• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The impacts of different surface boundary conditions for sea surface salinity on simulation in an OGCM

    2016-11-23 05:57:03JINJingBoZENGQingCunLIUHiLongnWULin
    關(guān)鍵詞:鹽量海表大西洋

    JIN Jing-Bo, ZENG Qing-Cun, LIU Hi-Longn WU Lin

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    dState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    The impacts of different surface boundary conditions for sea surface salinity on simulation in an OGCM

    JIN Jiang-Boa,b, ZENG Qing-Cuna, LIU Hai-Longcand WU Lind

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    dState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    An OGCM, LICOM2.0, was used to investigate the efects of diferent surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Exp1, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and diferent surface boundary conditions for SSS. A new surface salinity boundary condition that consists of both virtual and real salt fuxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt fux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.

    ARTICLE HISTORY

    Revised 24 May 2016

    Accepted 26 May 2016

    Surface salinity; boundary condition; real salt fux;Atlantic Meridional Overturning Circulation;global mean salinity

    鹽度是海洋的一個(gè)基本狀態(tài)變量,在海洋環(huán)流中起著重要的作用。少量的鹽通量擾動都會改變海洋的經(jīng)向翻轉(zhuǎn)環(huán)流和海表溫鹽場。因此,本文使用了海洋環(huán)流模式LICOM2.0研究了不同鹽度邊界條件對全球總鹽量、海表鹽度和大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流模擬的影響。結(jié)果表明:洋面上的弱恢復(fù)項(xiàng)對合理地模擬海表鹽度起著重要的作用,且對全球總鹽量起著遞增的作用;在虛鹽通量中使用模擬的海表鹽度而非定常的參考鹽度能夠更合理地模擬大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流;除此之外,含有實(shí)鹽通量的鹽度邊界條件能夠更好地維持全球總鹽量的守恒。

    1. Introduction

    The surface boundary condition for sea surface salinity(SSS) plays an important role in realistically simulating the SSS and Atlantic Meridional Overturning Circulation(AMOC) when using OGCMs (Rahmstorf, Marotzke, and Willebrand 1996; Grifes et al. 2005, 2009). A small perturbation of salt can modify the ocean's meridional circulation (Bryan 1986; Marotzke, Welander, and Willebrand 1988; Marotzke and Willebrand 1991; Weaver and Sarachik 1991; Weaver, Sarachik, and Marotzke 1991; Hofmann and Rahmstorf 2009) and cause a persistent climate drift(Rahmstorf, Marotzke, and Willebrand 1996). Many previous studies have shown that both the mean state and climate variability can be more realistically captured when an OGCM adequately represents freshwater fux (Fw) forcing(e.g. Stoufer et al. 2006; Zhang and Busalacchi 2009; Zhang et al. 2012). Therefore, a proper surface boundary condition for SSS is important for the performance of an OGCM.

    The combination of salinity relaxation and virtual salt fux is widely used in most climate ocean models as the surface boundary condition for SSS. Relatively strong salinity restoration is required to stabilize the AMOC and control the sea salinity drift in OGCMs (Grifes et al. 2005). In addition, weak salinity restoration is often used to correct the Fwat the sea surface, especially for precipitation (Grifes et al. 2005; Jin et al. 2016). However,the salinity restoring condition has no physical basis,whereby its purpose is to prevent the modeled SSS from departing from the observed climatological distribution of surface salinity. Besides, Beron-Vera, Ochoa, and Ripa(2000) indicated that this kind of restoring condition does not guarantee the conservation of total salt in the ocean. The common technical method in ocean models is to remove the global mean restoring salt fux at each time step for the purpose of conserving the total salt. The surface salinity is often replaced by a reference salinity(often assumed to be 34.7 psu) in the virtual salt fux to formulate a better-posed problem (Roullet, Guillaume and Madec 2000). However, this can cause signifcant biases in regions where SSS obviously difers from the reference state.

    Table 1.Descriptions of the surface boundary conditions for SSS in the diferent experiments, and the statistics calculated from the diferent experiments.

    New formulations of the salinity boundary condition can be adopted, which can improve upon the commonly used virtual salt fux with constant reference salinity by allowing for spatial correlations between Fwfux and SSS(Zeng and Mu 2002). The purpose of this study is to compare the simulated results when adopting diferent surface boundary conditions for SSS, especially for SSS and the AMOC, and to identify the efects of the diferent terms in the salinity boundary condition on the OGCM. Following this introduction, Section 2 briefy introduces the model and experiments. In Section 3, we present results from four experiments, and a brief summary of our results is provided in Section 4.

