIVAR drought working group. The analysis shows that two out of the fve models (NCAR CAM3.5 and GFDL AM2.1) can reproduce the wave patterns located along the westerly jet, supporting the notion that the ID-CGT is, at least partially, driven by AMO-related SSTAs. The models' responses also show some weaknesses. For NCAR CAM3.5, the wave pattern exhibits a zonal wavenumber 4 pattern and is not in phase with the ID-CGT pattern derived from the 20CR data. For GFDL AM2.1, though the simulated wave pattern exhibits a zonal wavenumber 5 pattern, only three nodes over the Eurasian continent and northwestern Pacifc are in phase with the ID-CGT. It has been reported that external forcing factors only trigger midlatitude atmospheric circulation perturbation, while the spatial pattern and maintenance are largely determined by the internal dynamics of interactions between waves and the mean state (e.g. Ding et al. 2011). Thus, we should not assume that the wave pattern excited by the AMO is exactly in phase with the observation. Which aspects of the basic state determine the shape of the ID-CGT pattern deserves further study through analyzing simulations by more models.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Basic Research Program of China [grant number 2012CB955202], the National Natural Science Foundation of China [grant numbers 41005040 and 41023002], and the R&D Special Fund for Public Welfare Industry (Meteorology) [grant number GYHY201506012].

    References

    Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui,R. J. Allan, X. Yin, B. E. Gleason, et al. 2011. “The Twentieth Century Reanalysis Project.” Quarterly Journal of the Royal Meteorological Society 137: 1—28.

    DelSole, T., M. K. Tippett, and J. Shukla. 2011. “A Signifcant Component of Unforced Multidecadal Variability in the Recent Acceleration of Global Warming.” Journal of Climate 24: 909—926.

    Delworth, T. L., R. Zhang, and M. E. Mann. 2007. “Decadal to Centennial Variability of the Atlantic from Observations and Models.” Ocean Circulation: Mechanisms and Impacts-Past and Future Changes of Meridional Overturning 173: 131—148.

    Ding, Q. H., and B. Wang. 2005. “Circumglobal Teleconnection in the Northern Hemisphere Summer.” Journal of Climate 18: 3483—3505.

    Ding, Q., B. Wang, J. M. Wallace, and G. Branstator. 2011. “Tropicalextratropical Teleconnections in Boreal Summer: Observed Interannual Variability.” Journal of Climate 24: 1878—1896.

    Ebisuzaki, W. 1997. “A Method to Estimate the Statistical Signifcance of a Correlation When the Data Are Serially Correlated.” Journal of Climate 10: 2147—2153.

    Gastineau, G., and C. Frankignoul. 2015. “Infuence of the North Atlantic SST Variability on the Atmospheric Circulation during the Twentieth Century.” Journal of Climate 28: 1396—1416.

    Gill, A. E. 1980. “Some Simple Solutions for Heat-induced Tropical Circulation.” Quarterly Journal of the Royal Meteorological Society 106: 447—462.

    Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta. 2006. “A Physical Mechanism for North Atlantic SST Infuence on the Indian Summer Monsoon.” Geophysical Research Letters 33: L02706.

    Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura,and T. Zhou. 2010. “Climate Impacts of Recent Multidecadal Changes in Atlantic Ocean Sea Surface Temperature: A Multimodel Comparison.” Climate Dynamics 34: 1041—1058.

    Jones, P., and I. Harris. 2013. University of East Anglia Climatic Research Unit, CRU TS3. 21: Climatic Research Unit (CRU) Timeseries (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901-Dec. 2012). Harwell Oxford: NCAS British Atmospheric Data Centre.

    Kilbourne, K. H., T. M. Quinn, R. Webb, T. Guilderson, J. Nyberg, and A. Winter. 2008. “Paleoclimate Proxy Perspective on Caribbean Climate since the Year 1751: Evidence of Cooler Temperatures and Multidecadal Variability.” Paleoceanography 23: PA3220.

    Knight, J. R., C. K. Folland, and A. A. Scaife. 2006. “Climate Impacts of the Atlantic Multidecadal Oscillation.” Geophysical Research Letters 33: L17706.

