• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wind rotation characteristics of the upper tropospheric monsoon over the central and eastern tropical Pacific

    2016-11-23 05:57:05LOUPnXingLIJinPingFENGJunZHAOSenndLIYnJie
    關(guān)鍵詞:季風(fēng)對(duì)流層側(cè)墻

    LOU Pn-Xing, LI Jin-Ping, FENG Jun, ZHAO Sennd LI Yn-Jie

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollege of Global Change and Earth System Science (GCESS), Beijing Normal University,Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    Wind rotation characteristics of the upper tropospheric monsoon over the central and eastern tropical Pacific

    LOU Pan-Xinga, LI Jian-Pingb,c, FENG Juanb,c, ZHAO Senaand LI Yan-Jiea

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollege of Global Change and Earth System Science (GCESS), Beijing Normal University,Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    In this study, to investigate whether the variation of wind direction in the upper tropospheric monsoon over the central and eastern tropical Pacifc shows similar characteristics to the classical monsoon region, the authors introduced a wind vector angle methodology that describes the size of the angle of the wind direction variation, as well as the directed rotary angle, which includes not only the size of the angle but also how the wind vector rotates. On this basis, the authors utilized and improved the directed rotary angle methodology to investigate the evolution of wind direction in detail, and the study confrmed the presence of the same four rotation features in the upper tropospheric monsoon region. Furthermore, the authors also identifed the precise variation of wind direction in pentads with seasonal evolution, and found the onset time of the upper tropospheric monsoon may be earlier than the classical monsoon while the termination time may be later. The results further support and supplement the theory of global monsoons, which unifes the low-level and upper tropospheric monsoon as one monsoon system.

    ARTICLE HISTORY

    Revised 14 July 2016

    Accepted 14 July 2016

    Wind direction; wind vector angle; directed rotary angle;upper tropospheric monsoon

    在本文中,為研究赤道中東太平洋區(qū)域上對(duì)流層季風(fēng)是否具有和經(jīng)典季風(fēng)同樣的風(fēng)向變化特征,我們引入一種風(fēng)向角的研究方法——有向轉(zhuǎn)角法,該方法不僅可以刻畫風(fēng)向變化的角度大小,而且包含風(fēng)矢量如何轉(zhuǎn)變的信息。在此基礎(chǔ)上,利用該方法并將其適當(dāng)推廣,本文研究了赤道中東太平洋區(qū)域上對(duì)流層季風(fēng)的演變過(guò)程,結(jié)果證實(shí)了該區(qū)域上對(duì)流層季風(fēng)具有和經(jīng)典季風(fēng)同樣的四種轉(zhuǎn)變特征,并進(jìn)一步給出了隨季節(jié)轉(zhuǎn)換不同時(shí)期內(nèi)的風(fēng)向演變結(jié)果,發(fā)現(xiàn)上對(duì)流層季風(fēng)相對(duì)經(jīng)典季風(fēng)具有爆發(fā)時(shí)間較早并結(jié)束較晚的特點(diǎn)。本文結(jié)果是對(duì)全球季風(fēng)系統(tǒng)理論的有益補(bǔ)充,進(jìn)一步支持該理論將全球不同季風(fēng)作為一個(gè)整體系統(tǒng)來(lái)看待。

    1. Introduction

    Monsoon regions are generally thought of as low-level tropospheric areas satisfying the criteria of wind reversal and precipitation changes with the seasons (Ramage 1971;Webster et al. 1998). So, the variation in wind direction with the transition of the seasons is an important aspect of monsoon research (Chuang 1986; Fu and Fletcher 1988; Xie et al. 1998; Qian and Yang 2000; Jones and Carvalho 2002;Corrigan, Ramanathan, and Schauer 2006; Zhang and Li 2008, 2010), and methods involving the wind vector angle can usually be applied to investigate such variation (Zhang and Li 2010; Jiang and Li 2011), given that it is one of the criteria infuencing the onset of monsoon.

    The wind vector angle is defned as the angle between diferent wind vectors, indicating the absolute angle size of the wind vector with reference to the initial wind. It implies the fnal state of the variation in wind direction, but it also includes noting how the wind vector changes over time.

    To accurately refect the process of the wind vector changes over time, the directed rotary angle was proposed(Zhang and Li 2008) to study the dynamic characteristics of wind direction variation in diferent monsoon regions,and evaluate the performance of AMIP models in simulating monsoon (Zhang and Li 2008; Li and Zhang 2009). Specifcally, if the absolute value of the directed rotary angle exceeds the given criterion, it indicates monsoon onset (Li and Zhang 2009), whereas if it remains below the criterion it indicates monsoon withdrawal.

    Given that the variation in the direction of wind at a particular point and pressure level can be characterized by the rotation of the wind vector, it can thus be defned that the angles of variation are positive if the rotation of thedaily (or hourly/monthly) wind vector is counterclockwise compared to the reference wind (e.g. January climatological wind vector), or negative if the rotation is clockwise. Consequently, we can obtain all the angles of variation at each moment in a particular period (e.g. a few months or an annual cycle). Put simply, it precisely shows the evolution of wind direction for each time increment, including how the wind vector rotates (clockwise or counterclockwise),and the size of the angle of the wind direction variation,therefore refecting the dynamic characteristics of wind direction much better with the evolution of the seasons.

