• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The impacts of different surface boundary conditions for sea surface salinity on simulation in an OGCM

    2016-11-23 05:57:03JINJingBoZENGQingCunLIUHiLongnWULin
    關(guān)鍵詞:鹽量海表大西洋

    JIN Jing-Bo, ZENG Qing-Cun, LIU Hi-Longn WU Lin

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    dState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    The impacts of different surface boundary conditions for sea surface salinity on simulation in an OGCM

    JIN Jiang-Boa,b, ZENG Qing-Cuna, LIU Hai-Longcand WU Lind

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    dState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    An OGCM, LICOM2.0, was used to investigate the efects of diferent surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Exp1, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and diferent surface boundary conditions for SSS. A new surface salinity boundary condition that consists of both virtual and real salt fuxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt fux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.

    ARTICLE HISTORY

    Revised 24 May 2016

    Accepted 26 May 2016

    Surface salinity; boundary condition; real salt fux;Atlantic Meridional Overturning Circulation;global mean salinity

    鹽度是海洋的一個(gè)基本狀態(tài)變量,在海洋環(huán)流中起著重要的作用。少量的鹽通量擾動都會改變海洋的經(jīng)向翻轉(zhuǎn)環(huán)流和海表溫鹽場。因此,本文使用了海洋環(huán)流模式LICOM2.0研究了不同鹽度邊界條件對全球總鹽量、海表鹽度和大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流模擬的影響。結(jié)果表明:洋面上的弱恢復(fù)項(xiàng)對合理地模擬海表鹽度起著重要的作用,且對全球總鹽量起著遞增的作用;在虛鹽通量中使用模擬的海表鹽度而非定常的參考鹽度能夠更合理地模擬大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流;除此之外,含有實(shí)鹽通量的鹽度邊界條件能夠更好地維持全球總鹽量的守恒。

    1. Introduction

    The surface boundary condition for sea surface salinity(SSS) plays an important role in realistically simulating the SSS and Atlantic Meridional Overturning Circulation(AMOC) when using OGCMs (Rahmstorf, Marotzke, and Willebrand 1996; Grifes et al. 2005, 2009). A small perturbation of salt can modify the ocean's meridional circulation (Bryan 1986; Marotzke, Welander, and Willebrand 1988; Marotzke and Willebrand 1991; Weaver and Sarachik 1991; Weaver, Sarachik, and Marotzke 1991; Hofmann and Rahmstorf 2009) and cause a persistent climate drift(Rahmstorf, Marotzke, and Willebrand 1996). Many previous studies have shown that both the mean state and climate variability can be more realistically captured when an OGCM adequately represents freshwater fux (Fw) forcing(e.g. Stoufer et al. 2006; Zhang and Busalacchi 2009; Zhang et al. 2012). Therefore, a proper surface boundary condition for SSS is important for the performance of an OGCM.

    The combination of salinity relaxation and virtual salt fux is widely used in most climate ocean models as the surface boundary condition for SSS. Relatively strong salinity restoration is required to stabilize the AMOC and control the sea salinity drift in OGCMs (Grifes et al. 2005). In addition, weak salinity restoration is often used to correct the Fwat the sea surface, especially for precipitation (Grifes et al. 2005; Jin et al. 2016). However,the salinity restoring condition has no physical basis,whereby its purpose is to prevent the modeled SSS from departing from the observed climatological distribution of surface salinity. Besides, Beron-Vera, Ochoa, and Ripa(2000) indicated that this kind of restoring condition does not guarantee the conservation of total salt in the ocean. The common technical method in ocean models is to remove the global mean restoring salt fux at each time step for the purpose of conserving the total salt. The surface salinity is often replaced by a reference salinity(often assumed to be 34.7 psu) in the virtual salt fux to formulate a better-posed problem (Roullet, Guillaume and Madec 2000). However, this can cause signifcant biases in regions where SSS obviously difers from the reference state.

    Table 1.Descriptions of the surface boundary conditions for SSS in the diferent experiments, and the statistics calculated from the diferent experiments.

    New formulations of the salinity boundary condition can be adopted, which can improve upon the commonly used virtual salt fux with constant reference salinity by allowing for spatial correlations between Fwfux and SSS(Zeng and Mu 2002). The purpose of this study is to compare the simulated results when adopting diferent surface boundary conditions for SSS, especially for SSS and the AMOC, and to identify the efects of the diferent terms in the salinity boundary condition on the OGCM. Following this introduction, Section 2 briefy introduces the model and experiments. In Section 3, we present results from four experiments, and a brief summary of our results is provided in Section 4.