    2. Model and experimental design

    The OGCM used in this paper is LICOM2.0 (Liu et al. 2012). The model domain is between 78.5°S and 89.5°N, with a 1° zonal resolution. The meridional resolution is refned to 0.5° between 10°S and 10°N, and increases gradually from 0.5° to 1° between 10° and 20°. There are 30 levels in the vertical direction, with 10 m per layer in the upper 150 m. This resolution can resolve equatorial waves and capture the upper mixed layer and thermocline (Lin, Yu, and Liu 2013). A detailed description of the model can be found in Liu et al. (2012).

    The surface salinity boundary condition (SSBC) in LICOM2.0 is a blend of the virtual salinity fux and two restoring terms. The formula is as follows: where Fw= E - P - R, in which E, P, and R are evaporation,precipitation, and river runof, respectively; S0is the reference salinity, which is assigned as a constant (34.7 psu);WR is the weak restoring salinity condition in the open ocean, with a restoring timescale of 1 yr; and SR stands for the strong restoring term under sea ice, with a timescale of 30 days.

    To test the responses of the OGCM to the diferent surface boundary conditions for SSS, four experiments were designed, called CTRL, Exp1, Exp2, and Exp3, respectively. Descriptions of the four experiments are given in Table 1. In order to reveal the uncertainty efects of WR on simulation,the WR term is not included in Exp1. Exp2 is the same as Exp1, but the simulated SSS is used instead of the reference salinity, S0. A real salt fux (μS) resulting from wind and wave breaking is added in Exp3, which is a new well-posed formulation for the SSBC and can be written as:

    The simulated SSS is used in this formula. Here, μ is parameterized as a function of the 10-m wind speed U(μ = 0.002256U3).

    All of the external forcings used in these experiments are from CORE.v2 (Grifes et al. 2005) from Large and Yeager (2004). Since a sea-ice model was not used in the experiments, the SSS under ice needed to be restored to the observation from WOA09 (Antonov et al. 2010), with a restoring time scale of 30 days, in all the runs. Each experiment began from the same climatological mean salinity and temperature with a rest state. The global mean Fwfux was set to zero in every time step. All experiments were integrated for 500 years in order to reach a quasi-equilibrium deep circulation. The fnal 60 years (441—500) of the results were analyzed.

    3. Results

    Figure 1.Time series of global mean ocean salinity over 500 years simulated by diferent experiments.

    Figure 2.Time series of the surface salinity restoring term over 500 years from the diferent experiments.

    Figure 1 shows the time series of global mean salinity simulated in all four experiments. There is clear distinction among the trends in global mean salinity for each experiment with a diferent SSBC. CTRL reached a quasi-equilibrium state with a gradually increasing trend of about 0.0024 psu/100 yr for the last 100 years of the integration,with its global mean salinity being 34.745 psu averaged in the last year. The SR term played a dominate role in reducing the trend in global mean salinity in the remaining experiments (Figure 2). Since the global mean virtual salt fux (FwS0) is approximately zero, the increasing trend in global mean salinity in CTRL was mainly attributable to the efects of WR. Exp1, in which WR was excluded, exhibited a slow monotonic decreasing trend (approximately -0.0038 psu/100 yr) with a 500th-year mean salinity of 34.711 psu. Moreover, the signifcant increasing trend in Exp2 was about 0.0071 psu/100 yr during the last 100 years,which resulted from the evident positive relationship between Fwand SSS, although the decreasing efects of SR in Exp2 were also obvious (Figure 2). The global mean salinity (34.770 psu) of the 500th year for Exp2 was the largest among the experiments. Exp3 reached a near stationary state after 100 years, with a slight negative trend of -0.0002 psu/100 yr for the last 100 years. During the last year, the value in Exp3 was 34.723 psu, which was the closest experimental result to the observed value of 34.728 psu (Table 1). This clearly demonstrates the importance of the real salinity fux term compared with Exp2.

    Comparing the results of CTRL and Exp1, it was apparent that weak SSS restoration in the open sea increased the global mean salinity, whereas strong restoration under the sea-ice region caused a decrease.

    Figure 3.Simulated SSS (contours) and biases against observations from WOA09 (color shading) for (a) CTRL, (b) Exp1, (c) Exp2, and (d)Exp3.

    Figure 4.Simulated annual mean meridional overturning stream-function (1 Sv = 106m3s-1) in the Atlantic for (a) CTRL, (b) Exp1, (c)Exp2, and (d) Exp3.

    Figure 3 presents the biases in annual mean SSS against WOA09 (Antonov et al. 2010) for the diferent experiments. The most evident features are two large freshening SSS biases in Exp1 (Figure 3(b)): one appears between 40°S and 10°S in the Pacifc and Atlantic, and the other is located between 30°N and 45°N in the Pacifc. These large biases also occurred in Exp3 (Figure 3(d)). The root mean square diference (RMSD)was 0.686 psu in Exp3, which was closer to the CTRL value of 0.505 psu, as compared to that of Exp1 (Table 1). The two large freshening SSS biases were mainly due to biases of the forcing feld, such as precipitation and/or RH, in CORE.v2 (Jin et al. 2016). These large biases were partly reduced in Exp2(Figure 3(c)), especially for the subtropical western Pacifc. The reason may have been due to the biases of CORE.v2 being partly compensated by the positive relationship between Fwand SSS. Compared with CTRL, the only diference was the exclusion of the WR term in Exp1. This shows that the WR term in LICOM2.0 plays an important role in reducing the SSS bias.

