• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The impacts of different surface boundary conditions for sea surface salinity on simulation in an OGCM

    2016-11-23 05:57:03JINJingBoZENGQingCunLIUHiLongnWULin
    關(guān)鍵詞:鹽量海表大西洋

    JIN Jing-Bo, ZENG Qing-Cun, LIU Hi-Longn WU Lin

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    dState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    The impacts of different surface boundary conditions for sea surface salinity on simulation in an OGCM

    JIN Jiang-Boa,b, ZENG Qing-Cuna, LIU Hai-Longcand WU Lind

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;

    dState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    An OGCM, LICOM2.0, was used to investigate the efects of diferent surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Exp1, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and diferent surface boundary conditions for SSS. A new surface salinity boundary condition that consists of both virtual and real salt fuxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt fux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.

    ARTICLE HISTORY

    Revised 24 May 2016

    Accepted 26 May 2016

    Surface salinity; boundary condition; real salt fux;Atlantic Meridional Overturning Circulation;global mean salinity

    鹽度是海洋的一個(gè)基本狀態(tài)變量,在海洋環(huán)流中起著重要的作用。少量的鹽通量擾動都會改變海洋的經(jīng)向翻轉(zhuǎn)環(huán)流和海表溫鹽場。因此,本文使用了海洋環(huán)流模式LICOM2.0研究了不同鹽度邊界條件對全球總鹽量、海表鹽度和大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流模擬的影響。結(jié)果表明:洋面上的弱恢復(fù)項(xiàng)對合理地模擬海表鹽度起著重要的作用,且對全球總鹽量起著遞增的作用;在虛鹽通量中使用模擬的海表鹽度而非定常的參考鹽度能夠更合理地模擬大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流;除此之外,含有實(shí)鹽通量的鹽度邊界條件能夠更好地維持全球總鹽量的守恒。

    1. Introduction

    The surface boundary condition for sea surface salinity(SSS) plays an important role in realistically simulating the SSS and Atlantic Meridional Overturning Circulation(AMOC) when using OGCMs (Rahmstorf, Marotzke, and Willebrand 1996; Grifes et al. 2005, 2009). A small perturbation of salt can modify the ocean's meridional circulation (Bryan 1986; Marotzke, Welander, and Willebrand 1988; Marotzke and Willebrand 1991; Weaver and Sarachik 1991; Weaver, Sarachik, and Marotzke 1991; Hofmann and Rahmstorf 2009) and cause a persistent climate drift(Rahmstorf, Marotzke, and Willebrand 1996). Many previous studies have shown that both the mean state and climate variability can be more realistically captured when an OGCM adequately represents freshwater fux (Fw) forcing(e.g. Stoufer et al. 2006; Zhang and Busalacchi 2009; Zhang et al. 2012). Therefore, a proper surface boundary condition for SSS is important for the performance of an OGCM.

    The combination of salinity relaxation and virtual salt fux is widely used in most climate ocean models as the surface boundary condition for SSS. Relatively strong salinity restoration is required to stabilize the AMOC and control the sea salinity drift in OGCMs (Grifes et al. 2005). In addition, weak salinity restoration is often used to correct the Fwat the sea surface, especially for precipitation (Grifes et al. 2005; Jin et al. 2016). However,the salinity restoring condition has no physical basis,whereby its purpose is to prevent the modeled SSS from departing from the observed climatological distribution of surface salinity. Besides, Beron-Vera, Ochoa, and Ripa(2000) indicated that this kind of restoring condition does not guarantee the conservation of total salt in the ocean. The common technical method in ocean models is to remove the global mean restoring salt fux at each time step for the purpose of conserving the total salt. The surface salinity is often replaced by a reference salinity(often assumed to be 34.7 psu) in the virtual salt fux to formulate a better-posed problem (Roullet, Guillaume and Madec 2000). However, this can cause signifcant biases in regions where SSS obviously difers from the reference state.

    Table 1.Descriptions of the surface boundary conditions for SSS in the diferent experiments, and the statistics calculated from the diferent experiments.

    New formulations of the salinity boundary condition can be adopted, which can improve upon the commonly used virtual salt fux with constant reference salinity by allowing for spatial correlations between Fwfux and SSS(Zeng and Mu 2002). The purpose of this study is to compare the simulated results when adopting diferent surface boundary conditions for SSS, especially for SSS and the AMOC, and to identify the efects of the diferent terms in the salinity boundary condition on the OGCM. Following this introduction, Section 2 briefy introduces the model and experiments. In Section 3, we present results from four experiments, and a brief summary of our results is provided in Section 4.