    Based on this concept, Zhang and Li (2008) stated that the annual cycle of the variation in wind direction can be categorized as follows: (i) the wind vector frst rotates clockwise until the absolute size of the angle (positive or negative) exceeds a critical value (e.g. 90°), and then rotates counterclockwise back to the initial state after a certain period; (ii) the wind vector frst rotates counterclockwise until the absolute size of the angle exceeds a critical value,and then rotates clockwise back to the initial state; (iii) the wind vector rotates clockwise all the time until it returns to the initial state; (iv) the wind vector rotates counterclockwise all the time until it returns to the initial state; (v) there is no evident variation or small-amplitude rotation, called ‘stable rotation'; (vi) there is neither inconsistent nor irregular rotation, called ‘unstable rotation'. In particular, they noted that, considering the seasonal reversal of wind in monsoon regions, type (v) and (vi) could be ruled out, meaning only types (i)—(iv) can exist in monsoon regions, in theory.

    Additionally, previous studies (Li and Zeng 2000, 2002,2003, 2005) demonstrated that, in the upper troposphere over the central and eastern tropical Pacifc (5°S—22.5°N,85°—175°W) (hereafter referred to as CETP), the prevailing wind direction rotates more than 90° in summer, with reference to winter, as the seasons evolve. Indeed, according to the monsoon index defned in Li and Zeng (2002, 2005),the upper troposphere over the CETP can be regarded as a non-classical monsoon region.

    Therefore, in the present work, we applied the methodology of the directed rotary angle to identify more detailed features of the variation in wind direction over this region,and determine whether these features show any similarities to their counterparts in the classical monsoon region of the low-level troposphere.

    2. Data and methodology

    2.1. Data

    This work used the global four-times-daily NCEP-1 and monthly NCEP-2 multi-level atmospheric wind felds with a 2.5° × 2.5° resolution in the horizontal direction and 17 pressure levels from 1000 to 10 hPa. These data were obtained from the NCEP—NCAR reanalysis datasets (Kalnay et al. 1996; Kanamitsu et al. 2002).

    2.2. Methodology

    It was already known that the wind vector angle indicates the angle size of the wind vector with reference to the initial state when it eventually stops varying during a particular period (e.g. one day or one month). It has a strict defnition (Zhang and Li 2008; Li and Zhang 2009),as shown below:

    Also, it is obvious that the actual value of βjshould not exceed 180° and should always be positive, according to the defnition of Equation (1). The defnition simply describes the angle size of the wind vector at the end with reference to the initial wind, and does not consider the wind vector direction of rotation.

    It is possible that the wind vector rotates clockwise over 200° and then rotates back 50° in a certain period, or the wind vector just rotates counterclockwise 150°. In both cases, frstly, the former actual variation value of the angle reaches 200°; and secondly, both sizes of angle variation are equal to 150° at the end, according to Equation (1), when in fact they represent totally diferent rotation situations.

    This consequence is caused by the loss of information contained in the variation process without considering the clockwise or counterclockwise rotation; as a result, how the wind direction evolved in detail is missed. Therefore,the directed rotary angle was introduced (Zhang and Li 2008; Li and Zhang 2009), presented by Equations (2) and(3), below:

    So all of the αivalues for a whole year at a given location can be obtained based on Equations (2) and (3). Then theαi,as well as the directed rotary angle, fnally includes the direction of rotation (counterclockwise or clockwise). The actual value of αivaries most likely to exceed 180° or even less than -180° when it increases or decreases with time(every day or hour).

    In climatological terms, when the absolute value of the directed rotary angle continues to increase or decrease, it means the wind reversal begins from winter to summer, or vice versa, i.e. monsoon onset or withdrawal. Thus, it can describe the wind rotation variation in more detail.

    3. Results

    Figure 1 separately shows the four typical rotation features of the directed rotary angle in the monsoon region(at 300 hPa) in upper troposphere over the CETP, including types (i)—(iv). As expected, the same rotation features as the classical monsoon (Zhang and Li 2008) are presented in the lower troposphere. Also, it shows the rotation of the wind vector in the upper tropospheric monsoon changes according to the same pattern with seasonal evolution. However, compared to the results in the low-level tropospheric monsoon (Zhang and Li 2008), the directed rotary angle variation (Figure 1(a) and (c)) shows in a relatively shorter time that the wind can change from the prevailing wind direction in winter to the prevailing wind direction in summer. This means that the seasonal wind reversal may happen in less time than in the lower troposphericmonsoon, which translates to the onset and withdrawal of the upper tropospheric monsoon possibly being extremely sudden and quick.

    Figure 1.The four typical rotation features over the central and eastern tropical Pacifc: (a) type (i) (5°N, 130°W); (b) type (ii) (5°N, 160°W);(c) type (iii) (5°N, 95°W); (d) type (iv) (5°N, 145°W).

    Figure 2.The four rotation types at each point over the CETP at 300 hPa.

    Also, in the upper troposphere, the seasonal wind reversal starts from winter to summer before May or eventually before April (Figure 1(a) and (c)), while the opposite process starts later than the middle of October (Figure 1). This indicates that the monsoon onset time is earlier, and withdrawal is later, than in the low-level monsoons, so the upper troposphere monsoon may last longer.