    2. Model and experimental design

    The OGCM used in this paper is LICOM2.0 (Liu et al. 2012). The model domain is between 78.5°S and 89.5°N, with a 1° zonal resolution. The meridional resolution is refned to 0.5° between 10°S and 10°N, and increases gradually from 0.5° to 1° between 10° and 20°. There are 30 levels in the vertical direction, with 10 m per layer in the upper 150 m. This resolution can resolve equatorial waves and capture the upper mixed layer and thermocline (Lin, Yu, and Liu 2013). A detailed description of the model can be found in Liu et al. (2012).

    The surface salinity boundary condition (SSBC) in LICOM2.0 is a blend of the virtual salinity fux and two restoring terms. The formula is as follows: where Fw= E - P - R, in which E, P, and R are evaporation,precipitation, and river runof, respectively; S0is the reference salinity, which is assigned as a constant (34.7 psu);WR is the weak restoring salinity condition in the open ocean, with a restoring timescale of 1 yr; and SR stands for the strong restoring term under sea ice, with a timescale of 30 days.

    To test the responses of the OGCM to the diferent surface boundary conditions for SSS, four experiments were designed, called CTRL, Exp1, Exp2, and Exp3, respectively. Descriptions of the four experiments are given in Table 1. In order to reveal the uncertainty efects of WR on simulation,the WR term is not included in Exp1. Exp2 is the same as Exp1, but the simulated SSS is used instead of the reference salinity, S0. A real salt fux (μS) resulting from wind and wave breaking is added in Exp3, which is a new well-posed formulation for the SSBC and can be written as:

    The simulated SSS is used in this formula. Here, μ is parameterized as a function of the 10-m wind speed U(μ = 0.002256U3).

    All of the external forcings used in these experiments are from CORE.v2 (Grifes et al. 2005) from Large and Yeager (2004). Since a sea-ice model was not used in the experiments, the SSS under ice needed to be restored to the observation from WOA09 (Antonov et al. 2010), with a restoring time scale of 30 days, in all the runs. Each experiment began from the same climatological mean salinity and temperature with a rest state. The global mean Fwfux was set to zero in every time step. All experiments were integrated for 500 years in order to reach a quasi-equilibrium deep circulation. The fnal 60 years (441—500) of the results were analyzed.

    3. Results

    Figure 1.Time series of global mean ocean salinity over 500 years simulated by diferent experiments.

    Figure 2.Time series of the surface salinity restoring term over 500 years from the diferent experiments.

    Figure 1 shows the time series of global mean salinity simulated in all four experiments. There is clear distinction among the trends in global mean salinity for each experiment with a diferent SSBC. CTRL reached a quasi-equilibrium state with a gradually increasing trend of about 0.0024 psu/100 yr for the last 100 years of the integration,with its global mean salinity being 34.745 psu averaged in the last year. The SR term played a dominate role in reducing the trend in global mean salinity in the remaining experiments (Figure 2). Since the global mean virtual salt fux (FwS0) is approximately zero, the increasing trend in global mean salinity in CTRL was mainly attributable to the efects of WR. Exp1, in which WR was excluded, exhibited a slow monotonic decreasing trend (approximately -0.0038 psu/100 yr) with a 500th-year mean salinity of 34.711 psu. Moreover, the signifcant increasing trend in Exp2 was about 0.0071 psu/100 yr during the last 100 years,which resulted from the evident positive relationship between Fwand SSS, although the decreasing efects of SR in Exp2 were also obvious (Figure 2). The global mean salinity (34.770 psu) of the 500th year for Exp2 was the largest among the experiments. Exp3 reached a near stationary state after 100 years, with a slight negative trend of -0.0002 psu/100 yr for the last 100 years. During the last year, the value in Exp3 was 34.723 psu, which was the closest experimental result to the observed value of 34.728 psu (Table 1). This clearly demonstrates the importance of the real salinity fux term compared with Exp2.

    Comparing the results of CTRL and Exp1, it was apparent that weak SSS restoration in the open sea increased the global mean salinity, whereas strong restoration under the sea-ice region caused a decrease.

    Figure 3.Simulated SSS (contours) and biases against observations from WOA09 (color shading) for (a) CTRL, (b) Exp1, (c) Exp2, and (d)Exp3.

    Figure 4.Simulated annual mean meridional overturning stream-function (1 Sv = 106m3s-1) in the Atlantic for (a) CTRL, (b) Exp1, (c)Exp2, and (d) Exp3.

