• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatiotemporal characteristics of the sea level anomaly in the Kuroshio Extension using a self-organizing map

    2016-11-23 05:57:04MAFngDIAOYiNndLUODeHi
    關鍵詞:高度計單支急流

    MA Fng, DIAO Yi-Nnd LUO De-Hi

    aCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China;bKey Laboratory of Regional Climate-Environment for Temperate East Asia Key Laboratory of Regional Climate-Environment for Temperate East Asia, Chinese Academy of Sciences, Beijing, China

    Spatiotemporal characteristics of the sea level anomaly in the Kuroshio Extension using a self-organizing map

    MA Fanga,b, DIAO Yi-Naaand LUO De-Haib

    aCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China;bKey Laboratory of Regional Climate-Environment for Temperate East Asia Key Laboratory of Regional Climate-Environment for Temperate East Asia, Chinese Academy of Sciences, Beijing, China

    Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2, SOM3, and SOM4) are extracted, and the corresponding time series are used to characterize the variation of the sea level anomaly. Except in some individual months, SOM1 and SOM2 with single-branch jet structures appear alternately during the periods 1993—1998 and 2002—2011. However, during 1999—2001 and 2012—2014, SOM3 and SOM4 with double-branch jet structures are dominant. The sea level anomalies exhibit interannual variations, while the KE stream demonstrates decadal variation. For SOM1, the change in the KE path is less evident, although the KE jet is strong and narrow. For SOM2, the KE jet is weakened and widened and its jet axis moves towards the southwest. Compared with the SOM3, for SOM4 the trough and ridge in the upstream KE region are deeper in the northeast—southwest direction, and accompanied by a jet weakening and splitting. This study shows that SOM analysis is a useful approach for characterizing KE variability.

    ARTICLE HISTORY

    Revised 25 May 2016

    Accepted 2 June 2016

    Sea level anomaly; selforganizing map analysis; selforganizing map patterns; jet variability

    利用1993年1月至2014年12月的衛(wèi)星高度計海表面高度(SSH)數(shù)據(jù),對黑潮延伸體(KE)區(qū)域進行了自組織映射(SOM)分析。在研究中,提取出了4個空間模態(tài)(SOM1,SOM2,SOM3,和SOM4)及其相應的時間序列來描述海面異常的變化特征。除去個別月份,1993—98和2002—11年主要受SOM1和SOM2控制,并伴隨著KE急流的單支結構。在1999—2001和2012—14年,SOM3和SOM4交替出現(xiàn),伴隨著KE急流的雙支結構。在KE區(qū)域,海面異常存在明顯的年際變化,而KE急流則呈現(xiàn)為年代際變化。SOM1中KE路徑變化不明顯,KE急流變窄加強;而在SOM2中KE急流變寬減弱,且西南向偏移。與SOM3相比,SOM4中KE上游區(qū)域的槽脊沿西南-東北向加深,急流減弱分支。該研究表明,SOM分析能夠有效地應用于KE區(qū)域變化特征的研究。

    1. Introduction

    In recent times, sea level anomalies (SLAs) have become a global focus. Many studies have indicated that sea level variations possess regional features, i.e. signifcant deviation from the global mean signal can be detected (Anny and William 2010; Stammer et al. 2013). In the North Pacifc Ocean, the Kuroshio Extension (KE) has been regarded as a relatively intense region of sea level variation, being rich in large-amplitude meanders and pinched-of eddies (Aoki and Imawaki 1996; Ducet, Traon, and Reverdin 2000). It is an eastward fowing extension of a wind-driven western boundary current (i.e. the Kuroshio) after leaving the coast of Japan. Recent interest in observed interannual-to-decadal KE jet variations (Taguchi et al. 2010) and the air—sea interaction over KE region (Kelly et al. 2010) suggests the need for a better understanding of the temporal and spatial characteristics of SLAs in this region.

    To clarify the variability of the KE system, and its dynamical cause, numerous observational studies have been performed. Observations indicate that the KE system varies over a wide range of time scales. Based on SSH variability using satellite altimeter data, it can be characterized by intense eddy variability from weeks to months (Ebuchi and Hanawa 2000), and signifcant low-frequency variability from years to decades (Luo, Feng, and Wu 2016; Pierini and Dijkstra 2009; Qiu and Chen 2005; Sasaki, Minobe,and Schneider 2013). In recent years, a variety of statistical techniques have been used to capture the dominant patterns of variations in the KE region; for example, the (linear)EOF and CEOF (complex EOF) methods (Tatebe and Yasuda 2001; Tracey et al. 2012) However, due to the strong nonlinear processes involved, the variability of the KE system is highly complicated. Hence, an efective nonlinear methodis needed to extract the key features and characteristic patterns of the KE variability.

    Self-organizing map (SOM) analysis is an unsupervised neural network based on competitive learning,and appears to be an efective clustering technique for feature extraction (Liu and Weisberg 2011). Since being introduced to the oceanography community(Richardson, Risien, and Shillington 2003), SOM analysis has attracted wide attention amongst physical oceanographers. A practical way to evaluate the feature extraction performance of SOM analysis has been proposed and demonstrated by Liu, Weisberg, and Mooers(2006), using artifcial time series data comprised of known patterns. On the other hand, comparison of EOF and SOM analysis shows the SOM units (i.e. patterns) to be more accurate and intuitive than the leading mode EOF patterns (e.g. Liu and Weisberg 2007). The asymmetric features can be extracted by (nonlinear) SOM analysis relative to (linear) EOF analysis (Liu and Weisberg 2007). A test using idealized North Atlantic SLP felds also indicated SOM analysis to be more robust than PCA in extracting predefned patterns of variability (Reusch,Hewitson, and Alley 2005).