    Knudsen, M. F., M. S. Seidenkrantz, B. H. Jacobsen, and A. Kuijpers. 2011. “Tracking the Atlantic Multidecadal Oscillation through the Last 8,000 Years.” Nature Communications 2: 178.

    Kushnir, Y., W. A. Robinson, I. Blade, N. M. J. Hall, S. Peng, and R. Sutton. 2002. “Atmospheric GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation.” Journal of Climate 15: 2233—2256.

    Li, S., J. Perlwitz, X. Quan, and M. P. Hoerling. 2008. “Modelling the Infuence of North Atlantic Multidecadal Warmth on the Indian Summer Rainfall.” Geophysical Research Letters 35: L05804.

    Liu, Z. 2012. “Dynamics of Interdecadal Climate Variability: A Historical Perspective.” Journal of Climate 25: 1963—1995.

    Lu, R., and B. Dong. 2008. “Response of the Asian Summer Monsoon to Weakening of Atlantic Thermohaline Circulation.”Advances in Atmospheric Sciences 25: 723—736.

    Lu, R., B. Dong, and H. Ding. 2006. “Impact of the Atlantic Multidecadal Oscillation on the Asian Summer Monsoon.”Geophysical Research Letters 33: L24701.

    Marini, C., and C. Frankignoul. 2014. “An Attempt to Deconstruct the Atlantic Multidecadal Oscillation.” Climate Dynamics 43: 607—625.

    McCabe, G. J., M. A. Palecki, and J. L. Betancourt. 2004. “Pacifc and Atlantic Ocean Infuences on Multidecadal Drought Frequency in the United States.” Proceedings of the National Academy of Sciences of the United States of America 101: 4136—4141.

    Mohino, E., S. Janicot, and J. Bader. 2011. “Sahel Rainfall and Decadal to Multi-decadal Sea Surface Temperature Variability.” Climate Dynamics 37: 419—440.

    Nigam, S., B. Guan, and A. Ruiz-Barradas. 2011. “Key Role of the Atlantic Multidecadal Oscillation in 20th Century Drought and Wet Periods over the Great Plains.” Geophysical Research Letters 38: L16713.

    Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland,L. V. Alexander, D. P. Rowell, E. C. Kent, et al. 2003. “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century.”Journal of Geophysical Research: Atmospheres 108. Article No. 4407. doi:10.1029/2002jd002670.

    Schubert, S., D. Gutzler, H. Wang, A. Dai, T. Delworth, C. Deser,K. Findell, et al. 2009. “A US CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-related SST Forcing Patterns: Overview and Results.”Journal of Climate 22: 5251—5272.

    Sutton, R. T., and D. L. R. Hodson. 2005. “Atlantic Ocean Forcing of North American and European Summer Climate.” Science 309: 115—118.

    Takaya, K., and H. Nakamura. 2001. “A Formulation of a Phase-Independent Wave-activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow.”Journal of the Atmospheric Sciences 58: 608—627.

    Ting, M., Y. Kushnir, R. Seager, and C. Li. 2009. “Forced and Internal Twentieth-century SST Trends in the North Atlantic.”Journal of Climate 22: 1469—1481.

    Wang, Y. M., S. L. Li, and D. H. Luo. 2009. “Seasonal Response of Asian Monsoonal Climate to the Atlantic Multidecadal Oscillation.” Journal of Geophysical Research-Atmospheres 114: D02112.

    Wu, B., T. Zhou, and T. Li. 2016. “Impacts of the Pacifc-Japan and Circumglobal Teleconnection Patterns on Interdecadal Variability of the East Asian Summer Monsoon.” Journal of Climate 29: 3253—3271.

    Wu, B., J. Lin, and T. Zhou. 2016. “Interdecadal Circumglobal Teleconnection Pattern during Boreal Summer.” Atmospheric Science Letters 17: 446—452.

    Yu, L., Y. Gao, H. Wang, D. Guo, and S. Li. 2009. “The Responses of East Asian Summer Monsoon to the North Atlantic Meridional Overturning Circulation in an Enhanced Freshwater Input Simulation.” Chinese Science Bulletin 54: 4724—4732.

    Zhang, R., T. L. Delworth, and I. M. Held. 2007. “Can the Atlantic Ocean Drive the Observed Multidecadal Variability in Northern Hemisphere Mean Temperature?” Geophysical Research Letters 34: L02709.