    Figure 3 presents the biases in annual mean SSS against WOA09 (Antonov et al. 2010) for the diferent experiments. The most evident features are two large freshening SSS biases in Exp1 (Figure 3(b)): one appears between 40°S and 10°S in the Pacifc and Atlantic, and the other is located between 30°N and 45°N in the Pacifc. These large biases also occurred in Exp3 (Figure 3(d)). The root mean square diference (RMSD)was 0.686 psu in Exp3, which was closer to the CTRL value of 0.505 psu, as compared to that of Exp1 (Table 1). The two large freshening SSS biases were mainly due to biases of the forcing feld, such as precipitation and/or RH, in CORE.v2 (Jin et al. 2016). These large biases were partly reduced in Exp2(Figure 3(c)), especially for the subtropical western Pacifc. The reason may have been due to the biases of CORE.v2 being partly compensated by the positive relationship between Fwand SSS. Compared with CTRL, the only diference was the exclusion of the WR term in Exp1. This shows that the WR term in LICOM2.0 plays an important role in reducing the SSS bias.

    However, some common biases also appeared in the four experiments. All the experiments exhibited a saltier SSS in the Laptev Sea and East Siberian Sea compared to observation, which was associated with the absence of a sea-ice component in our model. In the North Atlantic subpolar region, the SSS simulated in all of the four experiments exhibited obvious fresh biases. This was mainly because the simulated path of the Gulf Stream could not reach the North Atlantic subpolar region. As a result, there was less transportation of warm, salty water to higher latitudes. A more specifc study on this issue is needed. The corresponding SST simulated in all of the experiments was also colder in this region, as compared with WOA09 (fgure not shown). This would have reduced the simulated evaporation fux, leading to a fresher SSS.

    Figure 4 illustrates the Atlantic meridional overturning stream-function for CTRL, Exp1, Exp2, and Exp3. All of the four experiments refected the main structure of the AMOC well, indicating an upper cell between 500 m and 3,000 m and a bottom cell below. The former is related to the North Atlantic Deep Water (NADW) and the latter to the Antarctic Bottom Water.

    The most striking diference between the diferent experiments was the strength of the AMOC simulated. The results from Exp2 and Exp3 (Figure 4(c) and (d)) presented the most vigorous AMOC, while CTRL (Figure 4(a)) was the weakest among the four experiments. The maximum NADW at 731 m and 36°N in CTRL was 10.8 Sv, whereas it was 11.3, 13.2, and 13.0 Sv for Exp1, Exp2, and Exp3,respectively. This strengthening is mainly related to the saltier seawater in the Labrador Sea and Norwegian Sea,but these maximum values of NADW for Exp2 and Exp3 were closer to the observed value of ~15 Sv at about 40°N(Ganachaud and Wunsch 2000, 2003; Lumpkin, Speer, and Koltermann 2008). This indicates that the depicted AMOC strength can be improved with the virtual salt fux by adopting predicted SSS instead of the constant reference salinity. Besides, compared with Exp2, the AMOC simulated in Exp3 did not change much, since the SSS diference between Exp2 and Exp3 was minimal in the high latitudes of the North Atlantic (fgure not shown).

    4. Discussion and conclusion

    This study investigated the efects of diferent surface boundary conditions for SSS on simulations of global mean salinity, SSS and the AMOC, using an OGCM (LICOM2.0). It was found that, in the default salinity boundary condition setting in LICOM2.0, the WR term in the open sea plays an essential role in reducing the simulated SSS bias and increasing the global mean salinity, while the SR term under the sea-ice region decreases the global mean salinity. The new surface salinity boundary condition consisting of both virtual and real salt fuxes at the oceanic surface prohibited a monotonous increasing or decreasing global mean salinity trend, and basically preserved the long-term conservation of global mean salinity. Furthermore, the simulated AMOC strength was also much closer to observations, although the freshening SSS bias was large without the WR term.

    A number of biases caused by ocean dynamics were also detected, such as freshening biases in the North Atlantic and subtropical regions in the Pacifc, and a weak NADW; although, both Exp2 and Exp3 ofered some improvements in this regard. The causes of these biases need further investigation.

    Acknowledgements

    The authors are very grateful to Dr LIN Pengfei for valuable discussions, and Mr. YU Yi for some diagnostic programs.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was partially supported by the National Basic Research Program of China [grant number 2013CB956204]; the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403], [grant number XDA11010304];the National Natural Science Foundation of China [grant number 41305028].

    References

    Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov,H. E. Garcia, O. K. Baranova, et al. 2010. World Ocean Atlas 2009, Volume. 2, Salinity. S. Levitus, Ed., 184. Washington, DC: NOAA Atlas NESDIS 69, U.S. Government Printing Ofce.

    Beron-Vera, F. J., J. Ochoa, and P. Ripa. 2000. “A Note on Boundary Conditions for Salt and Freshwater Balances.” Ocean Modeling 1: 111—118.

    Bryan, F. 1986.“High-latitude Salinity Efects and Interhemispheric Thermohaline Circulations.” Nature 323: 301—304.

    Ganachaud, A., and C. Wunsch. 2000. “Improved Estimates of Global Ocean Circulation, Heat Transport and Mixing from Hydrographic Data.” Nature 408: 453—457.