    The present study uses the SOM nonlinear clustering method to analyze the spatial patterns of the KE system and their temporal characteristics, based on merged satellite altimeter SSH data. Following this introduction, the data and analysis method are described in Section 2. The main results with respect to the SOM-determined spatiotemporal variations of SLAs are presented in Section 3. Section 4 summarizes the study's key fndings.

    2. Data and methodology

    This section briefy describes the observational data-set and statistical method used to extract the SLA characteristics of the KE system.

    2.1. Data

    We use the worldwide absolute dynamic topography (i.e. SSH) data-set provided by SSALTO/DUACS delayed-time products from the AVISO data center (http://www.aviso. altimetry.fr/en/home.html; DUACS: Data Unifcation and Altimeter Combination System). This up-to-date data series merges whole satellite altimeter missions (e.g. TOPEX/Poseidon, ERS-1/2, Geosat, and Jason-1/2) available after October 1992 in order to provide a homogeneous,inter-calibrated, and highly accurate long-term time series of altimeter data. The data we use in this study are the daily data with a 0.25° × 0.25° spatial resolution, from January 1993 to December 2014, which we then further process into monthly means.

    The SLA is defned as a deviation of the monthly SSH from its climatological mean (for 1993—2014). Note that the initial SLA data are processed to remove the linear trend and seasonal variations. After removing the best straightline ft, we average the removal-trend data over the same month to obtain the climatological monthly data. We then remove the climatological monthly mean to obtain the fnal analysis data.

    Assuming that the KE jet is quasi-geostrophically balanced, we obtain the sea surface velocity feld ug(x, y, t)from the SSH data h(x,y,t). The function is expressed as

    where f is the Coriolis parameter (f(y) = 2ωsin y, in which ω is the rotation rate of the Earth, and y is the latitude), and g is the gravitational constant.

    2.2. SOM analysis

    SOM analysis is a dimension-reducing and visualization technique used to map high-dimensional data to a lowdimensional feld. It performs a nonlinear projection from sample vectors to a set of SOM units, for feature extraction and clustering, and each unit has a weight vector (Liu,Weisberg, and Mooers 2006).

    The neural network is composed of an input and output layer. The input layer corresponds to the sample vectors

    where n is the sample number and s is the sample size. The output layer is composed of the weight vector array with m being the number of SOM units. The size of the weight vectorwjis equal to the sample size. For the sample vectorxi, the weight vector wj(j=1,2,...,m)showing the minimum Euclidian distance ciis selected as the ‘winner'(or best matching unit, BMU), which is most similar to the sample vectorxi. This function is expressed as

    Furthermore, the training process may update the winner weight vectors by a certain competitive learning rule. This learning rule can be shown aswhere t denotes the current training iteration, xirepresents the input sample vector, α(t) represents a time-decreasing learning rate, and μ(t) is a spatiotemporal neighborhood function, which connects the weight vector with its adjacent weight vector. The radius of the neighborhood may decrease during the training process.

    Typically, two evaluation criteria are used for the quality of the SOM: the mean quantization error (QE) and topographic error (TE). QE is the average distance between each sample vector and its BMU, which be used to measure the map resolution. TE is the proportion of all sample vectors for which frst and second BMUs are not adjacent units,which can be used to evaluate the topology preservation. The minimum QE indicates the most accurate representation of the input data, while the minimum TE indicates the best SOM pattern organization such that adjacent to a BMU in the map lattice is the second BMU (Liu, Weisberg,and Mooers 2006).

    Despite its wide range of applications as a tool for feature extraction and clustering, in SOM analysis the choice of parameters remains a challenge, because diferent parameter choices may result in diferent SOM units. Hence, sensitivity studies have been performed to ascertain the efects of tunable SOM parameters (Liu, Weisberg, and Mooers 2006). In this paper, we choose suitable parameter settings according to the results of their study, such as a rectangular lattice for small map sizes, a ‘sheet' map shape, linearly initialized weights, and an ‘ep' neighborhood function with initial and fnal neighborhood radii of 1 and 1. On the other hand, we also compare the results based on diferent map sizes (2 × 2, 2 × 3, and 3 × 4). The results show that the larger map size results in smaller QE and larger TE. In addition, we fnd that most of the SOM units obtained using the larger map size can be further classifed into three types,which are similar to the units based on the 2 × 2 map size. Moreover, most studies focus on the low-frequency variations, such as the decadal modulation between two states(e.g. Qiu and Chen 2010). Thus, the smaller map size of 2 × 2 is further used. Finally, the batch training is performed over 50 iterations, so that the fnal QE and TE are stable.

    3. Results

    To investigate the characteristics of the SLA in the KE region from January 1993 to December 2014, the area covering (29.875—40.125°N, 139.875—160.125°E) is chosen to perform the SOM analysis. Here, the main focus is on the low-frequency variations.

    3.1. Climatic characteristics of the SLA

    Figure 1.(a) Climatological mean sea level felds from January 1993 to December 2014, based on the AVISO gridded data-set. Black contours denote the mean SSH (units: m), with a contour interval of 0.1 m. Color shading denotes the meridional SSH gradient. The path of the KE jet, defned by the 100-cm contour,is shown in bold. (b) Standard deviation (units: m) of the monthly mean SSH signals for the period January 1993 to December 2014. (c) Time series of the monthly SLA data (units: m) averaged over the region (30—40°N, 140—160°E). The red line denotes the 13-month moving average.

    In general, the path (or axis) of a quasi-geostrophic current is considered as the location of its maximum meridional surface height gradient?h/?y, as well as its maximum zonal surface velocity. From the long-term mean SSH feld(Figure 1(a); equally applicable to the monthly data), the 100-cm contour is consistently located at, or near, the maximum height gradient, and thus may be a good indicator of the KE jet path. Hence, we choose the 100-cm contour to represent the KE path in the present study.