    2. Model and experimental design

    The OGCM used in this paper is LICOM2.0 (Liu et al. 2012). The model domain is between 78.5°S and 89.5°N, with a 1° zonal resolution. The meridional resolution is refned to 0.5° between 10°S and 10°N, and increases gradually from 0.5° to 1° between 10° and 20°. There are 30 levels in the vertical direction, with 10 m per layer in the upper 150 m. This resolution can resolve equatorial waves and capture the upper mixed layer and thermocline (Lin, Yu, and Liu 2013). A detailed description of the model can be found in Liu et al. (2012).

    The surface salinity boundary condition (SSBC) in LICOM2.0 is a blend of the virtual salinity fux and two restoring terms. The formula is as follows: where Fw= E - P - R, in which E, P, and R are evaporation,precipitation, and river runof, respectively; S0is the reference salinity, which is assigned as a constant (34.7 psu);WR is the weak restoring salinity condition in the open ocean, with a restoring timescale of 1 yr; and SR stands for the strong restoring term under sea ice, with a timescale of 30 days.

    To test the responses of the OGCM to the diferent surface boundary conditions for SSS, four experiments were designed, called CTRL, Exp1, Exp2, and Exp3, respectively. Descriptions of the four experiments are given in Table 1. In order to reveal the uncertainty efects of WR on simulation,the WR term is not included in Exp1. Exp2 is the same as Exp1, but the simulated SSS is used instead of the reference salinity, S0. A real salt fux (μS) resulting from wind and wave breaking is added in Exp3, which is a new well-posed formulation for the SSBC and can be written as:

    The simulated SSS is used in this formula. Here, μ is parameterized as a function of the 10-m wind speed U(μ = 0.002256U3).

    All of the external forcings used in these experiments are from CORE.v2 (Grifes et al. 2005) from Large and Yeager (2004). Since a sea-ice model was not used in the experiments, the SSS under ice needed to be restored to the observation from WOA09 (Antonov et al. 2010), with a restoring time scale of 30 days, in all the runs. Each experiment began from the same climatological mean salinity and temperature with a rest state. The global mean Fwfux was set to zero in every time step. All experiments were integrated for 500 years in order to reach a quasi-equilibrium deep circulation. The fnal 60 years (441—500) of the results were analyzed.

    3. Results

    Figure 1.Time series of global mean ocean salinity over 500 years simulated by diferent experiments.

    Figure 2.Time series of the surface salinity restoring term over 500 years from the diferent experiments.

    Figure 1 shows the time series of global mean salinity simulated in all four experiments. There is clear distinction among the trends in global mean salinity for each experiment with a diferent SSBC. CTRL reached a quasi-equilibrium state with a gradually increasing trend of about 0.0024 psu/100 yr for the last 100 years of the integration,with its global mean salinity being 34.745 psu averaged in the last year. The SR term played a dominate role in reducing the trend in global mean salinity in the remaining experiments (Figure 2). Since the global mean virtual salt fux (FwS0) is approximately zero, the increasing trend in global mean salinity in CTRL was mainly attributable to the efects of WR. Exp1, in which WR was excluded, exhibited a slow monotonic decreasing trend (approximately -0.0038 psu/100 yr) with a 500th-year mean salinity of 34.711 psu. Moreover, the signifcant increasing trend in Exp2 was about 0.0071 psu/100 yr during the last 100 years,which resulted from the evident positive relationship between Fwand SSS, although the decreasing efects of SR in Exp2 were also obvious (Figure 2). The global mean salinity (34.770 psu) of the 500th year for Exp2 was the largest among the experiments. Exp3 reached a near stationary state after 100 years, with a slight negative trend of -0.0002 psu/100 yr for the last 100 years. During the last year, the value in Exp3 was 34.723 psu, which was the closest experimental result to the observed value of 34.728 psu (Table 1). This clearly demonstrates the importance of the real salinity fux term compared with Exp2.

    Comparing the results of CTRL and Exp1, it was apparent that weak SSS restoration in the open sea increased the global mean salinity, whereas strong restoration under the sea-ice region caused a decrease.

    Figure 3.Simulated SSS (contours) and biases against observations from WOA09 (color shading) for (a) CTRL, (b) Exp1, (c) Exp2, and (d)Exp3.