    年代際環(huán)球遙相關型; 大西洋多年代際振蕩; 大氣環(huán)流模式

    2 May 2016

    CONTACT WU Bo wubo@mail.iap.ac.cn

    The supplemental data for this article is available online at http://dx.doi.org/10.1080/16742834.2016.1233800.

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    模擬出北半球大西洋
    北半球最強“星空攝影師”開工啦
    軍事文摘(2023年24期)2023-12-19 06:50:06
    清涼一夏
    南北半球天象
    軍事文摘(2019年18期)2019-09-25 08:09:22
    春 夜
    科教新報(2019年12期)2019-09-10 06:54:57
    大西洋海雀,你真倔
    飛越大西洋
    暢游于大西洋彼岸
    學生天地(2017年11期)2017-05-17 05:51:00
    放射夕陽之光
    中華手工(2016年4期)2016-04-20 03:10:35
    聲音從哪里來
    好孩子畫報(2014年2期)2014-03-07 21:57:37
    大西洋底來的人·第二集 不速之客
    海洋世界(2014年2期)2014-02-27 15:25:31
    av国产久精品久网站免费入址| 国产精品无大码| 三级国产精品片| a级毛片免费高清观看在线播放| 色网站视频免费| 国产成人午夜福利电影在线观看| 国产大屁股一区二区在线视频| 日韩亚洲欧美综合| 久久久精品欧美日韩精品| 大话2 男鬼变身卡| 亚洲成人一二三区av| av在线播放精品| 亚洲av欧美aⅴ国产| 联通29元200g的流量卡| 亚洲美女搞黄在线观看| 在线观看免费高清a一片| 日本猛色少妇xxxxx猛交久久| 国产午夜精品久久久久久一区二区三区| 波野结衣二区三区在线| 国产成人精品福利久久| 麻豆成人av视频| 精品一区二区三卡| 韩国高清视频一区二区三区| 校园人妻丝袜中文字幕| 爱豆传媒免费全集在线观看| 亚洲av国产av综合av卡| 成人免费观看视频高清| 在线观看美女被高潮喷水网站| .国产精品久久| 午夜精品一区二区三区免费看| 欧美丝袜亚洲另类| 国产精品久久久久久av不卡| 欧美少妇被猛烈插入视频| 自拍偷自拍亚洲精品老妇| 色综合色国产| 欧美一级a爱片免费观看看| 狂野欧美激情性bbbbbb| 热99国产精品久久久久久7| 高清欧美精品videossex| 日本猛色少妇xxxxx猛交久久| 日韩欧美精品v在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲,欧美,日韩| 午夜免费观看性视频| 国产69精品久久久久777片| 久久97久久精品| 亚洲自偷自拍三级| 99久久精品热视频| .国产精品久久| 国产男女超爽视频在线观看| 欧美人与善性xxx| 精品视频人人做人人爽| 免费在线观看成人毛片| 亚洲va在线va天堂va国产| 欧美成人一区二区免费高清观看| 2018国产大陆天天弄谢| 日日啪夜夜撸| 欧美最新免费一区二区三区| 91狼人影院| 久久精品国产a三级三级三级| 18禁裸乳无遮挡免费网站照片| 丰满人妻一区二区三区视频av| 在线观看av片永久免费下载| 看免费成人av毛片| 成年女人在线观看亚洲视频 | 老师上课跳d突然被开到最大视频| 国产美女午夜福利| 欧美xxxx黑人xx丫x性爽| 午夜亚洲福利在线播放| 有码 亚洲区| 最近最新中文字幕免费大全7| 2022亚洲国产成人精品| 午夜福利在线观看免费完整高清在| 人妻制服诱惑在线中文字幕| 国产探花在线观看一区二区| 亚洲人成网站在线播| 禁无遮挡网站| 日日摸夜夜添夜夜爱| 大码成人一级视频| 国产成年人精品一区二区| 亚洲精品成人久久久久久| 看十八女毛片水多多多| 男人狂女人下面高潮的视频| 