    As shown in Figure 1(a), in the upstream KE region (32—38°N, 141—154°), the KE path is found nearly zonally in the latitude band 34—36°N, and characterized by the presence of quasi-stationary meanders with two ridges at 144°E and 149°E. Meanwhile, the whole KE region presents a large amplitude of the SSH anomaly, particularly the upstream region (Figure 1(b)). Secondly, as can be seen from the timeseries of the SLA in Figure 1(c), for a 13-month moving average, the sea level fuctuation shows signifcant interannual modulation, with positive SLAs during 1993—1994,1999—2004, and 2010—2012, and negative anomalies during 1996—1998 and 2006—2009.

    On the other hand, previous studies have also detected a complex mesoscale variability (i.e. mesoscale cyclonic/ anticyclonic SLAs), which causes the KE system to undergo a clearly defned decadal modulation through eddy—mean fow interaction (Qiu and Chen 2010). Thus, it is meaningful to obtain the main spatial structures of SLAs, as well as their decadal evolution.

    3.2. Characteristic patterns

    After performing the SOM analysis, we are able to obtain four spatial classifcation patterns of SLA (Figure 2), where each pattern represents a characteristic structure. The occurrence frequency of each pattern is also marked on each map. Note that the KE paths (purple lines in Figure 2)and sea surface velocities (Figure 3) are both composites based on the time series of the BMU (detailed in Section 3.3). Figure 2 shows that SOM1, which has an occurrence frequency of 33%, exhibits a wave train structure shown as ‘positive (34°N, 145°E)—negative (36°N, 147°E)—positive(35°N, 150°E)' anomalies in the upstream KE area. Two positive anomalies are located in the south of the ridge, and a negative one between positive anomalies located in the north of the trough. It reveals an anticyclonic forcing in the ridge and a cyclonic forcing in the trough, of the KE's quasi-stationary meanders. For this structure, the KE path is similar to the mean state, and has a large SSH gradient along the KE path. These can all lead to a narrow and strong KE jet that maintains a stable and weakly meandering state (Figure 3).

    Figure 2.Composites for the SOM patterns based on the BMU time series.

    SOM2, with an occurrence frequency of 28%, also presents a wave train structure, shown as ‘negative (35°N,145°E)—positive (37°N, 148°E)—negative (35°N, 151°E)' anomalies. Superimposed on the mean KE path, one can see that this pattern causes the quasi-stationary meanders to move to the southwest, and the trough and ridge tend to deepen slightly. The KE stream of this pattern in Figure 3 maintains a single path with a wider meridional amplitude (i.e. larger meridional width) and weaker fow velocity, which is consistent with the weakening of the southern recirculation gyre.

    SOM3 has an occurrence frequency of 24%. The spatial pattern exhibits two tripole structures, shown as ‘negative—positive—negative' anomalies. The frst one is north—south oriented and located near 144°E, and the second is northeast—southwest oriented and located near the downstream of the eastern ridge. Positive anomalies of these two structures are distributed along the KE path. These all cause the path move to the northeast. Meanwhile, as shown by the composite geostrophic velocity in Figure 3,the western tripole structure causes a strong meandering fow near 36°N and a slight branch in the region (32—33°N,142—146°E).

    SOM4, which has an occurrence frequency of 15%, is characterized by a strong north—south dipole structure located at 144°E, with a positive value in the north and a negative value in the south. Superimposed on the mean KE path, this dipole causes ridge deepening in the north, and then deepening of the adjacent trough in the south. The path of this pattern is unstable and longer. On the other hand, the surface fow coincident with SOM4 (Figure 3),has a strong double-branch jet structure. Conversely, compared with SOM3, the fow of SOM4 is weak and exhibits a strong splitting. In fact, this dipole structure is similar to blocking in the atmosphere. Previous studies have indicated that the blocking can divide the fow into double branches. Similarly, SOM4 may represent a typical double-branch structure.

    Figure 3.Maps of the sea surface fow for the SOM patterns in Figure 2.

    In addition, as is well known, the KE system exhibits clearly defned decadal modulation. Qiu et al. (2014)constructed a time series of the SSH anomalies averaged within (31—36°N, 140—165°E), to indicate this modulation(Qiu et al. 2014; Figure 4). Here, we defne a dynamic state with SSH anomalies equal to or greater (less) than +5 (-5)cm as a stable (unstable) state. There are six (2002, 2003,2004, 2010, 2011, and 2012) stable and six (1995, 1996,1997, 2006, 2007, and 2008) unstable states based on the above classifcation. In Figure 4, the composite SLA feld for the stable (unstable) state is similar to the spatial pattern of SOM1 (SOM2). On the other hand, the occurrence of SOM1 (SOM2) is roughly consistent with the stable (unstable) state (Figure 5; detailed in Section 3.3). Therefore, we consider that the SOM analysis can capture similar patterns for the two states of the KE system.

    Figure 4.Composites for two dynamic states of the KE system based on SSH anomaly signals.

    To compare, we also perform an EOF analysis of the same SLA data. The percentages of the variance of each EOF mode are 12%, 8%, 6%, and 5%, respectively, and the cumulative percentage is just 31%. Firstly, the results shown in Figure 6 indicate that the EOF1 spatial pattern is similar to SOM1, and EOF2 is similar to SOM4. The SOM analysis can also capture the main patterns extracted by the EOF method. Secondly, for the stable and unstable states of the KE system, the two composites of SLA tend to present a nonlinear relationship (i.e. SOM1 and SOM2). The position and intensity of the SLA extreme centers are asymmetric under diferent states, which are symmetric in diferent phases of EOF1. Thirdly, it is identifed by the SOM analysis, and not by the EOF method, that the nonlinear patterns (i.e. SOM2 and SOM3) of SLA are associated withthe noticeable south—north movement of the KE path. This movement has also been discussed in previous studies(Qiu and Chen 2005, 2010). Hence, the main EOF modes are not better at refecting the long-term SLA changes;SOM analysis is more accurate and intuitive.