    Figure 4.Simulated annual mean meridional overturning stream-function (1 Sv = 106m3s-1) in the Atlantic for (a) CTRL, (b) Exp1, (c)Exp2, and (d) Exp3.

    Figure 3 presents the biases in annual mean SSS against WOA09 (Antonov et al. 2010) for the diferent experiments. The most evident features are two large freshening SSS biases in Exp1 (Figure 3(b)): one appears between 40°S and 10°S in the Pacifc and Atlantic, and the other is located between 30°N and 45°N in the Pacifc. These large biases also occurred in Exp3 (Figure 3(d)). The root mean square diference (RMSD)was 0.686 psu in Exp3, which was closer to the CTRL value of 0.505 psu, as compared to that of Exp1 (Table 1). The two large freshening SSS biases were mainly due to biases of the forcing feld, such as precipitation and/or RH, in CORE.v2 (Jin et al. 2016). These large biases were partly reduced in Exp2(Figure 3(c)), especially for the subtropical western Pacifc. The reason may have been due to the biases of CORE.v2 being partly compensated by the positive relationship between Fwand SSS. Compared with CTRL, the only diference was the exclusion of the WR term in Exp1. This shows that the WR term in LICOM2.0 plays an important role in reducing the SSS bias.

    However, some common biases also appeared in the four experiments. All the experiments exhibited a saltier SSS in the Laptev Sea and East Siberian Sea compared to observation, which was associated with the absence of a sea-ice component in our model. In the North Atlantic subpolar region, the SSS simulated in all of the four experiments exhibited obvious fresh biases. This was mainly because the simulated path of the Gulf Stream could not reach the North Atlantic subpolar region. As a result, there was less transportation of warm, salty water to higher latitudes. A more specifc study on this issue is needed. The corresponding SST simulated in all of the experiments was also colder in this region, as compared with WOA09 (fgure not shown). This would have reduced the simulated evaporation fux, leading to a fresher SSS.

    Figure 4 illustrates the Atlantic meridional overturning stream-function for CTRL, Exp1, Exp2, and Exp3. All of the four experiments refected the main structure of the AMOC well, indicating an upper cell between 500 m and 3,000 m and a bottom cell below. The former is related to the North Atlantic Deep Water (NADW) and the latter to the Antarctic Bottom Water.

    The most striking diference between the diferent experiments was the strength of the AMOC simulated. The results from Exp2 and Exp3 (Figure 4(c) and (d)) presented the most vigorous AMOC, while CTRL (Figure 4(a)) was the weakest among the four experiments. The maximum NADW at 731 m and 36°N in CTRL was 10.8 Sv, whereas it was 11.3, 13.2, and 13.0 Sv for Exp1, Exp2, and Exp3,respectively. This strengthening is mainly related to the saltier seawater in the Labrador Sea and Norwegian Sea,but these maximum values of NADW for Exp2 and Exp3 were closer to the observed value of ~15 Sv at about 40°N(Ganachaud and Wunsch 2000, 2003; Lumpkin, Speer, and Koltermann 2008). This indicates that the depicted AMOC strength can be improved with the virtual salt fux by adopting predicted SSS instead of the constant reference salinity. Besides, compared with Exp2, the AMOC simulated in Exp3 did not change much, since the SSS diference between Exp2 and Exp3 was minimal in the high latitudes of the North Atlantic (fgure not shown).

    4. Discussion and conclusion

    This study investigated the efects of diferent surface boundary conditions for SSS on simulations of global mean salinity, SSS and the AMOC, using an OGCM (LICOM2.0). It was found that, in the default salinity boundary condition setting in LICOM2.0, the WR term in the open sea plays an essential role in reducing the simulated SSS bias and increasing the global mean salinity, while the SR term under the sea-ice region decreases the global mean salinity. The new surface salinity boundary condition consisting of both virtual and real salt fuxes at the oceanic surface prohibited a monotonous increasing or decreasing global mean salinity trend, and basically preserved the long-term conservation of global mean salinity. Furthermore, the simulated AMOC strength was also much closer to observations, although the freshening SSS bias was large without the WR term.

    A number of biases caused by ocean dynamics were also detected, such as freshening biases in the North Atlantic and subtropical regions in the Pacifc, and a weak NADW; although, both Exp2 and Exp3 ofered some improvements in this regard. The causes of these biases need further investigation.