好男人在线观看高清免费视频| 日韩免费高清中文字幕av| 在线 av 中文字幕| 中文乱码字字幕精品一区二区三区| 成人无遮挡网站| 性插视频无遮挡在线免费观看| 最近中文字幕高清免费大全6| 国国产精品蜜臀av免费| 九九久久精品国产亚洲av麻豆| 22中文网久久字幕| 99视频精品全部免费 在线| 国产白丝娇喘喷水9色精品| 欧美潮喷喷水| 涩涩av久久男人的天堂| 国产欧美亚洲国产| 久热这里只有精品99| 日本一本二区三区精品| 亚洲丝袜综合中文字幕| 一级毛片黄色毛片免费观看视频| 成年版毛片免费区| 亚洲无线观看免费| .国产精品久久| 日韩,欧美,国产一区二区三区| 国产精品伦人一区二区| 久久久午夜欧美精品| 三级国产精品片| 丰满乱子伦码专区| 亚洲一区二区三区欧美精品 | 2021少妇久久久久久久久久久| 亚洲精品成人久久久久久| 80岁老熟妇乱子伦牲交| 色视频在线一区二区三区| 91午夜精品亚洲一区二区三区| 女的被弄到高潮叫床怎么办| 卡戴珊不雅视频在线播放| 免费电影在线观看免费观看| 欧美三级亚洲精品| 成年女人在线观看亚洲视频 | 国产精品麻豆人妻色哟哟久久| 久久99热这里只频精品6学生| 看非洲黑人一级黄片| 插逼视频在线观看| 尤物成人国产欧美一区二区三区| 国产av国产精品国产| 少妇被粗大猛烈的视频| 黄色配什么色好看| 高清毛片免费看| 在线 av 中文字幕| 神马国产精品三级电影在线观看| 综合色丁香网| 免费少妇av软件| 亚洲av成人精品一二三区| 精品久久久精品久久久| 色综合色国产| 嫩草影院新地址| 日本一本二区三区精品| 久久99热这里只有精品18| 韩国高清视频一区二区三区| 在线看a的网站| 午夜老司机福利剧场| 国产毛片在线视频| 麻豆国产97在线/欧美| 别揉我奶头 嗯啊视频| 中文欧美无线码| 色婷婷久久久亚洲欧美| 亚洲av国产av综合av卡| 不卡视频在线观看欧美| 成人午夜精彩视频在线观看| 亚洲国产精品国产精品| 国产91av在线免费观看| 久久综合国产亚洲精品| 日韩av不卡免费在线播放| 内射极品少妇av片p| 欧美97在线视频| 少妇熟女欧美另类| 69人妻影院| 久久人人爽人人爽人人片va| 亚洲精品日韩av片在线观看| 成人毛片60女人毛片免费| 国产精品不卡视频一区二区| 国产爽快片一区二区三区| 一本一本综合久久| 亚洲av电影在线观看一区二区三区 | 亚洲自偷自拍三级| 亚洲美女视频黄频| 久久久亚洲精品成人影院| 亚洲在久久综合| av在线老鸭窝| 蜜桃亚洲精品一区二区三区| 老司机影院成人| 大片免费播放器 马上看| 欧美少妇被猛烈插入视频| 日韩伦理黄色片| 精品熟女少妇av免费看| 在线精品无人区一区二区三 | 久久综合国产亚洲精品| 欧美日韩精品成人综合77777| 欧美日韩一区二区视频在线观看视频在线 | 我要看日韩黄色一级片| 爱豆传媒免费全集在线观看| 精品人妻视频免费看| 99视频精品全部免费 在线| 久久久a久久爽久久v久久| 麻豆成人午夜福利视频| 欧美xxxx黑人xx丫x性爽| 一级毛片久久久久久久久女| 丰满人妻一区二区三区视频av| 天堂中文最新版在线下载 | 亚洲精品日本国产第一区| 午夜福利在线在线| 美女视频免费永久观看网站| 亚洲精品成人久久久久久| 亚洲不卡免费看| 国产一区亚洲一区在线观看| 久久久精品免费免费高清| 久久久精品94久久精品| 国产高清不卡午夜福利| 久久久久性生活片| av免费在线看不卡| 成人午夜精彩视频在线观看| 在现免费观看毛片| 久久综合国产亚洲精品| 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| 国产69精品久久久久777片| 亚洲在线观看片| 国产精品不卡视频一区二区| 麻豆久久精品国产亚洲av| 少妇人妻一区二区三区视频| 国产亚洲午夜精品一区二区久久 | 国产淫语在线视频| 国产成人精品福利久久| av在线观看视频网站免费| 中文精品一卡2卡3卡4更新| 综合色丁香网| 少妇 在线观看| 国产高清三级在线| 女人久久www免费人成看片| 