    Since all four typical rotation types (Figure 1) are shown at diferent locations, we seek to identify what rotation types are at all points in the whole region. Therefore, in the following analysis (Figure 2), we show the rotation type distribution over the whole CETP at 300 hPa.

    First, and most obviously, type (i) (frst rotates counterclockwise then clockwise; blue dots) and type (ii) (frst rotates clockwise then counterclockwise; green dots) are comparatively more frequent than type (iii) (fully clockwise; purple dot) and type (iv) (fully counterclockwise; red dots); type (iv) is particularly rare.

    Additionally, we can see that, in the western district(155°—175°W) of the CETP, the wind rotation features are type (ii) (green dots); and if we ignore the northeastern district (over continental North America), only in the middle of the CETP do the wind rotation features belong to type (i) (blue dots).

    In the east of the CETP, the rotation features are very irregular. There are mainly mixed type (ii) (green dots) and type (iii) (purple dots) in general, and only at some rare individual sites they are type (iv) (red dots).

    Figure 2 shows the diferent wind rotation types in a specifed location (or a specifed area) in the annual cycle and Figure 1 shows the dynamic characteristics with one-dimensional time series. We further expand this method to two dimensions to investigate the upper monsoon onset and withdrawal with the directed rotary angle. The two-dimensional directed rotary angle evolution is therefore given to show the process of the winter to the summer (Figure 3) and the reverse process(Figure 4).

    Figure 3 shows the directed rotary angle in the occurrence and early developments stages of the upper tropospheric monsoon. It can be seen that, in diferent locations,the time of the directed rotary angle exceeding the criterion is not that consistent. Generally, it is earlier in the east and later in the west.

    More specifcally, it can be seen that the monsoon onset frstly and primarily takes place in the east the region (Figure 3(a)) by earlier May, and it almost accomplishes the seasonal wind reversal in the eastern area (5°S—10°N, 85°—130°W) by May. Then, it gradually expands to the middle and north of the region; basically, it accomplishes wind reversal over most of the region by mid to late May (Figure 3(c)), and fnishes by late June over the whole region.

    Figure 4 shows the beginning and development of the monsoon withdrawal in the upper tropospheric. The results show that the wind starts to decay by mid to late October(Figure 4(a) and (b)), and that it happens both in the marginal zone and in the center of the region (120°—150°W). Then, it expands in the west (155°—175°W) (Figure 4(c)). By the middle of November, most of the region has fnished its wind reversal, apart from a small fraction in the east(95°—115°W) near the equator.

    Moreover, Figures 3 and 4 show not only the development of monsoon onset and withdrawal, but also partly reveal a similar spatial pattern of the rotation types as Figure 2. The residual dark purple shading and sporadic red shading (Figure 4(c) and (d)) are highly consistent with the type (iii) and type (iv), respectively.

    Figure 3.Directed rotary angle evolution over the CETP at 300 hPa from the winter to the summer.

    Figure 4.Directed rotary angle evolution over the CETP at 300 hPa from the summer to the winter.

    Besides, Figures 3 and 4 also confirm the earlier monsoon onset and later monsoon withdrawal more clearly. Furthermore, the earlier onset date is different from the low-level tropospheric monsoons. A number of previous studies have noted that the monsoon onset dates in the lower tropospheric monsoons are relatively earlier. Specifically, the earliest onset date of the Asian summer monsoon often occurs in the central IndochinaPeninsula in late April or early May (Ding 2004; Ding and Chan 2005); the East Asian summer monsoon average onset date in South China is in early May (Zhu et al. 2000); the South China Sea summer monsoon onset date is basically after mid-May or early June (Zhu et al. 2000; Wang et al. 2004); and the Indian summer monsoon average onset date is in early June, observed at Kerala (Wang, Ding, and Joseph 2009). The earlier transition time could be a precursor to the low-level monsoon onset.

    4. Conclusion

    In this study we used two diferent angle defnitions to reveal the wind vector direction variation, and demonstrated the wind in the upper tropospheric monsoon over the CETP has the same four typical rotation features as the low-level monsoon. At the same time, we also revealed the rotation pattern types across the entire region. The results provide further evidence that the circulation in the upper troposphere over the CETP is monsoonal circulation, and supports the theory of global monsoons,proposed by Li and Zeng (2003), in which the lower and upper tropospheric monsoons are regarded as one system.

    Additionally, we improved the directed rotary angle to characterize the entire wind reversal process in the upper tropospheric monsoon for the frst time, and found that the upper tropospheric monsoon onset is earlier and the withdrawal time is later. In particular, the earlier onset time may serve as an indicator for the prediction of the lower tropospheric monsoon onset date, which is worthy of further study.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China Projects (41530424) and SOA Program on Global Change and Air-Sea Interactions (GASI-IPOVAI-03).

    References

    Chuang, W.-S. 1986. “A Note on the Driving Mechanisms of Current in the Taiwan Strait.” Journal of the Oceanographical Society of Japan 42 (5): 355—361. doi:10.1007/BF02110430.

    Corrigan, C. E., V. Ramanathan, and J. J. Schauer. 2006. “Impact of Monsoon Transitions on the Physical and Optical Properties of Aerosols.” Journal of Geophysical Research: Atmospheres 111(D18): D18208. doi:10.1029/2005JD006370.