    Acknowledgements

    The authors are very grateful to Dr LIN Pengfei for valuable discussions, and Mr. YU Yi for some diagnostic programs.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was partially supported by the National Basic Research Program of China [grant number 2013CB956204]; the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403], [grant number XDA11010304];the National Natural Science Foundation of China [grant number 41305028].

    References

    Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov,H. E. Garcia, O. K. Baranova, et al. 2010. World Ocean Atlas 2009, Volume. 2, Salinity. S. Levitus, Ed., 184. Washington, DC: NOAA Atlas NESDIS 69, U.S. Government Printing Ofce.

    Beron-Vera, F. J., J. Ochoa, and P. Ripa. 2000. “A Note on Boundary Conditions for Salt and Freshwater Balances.” Ocean Modeling 1: 111—118.

    Bryan, F. 1986.“High-latitude Salinity Efects and Interhemispheric Thermohaline Circulations.” Nature 323: 301—304.

    Ganachaud, A., and C. Wunsch. 2000. “Improved Estimates of Global Ocean Circulation, Heat Transport and Mixing from Hydrographic Data.” Nature 408: 453—457.

    Ganachaud, A., and C. Wunsch. 2003. “Large-scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment.” Journal of Climate 16: 696—705.

    Grifes, S. M., A. Gnanadesikan, K. W. Dixon, J. P. Dunne, R. Gerdes,M. J. Harrison, A. Rosati, et al. 2005. “Formulation of an Ocean Model for Global Climate Simulations.” Ocean Science 1: 45—79. Grifes, S. M., A. Biastoch, C. B?ning, F. Bryan, G. Danabasoglu, E. P. Chassignet, M. H. England, et al. 2009. “Coordinated Ocean-Ice Reference Experiments (COREs).” Ocean Modelling 26: 1—46. Hofmann, M., and S. Rahmstorf. 2009. “On the Stability of the Atlantic Meridional Overturning Circulation.” Proceedings of the National Academy of Sciences 106 (49): 20584—20589.

    Jin, J.-B., Q.C. Zeng, H.-L. Liu, and L. Wu. 2016. “Freshening Biases in the Freshwater Flux of Coordinated Ocean-Ice Reference Experiment Data.” Atmospheric and Oceanic Science Letters 9(5): 361—365. doi:10.1080/16742834.2016.1203244.

    Large, W., and S. Yeager. 2004. “Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies.” NCAR/TN-460+STR, 1—105.

    Lin, P. F., Y. Q. Yu, and H. L. Liu. 2013. “Long-Term Stability and Oceanic Mean State Simulated by the Coupled Model FGOALS-S2.” Advances in Atmospheric Sciences 30: 175—192.

    Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang. 2012. “The Baseline Evaluation of LASG/IAP Climate System Ocean Model (LICOM)Version 2.0.” Acta Meteorologica Sinica 26: 318—329.

    Lumpkin, R., K. Speer, and K. Koltermann. 2008. “Transport across 48°N in the Atlantic Ocean.” Journal of Physical Oceanography 38: 733—752.

    Marotzke, J., P. Welander, and J. Willebrand. 1988. “Instability and Multiple Steady States in a Meridional-Plane Model of the Thermohaline Circulation.” Tellus a 40 (2): 162—172.

    Marotzke, J., and J. Willebrand. 1991. “Multiple Equilibria of the Global Thermohaline Circulation.” Journal of Physical Oceanography 21: 1372—1385.

    Rahmstorf, S., J. Marotzke, and J. Willebrand. 1996. “Stability of the Thermohaline Circulation.” In The Warm Water Sphere of the North Atlantic ocean, edited by W. Krauss, 129—157. Stuttgart: Borntraeger.

    Roullet, Guillaume, and Gurvan Madec. 2000. “Salt Conservation,F(xiàn)ree Surface, and Varying Levels: A New Formulation for Ocean General Circulation Models.” Journal of Geophysical Research: Oceans 105: 23927—23942.

    Stouffer, R. J., J. Yin, J. M. Gregory, K. W. Dixon, M. J. Spelman,W. Hurlin, A. J. Weaver, et al. 2006. “Investigating the Causes of the Response of the Thermohaline Circulation to past and Future Climate Changes.” Journal of Climate 19: 1365—1387.