    However, some common biases also appeared in the four experiments. All the experiments exhibited a saltier SSS in the Laptev Sea and East Siberian Sea compared to observation, which was associated with the absence of a sea-ice component in our model. In the North Atlantic subpolar region, the SSS simulated in all of the four experiments exhibited obvious fresh biases. This was mainly because the simulated path of the Gulf Stream could not reach the North Atlantic subpolar region. As a result, there was less transportation of warm, salty water to higher latitudes. A more specifc study on this issue is needed. The corresponding SST simulated in all of the experiments was also colder in this region, as compared with WOA09 (fgure not shown). This would have reduced the simulated evaporation fux, leading to a fresher SSS.

    Figure 4 illustrates the Atlantic meridional overturning stream-function for CTRL, Exp1, Exp2, and Exp3. All of the four experiments refected the main structure of the AMOC well, indicating an upper cell between 500 m and 3,000 m and a bottom cell below. The former is related to the North Atlantic Deep Water (NADW) and the latter to the Antarctic Bottom Water.

    The most striking diference between the diferent experiments was the strength of the AMOC simulated. The results from Exp2 and Exp3 (Figure 4(c) and (d)) presented the most vigorous AMOC, while CTRL (Figure 4(a)) was the weakest among the four experiments. The maximum NADW at 731 m and 36°N in CTRL was 10.8 Sv, whereas it was 11.3, 13.2, and 13.0 Sv for Exp1, Exp2, and Exp3,respectively. This strengthening is mainly related to the saltier seawater in the Labrador Sea and Norwegian Sea,but these maximum values of NADW for Exp2 and Exp3 were closer to the observed value of ~15 Sv at about 40°N(Ganachaud and Wunsch 2000, 2003; Lumpkin, Speer, and Koltermann 2008). This indicates that the depicted AMOC strength can be improved with the virtual salt fux by adopting predicted SSS instead of the constant reference salinity. Besides, compared with Exp2, the AMOC simulated in Exp3 did not change much, since the SSS diference between Exp2 and Exp3 was minimal in the high latitudes of the North Atlantic (fgure not shown).

    4. Discussion and conclusion

    This study investigated the efects of diferent surface boundary conditions for SSS on simulations of global mean salinity, SSS and the AMOC, using an OGCM (LICOM2.0). It was found that, in the default salinity boundary condition setting in LICOM2.0, the WR term in the open sea plays an essential role in reducing the simulated SSS bias and increasing the global mean salinity, while the SR term under the sea-ice region decreases the global mean salinity. The new surface salinity boundary condition consisting of both virtual and real salt fuxes at the oceanic surface prohibited a monotonous increasing or decreasing global mean salinity trend, and basically preserved the long-term conservation of global mean salinity. Furthermore, the simulated AMOC strength was also much closer to observations, although the freshening SSS bias was large without the WR term.

    A number of biases caused by ocean dynamics were also detected, such as freshening biases in the North Atlantic and subtropical regions in the Pacifc, and a weak NADW; although, both Exp2 and Exp3 ofered some improvements in this regard. The causes of these biases need further investigation.

    Acknowledgements

    The authors are very grateful to Dr LIN Pengfei for valuable discussions, and Mr. YU Yi for some diagnostic programs.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was partially supported by the National Basic Research Program of China [grant number 2013CB956204]; the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403], [grant number XDA11010304];the National Natural Science Foundation of China [grant number 41305028].

    References

    Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov,H. E. Garcia, O. K. Baranova, et al. 2010. World Ocean Atlas 2009, Volume. 2, Salinity. S. Levitus, Ed., 184. Washington, DC: NOAA Atlas NESDIS 69, U.S. Government Printing Ofce.

    Beron-Vera, F. J., J. Ochoa, and P. Ripa. 2000. “A Note on Boundary Conditions for Salt and Freshwater Balances.” Ocean Modeling 1: 111—118.

    Bryan, F. 1986.“High-latitude Salinity Efects and Interhemispheric Thermohaline Circulations.” Nature 323: 301—304.

    Ganachaud, A., and C. Wunsch. 2000. “Improved Estimates of Global Ocean Circulation, Heat Transport and Mixing from Hydrographic Data.” Nature 408: 453—457.

    Ganachaud, A., and C. Wunsch. 2003. “Large-scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment.” Journal of Climate 16: 696—705.