    Ganachaud, A., and C. Wunsch. 2003. “Large-scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment.” Journal of Climate 16: 696—705.

    Grifes, S. M., A. Gnanadesikan, K. W. Dixon, J. P. Dunne, R. Gerdes,M. J. Harrison, A. Rosati, et al. 2005. “Formulation of an Ocean Model for Global Climate Simulations.” Ocean Science 1: 45—79. Grifes, S. M., A. Biastoch, C. B?ning, F. Bryan, G. Danabasoglu, E. P. Chassignet, M. H. England, et al. 2009. “Coordinated Ocean-Ice Reference Experiments (COREs).” Ocean Modelling 26: 1—46. Hofmann, M., and S. Rahmstorf. 2009. “On the Stability of the Atlantic Meridional Overturning Circulation.” Proceedings of the National Academy of Sciences 106 (49): 20584—20589.

    Jin, J.-B., Q.C. Zeng, H.-L. Liu, and L. Wu. 2016. “Freshening Biases in the Freshwater Flux of Coordinated Ocean-Ice Reference Experiment Data.” Atmospheric and Oceanic Science Letters 9(5): 361—365. doi:10.1080/16742834.2016.1203244.

    Large, W., and S. Yeager. 2004. “Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies.” NCAR/TN-460+STR, 1—105.

    Lin, P. F., Y. Q. Yu, and H. L. Liu. 2013. “Long-Term Stability and Oceanic Mean State Simulated by the Coupled Model FGOALS-S2.” Advances in Atmospheric Sciences 30: 175—192.

    Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang. 2012. “The Baseline Evaluation of LASG/IAP Climate System Ocean Model (LICOM)Version 2.0.” Acta Meteorologica Sinica 26: 318—329.

    Lumpkin, R., K. Speer, and K. Koltermann. 2008. “Transport across 48°N in the Atlantic Ocean.” Journal of Physical Oceanography 38: 733—752.

    Marotzke, J., P. Welander, and J. Willebrand. 1988. “Instability and Multiple Steady States in a Meridional-Plane Model of the Thermohaline Circulation.” Tellus a 40 (2): 162—172.

    Marotzke, J., and J. Willebrand. 1991. “Multiple Equilibria of the Global Thermohaline Circulation.” Journal of Physical Oceanography 21: 1372—1385.

    Rahmstorf, S., J. Marotzke, and J. Willebrand. 1996. “Stability of the Thermohaline Circulation.” In The Warm Water Sphere of the North Atlantic ocean, edited by W. Krauss, 129—157. Stuttgart: Borntraeger.

    Roullet, Guillaume, and Gurvan Madec. 2000. “Salt Conservation,F(xiàn)ree Surface, and Varying Levels: A New Formulation for Ocean General Circulation Models.” Journal of Geophysical Research: Oceans 105: 23927—23942.

    Stouffer, R. J., J. Yin, J. M. Gregory, K. W. Dixon, M. J. Spelman,W. Hurlin, A. J. Weaver, et al. 2006. “Investigating the Causes of the Response of the Thermohaline Circulation to past and Future Climate Changes.” Journal of Climate 19: 1365—1387.

    Weaver, A. J., and E. S. Sarachik. 1991. “The Role of Mixed Boundary Condition in Numerical Models of the Ocean's Climate.” Journal of Physical Oceanography 21: 1470—1493.

    Weaver, A. J., E. S. Sarachik, and J. Marotzke. 1991. “Freshwater Flux Forcing of Decadal and Interdecadal Oceanic Variability.”Nature 353 (31): 836—838.

    Zeng, Qing-cun, and Mu Mu. 2002. “The Design of Compact and Internally Consistent Model of Climate System Dynamics.”Chinese J. Atmos. Sci. 26 (2): 107—113.

    Zhang, R.-H., and A. J. Busalacchi. 2009. “Freshwater Flux (FWF)-induced Oceanic Feedback in a Hybrid Coupled Model of the Tropical Pacifc.” Journal of Climate 22 (4): 853—879.

    Zhang, R.-H., F. Zheng, J. S. Zhu, Y. H. Pei, Q. Zheng, and Z. G. Wang. 2012. “Modulation of El Ni?o-Southern Oscillation by Freshwater Flux and Salinity Variability in the Tropical Pacifc.”Advances in Atmospheric Sciences 29 (4): 647—660.