    Figure 5.Time series of the BMU from January 1993 to December 2014.

    Figure 6.Spatial patterns of the SLA felds (color shading; units: m) based on EOF analysis.

    3.3. Time series of the BMU

    For each sample of input data, a BMU is defned by the unit that has the smallest weighted distance from the sample data. The BMU time series can refect the evolution of these patterns. In this study, it is useful to examine the temporal changes of the SLA spatial distribution through the use of the BMU time series.

    To examine the interannual variations of the SLA, a map of the time series is constructed, as shown in Figure 5. From this fgure, it is apparent that a dominant unit can be identifed for most years. SOM1 mainly happens in 1993—1994,2002—2004, and 2011. SOM2 mainly appears during the years of 1996, 1998, and 2006—2009. In addition, SOM3 emerges in 2000, 2012, and 2014, while SOM4 is apparent in 1999, 2001, and 2013.

    On the other hand, combined with the corresponding surface velocity of SOM patterns shown in Figure 3, one can see that the four SOM patterns have a very close relationship with the KE stream. In the upstream KE region, SOM1 and SOM2 represent a single-branch jet structure as the positive phase of the Kuroshio Extension dipole (KED) mode does (Luo, Feng, and Wu 2016), while SOM3 and SOM4 represent a double-branch jet structure. Thus, the variation of the KE jet structure has a clear decadal period, which can also be seen from the yearly geostrophic velocity felds.

    4. Discussion and conclusions

    In this paper, SOM analysis is used to extract the characteristic patterns of the SLA in the KE region from January 1993 to December 2014, with a particular focus on decadal variation. The key fndings of the study can be summarized as follows:

    The SOM method extracts four characteristic spatial patterns of the SLA, each with its own evolution. SOM1 is found to mainly appear in 1993—1994, 2002—2004,and 2011, with a wave train structure shown as ‘positive (34°N, 145°E)—negative (36°N, 147°E)—positive (35°N,150°E)' anomalies alternately located in the trough and ridges, of the upstream KE's quasi-stationary meanders. This structure remains in a stable state, and with a strengthened (narrower and faster) single-branch jet. SOM2 mainly appears in the years 1996, 1998, and 2006—2009. It too represents a zonal wave train structure, presenting an alternate distribution with ‘negative(35°N, 145°E)—positive (37°N, 148°E)—negative (35°N,151°E)' anomalies. This wave train causes the path to move to the southwest, and makes the single-branch jet unstable through widening and weakening. In addition, SOM3 happens in 2000, 2012, and 2014. It exhibits two tripole structures, leading the path to shift to the northeast. The meridional ‘negative—positive—negative' tripole structure, which is located at 144°E, causes a stronger jet and a relatively weaker branch in the south. SOM4 appears in the years 1999, 2001, and 2013. It is characterized by a dipole structure, with positive values in the north and negative values in the south, located at 144°E, which makes the trough and ridge deepen. The path of this pattern may be unstable and longer. Similar to SOM3, there is a weak branch in the south too. The position of the branch in SOM4 is farther north and stronger than that in SOM3. It is the typical pattern of a double-branch structure.

    The spatial patterns of SOM1 and SOM2 are mainly found in the years 1993—1998 and 2002—2011, leading to a single zonal fow. However, the spatial patterns of SOM3 and SOM4 are found to be dominant in the years 1999—2001 and 2012—2014, and are accompanied by a double-branch jet. The SLAs exhibit interannual variation,while the jet structure of the upstream KE region shows decadal variation.

    Additionally, through comparison with EOF analysis,SOM analysis is found to be able to accurately characterize the SLA patterns, their evolution, and alternation between patterns, during the period 1993—2014. In short,when studying the KE region, SOM analysis is superior to EOF analysis.

    Finally, it is important to note that, although the characteristics of the SLA are classifed using the SOM method in this paper, the nonlinear dynamical mechanism of such a classifcation is not investigated. Further study on this topic is needed in future work.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was supported by the National Basic Research Program of China (973 Program) [grant number 2013CB956203].

    References

    Anny, C., and L. William. 2010. “Contemporary Sea Level Rise.”Annual Review of Marine Science 2: 145—173. doi:10.1146/ annurev-marine-120308-081105.

    Aoki, S., and S. Imawaki. 1996. “Eddy Activities of the Surface Layer in the Western North Pacifc Detected by Satellite Altimeter and Radiometer.” Journal of Oceanography 52 (4): 457—474. doi:10.1007/bf02239049.

    Ducet, N., P. Y. L. Traon, and G. Reverdin. 2000. “Global Highresolution Mapping of Ocean Circulation from TOPEX/ Poseidon and ERS-1 and -2.” Journal of Geophysical Research 105 (C8): 19477—19498. doi:10.1029/2000jc900063.

    Ebuchi, N., and K. Hanawa. 2000. “Mesoscale Eddies Observed by TOLEX-ADCP and TOPEX/POSEIDON Altimeter in the Kuroshio Recirculation Region South of Japan.” Journal of Oceanography 56 (1): 43—57. doi:10.1023/A:1011110507628. Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce,Y.-O. Kwon, and M. F. Cronin. 2010. “Western Boundary Currents and Frontal Air-Sea Interaction: Gulf Stream and Kuroshio Extension.” Journal of Climate 23 (21): 5644—5667. doi:10.1175/2010jcli3346.1.

    Liu, Y., and R. H. Weisberg. 2007. “Ocean Currents and Sea Surface Heights Estimated across the West Florida Shelf.” Journal of Physical Oceanography 37 (6): 1697—1713. doi:10.1175/ jpo3083.1.