    Grifes, S. M., A. Gnanadesikan, K. W. Dixon, J. P. Dunne, R. Gerdes,M. J. Harrison, A. Rosati, et al. 2005. “Formulation of an Ocean Model for Global Climate Simulations.” Ocean Science 1: 45—79. Grifes, S. M., A. Biastoch, C. B?ning, F. Bryan, G. Danabasoglu, E. P. Chassignet, M. H. England, et al. 2009. “Coordinated Ocean-Ice Reference Experiments (COREs).” Ocean Modelling 26: 1—46. Hofmann, M., and S. Rahmstorf. 2009. “On the Stability of the Atlantic Meridional Overturning Circulation.” Proceedings of the National Academy of Sciences 106 (49): 20584—20589.

    Jin, J.-B., Q.C. Zeng, H.-L. Liu, and L. Wu. 2016. “Freshening Biases in the Freshwater Flux of Coordinated Ocean-Ice Reference Experiment Data.” Atmospheric and Oceanic Science Letters 9(5): 361—365. doi:10.1080/16742834.2016.1203244.

    Large, W., and S. Yeager. 2004. “Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies.” NCAR/TN-460+STR, 1—105.

    Lin, P. F., Y. Q. Yu, and H. L. Liu. 2013. “Long-Term Stability and Oceanic Mean State Simulated by the Coupled Model FGOALS-S2.” Advances in Atmospheric Sciences 30: 175—192.

    Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang. 2012. “The Baseline Evaluation of LASG/IAP Climate System Ocean Model (LICOM)Version 2.0.” Acta Meteorologica Sinica 26: 318—329.

    Lumpkin, R., K. Speer, and K. Koltermann. 2008. “Transport across 48°N in the Atlantic Ocean.” Journal of Physical Oceanography 38: 733—752.

    Marotzke, J., P. Welander, and J. Willebrand. 1988. “Instability and Multiple Steady States in a Meridional-Plane Model of the Thermohaline Circulation.” Tellus a 40 (2): 162—172.

    Marotzke, J., and J. Willebrand. 1991. “Multiple Equilibria of the Global Thermohaline Circulation.” Journal of Physical Oceanography 21: 1372—1385.

    Rahmstorf, S., J. Marotzke, and J. Willebrand. 1996. “Stability of the Thermohaline Circulation.” In The Warm Water Sphere of the North Atlantic ocean, edited by W. Krauss, 129—157. Stuttgart: Borntraeger.

    Roullet, Guillaume, and Gurvan Madec. 2000. “Salt Conservation,F(xiàn)ree Surface, and Varying Levels: A New Formulation for Ocean General Circulation Models.” Journal of Geophysical Research: Oceans 105: 23927—23942.

    Stouffer, R. J., J. Yin, J. M. Gregory, K. W. Dixon, M. J. Spelman,W. Hurlin, A. J. Weaver, et al. 2006. “Investigating the Causes of the Response of the Thermohaline Circulation to past and Future Climate Changes.” Journal of Climate 19: 1365—1387.

    Weaver, A. J., and E. S. Sarachik. 1991. “The Role of Mixed Boundary Condition in Numerical Models of the Ocean's Climate.” Journal of Physical Oceanography 21: 1470—1493.

    Weaver, A. J., E. S. Sarachik, and J. Marotzke. 1991. “Freshwater Flux Forcing of Decadal and Interdecadal Oceanic Variability.”Nature 353 (31): 836—838.

    Zeng, Qing-cun, and Mu Mu. 2002. “The Design of Compact and Internally Consistent Model of Climate System Dynamics.”Chinese J. Atmos. Sci. 26 (2): 107—113.

    Zhang, R.-H., and A. J. Busalacchi. 2009. “Freshwater Flux (FWF)-induced Oceanic Feedback in a Hybrid Coupled Model of the Tropical Pacifc.” Journal of Climate 22 (4): 853—879.

    Zhang, R.-H., F. Zheng, J. S. Zhu, Y. H. Pei, Q. Zheng, and Z. G. Wang. 2012. “Modulation of El Ni?o-Southern Oscillation by Freshwater Flux and Salinity Variability in the Tropical Pacifc.”Advances in Atmospheric Sciences 29 (4): 647—660.