    表面鹽度; 邊界條件; 實(shí)鹽通量; 大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流; 全球平均鹽度

    4 May 2016

    CONTACT ZENG Qing-Cun zqc@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    鹽量海表大西洋
    揭開鹵水桶的秘密(一)
    烹飪世界(2024年1期)2024-09-20 00:00:00
    鹽量對鹽煮干制方竹筍品質(zhì)的影響
    基于無人機(jī)的海表環(huán)境智能監(jiān)測系統(tǒng)設(shè)計(jì)與應(yīng)用
    2016與1998年春季北大西洋海表溫度異常的差異及成因
    融合海表溫度產(chǎn)品在渤黃東海的對比分析及初步驗(yàn)證
    太陽總輻照度對熱帶中太平洋海表溫度年代際變化的可能影響
    大西洋海雀,你真倔
    飛越大西洋
    醋和鹽分兩次放
    益壽寶典(2018年17期)2018-01-26 15:44:57
    暢游于大西洋彼岸
    制服人妻中文乱码| 日韩制服丝袜自拍偷拍| www.999成人在线观看| 亚洲欧美一区二区三区黑人| 桃花免费在线播放| 亚洲精品av麻豆狂野| 又紧又爽又黄一区二区| 亚洲精品一二三| 中文字幕人妻丝袜制服| 爱豆传媒免费全集在线观看| 丝袜美足系列| 午夜视频精品福利| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看视频在线观看| 国产高清videossex| 国产老妇伦熟女老妇高清| 精品亚洲成国产av| 男女之事视频高清在线观看 | 美女国产高潮福利片在线看| 精品视频人人做人人爽| 伊人亚洲综合成人网| 久久这里只有精品19| 亚洲精品av麻豆狂野| 黄色 视频免费看| 国产伦理片在线播放av一区| 日本av免费视频播放| 久久ye,这里只有精品| 在现免费观看毛片| 日本欧美视频一区| 男的添女的下面高潮视频| 日韩中文字幕视频在线看片| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| 免费女性裸体啪啪无遮挡网站| 少妇人妻久久综合中文| 夜夜骑夜夜射夜夜干| 午夜免费成人在线视频| 精品少妇黑人巨大在线播放| bbb黄色大片| 日日爽夜夜爽网站| 精品人妻1区二区| videosex国产| 两人在一起打扑克的视频| 午夜福利视频精品| 在线观看人妻少妇| 男的添女的下面高潮视频| 国产男女内射视频| 亚洲熟女毛片儿| 一区二区日韩欧美中文字幕| 久久久久久久久久久久大奶| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 老汉色av国产亚洲站长工具| 黄色片一级片一级黄色片| 国产成人免费无遮挡视频| 久久久久久久大尺度免费视频| 国产欧美亚洲国产| 日韩制服骚丝袜av| 我要看黄色一级片免费的| 女人高潮潮喷娇喘18禁视频| 国产免费福利视频在线观看| 国产精品三级大全| 亚洲精品一卡2卡三卡4卡5卡 | 在线天堂中文资源库| 日本色播在线视频| 精品卡一卡二卡四卡免费| 成人国产一区最新在线观看 | av天堂久久9| 在线 av 中文字幕| 水蜜桃什么品种好| 国产成人精品久久二区二区免费| 不卡av一区二区三区| 女性被躁到高潮视频| 亚洲 国产 在线| 熟女av电影| 亚洲av日韩在线播放| 亚洲伊人久久精品综合| 91老司机精品| 国产精品99久久99久久久不卡| 999久久久国产精品视频| av天堂在线播放| 熟女av电影| 亚洲国产欧美一区二区综合| 少妇的丰满在线观看| 午夜福利视频精品| 欧美日韩黄片免| 少妇被粗大的猛进出69影院| 精品福利永久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲免费av在线视频| 啦啦啦在线免费观看视频4| 国产亚洲一区二区精品| 日本91视频免费播放| www.av在线官网国产| 日韩av在线免费看完整版不卡| 只有这里有精品99| 亚洲伊人久久精品综合| 亚洲国产欧美在线一区| 国产成人一区二区三区免费视频网站 | av有码第一页| 男女边摸边吃奶| 国产一区二区在线观看av| 精品一区在线观看国产| 美国免费a级毛片| 久久久精品区二区三区| 国产在线观看jvid| 亚洲中文av在线| 美女大奶头黄色视频| 午夜老司机福利片| 一级毛片女人18水好多 | 亚洲国产精品一区二区三区在线| 欧美大码av| 美女视频免费永久观看网站| 精品国产一区二区三区久久久樱花| 成人国语在线视频| 男人爽女人下面视频在线观看| 午夜免费男女啪啪视频观看| 国产国语露脸激情在线看| 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品一区蜜桃| 日韩人妻精品一区2区三区| 久久国产精品人妻蜜桃| 女人高潮潮喷娇喘18禁视频| 在线看a的网站| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 成在线人永久免费视频| 伦理电影免费视频| 亚洲专区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 婷婷丁香在线五月| 国产精品久久久久久精品古装| 九草在线视频观看| www.