    Liu, Y., and R. H. Weisberg. 2011. Self Organizing Maps - Applications and Novel Algorithm Design: A Review of Self-organizing Map Applications in Meteorology and Oceanography. Slavka Krautzeka 83/A 51000 Rijeka, Croatia: InTech.

    Liu, Y., R. H. Weisberg, and C. N. K. Mooers. 2006. “Performance Evaluation of the Self-Organizing Map for Feature Extraction.”Journal of Geophysical Research 111 (C05018): 1—14. doi:10.1029/2005jc003117.

    Luo, D., S. Feng and L. Wu. 2016. “The Eddy-Dipole Mode Interaction and the Decadal Variability of the Kuroshio Extension System.” Ocean Dynamics. doi:10.1007/s10236-016-0991-6.

    Pierini, S., and H. A. Dijkstra. 2009. “Low-frequency Variability of the Kuroshio Extension.” Nonlinear Processes in Geophysics 16(6): 665—675. doi:10.5194/npg-16-665-2009

    Qiu, B., and S. Chen. 2005. “Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales.” Journal of Physical Oceanography 35 (11): 2090—2103. doi:10.1175/jpo2807.1.

    Qiu, B., and S. Chen. 2010. “Eddy-mean Flow Interaction in the Decadally Modulating Kuroshio Extension System.” Deep Sea Research Part II: Topical Studies in Oceanography 57 (13—14): 1098—1110. doi:10.1016/j.dsr2.2008.11.036.

    Qiu, B., S. Chen, N. Schneider, and B. Taguchi. 2014. “A Coupled Decadal Prediction of the Dynamic State of the Kuroshio Extension System.” Journal of Climate 27 (4): 1751—1764. doi:10.1175/jcli-d-13-00318.1.

    Reusch, D. B., B. C. Hewitson, and R. B. Alley. 2005. “Towards Ice-Core-Based Synoptic Reconstructions of West Antarctic Climate with Artifcial Neural Networks.” International Journal of Climatology 25 (5): 581—610. doi:10.1002/joc.1143.

    Richardson, A. J., C. Risien, and F. A. Shillington. 2003. “Using Self-organizing Maps to Identify Patterns in Satellite Imagery.”Progress in Oceanography 59 (2): 223—239. doi:10.1016/j. pocean.2003.07.006.

    Sasaki, Y. N., S. Minobe, and N. Schneider. 2013. “Decadal Response of the Kuroshio Extension Jet to Rossby Waves: Observation and Thin-Jet Theory*.” Journal of Physical Oceanography 43 (2): 442—456. doi:10.1175/jpo-d-12-096.1.

    Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea. 2013.“Causes for Contemporary Regional Sea Level Changes.”Annual Review of Marine Science 5: 21—46. doi:10.1146/ annurev-marine-121211-172406.

    Taguchi, B., B. Qiu, M. Nonaka, H. Sasaki, S.-P. Xie, and N. Schneider. 2010. “Decadal Variability of the Kuroshio Extension: Mesoscale Eddies and Recirculations.” Ocean Dynamics 60 (3): 673—691. doi:10.1007/s10236-010-0295-1.

    Tatebe, H., and I. Yasuda. 2001. “Seasonal Axis Migration of the Upstream Kuroshio Extension Associated with Standing Oscillations.” Journal of Geophysical Research 106 (C8): 16685—16692. doi:10.1029/2000jc000467.

    Tracey, K. L., D. R. Watts, K. A. Donohue, and H. Ichikawa. 2012.“Propagation of Kuroshio Extension Meanders between 143° and 149°E.” Journal of Physical Oceanography 42 (4): 581—601. doi:10.1175/jpo-d-11-0138.1.