    表面鹽度; 邊界條件; 實(shí)鹽通量; 大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流; 全球平均鹽度

    4 May 2016

    CONTACT ZENG Qing-Cun zqc@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    鹽量海表大西洋
    揭開鹵水桶的秘密(一)
    烹飪世界(2024年1期)2024-09-20 00:00:00
    鹽量對鹽煮干制方竹筍品質(zhì)的影響
    基于無人機(jī)的海表環(huán)境智能監(jiān)測系統(tǒng)設(shè)計(jì)與應(yīng)用
    2016與1998年春季北大西洋海表溫度異常的差異及成因
    融合海表溫度產(chǎn)品在渤黃東海的對比分析及初步驗(yàn)證
    太陽總輻照度對熱帶中太平洋海表溫度年代際變化的可能影響
    大西洋海雀,你真倔
    飛越大西洋
    醋和鹽分兩次放
    益壽寶典(2018年17期)2018-01-26 15:44:57
    暢游于大西洋彼岸
    亚洲精品aⅴ在线观看| 男女免费视频国产| 国产深夜福利视频在线观看| 日韩中文字幕欧美一区二区 | av网站免费在线观看视频| 精品酒店卫生间| 欧美黑人欧美精品刺激| 精品国产一区二区三区四区第35| 国产日韩欧美亚洲二区| 18禁动态无遮挡网站| 精品少妇一区二区三区视频日本电影 | 中文字幕人妻熟女乱码| av福利片在线| 满18在线观看网站| 精品国产乱码久久久久久男人| 久久国产精品大桥未久av| 亚洲久久久国产精品| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区三区四区第35| 国产日韩欧美亚洲二区| 久久久国产欧美日韩av| 国产免费又黄又爽又色| 亚洲av在线观看美女高潮| 如何舔出高潮| 纯流量卡能插随身wifi吗| 久久久久久久国产电影| 一区二区三区激情视频| 欧美 亚洲 国产 日韩一| 最近手机中文字幕大全| 中文字幕高清在线视频| av在线播放精品| 午夜久久久在线观看| 操美女的视频在线观看| 满18在线观看网站| 18在线观看网站| 亚洲av中文av极速乱| 丝袜美腿诱惑在线| 天堂中文最新版在线下载| 中文字幕另类日韩欧美亚洲嫩草| 成年美女黄网站色视频大全免费| 成人亚洲欧美一区二区av| 国产av码专区亚洲av| 你懂的网址亚洲精品在线观看| 在线看a的网站| videosex国产| 国产一区二区激情短视频 | 久久久久久久久免费视频了| 校园人妻丝袜中文字幕| 少妇猛男粗大的猛烈进出视频| 美女福利国产在线| 亚洲精品久久午夜乱码| 天天添夜夜摸| 老汉色av国产亚洲站长工具| 午夜福利在线免费观看网站| 黄色一级大片看看| 最近中文字幕2019免费版| 黄频高清免费视频| 狠狠婷婷综合久久久久久88av| 成年美女黄网站色视频大全免费| 亚洲国产精品一区二区三区在线| 欧美日韩一区二区视频在线观看视频在线| 欧美xxⅹ黑人| av网站免费在线观看视频| 亚洲激情五月婷婷啪啪| 超色免费av| 操出白浆在线播放| 汤姆久久久久久久影院中文字幕| 久久天堂一区二区三区四区| 麻豆精品久久久久久蜜桃| 亚洲精品国产色婷婷电影| 这个男人来自地球电影免费观看 | 久久免费观看电影| 午夜福利乱码中文字幕| 夜夜骑夜夜射夜夜干| 男女国产视频网站| 免费高清在线观看视频在线观看| 亚洲男人天堂网一区| 亚洲国产欧美日韩在线播放| 一二三四中文在线观看免费高清| 亚洲一卡2卡3卡4卡5卡精品中文| 久久这里只有精品19| 欧美少妇被猛烈插入视频| 我的亚洲天堂| 9191精品国产免费久久| 我要看黄色一级片免费的| 色婷婷久久久亚洲欧美| 久热爱精品视频在线9| 飞空精品影院首页| 飞空精品影院首页| 三上悠亚av全集在线观看| 国产一区有黄有色的免费视频| 精品人妻在线不人妻| 午夜福利,免费看| 黄色视频不卡| 中文字幕另类日韩欧美亚洲嫩草| 电影成人av| 最黄视频免费看| 在线观看三级黄色| 亚洲精品国产色婷婷电影| xxxhd国产人妻xxx| 2018国产大陆天天弄谢| 亚洲色图综合在线观看| 成人18禁高潮啪啪吃奶动态图| 99热网站在线观看| 交换朋友夫妻互换小说| 天天躁夜夜躁狠狠久久av| 婷婷色麻豆天堂久久| 日韩大码丰满熟妇| 久久这里只有精品19| www.