• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wind rotation characteristics of the upper tropospheric monsoon over the central and eastern tropical Pacific

    2016-11-23 05:57:05LOUPnXingLIJinPingFENGJunZHAOSenndLIYnJie
    關(guān)鍵詞:季風(fēng)對(duì)流層側(cè)墻

    LOU Pn-Xing, LI Jin-Ping, FENG Jun, ZHAO Sennd LI Yn-Jie

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollege of Global Change and Earth System Science (GCESS), Beijing Normal University,Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    Wind rotation characteristics of the upper tropospheric monsoon over the central and eastern tropical Pacific

    LOU Pan-Xinga, LI Jian-Pingb,c, FENG Juanb,c, ZHAO Senaand LI Yan-Jiea

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollege of Global Change and Earth System Science (GCESS), Beijing Normal University,Beijing, China;cJoint Center for Global Change Studies, Beijing, China

    In this study, to investigate whether the variation of wind direction in the upper tropospheric monsoon over the central and eastern tropical Pacifc shows similar characteristics to the classical monsoon region, the authors introduced a wind vector angle methodology that describes the size of the angle of the wind direction variation, as well as the directed rotary angle, which includes not only the size of the angle but also how the wind vector rotates. On this basis, the authors utilized and improved the directed rotary angle methodology to investigate the evolution of wind direction in detail, and the study confrmed the presence of the same four rotation features in the upper tropospheric monsoon region. Furthermore, the authors also identifed the precise variation of wind direction in pentads with seasonal evolution, and found the onset time of the upper tropospheric monsoon may be earlier than the classical monsoon while the termination time may be later. The results further support and supplement the theory of global monsoons, which unifes the low-level and upper tropospheric monsoon as one monsoon system.

    ARTICLE HISTORY

    Revised 14 July 2016

    Accepted 14 July 2016

    Wind direction; wind vector angle; directed rotary angle;upper tropospheric monsoon

    在本文中,為研究赤道中東太平洋區(qū)域上對(duì)流層季風(fēng)是否具有和經(jīng)典季風(fēng)同樣的風(fēng)向變化特征,我們引入一種風(fēng)向角的研究方法——有向轉(zhuǎn)角法,該方法不僅可以刻畫風(fēng)向變化的角度大小,而且包含風(fēng)矢量如何轉(zhuǎn)變的信息。在此基礎(chǔ)上,利用該方法并將其適當(dāng)推廣,本文研究了赤道中東太平洋區(qū)域上對(duì)流層季風(fēng)的演變過(guò)程,結(jié)果證實(shí)了該區(qū)域上對(duì)流層季風(fēng)具有和經(jīng)典季風(fēng)同樣的四種轉(zhuǎn)變特征,并進(jìn)一步給出了隨季節(jié)轉(zhuǎn)換不同時(shí)期內(nèi)的風(fēng)向演變結(jié)果,發(fā)現(xiàn)上對(duì)流層季風(fēng)相對(duì)經(jīng)典季風(fēng)具有爆發(fā)時(shí)間較早并結(jié)束較晚的特點(diǎn)。本文結(jié)果是對(duì)全球季風(fēng)系統(tǒng)理論的有益補(bǔ)充,進(jìn)一步支持該理論將全球不同季風(fēng)作為一個(gè)整體系統(tǒng)來(lái)看待。

    1. Introduction

    Monsoon regions are generally thought of as low-level tropospheric areas satisfying the criteria of wind reversal and precipitation changes with the seasons (Ramage 1971;Webster et al. 1998). So, the variation in wind direction with the transition of the seasons is an important aspect of monsoon research (Chuang 1986; Fu and Fletcher 1988; Xie et al. 1998; Qian and Yang 2000; Jones and Carvalho 2002;Corrigan, Ramanathan, and Schauer 2006; Zhang and Li 2008, 2010), and methods involving the wind vector angle can usually be applied to investigate such variation (Zhang and Li 2010; Jiang and Li 2011), given that it is one of the criteria infuencing the onset of monsoon.

    The wind vector angle is defned as the angle between diferent wind vectors, indicating the absolute angle size of the wind vector with reference to the initial wind. It implies the fnal state of the variation in wind direction, but it also includes noting how the wind vector changes over time.

    To accurately refect the process of the wind vector changes over time, the directed rotary angle was proposed(Zhang and Li 2008) to study the dynamic characteristics of wind direction variation in diferent monsoon regions,and evaluate the performance of AMIP models in simulating monsoon (Zhang and Li 2008; Li and Zhang 2009). Specifcally, if the absolute value of the directed rotary angle exceeds the given criterion, it indicates monsoon onset (Li and Zhang 2009), whereas if it remains below the criterion it indicates monsoon withdrawal.

    Given that the variation in the direction of wind at a particular point and pressure level can be characterized by the rotation of the wind vector, it can thus be defned that the angles of variation are positive if the rotation of thedaily (or hourly/monthly) wind vector is counterclockwise compared to the reference wind (e.g. January climatological wind vector), or negative if the rotation is clockwise. Consequently, we can obtain all the angles of variation at each moment in a particular period (e.g. a few months or an annual cycle). Put simply, it precisely shows the evolution of wind direction for each time increment, including how the wind vector rotates (clockwise or counterclockwise),and the size of the angle of the wind direction variation,therefore refecting the dynamic characteristics of wind direction much better with the evolution of the seasons.