    Ding, Y. H. 2004. “Seasonal March of the East Asian Summer Monsoon.” In The East Asian Monsoon, edited by C.-P. Chang,3—53. Singapore: World Scientifc Publisher.

    Ding, Y. H., and J. C. L. Chan. 2005. “The East Asian Summer Monsoon: An Overview.” Meteorology and Atmospheric Physics 89 (1—4): 117—142. doi:10.1007/s00703-005-0125-z.

    Fu, C., and J. O. Fletcher. 1988. “Large Signals of Climatic Variation over the Ocean in the Asian Monsoon Region.” Advances in Atmospheric Sciences 5 (4): 389—404. doi:10.1007/BF02656786.

    Jiang, X. W., and J. P. Li. 2011. “Infuence of the Annual Cycle of Sea Surface Temperature on the Monsoon Onset.” Journal of Geophysical Research 116 (D10): 1—14. doi:10.1029/2010JD015236.

    Jones, C., and L. M. V. Carvalho. 2002. “Active and Break Phases in the South American Monsoon System.” Journal of Climate 15 (8): 905—914. doi:10.1175/1520-0442(2002)015<0905:AAB PIT>2.0.CO;2.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin,M. Iredell, et al. 1996. “The NCEP/NCAR 40-Year Reanalysis Project.” Bulletin of the American Meteorological Society 77 (3): 437—471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2. 0.CO;2.

    由于存在較大的橫向冷卻表面(泄水建筑物溢洪道側(cè)墻)有助于水分向凍結(jié)方向移動(dòng),所以在溢洪道側(cè)墻邊界處形成很大的濕熱梯度并在附近形成浸潤(rùn)線,所以這種情況下的問(wèn)題相當(dāng)復(fù)雜。

    Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,M. Fiorino, and G. L. Potter. 2002. “NCEP-DOE AMIP-II Reanalysis (R-2).” Bulletin of the American Meteorological Society 83 (11): 1631—1643.

    Li, J. P., and Q. C. Zeng. 2000. “Signifcance of the Normalized Seasonality of Wind Field and Its Rationality for Characterizing the Monsoon.” Science in China Series D: Earth Sciences 43 (6): 646—653.

    Li, J. P., and Q. C. Zeng. 2002. “A Unifed Monsoon Index.”Geophysical Research Letters 29 (8): 1151—1154. doi:10.1029/ 2001GL013874.

    Li, J. P., and Q. C. Zeng. 2003. “A New Monsoon Index and the Geographical Distribution of the Global Monsoons.” Advances in Atmospheric Sciences 20 (2): 299—302. doi:10.1007/s00376-003-0016-5.

    Li, J. P., and Q. C. Zeng. 2005. “A New Monsoon Index, Its Interannual Variability and Relation with Monsoon Precipitation.” [In Chniese.] Climatic and Environmental Research 10 (3): 351—365.

    Li, J. P., and L. Zhang. 2009. “Wind Onset and Withdrawal of Asian Summer Monsoon and Their Simulated Performance in AMIP Models.” Climate Dynamics 32 (7—8): 935—968. doi:10.1007/ s00382-008-0465-8.

    Ramage, C. S. 1971. Monsoon Meteorology. Vol. 15. New York: Academic Press.

    Wang, B., Q. H. Ding, and P. V. Joseph. 2009. “Objective Defnition of the Indian Summer Monsoon Onset.” Journal of Climate 22(12): 3303—3316. doi:10.1175/2008JCLI2675.1.

    Wang, B., L. Ho, Y. S. Zhang, and M. M. Lu. 2004. “Defnition of South China Sea Monsoon Onset and Commencement of the East Asia Summer Monsoon.” Journal of Climate 17 (4): 699—710. doi:10.1175/2932.1.

    Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas,M. Yanai, and T. Yasunari. 1998. “Monsoons: Processes,Predictability, and the Prospects for Prediction.” Journal of Geophysical Research: Oceans 103 (C7): 14451—14510. doi:10.1029/97JC02719.

    Xie, A., Y.-S. Chung, X. Liu, and Q. Ye. 1998. “The Interannual Variations of the Summer Monsoon Onset Overthe South China Sea.” Theoretical and Applied Climatology 59 (3—4): 201—213. doi:10.1007/s007040050024.

    Zhang, L., and J. P. Li. 2008. “The Application of the Variation Characteristics of Wind Direction in Evaluating Monsoon Simulation.” Chinese Journal of Atmospheric Sciences (in Chinese)32 (1): 53—66. doi:10.3878/j.issn.1006-9895.2008.01.05.

    Zhang, L., and J. P. Li. 2010. “Twice Wind Onsets of Monsoon over the Western North Pacifc and Their Simulations in AMIP Models.” International Journal of Climatology 30 (4): 582—600. doi:10.1002/joc.1908.

    Zhu, H., M. Cui, X. Bai, and A. Klaus. 2000. “East Asia Summer Monsoon Onset Date Calculated from Observed, Reanalyzed and Combined Daily Rainfall.” Journal of Tropical Meteorology 6 (1): 100—105.