    Weaver, A. J., and E. S. Sarachik. 1991. “The Role of Mixed Boundary Condition in Numerical Models of the Ocean's Climate.” Journal of Physical Oceanography 21: 1470—1493.

    Weaver, A. J., E. S. Sarachik, and J. Marotzke. 1991. “Freshwater Flux Forcing of Decadal and Interdecadal Oceanic Variability.”Nature 353 (31): 836—838.

    Zeng, Qing-cun, and Mu Mu. 2002. “The Design of Compact and Internally Consistent Model of Climate System Dynamics.”Chinese J. Atmos. Sci. 26 (2): 107—113.

    Zhang, R.-H., and A. J. Busalacchi. 2009. “Freshwater Flux (FWF)-induced Oceanic Feedback in a Hybrid Coupled Model of the Tropical Pacifc.” Journal of Climate 22 (4): 853—879.

    Zhang, R.-H., F. Zheng, J. S. Zhu, Y. H. Pei, Q. Zheng, and Z. G. Wang. 2012. “Modulation of El Ni?o-Southern Oscillation by Freshwater Flux and Salinity Variability in the Tropical Pacifc.”Advances in Atmospheric Sciences 29 (4): 647—660.

    表面鹽度; 邊界條件; 實(shí)鹽通量; 大西洋經(jīng)圈翻轉(zhuǎn)環(huán)流; 全球平均鹽度

    4 May 2016

    CONTACT ZENG Qing-Cun zqc@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    鹽量海表大西洋
    揭開鹵水桶的秘密(一)
    烹飪世界(2024年1期)2024-09-20 00:00:00
    鹽量對鹽煮干制方竹筍品質(zhì)的影響
    基于無人機(jī)的海表環(huán)境智能監(jiān)測系統(tǒng)設(shè)計(jì)與應(yīng)用
    2016與1998年春季北大西洋海表溫度異常的差異及成因
    融合海表溫度產(chǎn)品在渤黃東海的對比分析及初步驗(yàn)證
    太陽總輻照度對熱帶中太平洋海表溫度年代際變化的可能影響
    大西洋海雀,你真倔
    飛越大西洋
    醋和鹽分兩次放
    益壽寶典(2018年17期)2018-01-26 15:44:57
    暢游于大西洋彼岸
    免费日韩欧美在线观看| 国内毛片毛片毛片毛片毛片| 国产极品粉嫩免费观看在线| 搡老乐熟女国产| 成人永久免费在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 亚洲五月婷婷丁香| 丰满人妻熟妇乱又伦精品不卡| 韩国av一区二区三区四区| 日本黄色视频三级网站网址 | a级毛片在线看网站| 18禁黄网站禁片午夜丰满| 成人18禁在线播放| 欧美激情久久久久久爽电影 | 成年版毛片免费区| 新久久久久国产一级毛片| 深夜精品福利| 黄片大片在线免费观看| √禁漫天堂资源中文www| 亚洲国产欧美网| 国产亚洲av高清不卡| 精品亚洲成a人片在线观看| 18禁国产床啪视频网站| 亚洲精华国产精华精| 夜夜夜夜夜久久久久| 啦啦啦视频在线资源免费观看| 国产精品99久久99久久久不卡| 国产男靠女视频免费网站| 高清视频免费观看一区二区| 中文欧美无线码| 狂野欧美激情性xxxx| 黄色毛片三级朝国网站| 老熟妇仑乱视频hdxx| 少妇被粗大的猛进出69影院| 午夜福利在线观看吧| 最新在线观看一区二区三区| 精品久久久精品久久久| 亚洲精品在线观看二区| 亚洲av电影在线进入| 欧美精品一区二区免费开放| 亚洲在线自拍视频| 动漫黄色视频在线观看| 欧美黄色片欧美黄色片| 视频在线观看一区二区三区| 黑人猛操日本美女一级片| 亚洲自偷自拍图片 自拍| 日韩免费av在线播放| 欧美黄色片欧美黄色片| a级毛片在线看网站| 成年女人毛片免费观看观看9 | 久热这里只有精品99| 中文字幕另类日韩欧美亚洲嫩草| 极品人妻少妇av视频| 国产在线精品亚洲第一网站| 激情视频va一区二区三区| 