    Based on this concept, Zhang and Li (2008) stated that the annual cycle of the variation in wind direction can be categorized as follows: (i) the wind vector frst rotates clockwise until the absolute size of the angle (positive or negative) exceeds a critical value (e.g. 90°), and then rotates counterclockwise back to the initial state after a certain period; (ii) the wind vector frst rotates counterclockwise until the absolute size of the angle exceeds a critical value,and then rotates clockwise back to the initial state; (iii) the wind vector rotates clockwise all the time until it returns to the initial state; (iv) the wind vector rotates counterclockwise all the time until it returns to the initial state; (v) there is no evident variation or small-amplitude rotation, called ‘stable rotation'; (vi) there is neither inconsistent nor irregular rotation, called ‘unstable rotation'. In particular, they noted that, considering the seasonal reversal of wind in monsoon regions, type (v) and (vi) could be ruled out, meaning only types (i)—(iv) can exist in monsoon regions, in theory.

    Additionally, previous studies (Li and Zeng 2000, 2002,2003, 2005) demonstrated that, in the upper troposphere over the central and eastern tropical Pacifc (5°S—22.5°N,85°—175°W) (hereafter referred to as CETP), the prevailing wind direction rotates more than 90° in summer, with reference to winter, as the seasons evolve. Indeed, according to the monsoon index defned in Li and Zeng (2002, 2005),the upper troposphere over the CETP can be regarded as a non-classical monsoon region.

    Therefore, in the present work, we applied the methodology of the directed rotary angle to identify more detailed features of the variation in wind direction over this region,and determine whether these features show any similarities to their counterparts in the classical monsoon region of the low-level troposphere.

    2. Data and methodology

    2.1. Data

    This work used the global four-times-daily NCEP-1 and monthly NCEP-2 multi-level atmospheric wind felds with a 2.5° × 2.5° resolution in the horizontal direction and 17 pressure levels from 1000 to 10 hPa. These data were obtained from the NCEP—NCAR reanalysis datasets (Kalnay et al. 1996; Kanamitsu et al. 2002).

    2.2. Methodology

    It was already known that the wind vector angle indicates the angle size of the wind vector with reference to the initial state when it eventually stops varying during a particular period (e.g. one day or one month). It has a strict defnition (Zhang and Li 2008; Li and Zhang 2009),as shown below:

    Also, it is obvious that the actual value of βjshould not exceed 180° and should always be positive, according to the defnition of Equation (1). The defnition simply describes the angle size of the wind vector at the end with reference to the initial wind, and does not consider the wind vector direction of rotation.

    It is possible that the wind vector rotates clockwise over 200° and then rotates back 50° in a certain period, or the wind vector just rotates counterclockwise 150°. In both cases, frstly, the former actual variation value of the angle reaches 200°; and secondly, both sizes of angle variation are equal to 150° at the end, according to Equation (1), when in fact they represent totally diferent rotation situations.

    This consequence is caused by the loss of information contained in the variation process without considering the clockwise or counterclockwise rotation; as a result, how the wind direction evolved in detail is missed. Therefore,the directed rotary angle was introduced (Zhang and Li 2008; Li and Zhang 2009), presented by Equations (2) and(3), below:

    So all of the αivalues for a whole year at a given location can be obtained based on Equations (2) and (3). Then theαi,as well as the directed rotary angle, fnally includes the direction of rotation (counterclockwise or clockwise). The actual value of αivaries most likely to exceed 180° or even less than -180° when it increases or decreases with time(every day or hour).

    In climatological terms, when the absolute value of the directed rotary angle continues to increase or decrease, it means the wind reversal begins from winter to summer, or vice versa, i.e. monsoon onset or withdrawal. Thus, it can describe the wind rotation variation in more detail.

    3. Results

    Figure 1 separately shows the four typical rotation features of the directed rotary angle in the monsoon region(at 300 hPa) in upper troposphere over the CETP, including types (i)—(iv). As expected, the same rotation features as the classical monsoon (Zhang and Li 2008) are presented in the lower troposphere. Also, it shows the rotation of the wind vector in the upper tropospheric monsoon changes according to the same pattern with seasonal evolution. However, compared to the results in the low-level tropospheric monsoon (Zhang and Li 2008), the directed rotary angle variation (Figure 1(a) and (c)) shows in a relatively shorter time that the wind can change from the prevailing wind direction in winter to the prevailing wind direction in summer. This means that the seasonal wind reversal may happen in less time than in the lower troposphericmonsoon, which translates to the onset and withdrawal of the upper tropospheric monsoon possibly being extremely sudden and quick.

    Figure 1.The four typical rotation features over the central and eastern tropical Pacifc: (a) type (i) (5°N, 130°W); (b) type (ii) (5°N, 160°W);(c) type (iii) (5°N, 95°W); (d) type (iv) (5°N, 145°W).

    Figure 2.The four rotation types at each point over the CETP at 300 hPa.

    Also, in the upper troposphere, the seasonal wind reversal starts from winter to summer before May or eventually before April (Figure 1(a) and (c)), while the opposite process starts later than the middle of October (Figure 1). This indicates that the monsoon onset time is earlier, and withdrawal is later, than in the low-level monsoons, so the upper troposphere monsoon may last longer.