91午夜精品亚洲一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 久久久精品94久久精品| 亚洲欧美中文字幕日韩二区| 国产乱人偷精品视频| 色5月婷婷丁香| 天堂中文最新版在线下载 | 综合色av麻豆| 国产成人免费无遮挡视频| 久久精品久久久久久久性| 国产高清三级在线| 亚洲精品中文字幕在线视频 | 一级av片app| av黄色大香蕉| 99久久九九国产精品国产免费| av在线观看视频网站免费| 2018国产大陆天天弄谢| 日本wwww免费看| 久久精品综合一区二区三区| 免费观看无遮挡的男女| 人妻少妇偷人精品九色| 国产在线一区二区三区精| 久久久久国产网址| 久久久亚洲精品成人影院| 一级片'在线观看视频| 欧美日韩国产mv在线观看视频 | 亚洲成人一二三区av| 国产淫语在线视频| 三级经典国产精品| 国产精品国产三级专区第一集| 麻豆国产97在线/欧美| 性色avwww在线观看| 免费看日本二区| 日韩成人伦理影院| 亚洲经典国产精华液单| 国产一区二区在线观看日韩| 成人特级av手机在线观看| 最近的中文字幕免费完整| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 久久精品久久久久久噜噜老黄| av在线天堂中文字幕| 国产淫片久久久久久久久| 亚洲不卡免费看| 成人亚洲精品一区在线观看 | 国产毛片a区久久久久| 日产精品乱码卡一卡2卡三| 久久久国产一区二区| 在现免费观看毛片| 国产成人a区在线观看| 内射极品少妇av片p| 交换朋友夫妻互换小说| 国产精品国产三级国产av玫瑰| 国产免费一区二区三区四区乱码| 男人狂女人下面高潮的视频| 人妻一区二区av| 国产真实伦视频高清在线观看| 激情 狠狠 欧美| 成年人午夜在线观看视频| 九九爱精品视频在线观看| 看十八女毛片水多多多| 日韩中字成人| 免费观看性生交大片5| 成年免费大片在线观看| 亚洲不卡免费看| 国产白丝娇喘喷水9色精品| 亚洲熟女精品中文字幕| av在线播放精品| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 久久精品人妻少妇| 国产一区二区亚洲精品在线观看| 麻豆成人午夜福利视频| 欧美97在线视频| 国产免费福利视频在线观看| 国产亚洲91精品色在线| 色婷婷久久久亚洲欧美| 日韩电影二区| 大话2 男鬼变身卡| 国产亚洲91精品色在线| 好男人在线观看高清免费视频| 国产一区有黄有色的免费视频| 黄色日韩在线| www.色视频.com| 亚洲四区av| 久久精品熟女亚洲av麻豆精品| 色综合色国产| 亚洲成人中文字幕在线播放| 国产免费视频播放在线视频| 欧美成人精品欧美一级黄| 欧美老熟妇乱子伦牲交| 搞女人的毛片| 欧美亚洲 丝袜 人妻 在线| 麻豆国产97在线/欧美| 日韩免费高清中文字幕av| 狂野欧美激情性bbbbbb| 在线观看一区二区三区激情| 国产伦精品一区二区三区四那| 成人毛片60女人毛片免费| 久久久国产一区二区| 午夜激情福利司机影院| 熟女av电影| 久久99蜜桃精品久久| 精品少妇久久久久久888优播| 亚洲精品国产av蜜桃| 国产精品.久久久| 免费播放大片免费观看视频在线观看| 六月丁香七月| 尤物成人国产欧美一区二区三区| 精品熟女少妇av免费看| 国产一区二区亚洲精品在线观看| 久久精品夜色国产| 欧美老熟妇乱子伦牲交| 国产真实伦视频高清在线观看| 亚洲,一卡二卡三卡| 新久久久久国产一级毛片| 1000部很黄的大片| 久久久精品94久久精品| 韩国高清视频一区二区三区| 五月开心婷婷网| 色吧在线观看| 国产精品久久久久久精品电影小说 | 一级片'在线观看视频| 女人被狂操c到高潮| 三级男女做爰猛烈吃奶摸视频| 久久人人爽人人爽人人片va| 天堂俺去俺来也www色官网| 色综合色国产| 日韩大片免费观看网站| 国产精品嫩草影院av在线观看| 国产在线男女| 精品久久久久久久久亚洲| 高清欧美精品videossex| 看黄色毛片网站| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 