    風(fēng)向; 風(fēng)向角; 有向轉(zhuǎn)角; 上對(duì)流層季風(fēng)

    30 May 2016

    CONTACT LI Jian-Ping ljp@bnu.edu.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    季風(fēng)對(duì)流層側(cè)墻
    郴州地區(qū)對(duì)流層頂氣候概況
    基于ABAQUS的動(dòng)車組側(cè)墻滑槽連接結(jié)構(gòu)設(shè)計(jì)優(yōu)化
    綠水青山圖——海洋季風(fēng)的贊歌
    地鐵站側(cè)墻鋼筋混凝土結(jié)構(gòu)保護(hù)層厚度控制
    建筑科技(2018年6期)2018-08-30 03:40:58
    城軌不銹鋼車輛鼓型側(cè)墻弧焊工藝研究
    戶撒刀
    實(shí)時(shí)干涉測(cè)量中對(duì)流層延遲與鐘差精修正建模
    載人航天(2016年4期)2016-12-01 06:56:24
    成都地區(qū)2005~2015年對(duì)流層NO2柱濃度趨勢(shì)與時(shí)空分布
    MIG—V工作站在高速動(dòng)車鋁合金車體側(cè)墻焊接中的應(yīng)用
    焊接(2015年1期)2015-07-18 11:07:33
    萬(wàn)馬奔騰
    中華奇石(2015年9期)2015-07-09 18:32:58
    亚洲欧美精品综合久久99| 日韩欧美 国产精品| 一级毛片aaaaaa免费看小| 亚洲色图av天堂| 熟女人妻精品中文字幕| 国产成年人精品一区二区| 又黄又爽又免费观看的视频| 欧美xxxx性猛交bbbb| 久久精品影院6| 成年女人看的毛片在线观看| 亚洲av不卡在线观看| 能在线免费观看的黄片| 久久久成人免费电影| 国产探花极品一区二区| 成年女人毛片免费观看观看9| 亚洲婷婷狠狠爱综合网| 少妇裸体淫交视频免费看高清| 亚洲美女视频黄频| 三级经典国产精品| 日韩精品青青久久久久久| 中国美女看黄片| 国产一区亚洲一区在线观看| 中文在线观看免费www的网站| 男女那种视频在线观看| 国产熟女欧美一区二区| 99热6这里只有精品| 欧美精品国产亚洲| 你懂的网址亚洲精品在线观看 | 欧美成人精品欧美一级黄| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3| 国产精品久久久久久亚洲av鲁大| 欧美色视频一区免费| 熟女电影av网| 岛国在线免费视频观看| 亚洲av中文字字幕乱码综合| 久久精品影院6| 欧美高清性xxxxhd video| 国产 一区精品| 国产精品永久免费网站| 久久精品综合一区二区三区| 色在线成人网| 麻豆久久精品国产亚洲av| 毛片一级片免费看久久久久| 国产精品野战在线观看| 国产精品精品国产色婷婷| 亚洲人成网站高清观看| 久久精品影院6| 国产乱人偷精品视频| 变态另类丝袜制服| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐动态| 日本成人三级电影网站| 国产亚洲精品av在线| 色av中文字幕| 国产一区二区三区av在线 | 亚洲精品国产成人久久av| 麻豆一二三区av精品| 少妇猛男粗大的猛烈进出视频 | 91午夜精品亚洲一区二区三区| 少妇熟女欧美另类| 色吧在线观看| 在线国产一区二区在线| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩无卡精品| 97超碰精品成人国产| 日本欧美国产在线视频| 午夜a级毛片| 少妇的逼水好多| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 免费观看人在逋| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲av天美| 有码 亚洲区| 老熟妇仑乱视频hdxx| 欧美日本视频| 国产精品永久免费网站| 亚洲国产色片| 狂野欧美激情性xxxx在线观看| 搡女人真爽免费视频火全软件 | 人人妻人人澡欧美一区二区| 亚洲最大成人中文| 免费黄网站久久成人精品| 俺也久久电影网| 成年女人永久免费观看视频| www日本黄色视频网| 精品熟女少妇av免费看| 波多野结衣巨乳人妻| 亚洲久久久久久中文字幕| 97热精品久久久久久| 国产精品一区二区三区四区久久| 深夜a级毛片| 又黄又爽又免费观看的视频| 亚洲av成人精品一区久久| 51国产日韩欧美| 夜夜爽天天搞| 国国产精品蜜臀av免费| av免费在线看不卡| 久久人人精品亚洲av| 一级黄色大片毛片| 丝袜喷水一区| 女人被狂操c到高潮| 岛国在线免费视频观看| 亚洲国产欧美人成| 国内揄拍国产精品人妻在线| 