    海面異常; 自組織映射分析; 自組織映射模態(tài); 急流變化

    27 February 2016

    CONTACT LUO De-Hai ldh@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    高度計單支急流
    智海急流
    智海急流
    智海急流
    智海急流
    基于漂流浮標的南大洋衛(wèi)星高度計有效波高研究
    海洋通報(2021年3期)2021-08-14 02:20:46
    MIMU/GNSS/ODO/高度計/航姿儀組合導航微系統(tǒng)硬件設計
    航天控制(2020年5期)2020-03-29 02:10:36
    同化衛(wèi)星高度計觀測對CAS-ESM-C上層海洋溫度模擬的改進
    合成孔徑雷達高度計與傳統(tǒng)高度計精度比對分析與機載試驗驗證
    沁水盆地煤層氣單支水平井鉆完井技術探討與實踐
    中國煤層氣(2015年6期)2015-08-22 03:25:33
    雅麗潔極密?BB霜以“套盒產品”亮相美博會
    女友·家園(2015年5期)2015-06-01 10:17:25
    成年av动漫网址| 99久国产av精品| 久久久a久久爽久久v久久| 日日摸夜夜添夜夜添av毛片| 午夜福利网站1000一区二区三区| 又粗又硬又长又爽又黄的视频| 久久精品久久精品一区二区三区| 男人狂女人下面高潮的视频| 秋霞伦理黄片| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲三级黄色毛片| 性插视频无遮挡在线免费观看| av卡一久久| 中文字幕精品亚洲无线码一区| 国产色爽女视频免费观看| 黄色一级大片看看| 2021天堂中文幕一二区在线观| 国产国拍精品亚洲av在线观看| 久久午夜福利片| 亚洲一区高清亚洲精品| av在线亚洲专区| 成人毛片a级毛片在线播放| 亚洲av男天堂| 一级毛片我不卡| 亚洲av不卡在线观看| 伦精品一区二区三区| 大话2 男鬼变身卡| 久久精品影院6| 丰满少妇做爰视频| videos熟女内射| 99久久九九国产精品国产免费| ponron亚洲| 免费不卡的大黄色大毛片视频在线观看 | 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 麻豆成人午夜福利视频| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 舔av片在线| 51国产日韩欧美| 久久精品熟女亚洲av麻豆精品 | 久久热精品热| a级毛片免费高清观看在线播放| 国产老妇伦熟女老妇高清| 十八禁国产超污无遮挡网站| 两个人的视频大全免费| 国产av不卡久久| 一本一本综合久久| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 少妇人妻精品综合一区二区| 尾随美女入室| 国产av在哪里看| 舔av片在线| 国产精品一二三区在线看| kizo精华| 五月伊人婷婷丁香| 成人无遮挡网站| 久久精品国产亚洲av天美| 成年版毛片免费区| 久久久久久久久大av| 一区二区三区免费毛片| 天堂网av新在线| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 麻豆成人午夜福利视频| 尾随美女入室| www日本黄色视频网| 国产黄片视频在线免费观看| 午夜福利成人在线免费观看| 亚洲电影在线观看av| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 日韩一区二区视频免费看| 永久免费av网站大全| 中文精品一卡2卡3卡4更新| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 亚洲国产欧美人成| 一级av片app| 特级一级黄色大片| 日韩制服骚丝袜av| 好男人在线观看高清免费视频| 欧美97在线视频| 成人毛片60女人毛片免费| 国产一区二区在线av高清观看| 国产精品久久久久久精品电影小说 | 亚洲精品,欧美精品| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 一级黄色大片毛片| 有码 亚洲区| 国产成人aa在线观看| 久久久久久久久中文| 国产亚洲5aaaaa淫片| av在线天堂中文字幕| 干丝袜人妻中文字幕| 内射极品少妇av片p| 成人三级黄色视频| 久久午夜福利片| 99热这里只有是精品50| 久久99精品国语久久久| 久久99热这里只频精品6学生 | 日本与韩国留学比较| 青青草视频在线视频观看| 蜜桃亚洲精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 高清日韩中文字幕在线| 国产黄色视频一区二区在线观看 | 99久久无色码亚洲精品果冻| 久久久a久久爽久久v久久| 国产伦一二天堂av在线观看| 伦精品一区二区三区| 超碰av人人做人人爽久久| 日韩欧美三级三区| 女人十人毛片免费观看3o分钟| 亚洲四区av| 精品无人区乱码1区二区| 九九爱精品视频在线观看| 免费观看精品视频网站| 久久久久久久久久久免费av| 又粗又爽又猛毛片免费看| 亚洲美女视频黄频| 综合色av麻豆| 亚洲综合精品二区| 国产69精品久久久久777片| 国产大屁股一区二区在线视频| 久久久久免费精品人妻一区二区| 夜夜看夜夜爽夜夜摸| 久久国产乱子免费精品| 国产三级中文精品| 天堂中文最新版在线下载 | 三级经典国产精品| 精品酒店卫生间| 午夜福利在线观看免费完整高清在| 伦理电影大哥的女人| 特级一级黄色大片| 国产毛片a区久久久久| 久久精品91蜜桃| 高清视频免费观看一区二区 | 久久久久国产网址| 成人毛片a级毛片在线播放| 久久精品夜夜夜夜夜久久蜜豆| 精品免费久久久久久久清纯| 成人二区视频| 少妇熟女aⅴ在线视频| 久久久亚洲精品成人影院| 国产精品人妻久久久影院| 亚洲最大成人手机在线| 免费观看精品视频网站| 国产高潮美女av| 免费电影在线观看免费观看| 综合色av麻豆| 日韩欧美精品免费久久| 久久午夜福利片| 久热久热在线精品观看| 精品久久久久久久人妻蜜臀av| 黄色日韩在线| 亚洲精品成人久久久久久| 亚洲国产欧美在线一区| 欧美日本亚洲视频在线播放| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 国产亚洲最大av| 日韩亚洲欧美综合| 久久久久久久亚洲中文字幕| 色网站视频免费| av在线观看视频网站免费| 亚洲精品久久久久久婷婷小说 | 69av精品久久久久久| 午夜激情欧美在线| 大又大粗又爽又黄少妇毛片口| 国产精品.