亚洲片人在线观看| 国产精品久久久久久人妻精品电影| 操美女的视频在线观看| 看黄色毛片网站| 欧美 日韩 精品 国产| 亚洲成人国产一区在线观看| 18在线观看网站| 国产男女内射视频| 亚洲va日本ⅴa欧美va伊人久久| 乱人伦中国视频| 亚洲熟妇熟女久久| 在线观看免费午夜福利视频| 黄色毛片三级朝国网站| 自线自在国产av| 久久精品国产清高在天天线| 午夜91福利影院| 精品国产亚洲在线| 99re6热这里在线精品视频| 亚洲人成电影观看| 夜夜躁狠狠躁天天躁| 亚洲精品成人av观看孕妇| 国产在线观看jvid| 老司机影院毛片| 久久久国产成人免费| 国产片内射在线| 成年版毛片免费区| 91麻豆精品激情在线观看国产 | 精品午夜福利视频在线观看一区| 国产免费男女视频| 91成人精品电影| 黑丝袜美女国产一区| 久久这里只有精品19| 黄色怎么调成土黄色| 变态另类成人亚洲欧美熟女 | 日韩免费av在线播放| 欧美日本中文国产一区发布| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| 91字幕亚洲| 男女床上黄色一级片免费看| 久久久国产成人免费| 久久青草综合色| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看| 中文欧美无线码| 国产精品一区二区免费欧美| ponron亚洲| 男女床上黄色一级片免费看| bbb黄色大片| 亚洲色图综合在线观看| 亚洲av成人不卡在线观看播放网| 久久人妻福利社区极品人妻图片| 很黄的视频免费| 9191精品国产免费久久| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 免费观看a级毛片全部| 国产成人av激情在线播放| 黄网站色视频无遮挡免费观看| a级片在线免费高清观看视频| 1024视频免费在线观看| xxx96com| 999久久久精品免费观看国产| 捣出白浆h1v1| 首页视频小说图片口味搜索| 变态另类成人亚洲欧美熟女 | 精品一区二区三卡| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 午夜影院日韩av| 91av网站免费观看| 欧美大码av| 亚洲精品在线美女| 色94色欧美一区二区| 免费不卡黄色视频| 欧美日韩瑟瑟在线播放| 亚洲熟妇中文字幕五十中出 | 黄色a级毛片大全视频| 亚洲精品国产区一区二| 视频区欧美日本亚洲| 欧美丝袜亚洲另类 | 黑人欧美特级aaaaaa片| 三上悠亚av全集在线观看| 国产三级黄色录像| 黄色片一级片一级黄色片| 亚洲午夜理论影院| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看| 免费av中文字幕在线| 国产乱人伦免费视频| 国产蜜桃级精品一区二区三区 | 亚洲国产欧美日韩在线播放| 久久精品人人爽人人爽视色| 91麻豆av在线| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 精品一区二区三区四区五区乱码| 天天躁日日躁夜夜躁夜夜| 无遮挡黄片免费观看| 天堂中文最新版在线下载| 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看| 深夜精品福利| 一进一出抽搐动态| 757午夜福利合集在线观看| 国产精品香港三级国产av潘金莲| 18禁裸乳无遮挡免费网站照片 | 涩涩av久久男人的天堂| 99国产精品一区二区蜜桃av | 天堂√8在线中文| 日韩有码中文字幕| 亚洲国产精品合色在线| 黄色女人牲交| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 人人妻,人人澡人人爽秒播| 性色av乱码一区二区三区2| 成人三级做爰电影| 美女视频免费永久观看网站| 久久中文字幕一级| 校园春色视频在线观看| 欧美日韩黄片免| 国产一区二区激情短视频| 女警被强在线播放| 国产亚洲精品一区二区www | 怎么达到女性高潮| 亚洲精品在线观看二区| 久久久久国内视频| 王馨瑶露胸无遮挡在线观看| 热99久久久久精品小说推荐| 久久午夜亚洲精品久久| 国产成人精品久久二区二区免费| 国产不卡一卡二| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 巨乳人妻的诱惑在线观看| 亚洲av欧美aⅴ国产| 国产高清国产精品国产三级| 99久久人妻综合| 亚洲精品中文字幕一二三四区| www.