日本五十路高清| 老熟妇乱子伦视频在线观看| 成人精品一区二区免费| 久久久a久久爽久久v久久| 国产精品一二三区在线看| 一级毛片我不卡| 综合色av麻豆| 亚洲熟妇熟女久久| 国产午夜福利久久久久久| 在线国产一区二区在线| av视频在线观看入口| 欧美成人一区二区免费高清观看| 久久99热6这里只有精品| 国产成人a区在线观看| 日韩成人伦理影院| 伦理电影大哥的女人| 岛国在线免费视频观看| 精品国内亚洲2022精品成人| 亚洲人成网站在线播| 欧美中文日本在线观看视频| 一级黄片播放器| 国产麻豆成人av免费视频| 免费搜索国产男女视频| 国产精品一区二区三区四区久久| 日本与韩国留学比较| ponron亚洲| 白带黄色成豆腐渣| 中文在线观看免费www的网站| 色av中文字幕| 久久人人爽人人片av| 国产成人影院久久av| 18禁在线播放成人免费| 国产国拍精品亚洲av在线观看| 精品一区二区免费观看| 18禁黄网站禁片免费观看直播| 嫩草影视91久久| 成人亚洲欧美一区二区av| 色5月婷婷丁香| 亚洲天堂国产精品一区在线| 最近2019中文字幕mv第一页| 午夜免费激情av| 亚洲av一区综合| 亚洲内射少妇av| 亚洲av免费在线观看| 97人妻精品一区二区三区麻豆| 国内精品美女久久久久久| av天堂中文字幕网| 中国美白少妇内射xxxbb| 啦啦啦韩国在线观看视频| 亚洲欧美精品综合久久99| 国产精品伦人一区二区| 成人无遮挡网站| 两个人视频免费观看高清| 麻豆国产97在线/欧美| 国产精品av视频在线免费观看| 国产爱豆传媒在线观看| 小说图片视频综合网站| 亚洲国产精品合色在线| 亚洲成av人片在线播放无| 免费一级毛片在线播放高清视频| 色尼玛亚洲综合影院| 欧美丝袜亚洲另类| 麻豆国产97在线/欧美| 日本色播在线视频| 午夜影院日韩av| 国产爱豆传媒在线观看| 午夜福利在线观看免费完整高清在 | 午夜免费男女啪啪视频观看 | av国产免费在线观看| av中文乱码字幕在线| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线观看免费| 欧美激情久久久久久爽电影| 精品久久久久久久久久免费视频| 天堂影院成人在线观看| 久久精品国产亚洲av天美| 免费黄网站久久成人精品| 日本在线视频免费播放| 在线看三级毛片| 可以在线观看的亚洲视频| 乱系列少妇在线播放| 最近在线观看免费完整版| 成人av在线播放网站| 人妻少妇偷人精品九色| 国产麻豆成人av免费视频| 三级毛片av免费| 桃色一区二区三区在线观看| 美女 人体艺术 gogo| 一级av片app| 蜜桃亚洲精品一区二区三区| 欧美极品一区二区三区四区| 人妻久久中文字幕网| 免费黄网站久久成人精品| 色尼玛亚洲综合影院| 精品日产1卡2卡| 美女高潮的动态| 色视频www国产| 日本欧美国产在线视频| 嫩草影院精品99| 久久婷婷人人爽人人干人人爱| 亚洲电影在线观看av| 男女啪啪激烈高潮av片| 日本与韩国留学比较| 欧美一区二区精品小视频在线| 午夜影院日韩av| 国产精品国产三级国产av玫瑰| 国产一区二区三区在线臀色熟女| 日日干狠狠操夜夜爽| 观看美女的网站| 国产精品久久久久久av不卡| 一本久久中文字幕| 少妇人妻精品综合一区二区 | 精品人妻偷拍中文字幕| 国产极品精品免费视频能看的| av天堂在线播放| 精品人妻视频免费看| 黄片wwwwww| 婷婷六月久久综合丁香| 十八禁网站免费在线| 黄色视频,在线免费观看| 男插女下体视频免费在线播放| 简卡轻食公司| 成年免费大片在线观看| 校园春色视频在线观看| 精品一区二区三区av网在线观看| 麻豆一二三区av精品| 久久久久国产精品人妻aⅴ院| 免费观看在线日韩| 日本与韩国留学比较| АⅤ资源中文在线天堂| 听说在线观看完整版免费高清| 激情 狠狠 欧美| 精品久久久久久久末码| 欧美xxxx性猛交bbbb| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线观看播放| 免费无遮挡裸体视频| 日韩一本色道免费dvd| av国产免费在线观看| 美女免费视频网站| 免费电影在线观看免费观看| 床上黄色一级片| or卡值多少钱| 亚洲va在线va天堂va国产| 在线免费观看不下载黄p国产| 中出人妻视频一区二区| 中文字幕人妻熟人妻熟丝袜美| 色哟哟哟哟哟哟| 午夜影院日韩av| 香蕉av资源在线| 国产欧美日韩精品亚洲av| 日韩av在线大香蕉| 成年av动漫网址| 亚洲av成人精品一区久久| 精品99又大又爽又粗少妇毛片| 在线免费观看不下载黄p国产| 最近手机中文字幕大全| 国产视频内射| 观看免费一级毛片| 国产精品不卡视频一区二区| 日韩精品中文字幕看吧| 国产免费一级a男人的天堂| 97碰自拍视频| 久久亚洲精品不卡| 麻豆国产97在线/欧美| 免费搜索国产男女视频| 99热6这里只有精品| 一级av片app| 