    Since all four typical rotation types (Figure 1) are shown at diferent locations, we seek to identify what rotation types are at all points in the whole region. Therefore, in the following analysis (Figure 2), we show the rotation type distribution over the whole CETP at 300 hPa.

    First, and most obviously, type (i) (frst rotates counterclockwise then clockwise; blue dots) and type (ii) (frst rotates clockwise then counterclockwise; green dots) are comparatively more frequent than type (iii) (fully clockwise; purple dot) and type (iv) (fully counterclockwise; red dots); type (iv) is particularly rare.

    Additionally, we can see that, in the western district(155°—175°W) of the CETP, the wind rotation features are type (ii) (green dots); and if we ignore the northeastern district (over continental North America), only in the middle of the CETP do the wind rotation features belong to type (i) (blue dots).

    In the east of the CETP, the rotation features are very irregular. There are mainly mixed type (ii) (green dots) and type (iii) (purple dots) in general, and only at some rare individual sites they are type (iv) (red dots).

    Figure 2 shows the diferent wind rotation types in a specifed location (or a specifed area) in the annual cycle and Figure 1 shows the dynamic characteristics with one-dimensional time series. We further expand this method to two dimensions to investigate the upper monsoon onset and withdrawal with the directed rotary angle. The two-dimensional directed rotary angle evolution is therefore given to show the process of the winter to the summer (Figure 3) and the reverse process(Figure 4).

    Figure 3 shows the directed rotary angle in the occurrence and early developments stages of the upper tropospheric monsoon. It can be seen that, in diferent locations,the time of the directed rotary angle exceeding the criterion is not that consistent. Generally, it is earlier in the east and later in the west.

    More specifcally, it can be seen that the monsoon onset frstly and primarily takes place in the east the region (Figure 3(a)) by earlier May, and it almost accomplishes the seasonal wind reversal in the eastern area (5°S—10°N, 85°—130°W) by May. Then, it gradually expands to the middle and north of the region; basically, it accomplishes wind reversal over most of the region by mid to late May (Figure 3(c)), and fnishes by late June over the whole region.

    Figure 4 shows the beginning and development of the monsoon withdrawal in the upper tropospheric. The results show that the wind starts to decay by mid to late October(Figure 4(a) and (b)), and that it happens both in the marginal zone and in the center of the region (120°—150°W). Then, it expands in the west (155°—175°W) (Figure 4(c)). By the middle of November, most of the region has fnished its wind reversal, apart from a small fraction in the east(95°—115°W) near the equator.

    Moreover, Figures 3 and 4 show not only the development of monsoon onset and withdrawal, but also partly reveal a similar spatial pattern of the rotation types as Figure 2. The residual dark purple shading and sporadic red shading (Figure 4(c) and (d)) are highly consistent with the type (iii) and type (iv), respectively.

    Figure 3.Directed rotary angle evolution over the CETP at 300 hPa from the winter to the summer.

    Figure 4.Directed rotary angle evolution over the CETP at 300 hPa from the summer to the winter.

    Besides, Figures 3 and 4 also confirm the earlier monsoon onset and later monsoon withdrawal more clearly. Furthermore, the earlier onset date is different from the low-level tropospheric monsoons. A number of previous studies have noted that the monsoon onset dates in the lower tropospheric monsoons are relatively earlier. Specifically, the earliest onset date of the Asian summer monsoon often occurs in the central IndochinaPeninsula in late April or early May (Ding 2004; Ding and Chan 2005); the East Asian summer monsoon average onset date in South China is in early May (Zhu et al. 2000); the South China Sea summer monsoon onset date is basically after mid-May or early June (Zhu et al. 2000; Wang et al. 2004); and the Indian summer monsoon average onset date is in early June, observed at Kerala (Wang, Ding, and Joseph 2009). The earlier transition time could be a precursor to the low-level monsoon onset.

    4. Conclusion

    In this study we used two diferent angle defnitions to reveal the wind vector direction variation, and demonstrated the wind in the upper tropospheric monsoon over the CETP has the same four typical rotation features as the low-level monsoon. At the same time, we also revealed the rotation pattern types across the entire region. The results provide further evidence that the circulation in the upper troposphere over the CETP is monsoonal circulation, and supports the theory of global monsoons,proposed by Li and Zeng (2003), in which the lower and upper tropospheric monsoons are regarded as one system.

    Additionally, we improved the directed rotary angle to characterize the entire wind reversal process in the upper tropospheric monsoon for the frst time, and found that the upper tropospheric monsoon onset is earlier and the withdrawal time is later. In particular, the earlier onset time may serve as an indicator for the prediction of the lower tropospheric monsoon onset date, which is worthy of further study.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China Projects (41530424) and SOA Program on Global Change and Air-Sea Interactions (GASI-IPOVAI-03).

    References

    Chuang, W.-S. 1986. “A Note on the Driving Mechanisms of Current in the Taiwan Strait.” Journal of the Oceanographical Society of Japan 42 (5): 355—361. doi:10.1007/BF02110430.

    Corrigan, C. E., V. Ramanathan, and J. J. Schauer. 2006. “Impact of Monsoon Transitions on the Physical and Optical Properties of Aerosols.” Journal of Geophysical Research: Atmospheres 111(D18): D18208. doi:10.1029/2005JD006370.