精华液| 亚洲三区欧美一区| 久久中文字幕一级| 久久国产精品人妻蜜桃| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩在线播放| 中国国产av一级| 国产高清视频在线播放一区 | 国产精品亚洲av一区麻豆| 亚洲午夜精品一区,二区,三区| 一区二区日韩欧美中文字幕| bbb黄色大片| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 巨乳人妻的诱惑在线观看| 啦啦啦 在线观看视频| 国产精品亚洲av一区麻豆| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| 日韩av免费高清视频| 丰满饥渴人妻一区二区三| 亚洲中文av在线| 亚洲国产欧美在线一区| 午夜精品国产一区二区电影| 日本a在线网址| 国产视频首页在线观看| 久久久国产欧美日韩av| 亚洲精品自拍成人| 国精品久久久久久国模美| 精品亚洲成a人片在线观看| 美女大奶头黄色视频| 久久青草综合色| 91成人精品电影| 麻豆av在线久日| 久久精品久久精品一区二区三区| 国产免费又黄又爽又色| 国产精品成人在线| 夜夜骑夜夜射夜夜干| 国产不卡av网站在线观看| 国产成人一区二区三区免费视频网站 | 99久久人妻综合| 亚洲欧美一区二区三区黑人| 亚洲av电影在线观看一区二区三区| 国产爽快片一区二区三区| 久久99一区二区三区| 亚洲av电影在线观看一区二区三区| 韩国精品一区二区三区| 色精品久久人妻99蜜桃| 亚洲,一卡二卡三卡| 国产日韩欧美在线精品| 嫁个100分男人电影在线观看 | 伊人亚洲综合成人网| 亚洲,一卡二卡三卡| 欧美在线黄色| 69精品国产乱码久久久| 国产精品99久久99久久久不卡| 在线天堂中文资源库| xxx大片免费视频| 久久精品久久久久久久性| 大陆偷拍与自拍| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 国产福利在线免费观看视频| 精品少妇内射三级| 国产成人一区二区在线| 国产成人免费观看mmmm| 老汉色∧v一级毛片| 美女脱内裤让男人舔精品视频| 日韩欧美一区视频在线观看| 国产成人av教育| 国产老妇伦熟女老妇高清| 捣出白浆h1v1| 黑人猛操日本美女一级片| 好男人电影高清在线观看| 一级片免费观看大全| 黄色毛片三级朝国网站| 日韩欧美一区视频在线观看| 亚洲精品乱久久久久久| 另类精品久久| 久久久久久久久久久久大奶| 中文字幕精品免费在线观看视频| 亚洲国产精品999| 国产精品亚洲av一区麻豆| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 久久国产精品人妻蜜桃| 久久亚洲精品不卡| 一本—道久久a久久精品蜜桃钙片| 一级黄片播放器| 午夜福利在线免费观看网站| 脱女人内裤的视频| 久久亚洲国产成人精品v| 99久久精品国产亚洲精品| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av高清一级| 一级毛片女人18水好多 | 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 国产成人欧美在线观看 | 日韩中文字幕视频在线看片| 国产爽快片一区二区三区| 男女边摸边吃奶| 久久精品国产综合久久久| 免费看不卡的av| 国产成人免费观看mmmm| 91字幕亚洲| 一级,二级,三级黄色视频| 欧美乱码精品一区二区三区| 国产在线免费精品| 两个人看的免费小视频| 国产成人系列免费观看| 极品人妻少妇av视频| 亚洲精品在线美女| 国产黄色免费在线视频| 在线 av 中文字幕| 精品国产乱码久久久久久男人| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 国产爽快片一区二区三区| 国产黄色免费在线视频| 男人爽女人下面视频在线观看| av有码第一页| av国产精品久久久久影院| 国产免费又黄又爽又色| 国产麻豆69| 丰满饥渴人妻一区二区三| 亚洲一码二码三码区别大吗| 亚洲精品国产av成人精品| 中文字幕人妻丝袜一区二区| 国产高清videossex| videos熟女内射| 国产色视频综合| 五月天丁香电影| 国产亚洲欧美在线一区二区| 午夜免费鲁丝| 亚洲av美国av| 成人18禁高潮啪啪吃奶动态图| 国产免费又黄又爽又色| 各种免费的搞黄视频| 飞空精品影院首页| 午夜av观看不卡| 欧美日韩精品网址| 免费观看av网站的网址| 美国免费a级毛片| 国产一区二区激情短视频 | 婷婷色av中文字幕| 欧美日韩成人在线一区二区| 一级a爱视频在线免费观看| 人体艺术视频欧美日本| 精品高清国产在线一区| 黄色视频不卡| 一区二区三区四区激情视频| 午夜福利,免费看| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 人人妻人人澡人人看| 