精品久久久久久久人妻蜜臀av| 免费av不卡在线播放| 亚洲自拍偷在线| 天堂√8在线中文| 美女xxoo啪啪120秒动态图| 午夜福利在线观看吧| 简卡轻食公司| 日本三级黄在线观看| 国产精品亚洲美女久久久| 插逼视频在线观看| 亚洲欧美日韩无卡精品| 十八禁网站免费在线| 午夜福利在线观看吧| 美女高潮的动态| 联通29元200g的流量卡| 欧美不卡视频在线免费观看| 91午夜精品亚洲一区二区三区| 色吧在线观看| 男女那种视频在线观看| 麻豆乱淫一区二区| 久久精品国产99精品国产亚洲性色| 看片在线看免费视频| 国产免费男女视频| 国产精品久久久久久亚洲av鲁大| 在线免费观看的www视频| 91久久精品国产一区二区成人| 精品无人区乱码1区二区| 成人综合一区亚洲| 少妇高潮的动态图| 熟女电影av网| 18禁黄网站禁片免费观看直播| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 麻豆精品久久久久久蜜桃| 老女人水多毛片| 麻豆一二三区av精品| 少妇高潮的动态图| 午夜福利18| 国产一区二区亚洲精品在线观看| 春色校园在线视频观看| 欧美极品一区二区三区四区| 精品久久久噜噜| av.在线天堂| av天堂在线播放| 国产国拍精品亚洲av在线观看| 久久国内精品自在自线图片| 色尼玛亚洲综合影院| 天堂av国产一区二区熟女人妻| 插逼视频在线观看| 国产极品精品免费视频能看的| 嫩草影院精品99| 中国美女看黄片| av在线观看视频网站免费| 成人漫画全彩无遮挡| 99视频精品全部免费 在线| 久久99热6这里只有精品| 精品久久久久久成人av| 韩国av在线不卡| 精品午夜福利视频在线观看一区| 欧美国产日韩亚洲一区| 亚洲丝袜综合中文字幕| 国产在线男女| 久久鲁丝午夜福利片| 国产午夜福利久久久久久| 欧美日韩精品成人综合77777| 床上黄色一级片| 中国国产av一级| 日本爱情动作片www.在线观看 | 性欧美人与动物交配| 亚洲精品456在线播放app| 女人被狂操c到高潮| 国产 一区 欧美 日韩| 在线国产一区二区在线| 伦理电影大哥的女人| 免费av观看视频| 尾随美女入室| 搡老熟女国产l中国老女人| 欧美最新免费一区二区三区| 国产精品99久久久久久久久| 不卡一级毛片| 久久热精品热| 日本与韩国留学比较| 日本精品一区二区三区蜜桃| 99热只有精品国产| 久久久久久久久久黄片| 变态另类丝袜制服| 美女cb高潮喷水在线观看| 国产精品久久视频播放| 99九九线精品视频在线观看视频| 日韩欧美 国产精品| 身体一侧抽搐| 天天躁夜夜躁狠狠久久av| 人人妻人人澡欧美一区二区| 一a级毛片在线观看| 一级毛片aaaaaa免费看小| 干丝袜人妻中文字幕| 一区二区三区四区激情视频 | 男人舔奶头视频| 搡老熟女国产l中国老女人| 国产精品伦人一区二区| 一边摸一边抽搐一进一小说| 午夜免费激情av| 人妻久久中文字幕网| 亚洲第一电影网av| 最近最新中文字幕大全电影3| 日本在线视频免费播放| 久久久久久久久中文| 伊人久久精品亚洲午夜| 国产精品99久久久久久久久| 黄色一级大片看看| 男女啪啪激烈高潮av片| 亚洲精品日韩在线中文字幕 | 精品人妻一区二区三区麻豆 | 午夜精品在线福利| 免费看av在线观看网站| 久久久久精品国产欧美久久久| 国产精品永久免费网站| 又爽又黄a免费视频| 国产午夜精品论理片| 日韩成人伦理影院| 亚洲av五月六月丁香网| 人人妻人人看人人澡| 国产毛片a区久久久久| 国产熟女欧美一区二区| 亚洲一区二区三区色噜噜| 成人毛片a级毛片在线播放| 亚洲欧美日韩无卡精品| 亚洲成人精品中文字幕电影| 日韩中字成人| 黑人高潮一二区| 嫩草影院入口| 亚洲av免费高清在线观看| 日韩 亚洲 欧美在线| 啦啦啦啦在线视频资源| 内地一区二区视频在线| 国产高清三级在线| 国产精品福利在线免费观看| 欧美区成人在线视频| 国产精品亚洲一级av第二区| 十八禁国产超污无遮挡网站| 国产精品三级大全| 久久精品国产自在天天线| 悠悠久久av| 国产色婷婷99| 欧美最黄视频在线播放免费| 一本久久中文字幕| 亚洲国产色片| 久久久国产成人精品二区| 国产久久久一区二区三区| 色视频www国产| 禁无遮挡网站| 久久人人爽人人片av| 女人被狂操c到高潮| 久久久久性生活片| 午夜激情福利司机影院| 黄片wwwwww| 人人妻人人澡欧美一区二区| 天堂影院成人在线观看| 女的被弄到高潮叫床怎么办| 成熟少妇高潮喷水视频| 亚洲天堂国产精品一区在线| 欧美另类亚洲清纯唯美| 秋霞在线观看毛片| 一级黄片播放器| 91精品国产九色| 人妻丰满熟妇av一区二区三区| 亚洲人成网站高清观看| 日本三级黄在线观看| 97热精品久久久久久| 有码 亚洲区| 午夜亚洲福利在线播放| 国产精品免费一区二区三区在线| 激情 狠狠 欧美| 男女边吃奶边做爰视频| 久久人人爽人人爽人人片va| 