    Ding, Y. H. 2004. “Seasonal March of the East Asian Summer Monsoon.” In The East Asian Monsoon, edited by C.-P. Chang,3—53. Singapore: World Scientifc Publisher.

    Ding, Y. H., and J. C. L. Chan. 2005. “The East Asian Summer Monsoon: An Overview.” Meteorology and Atmospheric Physics 89 (1—4): 117—142. doi:10.1007/s00703-005-0125-z.

    Fu, C., and J. O. Fletcher. 1988. “Large Signals of Climatic Variation over the Ocean in the Asian Monsoon Region.” Advances in Atmospheric Sciences 5 (4): 389—404. doi:10.1007/BF02656786.

    Jiang, X. W., and J. P. Li. 2011. “Infuence of the Annual Cycle of Sea Surface Temperature on the Monsoon Onset.” Journal of Geophysical Research 116 (D10): 1—14. doi:10.1029/2010JD015236.

    Jones, C., and L. M. V. Carvalho. 2002. “Active and Break Phases in the South American Monsoon System.” Journal of Climate 15 (8): 905—914. doi:10.1175/1520-0442(2002)015<0905:AAB PIT>2.0.CO;2.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin,M. Iredell, et al. 1996. “The NCEP/NCAR 40-Year Reanalysis Project.” Bulletin of the American Meteorological Society 77 (3): 437—471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2. 0.CO;2.

    由于存在較大的橫向冷卻表面(泄水建筑物溢洪道側(cè)墻)有助于水分向凍結(jié)方向移動(dòng),所以在溢洪道側(cè)墻邊界處形成很大的濕熱梯度并在附近形成浸潤(rùn)線,所以這種情況下的問(wèn)題相當(dāng)復(fù)雜。

    Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,M. Fiorino, and G. L. Potter. 2002. “NCEP-DOE AMIP-II Reanalysis (R-2).” Bulletin of the American Meteorological Society 83 (11): 1631—1643.

    Li, J. P., and Q. C. Zeng. 2000. “Signifcance of the Normalized Seasonality of Wind Field and Its Rationality for Characterizing the Monsoon.” Science in China Series D: Earth Sciences 43 (6): 646—653.

    Li, J. P., and Q. C. Zeng. 2002. “A Unifed Monsoon Index.”Geophysical Research Letters 29 (8): 1151—1154. doi:10.1029/ 2001GL013874.

    Li, J. P., and Q. C. Zeng. 2003. “A New Monsoon Index and the Geographical Distribution of the Global Monsoons.” Advances in Atmospheric Sciences 20 (2): 299—302. doi:10.1007/s00376-003-0016-5.

    Li, J. P., and Q. C. Zeng. 2005. “A New Monsoon Index, Its Interannual Variability and Relation with Monsoon Precipitation.” [In Chniese.] Climatic and Environmental Research 10 (3): 351—365.

    Li, J. P., and L. Zhang. 2009. “Wind Onset and Withdrawal of Asian Summer Monsoon and Their Simulated Performance in AMIP Models.” Climate Dynamics 32 (7—8): 935—968. doi:10.1007/ s00382-008-0465-8.

    Ramage, C. S. 1971. Monsoon Meteorology. Vol. 15. New York: Academic Press.

    Wang, B., Q. H. Ding, and P. V. Joseph. 2009. “Objective Defnition of the Indian Summer Monsoon Onset.” Journal of Climate 22(12): 3303—3316. doi:10.1175/2008JCLI2675.1.

    Wang, B., L. Ho, Y. S. Zhang, and M. M. Lu. 2004. “Defnition of South China Sea Monsoon Onset and Commencement of the East Asia Summer Monsoon.” Journal of Climate 17 (4): 699—710. doi:10.1175/2932.1.

    Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas,M. Yanai, and T. Yasunari. 1998. “Monsoons: Processes,Predictability, and the Prospects for Prediction.” Journal of Geophysical Research: Oceans 103 (C7): 14451—14510. doi:10.1029/97JC02719.

    Xie, A., Y.-S. Chung, X. Liu, and Q. Ye. 1998. “The Interannual Variations of the Summer Monsoon Onset Overthe South China Sea.” Theoretical and Applied Climatology 59 (3—4): 201—213. doi:10.1007/s007040050024.

    Zhang, L., and J. P. Li. 2008. “The Application of the Variation Characteristics of Wind Direction in Evaluating Monsoon Simulation.” Chinese Journal of Atmospheric Sciences (in Chinese)32 (1): 53—66. doi:10.3878/j.issn.1006-9895.2008.01.05.

    Zhang, L., and J. P. Li. 2010. “Twice Wind Onsets of Monsoon over the Western North Pacifc and Their Simulations in AMIP Models.” International Journal of Climatology 30 (4): 582—600. doi:10.1002/joc.1908.

    Zhu, H., M. Cui, X. Bai, and A. Klaus. 2000. “East Asia Summer Monsoon Onset Date Calculated from Observed, Reanalyzed and Combined Daily Rainfall.” Journal of Tropical Meteorology 6 (1): 100—105.