在线观看一区二区三区激情| 男的添女的下面高潮视频| 国产黄片视频在线免费观看| 亚洲精品一区蜜桃| 成人毛片a级毛片在线播放| 久久久久久久精品精品| 三级国产精品片| 国产毛片a区久久久久| 国产精品国产三级国产av玫瑰| 日韩亚洲欧美综合| 日韩在线高清观看一区二区三区| 婷婷色综合大香蕉| 日本一二三区视频观看| 亚洲精华国产精华液的使用体验| 久久精品久久久久久噜噜老黄| 插阴视频在线观看视频| 18+在线观看网站| 草草在线视频免费看| 在现免费观看毛片| 久久久欧美国产精品| 国产一区二区在线观看日韩| 在现免费观看毛片| 国产成人一区二区在线| 中国三级夫妇交换| 亚洲成人久久爱视频| 精品久久久久久久人妻蜜臀av| 精华霜和精华液先用哪个| 免费观看的影片在线观看| 中文资源天堂在线| 日本wwww免费看| 水蜜桃什么品种好| 免费大片黄手机在线观看| 五月玫瑰六月丁香| 99热这里只有是精品在线观看| 老司机影院毛片| 91久久精品国产一区二区三区| 国产v大片淫在线免费观看| 永久网站在线| 国产精品精品国产色婷婷| 极品少妇高潮喷水抽搐| 国产黄频视频在线观看| 春色校园在线视频观看| 人妻一区二区av| 久久99热这里只有精品18| 狂野欧美激情性bbbbbb| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 美女视频免费永久观看网站| 国产精品一区二区性色av| 激情五月婷婷亚洲| 高清毛片免费看| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频 | 尤物成人国产欧美一区二区三区| 中文字幕av成人在线电影| 欧美日韩国产mv在线观看视频 | 久久人人爽人人爽人人片va| 中国三级夫妇交换| 成人高潮视频无遮挡免费网站| 亚洲精品第二区| 国产综合精华液| 中文欧美无线码| 欧美性感艳星| 好男人在线观看高清免费视频| 免费大片黄手机在线观看| 少妇的逼好多水| 国产爽快片一区二区三区| 亚洲一区二区三区欧美精品 | 成人高潮视频无遮挡免费网站| 一级a做视频免费观看| 婷婷色av中文字幕| 欧美精品一区二区大全| 国产高清有码在线观看视频| 久热这里只有精品99| 一区二区av电影网| 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 午夜免费观看性视频| 菩萨蛮人人尽说江南好唐韦庄| 国产69精品久久久久777片| 国内少妇人妻偷人精品xxx网站| 欧美日韩国产mv在线观看视频 | 欧美激情久久久久久爽电影| 有码 亚洲区| av黄色大香蕉| av免费观看日本| 一区二区三区乱码不卡18| 亚洲av成人精品一区久久| 91午夜精品亚洲一区二区三区| 80岁老熟妇乱子伦牲交| 99re6热这里在线精品视频| 欧美精品国产亚洲| 亚洲av在线观看美女高潮| 深夜a级毛片| 亚洲欧美日韩另类电影网站 | 精品一区二区三卡| 成人国产麻豆网| 成人二区视频| 国产乱人视频| 婷婷色综合www| 三级男女做爰猛烈吃奶摸视频| 日本爱情动作片www.在线观看| 免费看不卡的av| 麻豆国产97在线/欧美| 男人狂女人下面高潮的视频| 日韩一本色道免费dvd| 一本久久精品| 在线a可以看的网站| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 啦啦啦在线观看免费高清www| 国产在线一区二区三区精| 成人黄色视频免费在线看| 久久久久网色| 色网站视频免费| 在线观看免费高清a一片| 搞女人的毛片| 99热网站在线观看| 欧美 日韩 精品 国产| 香蕉精品网在线| 3wmmmm亚洲av在线观看| 欧美成人精品欧美一级黄| 亚洲精品日韩av片在线观看| 性色av一级| 美女高潮的动态| 国产免费福利视频在线观看| 一区二区三区免费毛片| 国产白丝娇喘喷水9色精品| 久久99热这里只频精品6学生| a级一级毛片免费在线观看| 亚洲精品视频女| 麻豆成人午夜福利视频| 