熟女人妻精品国产| 国产成人免费无遮挡视频| 五月天丁香电影| 国产精品蜜桃在线观看| 在线观看一区二区三区激情| 亚洲欧美成人精品一区二区| 人人妻人人澡人人爽人人夜夜| 男女下面插进去视频免费观看| 亚洲天堂av无毛| 99热网站在线观看| 精品一区在线观看国产| 久久精品久久精品一区二区三区| 国产精品久久久久成人av| 9热在线视频观看99| 韩国精品一区二区三区| 国产又爽黄色视频| 黄色一级大片看看| 免费观看av网站的网址| 肉色欧美久久久久久久蜜桃| 久久性视频一级片| 精品久久蜜臀av无| 久久久久精品国产欧美久久久 | 欧美日韩av久久| 国产精品一区二区精品视频观看| 欧美 日韩 精品 国产| 国产一区有黄有色的免费视频| 高清视频免费观看一区二区| 黄色视频不卡| 免费女性裸体啪啪无遮挡网站| 精品福利永久在线观看| 91aial.com中文字幕在线观看| 女人精品久久久久毛片| 国产男女内射视频| 久久午夜综合久久蜜桃| 人妻人人澡人人爽人人| 青春草国产在线视频| av线在线观看网站| 国产色婷婷99| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 欧美黑人精品巨大| 国产av一区二区精品久久| 日韩熟女老妇一区二区性免费视频| 亚洲第一区二区三区不卡| 日韩精品有码人妻一区| 多毛熟女@视频| 亚洲成人手机| 久久久精品区二区三区| 一个人免费看片子| 日本黄色日本黄色录像| 中文字幕人妻丝袜制服| 欧美精品一区二区大全| 亚洲一卡2卡3卡4卡5卡精品中文| 大片电影免费在线观看免费| 久久99热这里只频精品6学生| 中文乱码字字幕精品一区二区三区| 在线亚洲精品国产二区图片欧美| 搡老岳熟女国产| 看十八女毛片水多多多| 国产精品国产三级专区第一集| 日本wwww免费看| 综合色丁香网| 久久久久精品性色| 亚洲精品一区蜜桃| 免费少妇av软件| 精品酒店卫生间| 日韩人妻精品一区2区三区| 一区在线观看完整版| 男女国产视频网站| 人妻人人澡人人爽人人| 国产精品一二三区在线看| 青春草视频在线免费观看| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 久久99热这里只频精品6学生| 亚洲精品日本国产第一区| 99久久人妻综合| 亚洲精品一二三| 亚洲欧美精品自产自拍| 国产精品秋霞免费鲁丝片| 亚洲,一卡二卡三卡| 建设人人有责人人尽责人人享有的| 日韩制服丝袜自拍偷拍| 久久狼人影院| 99re6热这里在线精品视频| 丝袜美腿诱惑在线| 波多野结衣一区麻豆| 国产成人啪精品午夜网站| 美国免费a级毛片| 18禁动态无遮挡网站| 不卡视频在线观看欧美| 亚洲精品视频女| 中文字幕色久视频| 王馨瑶露胸无遮挡在线观看| 狠狠精品人妻久久久久久综合| 99re6热这里在线精品视频| 一区二区三区精品91| 久久热在线av| 亚洲欧美日韩另类电影网站| 赤兔流量卡办理| 精品国产乱码久久久久久男人| 日本wwww免费看| 看免费av毛片| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久久久99蜜臀 | 亚洲男人天堂网一区| 亚洲精品,欧美精品| 欧美成人午夜精品| 亚洲av综合色区一区| 久久天堂一区二区三区四区| 日韩一本色道免费dvd| 精品久久久久久电影网| 久久人人爽av亚洲精品天堂| 免费黄色在线免费观看| 日韩 欧美 亚洲 中文字幕| 久久人妻熟女aⅴ| 性少妇av在线| 99久久综合免费| 丝瓜视频免费看黄片| 精品酒店卫生间| 婷婷色综合大香蕉| 啦啦啦在线免费观看视频4| 欧美 日韩 精品 国产| 看免费成人av毛片| 国产黄频视频在线观看| 搡老乐熟女国产| 下体分泌物呈黄色| 在线观看一区二区三区激情| 久久人妻熟女aⅴ| 又粗又硬又长又爽又黄的视频| av不卡在线播放| 精品视频人人做人人爽| 美女脱内裤让男人舔精品视频| 亚洲欧洲国产日韩| 校园人妻丝袜中文字幕| 日韩制服丝袜自拍偷拍| 国产成人精品在线电影| 人人妻人人澡人人看| 国产男女内射视频| 老司机在亚洲福利影院| 国产精品蜜桃在线观看| 在线观看一区二区三区激情| 午夜福利免费观看在线| 满18在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 五月天丁香电影| 日韩一区二区视频免费看| 精品免费久久久久久久清纯 | 国产毛片在线视频| 最新的欧美精品一区二区| 搡老乐熟女国产| 麻豆乱淫一区二区| 亚洲,欧美精品.| 又大又黄又爽视频免费| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 中文天堂在线官网| 欧美精品av麻豆av| 最近的中文字幕免费完整| 久久毛片免费看一区二区三区| 亚洲精品久久久久久婷婷小说| 中文字幕色久视频| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 午夜福利在线免费观看网站| 一级毛片 在线播放| 丰满少妇做爰视频| 一级爰片在线观看| 99国产综合亚洲精品| 久久久久视频综合| 久久久久网色| 久热这里只有精品99| 麻豆av在线久日| 制服人妻中文乱码| 男人舔女人的私密视频| 色94色欧美一区二区| 各种免费的搞黄视频| 99久国产av精品国产电影| 国产又爽黄色视频| 亚洲国产欧美一区二区综合| 久久久久人妻精品一区果冻| 免费黄色在线免费观看| 国产精品香港三级国产av潘金莲 | 在线天堂最新版资源| 啦啦啦在线观看免费高清www| 老司机影院成人| 一区二区日韩欧美中文字幕| 亚洲精品自拍成人| 中文字幕最新亚洲高清| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 69精品国产乱码久久久| 日韩免费高清中文字幕av| 亚洲国产看品久久| 十八禁人妻一区二区| 精品少妇久久久久久888优播| 