久久久| 只有这里有精品99| 长腿黑丝高跟| 91精品伊人久久大香线蕉| 久久精品夜色国产| 中文亚洲av片在线观看爽| 国语自产精品视频在线第100页| 亚洲自拍偷在线| 日本免费a在线| 国产大屁股一区二区在线视频| 亚洲精品乱码久久久久久按摩| 欧美zozozo另类| 久久久久久久亚洲中文字幕| 色噜噜av男人的天堂激情| 日韩亚洲欧美综合| 国产黄片美女视频| 日韩强制内射视频| 久久人妻av系列| 日韩av在线免费看完整版不卡| 丝袜美腿在线中文| 日韩欧美在线乱码| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 少妇高潮的动态图| 成人漫画全彩无遮挡| 尤物成人国产欧美一区二区三区| 深夜a级毛片| 午夜免费激情av| 97超碰精品成人国产| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| 黄色配什么色好看| 国产精品爽爽va在线观看网站| 欧美另类亚洲清纯唯美| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 中文字幕av在线有码专区| 久久精品夜夜夜夜夜久久蜜豆| 人妻少妇偷人精品九色| 精品国产一区二区三区久久久樱花 | 亚洲精品国产av成人精品| 国产亚洲精品av在线| 我的女老师完整版在线观看| 午夜精品国产一区二区电影 | 波多野结衣巨乳人妻| 草草在线视频免费看| 能在线免费观看的黄片| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 黄片wwwwww| 人妻少妇偷人精品九色| 久久精品91蜜桃| 日本爱情动作片www.在线观看| 亚洲在线观看片| 精品人妻视频免费看| 午夜老司机福利剧场| 欧美日韩国产亚洲二区| 色哟哟·www| 国产精品永久免费网站| 亚洲欧美精品专区久久| 亚洲最大成人手机在线| 亚洲成人av在线免费| 中文字幕熟女人妻在线| 免费观看精品视频网站| 搡女人真爽免费视频火全软件| 国产美女午夜福利| 国产黄片美女视频| 一夜夜www| 亚洲丝袜综合中文字幕| 日韩大片免费观看网站 | 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 人人妻人人看人人澡| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 国产午夜福利久久久久久| 欧美激情在线99| 人人妻人人看人人澡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看 | 国产精品久久久久久av不卡| 国产淫语在线视频| 在线免费观看的www视频| 91精品国产九色| 高清午夜精品一区二区三区| 嫩草影院新地址| 美女被艹到高潮喷水动态| 国产成人91sexporn| 青春草国产在线视频| 国产午夜福利久久久久久| 日日摸夜夜添夜夜爱| kizo精华| 九九热线精品视视频播放| 真实男女啪啪啪动态图| 国产成人免费观看mmmm| 国产精品久久电影中文字幕| 久久国产乱子免费精品| 国产69精品久久久久777片| 免费观看在线日韩| 99久久无色码亚洲精品果冻| 黄色配什么色好看| 久久精品久久精品一区二区三区| 狂野欧美激情性xxxx在线观看| 美女高潮的动态| 欧美不卡视频在线免费观看| 久久久精品欧美日韩精品| 中文字幕久久专区| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 国产av在哪里看| 国产精品久久久久久精品电影小说 | 我要看日韩黄色一级片| 联通29元200g的流量卡| 欧美精品国产亚洲| 国产大屁股一区二区在线视频| 黄片wwwwww| 国产乱来视频区| 三级国产精品欧美在线观看| 男插女下体视频免费在线播放| 白带黄色成豆腐渣| 国产免费视频播放在线视频 | 免费观看a级毛片全部| 久久久国产成人免费| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 亚洲国产精品合色在线| 美女xxoo啪啪120秒动态图| 联通29元200g的流量卡| 高清av免费在线| 午夜久久久久精精品| www日本黄色视频网| 桃色一区二区三区在线观看| 自拍偷自拍亚洲精品老妇| 亚洲国产精品成人久久小说| 日本黄大片高清| 一区二区三区免费毛片| 一级黄色大片毛片| 97热精品久久久久久| 久久久久国产网址| 一个人免费在线观看电影| 亚洲成av人片在线播放无| 国产精品三级大全| av专区在线播放| 亚洲国产欧美在线一区| 夜夜爽夜夜爽视频| 一边亲一边摸免费视频| 欧美潮喷喷水| 97在线视频观看| 啦啦啦观看免费观看视频高清| 美女黄网站色视频| 日本一本二区三区精品| 爱豆传媒免费全集在线观看| 在线播放国产精品三级| 精品久久久久久电影网 | 久久久久久久久久黄片| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲在线观看片| 日韩大片免费观看网站 | 欧美日韩精品成人综合77777| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 青春草国产在线视频| 亚洲av中文av极速乱| 精品人妻熟女av久视频| 亚洲精品亚洲一区二区| 三级国产精品片| 久久精品人妻少妇| 国产麻豆成人av免费视频| 国产精品综合久久久久久久免费| 一本一本综合久久| 欧美精品一区二区大全| 国产麻豆成人av免费视频| 久久久久久九九精品二区国产| 亚洲欧美日韩高清专用| 国产爱豆传媒在线观看| 1024手机看黄色片| 日本免费一区二区三区高清不卡| 亚洲成人久久爱视频| 亚洲av日韩在线播放| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 亚洲av免费高清在线观看| 波野结衣二区三区在线| 床上黄色一级片| 久久久久九九精品影院| www.色视频.com| 亚洲av免费在线观看| 久热久热在线精品观看| 国产精品一区二区性色av| a级毛片免费高清观看在线播放| 三级毛片av免费| 欧美日韩国产亚洲二区| 日韩欧美三级三区| 婷婷色av中文字幕| 亚洲电影在线观看av| 午夜亚洲福利在线播放| 一级爰片在线观看| 国产三级在线视频| 毛片女人毛片| 国产精品99久久久久久久久| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 赤兔流量卡办理| 精品久久久久久电影网 | 高清午夜精品一区二区三区| 嫩草影院新地址| 亚洲成av人片在线播放无| 亚洲伊人久久精品综合 | 神马国产精品三级电影在线观看| 国产视频内射| 国产精品无大码| 嘟嘟电影网在线观看| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 久久久成人免费电影| 国产在线一区二区三区精 | 蜜桃亚洲精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 直男gayav资源| www.