国产精品久久久久久久电影| 王馨瑶露胸无遮挡在线观看| 九草在线视频观看| 深爱激情五月婷婷| 午夜免费男女啪啪视频观看| 又粗又硬又长又爽又黄的视频| 中文字幕亚洲精品专区| 欧美亚洲 丝袜 人妻 在线| 99久国产av精品国产电影| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频 | 亚洲最大成人av| 美女被艹到高潮喷水动态| 我的女老师完整版在线观看| 欧美成人午夜免费资源| 日韩伦理黄色片| 男人狂女人下面高潮的视频| 国产黄频视频在线观看| 乱系列少妇在线播放| av网站免费在线观看视频| 国产精品嫩草影院av在线观看| 插逼视频在线观看| 一级毛片我不卡| 亚洲色图av天堂| 综合色丁香网| 内射极品少妇av片p| 激情 狠狠 欧美| 少妇的逼水好多| 国产精品三级大全| 国产日韩欧美在线精品| 亚洲综合色惰| 中文在线观看免费www的网站| 日韩精品有码人妻一区| 国产精品久久久久久久久免| av免费观看日本| 蜜桃亚洲精品一区二区三区| 亚洲熟女精品中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩无卡精品| 最近2019中文字幕mv第一页| 91久久精品电影网| 好男人在线观看高清免费视频| 寂寞人妻少妇视频99o| 男人和女人高潮做爰伦理| 国产老妇女一区| 欧美xxxx黑人xx丫x性爽| 五月开心婷婷网| 六月丁香七月| 老司机影院毛片| 性色avwww在线观看| 高清午夜精品一区二区三区| 男插女下体视频免费在线播放| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 麻豆久久精品国产亚洲av| 国产精品久久久久久精品电影小说 | 中文字幕亚洲精品专区| 在线观看一区二区三区| 特大巨黑吊av在线直播| 日韩欧美精品v在线| 国产69精品久久久久777片| 国产精品无大码| 美女视频免费永久观看网站| 精品久久久久久久久亚洲| 国产精品伦人一区二区| 欧美日韩视频精品一区| 亚洲av不卡在线观看| 黄片wwwwww| 亚洲不卡免费看| 日日撸夜夜添| videos熟女内射| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜免费鲁丝| 伦理电影大哥的女人| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 久久午夜福利片| 你懂的网址亚洲精品在线观看| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| av在线蜜桃| 97精品久久久久久久久久精品| 中文天堂在线官网| 亚洲人与动物交配视频| 一区二区三区精品91| 久久久久久久大尺度免费视频| 九九久久精品国产亚洲av麻豆| 亚洲精品一区蜜桃| 亚洲av免费在线观看| 青春草视频在线免费观看| 国产黄a三级三级三级人| 日韩在线高清观看一区二区三区| 天美传媒精品一区二区| 国产精品一区二区在线观看99| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人澡人人爽人人夜夜| 欧美成人一区二区免费高清观看| 永久网站在线| 少妇 在线观看| 91aial.com中文字幕在线观看| 女的被弄到高潮叫床怎么办| 九九久久精品国产亚洲av麻豆| 黄色欧美视频在线观看| 舔av片在线| 搞女人的毛片| 国精品久久久久久国模美| 99视频精品全部免费 在线| av女优亚洲男人天堂| 欧美亚洲 丝袜 人妻 在线| 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄| 夜夜爽夜夜爽视频| 日韩强制内射视频| 国产成人精品福利久久| 亚洲精品国产av成人精品| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 草草在线视频免费看| 老女人水多毛片| 久久久久久久午夜电影| 人妻制服诱惑在线中文字幕| 亚洲va在线va天堂va国产|