    風(fēng)向; 風(fēng)向角; 有向轉(zhuǎn)角; 上對(duì)流層季風(fēng)

    30 May 2016

    CONTACT LI Jian-Ping ljp@bnu.edu.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    季風(fēng)對(duì)流層側(cè)墻
    郴州地區(qū)對(duì)流層頂氣候概況
    基于ABAQUS的動(dòng)車組側(cè)墻滑槽連接結(jié)構(gòu)設(shè)計(jì)優(yōu)化
    綠水青山圖——海洋季風(fēng)的贊歌
    地鐵站側(cè)墻鋼筋混凝土結(jié)構(gòu)保護(hù)層厚度控制
    建筑科技(2018年6期)2018-08-30 03:40:58
    城軌不銹鋼車輛鼓型側(cè)墻弧焊工藝研究
    戶撒刀
    實(shí)時(shí)干涉測(cè)量中對(duì)流層延遲與鐘差精修正建模
    載人航天(2016年4期)2016-12-01 06:56:24
    成都地區(qū)2005~2015年對(duì)流層NO2柱濃度趨勢(shì)與時(shí)空分布
    MIG—V工作站在高速動(dòng)車鋁合金車體側(cè)墻焊接中的應(yīng)用
    焊接(2015年1期)2015-07-18 11:07:33
    萬(wàn)馬奔騰
    中華奇石(2015年9期)2015-07-09 18:32:58
    视频在线观看一区二区三区| 黄片播放在线免费| 久久久久国内视频| 色综合站精品国产| 亚洲熟妇中文字幕五十中出| 国产高清激情床上av| 亚洲 欧美 日韩 在线 免费| 免费在线观看亚洲国产| 日韩视频一区二区在线观看| 成人免费观看视频高清| 国产三级在线视频| 熟妇人妻久久中文字幕3abv| 久久热在线av| 久久久久久亚洲精品国产蜜桃av| 免费在线观看影片大全网站| 91精品国产国语对白视频| 久久久精品国产亚洲av高清涩受| 俄罗斯特黄特色一大片| 国产精品日韩av在线免费观看 | 最好的美女福利视频网| 亚洲一区中文字幕在线| 九色国产91popny在线| 99久久国产精品久久久| 欧美成人性av电影在线观看| 免费av毛片视频| 成人av一区二区三区在线看| 国产精品国产高清国产av| 亚洲国产欧美网| 一级作爱视频免费观看| 黄色视频,在线免费观看| 天天躁夜夜躁狠狠躁躁| 欧美一区二区精品小视频在线| 欧美日韩黄片免| 久久久久国产精品人妻aⅴ院| 法律面前人人平等表现在哪些方面| 69精品国产乱码久久久| 母亲3免费完整高清在线观看| 满18在线观看网站| 久久人妻熟女aⅴ| 露出奶头的视频| 国产成人精品在线电影| 90打野战视频偷拍视频| 精品国产美女av久久久久小说| 欧美乱色亚洲激情| 黑人欧美特级aaaaaa片| 可以在线观看的亚洲视频| 69精品国产乱码久久久| 午夜老司机福利片| 嫁个100分男人电影在线观看| 国产伦人伦偷精品视频| 91成年电影在线观看| 成在线人永久免费视频| 国产三级黄色录像| 老汉色∧v一级毛片| 国产伦一二天堂av在线观看| 91大片在线观看| 久久久久久亚洲精品国产蜜桃av| 久久性视频一级片| 欧美成人性av电影在线观看| 国产午夜精品久久久久久| 国产精品香港三级国产av潘金莲| 身体一侧抽搐| 欧美日韩精品网址| 亚洲av片天天在线观看| 亚洲在线自拍视频| 婷婷丁香在线五月| 国产麻豆69| 国内精品久久久久久久电影| 亚洲七黄色美女视频| 男女床上黄色一级片免费看| 91字幕亚洲| 少妇粗大呻吟视频| 欧美一区二区精品小视频在线| 丝袜在线中文字幕| 看黄色毛片网站| 亚洲欧美日韩高清在线视频| 国产av一区在线观看免费| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕人妻熟女乱码| 久久这里只有精品19| 97超级碰碰碰精品色视频在线观看| 亚洲av熟女| 久久久久久国产a免费观看| 他把我摸到了高潮在线观看| 久久国产乱子伦精品免费另类| 亚洲中文字幕一区二区三区有码在线看 | av天堂在线播放| 黄色 视频免费看| 黄色成人免费大全| 国产免费男女视频| 久久国产亚洲av麻豆专区| 中文字幕最新亚洲高清| 可以免费在线观看a视频的电影网站| 久久精品91无色码中文字幕| 亚洲精品粉嫩美女一区| 久久精品人人爽人人爽视色| 国产精品爽爽va在线观看网站 | 美女扒开内裤让男人捅视频| 18禁黄网站禁片午夜丰满| 午夜老司机福利片| 免费看十八禁软件| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久免费高清国产稀缺| 久热爱精品视频在线9| 亚洲最大成人中文| 一级毛片女人18水好多| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕最新亚洲高清| 男男h啪啪无遮挡| 色综合欧美亚洲国产小说| 非洲黑人性xxxx精品又粗又长| 一区在线观看完整版| 如日韩欧美国产精品一区二区三区| 久久久久九九精品影院| 一边摸一边抽搐一进一小说| 