色视频.com| 真实男女啪啪啪动态图| 男女边吃奶边做爰视频| 在线播放无遮挡| 综合色丁香网| .国产精品久久| 午夜免费激情av| 三级国产精品欧美在线观看| 中文字幕精品亚洲无线码一区| 免费看a级黄色片| 免费看日本二区| 少妇丰满av| 欧美成人午夜免费资源| 免费电影在线观看免费观看| 亚洲丝袜综合中文字幕| 欧美性感艳星| www.av在线官网国产| 亚洲高清免费不卡视频| 亚洲av日韩在线播放| 日韩 亚洲 欧美在线| av在线观看视频网站免费| 91精品国产九色| 国产精品av视频在线免费观看| 亚洲国产精品国产精品| 爱豆传媒免费全集在线观看| 欧美变态另类bdsm刘玥| 成人三级黄色视频| 国产精品蜜桃在线观看| www.色视频.com| 国产成人精品一,二区| АⅤ资源中文在线天堂| kizo精华| 丝袜美腿在线中文| 亚洲第一区二区三区不卡| 麻豆成人午夜福利视频| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| 精华霜和精华液先用哪个| 色尼玛亚洲综合影院| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 一级二级三级毛片免费看| 国产精品国产高清国产av| 日韩欧美精品免费久久| 久久久久久九九精品二区国产| 三级国产精品片| 久久精品国产自在天天线| 久久人人爽人人片av| 只有这里有精品99| 亚洲精品乱码久久久v下载方式| 美女黄网站色视频| 久久久久久久久中文| 日本爱情动作片www.在线观看| 国产精品1区2区在线观看.| 亚洲av免费高清在线观看| 日韩av不卡免费在线播放| 又爽又黄无遮挡网站| 九九久久精品国产亚洲av麻豆| 丝袜喷水一区| 国产高清国产精品国产三级 | 欧美+日韩+精品| 91精品伊人久久大香线蕉| 亚洲第一区二区三区不卡| 51国产日韩欧美| 91av网一区二区| 又爽又黄a免费视频| 天堂√8在线中文| 尾随美女入室| 午夜福利在线观看吧| 1000部很黄的大片| 免费看av在线观看网站| 高清日韩中文字幕在线| 久久久久久久久中文| av视频在线观看入口| 你懂的网址亚洲精品在线观看 | www日本黄色视频网| 老师上课跳d突然被开到最大视频| 又粗又硬又长又爽又黄的视频| 日韩成人伦理影院| 好男人视频免费观看在线| 边亲边吃奶的免费视频| 免费看av在线观看网站| 色吧在线观看| 亚洲成av人片在线播放无| 色播亚洲综合网| 精品熟女少妇av免费看| 国产精品国产三级国产专区5o | 美女被艹到高潮喷水动态| 观看美女的网站| 老司机影院毛片| 久99久视频精品免费| av免费观看日本| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久av| 搞女人的毛片| 亚洲精品国产av成人精品| 亚洲av中文av极速乱| 精品99又大又爽又粗少妇毛片| 97超视频在线观看视频| 国产午夜精品论理片| 一边摸一边抽搐一进一小说| 男人舔奶头视频| 亚洲av电影不卡..在线观看| 高清av免费在线| 国产探花极品一区二区| 亚洲精品国产av成人精品| 亚洲精品久久久久久婷婷小说 | 亚洲精品日韩av片在线观看| 国产色爽女视频免费观看| 听说在线观看完整版免费高清| 久久久久久久久久久免费av| 久99久视频精品免费| 色噜噜av男人的天堂激情| 亚洲三级黄色毛片| 两个人视频免费观看高清| 大话2 男鬼变身卡| 国产v大片淫在线免费观看| 国产精品人妻久久久影院| 国产成人一区二区在线| 插阴视频在线观看视频| 日日啪夜夜撸| videos熟女内射| 嫩草影院精品99| 黄色日韩在线| 51国产日韩欧美| 草草在线视频免费看| 麻豆一二三区av精品| 国产成人a∨麻豆精品| 久久热精品热| 国产久久久一区二区三区| 精品久久久久久久久av| 免费无遮挡裸体视频| 国产淫片久久久久久久久| 亚洲精品日韩av片在线观看| 亚洲三级黄色毛片| 丝袜美腿在线中文| 日韩av不卡免费在线播放| 日本三级黄在线观看| 综合色av麻豆| 99视频精品全部免费 在线| 99热6这里只有精品| 亚洲美女视频黄频| 免费av观看视频| 欧美成人一区二区免费高清观看| 蜜臀久久99精品久久宅男| 国产大屁股一区二区在线视频| 欧美性感艳星| 寂寞人妻少妇视频99o| 亚洲欧美精品综合久久99| 九色成人免费人妻av| 女人久久www免费人成看片 | 免费播放大片免费观看视频在线观看 | 国产午夜福利久久久久久| 国产精品伦人一区二区| 国产国拍精品亚洲av在线观看| 黄色一级大片看看| 51国产日韩欧美| 美女国产视频在线观看| 91精品一卡2卡3卡4卡| 亚洲欧美清纯卡通| 91aial.com中文字幕在线观看| 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片| 丰满乱子伦码专区| 国产av码专区亚洲av| 色视频www国产| 国产亚洲91精品色在线| 免费无遮挡裸体视频| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 少妇熟女aⅴ在线视频| 亚洲成人久久爱视频| 色综合亚洲欧美另类图片| 亚洲性久久影院| 99在线视频只有这里精品首页| 国内揄拍国产精品人妻在线| 小蜜桃在线观看免费完整版高清| 性色avwww在线观看| 少妇人妻一区二区三区视频| 日韩视频在线欧美| 性插视频无遮挡在线免费观看| av在线观看视频网站免费| 亚洲在线观看片| 久久韩国三级中文字幕| 蜜臀久久99精品久久宅男| 国产日韩欧美在线精品| 岛国在线免费视频观看| 日韩精品青青久久久久久| 真实男女啪啪啪动态图| 岛国在线免费视频观看| 久久欧美精品欧美久久欧美| 日本一本二区三区精品| 卡戴珊不雅视频在线播放| 亚洲激情五月婷婷啪啪| 十八禁国产超污无遮挡网站| 欧美激情在线99| 汤姆久久久久久久影院中文字幕 | 国产伦在线观看视频一区| 亚洲国产色片| 美女国产视频在线观看| 免费看光身美女| 水蜜桃什么品种好| 我的女老师完整版在线观看| 看免费成人av毛片| 少妇熟女欧美另类| 国产高清视频在线观看网站| 国产黄片美女视频| 亚洲一区高清亚洲精品| 国产亚洲午夜精品一区二区久久 | 色综合色国产| 青春草国产在线视频| 国产av不卡久久| 欧美最新免费一区二区三区|