久久精品久久久久久久性| 久久久久久久久久久久大奶| 亚洲欧美中文字幕日韩二区| 国产亚洲精品久久久久5区| 国产成人a∨麻豆精品| 欧美激情 高清一区二区三区| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 性少妇av在线| 99久久人妻综合| 亚洲一卡2卡3卡4卡5卡精品中文| 免费看av在线观看网站| 国产一区二区三区av在线| 老司机在亚洲福利影院| 天天操日日干夜夜撸| 欧美乱码精品一区二区三区| 国产av精品麻豆| 亚洲色图综合在线观看| 久久久久精品人妻al黑| 看免费av毛片| 成年人免费黄色播放视频| 国产精品三级大全| 人妻 亚洲 视频| 国产精品人妻久久久影院| 新久久久久国产一级毛片| bbb黄色大片| 国产无遮挡羞羞视频在线观看| 国产黄色免费在线视频| 一二三四在线观看免费中文在| 精品免费久久久久久久清纯 | 老汉色av国产亚洲站长工具| 青青草视频在线视频观看| 久久天堂一区二区三区四区| 伦理电影免费视频| a级片在线免费高清观看视频| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 婷婷丁香在线五月| 亚洲国产看品久久| www.精华液| 男女无遮挡免费网站观看| 首页视频小说图片口味搜索 | 777米奇影视久久| 91成人精品电影| 国产成人91sexporn| 亚洲精品国产av蜜桃| 久久精品亚洲av国产电影网| 精品国产超薄肉色丝袜足j| 日韩av不卡免费在线播放| 老司机亚洲免费影院| 成人亚洲欧美一区二区av| 免费一级毛片在线播放高清视频 | 精品亚洲成国产av| 久久久久视频综合| 在线观看一区二区三区激情| 一本色道久久久久久精品综合| 亚洲国产成人一精品久久久| 国产免费现黄频在线看| 国产三级黄色录像| 国产精品久久久人人做人人爽| 视频区图区小说| 2021少妇久久久久久久久久久| 在线精品无人区一区二区三| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 一二三四在线观看免费中文在| 亚洲精品美女久久av网站| 中文精品一卡2卡3卡4更新| 黑人巨大精品欧美一区二区蜜桃| 日韩人妻精品一区2区三区| 午夜91福利影院| 成年人免费黄色播放视频| 国产精品欧美亚洲77777| 亚洲av在线观看美女高潮| 50天的宝宝边吃奶边哭怎么回事| 国产在线观看jvid| 久久九九热精品免费| netflix在线观看网站| 国产欧美日韩一区二区三 | 亚洲成av片中文字幕在线观看| 国产成人av教育| 麻豆乱淫一区二区| 大陆偷拍与自拍| 久久综合国产亚洲精品| 波多野结衣av一区二区av| 91国产中文字幕| 最近手机中文字幕大全| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 飞空精品影院首页| 电影成人av| 欧美乱码精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 美女扒开内裤让男人捅视频| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| 亚洲欧美精品自产自拍| 欧美日韩精品网址| 只有这里有精品99| 国产欧美日韩一区二区三区在线| 精品国产一区二区久久| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| 亚洲精品久久成人aⅴ小说| 久久久精品94久久精品| 久久av网站| 看免费av毛片| 成人亚洲欧美一区二区av| 亚洲精品国产av成人精品| 亚洲七黄色美女视频| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 飞空精品影院首页| 两人在一起打扑克的视频| videos熟女内射| 久久久久国产一级毛片高清牌| 美女中出高潮动态图| 国产亚洲午夜精品一区二区久久| 国产欧美日韩一区二区三 | 丝袜美足系列| 国产成人精品久久久久久| 欧美日韩av久久| 久久久亚洲精品成人影院| 国产日韩欧美视频二区| 观看av在线不卡| 久久精品国产a三级三级三级| 国产成人91sexporn| 亚洲欧美色中文字幕在线| 一级片'在线观看视频| 一区二区日韩欧美中文字幕| 欧美日韩视频高清一区二区三区二| 亚洲精品美女久久久久99蜜臀 | 性色av乱码一区二区三区2| www日本在线高清视频| 精品福利永久在线观看| 丰满饥渴人妻一区二区三| 美女主播在线视频| 日本91视频免费播放| 国产男女内射视频| 男女床上黄色一级片免费看| 午夜日韩欧美国产| 男女下面插进去视频免费观看| 亚洲专区国产一区二区| 日本午夜av视频| av天堂在线播放| 国产男人的电影天堂91| 免费看不卡的av| 看免费av毛片| 一级毛片黄色毛片免费观看视频| 97人妻天天添夜夜摸| 久久精品亚洲av国产电影网| 国产深夜福利视频在线观看| 又粗又硬又长又爽又黄的视频| 热99久久久久精品小说推荐| 国产成人av激情在线播放| 国产91精品成人一区二区三区 | 久久影院123| 国产欧美亚洲国产| av电影中文网址| 国产成人精品久久二区二区91| 一级黄片播放器| 午夜av观看不卡| 