中亚洲国语对白在线视频| 国产亚洲欧美在线一区二区| 91精品三级在线观看| 久久婷婷人人爽人人干人人爱 | 亚洲av熟女| 黄频高清免费视频| 99国产综合亚洲精品| 19禁男女啪啪无遮挡网站| 欧美黄色片欧美黄色片| 久久天堂一区二区三区四区| 天天添夜夜摸| 男女之事视频高清在线观看| or卡值多少钱| 90打野战视频偷拍视频| 长腿黑丝高跟| 国产91精品成人一区二区三区| 自线自在国产av| 此物有八面人人有两片| 此物有八面人人有两片| 国产精品香港三级国产av潘金莲| 一a级毛片在线观看| 男人舔女人的私密视频| 亚洲 国产 在线| 好男人电影高清在线观看| 亚洲美女黄片视频| 1024香蕉在线观看| 亚洲熟妇中文字幕五十中出| 精品人妻在线不人妻| 宅男免费午夜| 99热只有精品国产| 久久香蕉国产精品| 国产伦人伦偷精品视频| 一边摸一边抽搐一进一小说| 午夜老司机福利片| 美女扒开内裤让男人捅视频| 最近最新中文字幕大全电影3 | 国产精品免费一区二区三区在线| 在线观看一区二区三区| 18禁国产床啪视频网站| 亚洲av电影在线进入| 午夜福利在线观看吧| 一区二区三区精品91| 一进一出抽搐动态| 欧美中文日本在线观看视频| 久久午夜综合久久蜜桃| 精品卡一卡二卡四卡免费| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品综合久久99| 成人三级做爰电影| 老司机福利观看| 在线av久久热| 亚洲成国产人片在线观看| 精品久久蜜臀av无| 亚洲精品国产一区二区精华液| 一卡2卡三卡四卡精品乱码亚洲| √禁漫天堂资源中文www| 久久这里只有精品19| 精品日产1卡2卡| 精品久久久久久久久久免费视频| 一本综合久久免费| netflix在线观看网站| 成人18禁高潮啪啪吃奶动态图| 国产激情欧美一区二区| 美国免费a级毛片| 亚洲电影在线观看av| 美女大奶头视频| 日韩欧美一区二区三区在线观看| 国产av在哪里看| 久热这里只有精品99| 国产精品一区二区三区四区久久 | 欧美精品啪啪一区二区三区| 亚洲成人久久性| 国产主播在线观看一区二区| 亚洲av成人av| 久久久水蜜桃国产精品网| 久久久久久久午夜电影| 日韩视频一区二区在线观看| 久久人妻熟女aⅴ| 一级,二级,三级黄色视频| 国产亚洲av嫩草精品影院| 一级作爱视频免费观看| 性少妇av在线| 一级毛片高清免费大全| 人妻丰满熟妇av一区二区三区| 久久青草综合色| 好看av亚洲va欧美ⅴa在| 成人国产综合亚洲| 黑人巨大精品欧美一区二区mp4| 在线观看www视频免费| 国产精品久久久久久亚洲av鲁大| 日本免费一区二区三区高清不卡 | av网站免费在线观看视频| 国产欧美日韩综合在线一区二区| 国产av一区在线观看免费| 欧美一级毛片孕妇| 日本三级黄在线观看| 精品午夜福利视频在线观看一区| xxx96com| 免费无遮挡裸体视频| 亚洲伊人色综图| 色综合亚洲欧美另类图片| 女生性感内裤真人,穿戴方法视频| 欧美激情高清一区二区三区| 男人操女人黄网站| 亚洲avbb在线观看| 精品国产乱子伦一区二区三区| 啦啦啦韩国在线观看视频| 国产精品野战在线观看| 国产精品免费视频内射| 波多野结衣av一区二区av| 久久精品aⅴ一区二区三区四区| 久久精品国产清高在天天线| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利影视在线免费观看| 欧美成人午夜精品| 免费看a级黄色片| 精品乱码久久久久久99久播| 嫩草影院精品99| 国产色视频综合| 无人区码免费观看不卡| 校园春色视频在线观看| 欧美乱码精品一区二区三区| 九色亚洲精品在线播放| 亚洲精品中文字幕在线视频| 91成人精品电影| 宅男免费午夜| 免费高清在线观看日韩| 最近最新免费中文字幕在线| 一级作爱视频免费观看| 中出人妻视频一区二区| 9色porny在线观看| 咕卡用的链子| 在线观看免费视频日本深夜| 黑人巨大精品欧美一区二区蜜桃| 一区福利在线观看| 亚洲中文av在线| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区| 久久人人爽av亚洲精品天堂| av电影中文网址| 夜夜看夜夜爽夜夜摸| 日本五十路高清| 久久精品国产清高在天天线| 俄罗斯特黄特色一大片| 午夜福利在线观看吧| 国产欧美日韩综合在线一区二区| 多毛熟女@视频| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 一进一出好大好爽视频| 国产午夜精品久久久久久| 一级片免费观看大全| 精品无人区乱码1区二区| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 两个人免费观看高清视频| 老汉色av国产亚洲站长工具| 狠狠狠狠99中文字幕| 久久这里只有精品19| 国产aⅴ精品一区二区三区波| 国产精品一区二区精品视频观看| 日韩欧美国产一区二区入口| 日韩三级视频一区二区三区| 波多野结衣一区麻豆| 午夜免费鲁丝| 激情视频va一区二区三区| 99国产极品粉嫩在线观看| 中文字幕人成人乱码亚洲影| 久久中文看片网| 大型av网站在线播放| 