蜜桃国产av成人99| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线| 亚洲欧美清纯卡通| 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 欧美中文综合在线视频| 热re99久久精品国产66热6| 色94色欧美一区二区| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久久久99蜜臀 | 国产一区二区在线观看av| 老司机深夜福利视频在线观看 | 日日摸夜夜添夜夜爱| 国产精品国产三级国产专区5o| 国产一区二区三区综合在线观看| 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| 欧美av亚洲av综合av国产av | 国产精品99久久99久久久不卡 | 欧美精品av麻豆av| 婷婷成人精品国产| videosex国产| 波多野结衣一区麻豆| netflix在线观看网站| tube8黄色片| 汤姆久久久久久久影院中文字幕| 国产一区二区 视频在线| 99久久人妻综合| 久久精品国产亚洲av高清一级| 在线观看国产h片| 国产欧美日韩一区二区三区在线| 午夜福利在线免费观看网站| 亚洲精品乱久久久久久| 中文字幕精品免费在线观看视频| 天堂8中文在线网| 妹子高潮喷水视频| 黄色一级大片看看| 精品一区二区三区四区五区乱码 | 久久ye,这里只有精品| 男人舔女人的私密视频| 丝袜美腿诱惑在线| 日韩av免费高清视频| 久久久久国产精品人妻一区二区| 亚洲国产精品999| 日本vs欧美在线观看视频| 久久精品亚洲熟妇少妇任你| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 日本欧美国产在线视频| 亚洲国产精品999| 国产精品亚洲av一区麻豆 | 纵有疾风起免费观看全集完整版| 欧美另类一区| 悠悠久久av| 精品国产露脸久久av麻豆| 日本猛色少妇xxxxx猛交久久| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 一边摸一边做爽爽视频免费| 国产日韩欧美在线精品| 亚洲第一区二区三区不卡| 久久久久久久久免费视频了| 亚洲图色成人| 欧美精品人与动牲交sv欧美| 国精品久久久久久国模美| 国产成人系列免费观看| 天天躁夜夜躁狠狠久久av| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 色精品久久人妻99蜜桃| 精品少妇内射三级| 80岁老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| www日本在线高清视频| 国产一区二区三区综合在线观看| 精品久久蜜臀av无| 天堂俺去俺来也www色官网| 99国产综合亚洲精品| 在线观看国产h片| 在线观看人妻少妇| 久久精品亚洲av国产电影网| 9191精品国产免费久久| 尾随美女入室| 免费不卡黄色视频| 国产精品免费视频内射| 欧美最新免费一区二区三区| 男女边吃奶边做爰视频| 久久人人97超碰香蕉20202| 亚洲第一区二区三区不卡| 91老司机精品| 极品少妇高潮喷水抽搐| 久久性视频一级片| 色婷婷久久久亚洲欧美| 国产一区二区三区综合在线观看| 亚洲国产欧美在线一区| 欧美成人午夜精品| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久午夜乱码| 国产精品香港三级国产av潘金莲 | 制服诱惑二区| 老司机影院成人| 欧美日本中文国产一区发布| 亚洲国产欧美在线一区| 久久久久久人妻| 国产伦人伦偷精品视频| 久久热在线av| 免费黄频网站在线观看国产| 在线观看免费日韩欧美大片| 综合色丁香网| 国产免费又黄又爽又色| 久久久久精品久久久久真实原创| 又黄又粗又硬又大视频| 不卡视频在线观看欧美| svipshipincom国产片| 熟妇人妻不卡中文字幕| 久久99精品国语久久久| 91精品国产国语对白视频| 欧美变态另类bdsm刘玥| 日韩一卡2卡3卡4卡2021年| 国产无遮挡羞羞视频在线观看| 午夜福利网站1000一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲,欧美,日韩| 国产精品免费大片| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 亚洲精品久久午夜乱码| 欧美在线黄色| 操出白浆在线播放| 国产精品免费视频内射| 最近中文字幕2019免费版| 国产亚洲最大av| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 国产在视频线精品| 美女高潮到喷水免费观看| 午夜激情久久久久久久| 久久久久久人人人人人| 亚洲精品日韩在线中文字幕| tube8黄色片| 欧美老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 熟妇人妻不卡中文字幕| 人人妻人人澡人人爽人人夜夜| 久久久久精品国产欧美久久久 | av在线观看视频网站免费| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 