人人妻,人人澡人人爽秒播 | 国产亚洲精品第一综合不卡| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av涩爱| 9191精品国产免费久久| 伊人亚洲综合成人网| 午夜两性在线视频| 一区二区av电影网| 亚洲国产看品久久| 我的亚洲天堂| 国产三级黄色录像| 国产老妇伦熟女老妇高清| 嫁个100分男人电影在线观看 | 成人国语在线视频| 国产不卡av网站在线观看| 国产高清国产精品国产三级| 免费在线观看完整版高清| 久久国产亚洲av麻豆专区| 一级毛片黄色毛片免费观看视频| 99热全是精品| 精品一区二区三区四区五区乱码 | e午夜精品久久久久久久| 欧美97在线视频| 欧美大码av| 国产免费现黄频在线看| 9热在线视频观看99| 最新的欧美精品一区二区| 成年av动漫网址| 国产男人的电影天堂91| 男女床上黄色一级片免费看| 一本久久精品| 视频在线观看一区二区三区| www.自偷自拍.com| √禁漫天堂资源中文www| 国产在线视频一区二区| 99国产精品一区二区三区| 超色免费av| 天天躁夜夜躁狠狠躁躁| 熟女少妇亚洲综合色aaa.| 91精品三级在线观看| 国产在视频线精品| 超色免费av| 亚洲国产精品国产精品| 多毛熟女@视频| 九草在线视频观看| 男人爽女人下面视频在线观看| 亚洲av国产av综合av卡| 国产在线一区二区三区精| 日韩av免费高清视频| 熟女av电影| 精品一区二区三区av网在线观看 | 国产亚洲av片在线观看秒播厂| 国产欧美日韩综合在线一区二区| 亚洲欧美激情在线| 汤姆久久久久久久影院中文字幕| 欧美成人午夜精品| 母亲3免费完整高清在线观看| 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 国产一级毛片在线| 久久久精品国产亚洲av高清涩受| 极品少妇高潮喷水抽搐| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 午夜福利视频精品| 美女高潮到喷水免费观看| 久久 成人 亚洲| www.av在线官网国产| 99国产精品99久久久久| 国产av精品麻豆| 免费日韩欧美在线观看| 久久久久久久久久久久大奶| 国产视频一区二区在线看| 久久人妻熟女aⅴ| 免费日韩欧美在线观看| 亚洲av日韩在线播放| 好男人视频免费观看在线| 黄色视频不卡| 9191精品国产免费久久| 一级毛片黄色毛片免费观看视频| 女性被躁到高潮视频| 国产精品 国内视频| 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| 国产av国产精品国产| 亚洲成色77777| 婷婷色综合www| 亚洲av欧美aⅴ国产| 久久精品久久久久久久性| 欧美日韩成人在线一区二区| 精品福利观看| 精品国产超薄肉色丝袜足j| 久久九九热精品免费| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 免费少妇av软件| 激情五月婷婷亚洲| 欧美黄色片欧美黄色片| 亚洲 欧美一区二区三区| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区久久| 精品免费久久久久久久清纯 | 亚洲精品中文字幕在线视频| 精品熟女少妇八av免费久了| 欧美+亚洲+日韩+国产| 18禁裸乳无遮挡动漫免费视频| 男人添女人高潮全过程视频| 欧美少妇被猛烈插入视频| kizo精华| 国产av国产精品国产| 久久国产精品大桥未久av| 亚洲国产精品成人久久小说| 亚洲av国产av综合av卡| 国产一级毛片在线| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 国产精品 欧美亚洲| 精品人妻在线不人妻| 色婷婷av一区二区三区视频| avwww免费| 青青草视频在线视频观看| 最近中文字幕2019免费版| 亚洲国产精品成人久久小说| 香蕉国产在线看| 18禁观看日本| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 伦理电影免费视频| 午夜福利免费观看在线| 亚洲欧美中文字幕日韩二区| 十八禁人妻一区二区| 久久久久久久大尺度免费视频| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 国产精品三级大全| 黄片小视频在线播放| 一区二区三区四区激情视频| 老司机影院毛片| 热99国产精品久久久久久7| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区| 99香蕉大伊视频| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 久久亚洲国产成人精品v| 久久久久久久精品精品| 亚洲人成77777在线视频| 免费日韩欧美在线观看| 免费高清在线观看视频在线观看| 亚洲专区中文字幕在线| 国产男人的电影天堂91| 久久亚洲国产成人精品v| 中文字幕高清在线视频| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| 久久这里只有精品19|