日韩一卡2卡3卡4卡2021年| 波多野结衣巨乳人妻| 午夜精品国产一区二区电影| 久久婷婷人人爽人人干人人爱 | 欧美日韩亚洲国产一区二区在线观看| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 叶爱在线成人免费视频播放| 18美女黄网站色大片免费观看| 亚洲成a人片在线一区二区| 淫妇啪啪啪对白视频| 岛国在线观看网站| 乱人伦中国视频| 深夜精品福利| 久久久久久久久久久久大奶| 18禁黄网站禁片午夜丰满| 91大片在线观看| 亚洲午夜精品一区,二区,三区| 亚洲精品在线观看二区| 亚洲成av片中文字幕在线观看| 高清黄色对白视频在线免费看| 精品一区二区三区四区五区乱码| 亚洲 欧美一区二区三区| 国产成+人综合+亚洲专区| 欧美中文综合在线视频| 亚洲精品国产色婷婷电影| 国产伦一二天堂av在线观看| 免费在线观看影片大全网站| 国产精品免费一区二区三区在线| 18禁美女被吸乳视频| 久久久久久亚洲精品国产蜜桃av| 超碰成人久久| 久久狼人影院| av超薄肉色丝袜交足视频| 成熟少妇高潮喷水视频| 免费在线观看日本一区| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 国产亚洲av嫩草精品影院| 久久国产精品人妻蜜桃| 亚洲五月色婷婷综合| 亚洲男人天堂网一区| 99香蕉大伊视频| 久久精品国产综合久久久| av中文乱码字幕在线| 免费高清视频大片| 18禁裸乳无遮挡免费网站照片 | 一二三四社区在线视频社区8| 免费看十八禁软件| 美女扒开内裤让男人捅视频| 国产免费男女视频| 成人三级黄色视频| 男人舔女人下体高潮全视频| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 一本综合久久免费| 日韩 欧美 亚洲 中文字幕| cao死你这个sao货| www.熟女人妻精品国产| 国产精品1区2区在线观看.| 欧美av亚洲av综合av国产av| 国内毛片毛片毛片毛片毛片| 久久久国产成人免费| 50天的宝宝边吃奶边哭怎么回事| 在线观看www视频免费| 久久久水蜜桃国产精品网| 久久香蕉激情| 可以在线观看毛片的网站| 国产欧美日韩一区二区三区在线| 亚洲av电影在线进入| www国产在线视频色| 变态另类成人亚洲欧美熟女 | 欧美人与性动交α欧美精品济南到| 人妻久久中文字幕网| 精品久久久久久久人妻蜜臀av | 在线永久观看黄色视频| tocl精华| 久久青草综合色| 一区二区三区激情视频| 久久中文看片网| 精品欧美国产一区二区三| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 亚洲狠狠婷婷综合久久图片| 欧美丝袜亚洲另类 | 久久中文字幕人妻熟女| 女警被强在线播放| 高潮久久久久久久久久久不卡| 亚洲精品国产区一区二| 在线永久观看黄色视频| 久久精品成人免费网站| 伦理电影免费视频| 亚洲五月色婷婷综合| 久久天堂一区二区三区四区| 丝袜人妻中文字幕| 久久热在线av| 国产一级毛片七仙女欲春2 | 在线永久观看黄色视频| 丝袜人妻中文字幕| 9色porny在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产午夜精品久久久久久| 18禁黄网站禁片午夜丰满| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 亚洲九九香蕉| 99久久综合精品五月天人人| 9热在线视频观看99| 中文字幕人成人乱码亚洲影| 电影成人av| 欧美大码av| 久久国产精品影院| 亚洲精品粉嫩美女一区| 亚洲欧美激情综合另类| 午夜激情av网站| 国产成年人精品一区二区| 久久久精品国产亚洲av高清涩受| 久久久久久久久中文| 最好的美女福利视频网| 51午夜福利影视在线观看| 成人三级做爰电影| 丝袜在线中文字幕| 久久人妻熟女aⅴ| 精品久久久久久久久久免费视频| 亚洲av成人不卡在线观看播放网| 久久久久久大精品| 日本vs欧美在线观看视频| www日本在线高清视频| 午夜免费观看网址| 好男人在线观看高清免费视频 | av天堂久久9| 精品人妻1区二区| 日韩高清综合在线| 在线观看舔阴道视频| av视频免费观看在线观看| 91国产中文字幕| 精品第一国产精品| 女人被躁到高潮嗷嗷叫费观| 天天添夜夜摸| 精品久久久久久成人av| 亚洲全国av大片| 亚洲精华国产精华精| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 熟妇人妻久久中文字幕3abv| 国产私拍福利视频在线观看| 可以在线观看的亚洲视频| 99在线人妻在线中文字幕| 免费在线观看黄色视频的| 激情在线观看视频在线高清| 88av欧美| 精品国产一区二区久久| 久久精品亚洲熟妇少妇任你| 久久婷婷人人爽人人干人人爱 | 少妇熟女aⅴ在线视频| 亚洲视频免费观看视频| 久久久精品国产亚洲av高清涩受| 女性被躁到高潮视频| 99热只有精品国产| 很黄的视频免费| 午夜激情av网站| 国产欧美日韩一区二区三| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品一区av在线观看| 