久久韩国三级中文字幕| 亚洲精品一二三| 国产片内射在线| 久久国产精品男人的天堂亚洲| 少妇人妻久久综合中文| 亚洲精品中文字幕在线视频| 日韩av不卡免费在线播放| 老司机影院成人| 国产男女超爽视频在线观看| 久久久久久久久免费视频了| avwww免费| 国产男人的电影天堂91| 老汉色∧v一级毛片| 久久天躁狠狠躁夜夜2o2o | 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 午夜免费鲁丝| 少妇被粗大的猛进出69影院| 在线观看三级黄色| 三上悠亚av全集在线观看| 欧美日韩成人在线一区二区| 午夜激情av网站| 精品免费久久久久久久清纯 | 久久精品久久久久久噜噜老黄| 热re99久久精品国产66热6| 中文天堂在线官网| 老司机深夜福利视频在线观看 | 秋霞在线观看毛片| 国产免费福利视频在线观看| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 观看美女的网站| 1024香蕉在线观看| 国产精品 欧美亚洲| 少妇精品久久久久久久| 免费不卡黄色视频| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 日韩人妻精品一区2区三区| 一级毛片我不卡| 国产免费现黄频在线看| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 国产亚洲午夜精品一区二区久久| tube8黄色片| 99热网站在线观看| 熟妇人妻不卡中文字幕| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 麻豆av在线久日| 午夜激情av网站| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频| 国产精品一区二区在线观看99| 欧美日韩视频高清一区二区三区二| 精品人妻在线不人妻| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| 国产熟女午夜一区二区三区| 国产 精品1| 国产精品 国内视频| a 毛片基地| 亚洲一码二码三码区别大吗| 99久国产av精品国产电影| 黄频高清免费视频| 一区二区三区乱码不卡18| 亚洲成人av在线免费| av电影中文网址| 丝袜美腿诱惑在线| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区 | 天天添夜夜摸| 亚洲婷婷狠狠爱综合网| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 亚洲精品美女久久av网站| 日本av手机在线免费观看| 国产成人一区二区在线| 伦理电影免费视频| 国产精品久久久人人做人人爽| 国产男女内射视频| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 男女午夜视频在线观看| 亚洲美女视频黄频| 精品亚洲乱码少妇综合久久| 精品一区二区三区四区五区乱码 | 午夜91福利影院| 丝袜美腿诱惑在线| 夜夜骑夜夜射夜夜干| 亚洲成色77777| 精品少妇内射三级| 亚洲成人av在线免费| 超碰成人久久| 欧美精品一区二区大全| 成年人午夜在线观看视频| 欧美在线一区亚洲| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 国产精品99久久99久久久不卡 | 男人爽女人下面视频在线观看| 伊人亚洲综合成人网| 精品少妇一区二区三区视频日本电影 | 两个人免费观看高清视频| 免费av中文字幕在线| 亚洲精华国产精华液的使用体验| 成人18禁高潮啪啪吃奶动态图| 男女床上黄色一级片免费看| 久久97久久精品| 亚洲人成77777在线视频| 亚洲精品国产av成人精品| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 亚洲精品视频女| 亚洲成人一二三区av| 少妇人妻 视频| 91成人精品电影| 大码成人一级视频| 精品视频人人做人人爽| 日本猛色少妇xxxxx猛交久久| 久久久欧美国产精品| 青春草亚洲视频在线观看| 国产精品二区激情视频| 日本爱情动作片www.在线观看| 亚洲国产日韩一区二区| 毛片一级片免费看久久久久| 国产有黄有色有爽视频| 在现免费观看毛片| 色精品久久人妻99蜜桃| 性色av一级| 国产欧美日韩综合在线一区二区| 老熟女久久久| 中文精品一卡2卡3卡4更新| 一区二区日韩欧美中文字幕| 亚洲av电影在线观看一区二区三区| 免费在线观看完整版高清| 久久 成人 亚洲| av.在线天堂| 国产精品一区二区精品视频观看| 久久性视频一级片| 午夜精品国产一区二区电影| 亚洲成a人片在线一区二区| 一a级毛片在线观看| 中文字幕最新亚洲高清| 长腿黑丝高跟| 国产伦一二天堂av在线观看| 一级,二级,三级黄色视频| 在线观看www视频免费| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 久久精品国产99精品国产亚洲性色 | 美女午夜性视频免费| 多毛熟女@视频|