国产高清有码在线观看视频| 国产中年淑女户外野战色| 国产探花在线观看一区二区| 九九在线视频观看精品| 免费电影在线观看免费观看| 别揉我奶头~嗯~啊~动态视频| 国产v大片淫在线免费观看| 亚洲三级黄色毛片| 亚洲最大成人中文| 精华霜和精华液先用哪个| 亚洲18禁久久av| 两个人视频免费观看高清| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站高清观看| 欧美+日韩+精品| 日日啪夜夜撸| 国产精品日韩av在线免费观看| 悠悠久久av| 国产精品日韩av在线免费观看| 给我免费播放毛片高清在线观看| 日本黄色片子视频| 色尼玛亚洲综合影院| 亚洲国产日韩欧美精品在线观看| 中文字幕av在线有码专区| 精品一区二区三区人妻视频| 日韩国内少妇激情av| 小说图片视频综合网站| 国产高清激情床上av| 深爱激情五月婷婷| 51国产日韩欧美| 久久久精品大字幕| 中国美白少妇内射xxxbb| 我的老师免费观看完整版| 久久久成人免费电影| 欧美一区二区亚洲| 欧美丝袜亚洲另类| 国产色婷婷99| 变态另类成人亚洲欧美熟女| 国产亚洲精品综合一区在线观看| 日本免费一区二区三区高清不卡| 99热只有精品国产| av卡一久久| 真人做人爱边吃奶动态| 看片在线看免费视频| 天天躁夜夜躁狠狠久久av| 国产一区二区激情短视频| 成年女人永久免费观看视频| 99riav亚洲国产免费| 十八禁国产超污无遮挡网站| 日本黄色视频三级网站网址| av在线天堂中文字幕| 日韩 亚洲 欧美在线| 校园春色视频在线观看| 看黄色毛片网站| 国产亚洲av嫩草精品影院| 在线免费观看的www视频| 久久久久国内视频| 极品教师在线视频| 大又大粗又爽又黄少妇毛片口| 久久久a久久爽久久v久久| 亚洲成人久久爱视频| 麻豆国产av国片精品| 一级av片app| 久99久视频精品免费| 成人二区视频| 两性午夜刺激爽爽歪歪视频在线观看| 在线国产一区二区在线| 黄片wwwwww| 一级a爱片免费观看的视频| 亚洲欧美日韩卡通动漫| 免费看日本二区| 亚洲成av人片在线播放无| 午夜福利在线在线| 久久综合国产亚洲精品| 精品日产1卡2卡| 国产综合懂色| 大型黄色视频在线免费观看| 最好的美女福利视频网| 99在线视频只有这里精品首页| 成人一区二区视频在线观看| 99久久九九国产精品国产免费| 久久99热这里只有精品18| 国产成人影院久久av| 桃色一区二区三区在线观看| 熟妇人妻久久中文字幕3abv| 精品一区二区免费观看| 97热精品久久久久久| 国产日本99.免费观看| 欧美日本视频| 成人av一区二区三区在线看| 长腿黑丝高跟| 国产片特级美女逼逼视频| 波多野结衣巨乳人妻| 大型黄色视频在线免费观看| 美女免费视频网站| 97热精品久久久久久| 国产高清三级在线| 看免费成人av毛片| 99久久精品热视频| 少妇高潮的动态图| 91久久精品电影网| 亚洲内射少妇av| 国产v大片淫在线免费观看| 一级黄色大片毛片| 亚洲一区二区三区色噜噜| 日韩三级伦理在线观看| 丰满乱子伦码专区| 久久久精品欧美日韩精品| 少妇猛男粗大的猛烈进出视频 | 在线免费观看的www视频| 久99久视频精品免费| 大香蕉久久网| 日本与韩国留学比较| 欧美日本亚洲视频在线播放| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩卡通动漫| 精品一区二区三区av网在线观看| 一级毛片aaaaaa免费看小| 亚洲自拍偷在线| 美女内射精品一级片tv| 免费观看精品视频网站| 日本五十路高清| 老司机影院成人| 亚洲在线观看片| 亚洲人成网站在线播放欧美日韩| 日韩三级伦理在线观看| 99久久精品国产国产毛片| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人精品一区二区| 免费看a级黄色片| 成年女人永久免费观看视频| 女人被狂操c到高潮| 国产高清不卡午夜福利| 国产女主播在线喷水免费视频网站 | 国产精品日韩av在线免费观看| 国产精品久久久久久久久免| 午夜日韩欧美国产| 色哟哟哟哟哟哟| 国产精品精品国产色婷婷| 国产综合懂色| 国产精品久久久久久亚洲av鲁大| 成人特级av手机在线观看| 精品人妻熟女av久视频| 日韩大尺度精品在线看网址| avwww免费| 乱系列少妇在线播放| 国内揄拍国产精品人妻在线| 亚洲婷婷狠狠爱综合网| 日韩欧美精品免费久久| 99在线视频只有这里精品首页| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 亚洲中文字幕一区二区三区有码在线看| 久久中文看片网| 国产亚洲欧美98| 欧美三级亚洲精品| 偷拍熟女少妇极品色| 国产精品伦人一区二区| 波多野结衣巨乳人妻| 又黄又爽又免费观看的视频| 五月伊人婷婷丁香| 午夜精品国产一区二区电影 |