一个人观看的视频www高清免费观看 | 国产主播在线观看一区二区| 如日韩欧美国产精品一区二区三区| netflix在线观看网站| 国产在线观看jvid| 91国产中文字幕| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 18禁黄网站禁片午夜丰满| 岛国在线观看网站| 国产午夜精品久久久久久| 欧美另类亚洲清纯唯美| 亚洲全国av大片| 一本久久中文字幕| 无限看片的www在线观看| 亚洲熟妇熟女久久| 国产精品永久免费网站| 国产三级在线视频| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 久久精品国产亚洲av香蕉五月| 午夜老司机福利片| 一级黄色大片毛片| 欧美日韩乱码在线| 窝窝影院91人妻| 亚洲成人国产一区在线观看| 色综合欧美亚洲国产小说| 久久人人97超碰香蕉20202| 18美女黄网站色大片免费观看| 午夜日韩欧美国产| 深夜精品福利| 欧美国产日韩亚洲一区| 在线视频色国产色| 美女 人体艺术 gogo| 亚洲精品中文字幕在线视频| 亚洲国产欧美一区二区综合| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 久久精品国产99精品国产亚洲性色 | 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 午夜福利成人在线免费观看| 此物有八面人人有两片| 在线观看午夜福利视频| 国产熟女xx| www.999成人在线观看| 多毛熟女@视频| 无遮挡黄片免费观看| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| 国产成人免费无遮挡视频| 国产精品,欧美在线| 亚洲欧美精品综合久久99| 自线自在国产av| 日韩大码丰满熟妇| 好看av亚洲va欧美ⅴa在| 在线天堂中文资源库| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 淫秽高清视频在线观看| 亚洲情色 制服丝袜| av在线播放免费不卡| 国产精品秋霞免费鲁丝片| 亚洲电影在线观看av| cao死你这个sao货| 9191精品国产免费久久| 亚洲久久久国产精品| 国产成人啪精品午夜网站| 免费看a级黄色片| 久久香蕉激情| 黄网站色视频无遮挡免费观看| а√天堂www在线а√下载| 看黄色毛片网站| 亚洲成av片中文字幕在线观看| 国产成人啪精品午夜网站| 久久久国产欧美日韩av| 午夜精品久久久久久毛片777| 亚洲五月色婷婷综合| 满18在线观看网站| 精品国产国语对白av| 亚洲精品美女久久av网站| 亚洲欧洲精品一区二区精品久久久| 亚洲国产毛片av蜜桃av| 精品国产一区二区久久| 悠悠久久av| 国产亚洲av嫩草精品影院| 亚洲欧美精品综合一区二区三区| 少妇裸体淫交视频免费看高清 | 午夜日韩欧美国产| 久久精品国产亚洲av香蕉五月| 女警被强在线播放| 久热爱精品视频在线9| 香蕉丝袜av| 一区二区三区国产精品乱码| 18禁国产床啪视频网站| 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址| 黄色视频,在线免费观看| 久久人妻av系列| 亚洲欧美日韩无卡精品| 欧美日韩福利视频一区二区| 久久国产精品影院| 国产成人精品久久二区二区91| 午夜日韩欧美国产| 88av欧美| 精品久久久久久成人av| 91字幕亚洲| 久久久久九九精品影院| 他把我摸到了高潮在线观看| 黄色片一级片一级黄色片| 久热爱精品视频在线9| 制服丝袜大香蕉在线| 日韩大尺度精品在线看网址 | 久久久久久久精品吃奶| 欧美绝顶高潮抽搐喷水| 91成年电影在线观看| 国产激情欧美一区二区| 美女高潮喷水抽搐中文字幕| 成人三级做爰电影| 好男人电影高清在线观看| 午夜精品在线福利| 久久国产精品影院| 久久中文字幕一级| 一级毛片高清免费大全| 99精品欧美一区二区三区四区| 黄色丝袜av网址大全| av在线播放免费不卡| 欧美一级毛片孕妇| 日本欧美视频一区| 狂野欧美激情性xxxx| 国产精品久久久av美女十八| 国产精品秋霞免费鲁丝片| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 又黄又粗又硬又大视频| av在线天堂中文字幕| 精品久久久久久久人妻蜜臀av | 久久精品影院6| 亚洲国产中文字幕在线视频| 亚洲国产精品999在线| 亚洲成a人片在线一区二区| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 一级黄色大片毛片| av网站免费在线观看视频| 欧美国产精品va在线观看不卡| 成人亚洲精品一区在线观看| 欧美一级a爱片免费观看看 | 琪琪午夜伦伦电影理论片6080| 啦啦啦观看免费观看视频高清 | 老司机午夜十八禁免费视频| 悠悠久久av| 国产熟女午夜一区二区三区| 亚洲电影在线观看av| 欧美成狂野欧美在线观看| 99久久久亚洲精品蜜臀av| 操出白浆在线播放| 乱人伦中国视频| 国产亚洲欧美98| 久久国产精品男人的天堂亚洲|