熟女人妻精品国产| 美女视频免费永久观看网站| 国产欧美亚洲国产| 十分钟在线观看高清视频www| av电影中文网址| 久久精品国产亚洲av香蕉五月 | 黄色 视频免费看| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 亚洲国产精品合色在线| 人人妻人人澡人人爽人人夜夜| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| 一边摸一边抽搐一进一小说 | 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 国产又爽黄色视频| 亚洲欧美激情综合另类| 美女视频免费永久观看网站| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 人妻一区二区av| 可以免费在线观看a视频的电影网站| 亚洲欧美激情在线| 51午夜福利影视在线观看| 国产激情久久老熟女| 亚洲专区中文字幕在线| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| av在线播放免费不卡| 午夜精品在线福利| 国产精品1区2区在线观看. | 久久青草综合色| 一a级毛片在线观看| 操出白浆在线播放| 在线观看www视频免费| 久久中文字幕一级| 国产99久久九九免费精品| av在线播放免费不卡| 国产国语露脸激情在线看| 欧美日韩精品网址| 亚洲精品中文字幕一二三四区| 免费观看精品视频网站| 欧美午夜高清在线| 色综合欧美亚洲国产小说| 国产一区二区三区视频了| 天天添夜夜摸| 国产精品永久免费网站| www日本在线高清视频| 少妇被粗大的猛进出69影院| 人妻久久中文字幕网| a级毛片黄视频| 久热这里只有精品99| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 国产av一区二区精品久久| a在线观看视频网站| 91九色精品人成在线观看| videos熟女内射| 精品免费久久久久久久清纯 | av在线播放免费不卡| 午夜精品在线福利| 成年版毛片免费区| 国产精品.久久久| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| 国产一区二区激情短视频| av一本久久久久| 国产99白浆流出| 天天操日日干夜夜撸| 久久久久久久久免费视频了| videos熟女内射| 午夜精品在线福利| 又黄又粗又硬又大视频| 欧美激情极品国产一区二区三区| 国产激情久久老熟女| 亚洲少妇的诱惑av| 国产精品偷伦视频观看了| 99国产精品一区二区三区| 国产一卡二卡三卡精品| 黄色片一级片一级黄色片| 一区二区三区激情视频| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 少妇被粗大的猛进出69影院| 精品欧美一区二区三区在线| 999精品在线视频| 一级,二级,三级黄色视频| 黄色a级毛片大全视频| 成人国产一区最新在线观看| 亚洲五月天丁香| 伦理电影免费视频| 久久精品熟女亚洲av麻豆精品| 亚洲人成伊人成综合网2020| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 久久久久久久久久久久大奶| 岛国在线观看网站| 国产午夜精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 看片在线看免费视频| 女人被躁到高潮嗷嗷叫费观| 国产伦人伦偷精品视频| 亚洲人成电影免费在线| 一级毛片精品| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 国产av又大| 一二三四社区在线视频社区8| 欧美乱妇无乱码| 制服人妻中文乱码| 国产亚洲一区二区精品| 亚洲视频免费观看视频| 啪啪无遮挡十八禁网站| 婷婷丁香在线五月| 老司机深夜福利视频在线观看| 亚洲精品在线观看二区| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 新久久久久国产一级毛片| 男女床上黄色一级片免费看| 亚洲七黄色美女视频| 欧美日韩成人在线一区二区| 精品少妇久久久久久888优播| 乱人伦中国视频| 亚洲aⅴ乱码一区二区在线播放 | 大型av网站在线播放| 亚洲综合色网址| 久久国产精品影院| 国产欧美日韩一区二区三| 一级片免费观看大全| 久久精品亚洲熟妇少妇任你| 亚洲av成人av| 欧美中文综合在线视频| 美女午夜性视频免费| 国产精华一区二区三区| 欧美性长视频在线观看| 国产精品二区激情视频| 欧美精品av麻豆av| 午夜影院日韩av| 日韩大码丰满熟妇| 亚洲精品一卡2卡三卡4卡5卡| 99在线人妻在线中文字幕 | 免费日韩欧美在线观看| 俄罗斯特黄特色一大片| 亚洲视频免费观看视频| 人妻久久中文字幕网| 动漫黄色视频在线观看| 亚洲熟女精品中文字幕| 成年版毛片免费区| 国产精品自产拍在线观看55亚洲 | 99精品欧美一区二区三区四区| 国产区一区二久久| 新久久久久国产一级毛片| cao死你这个sao货| 亚洲色图综合在线观看| 久热这里只有精品99| 国产精品久久电影中文字幕 | 欧美黄色片欧美黄色片| 久久精品成人免费网站| 久久人妻av系列| 国产高清视频在线播放一区| 男女下面插进去视频免费观看| 成熟少妇高潮喷水视频| 欧美激情久久久久久爽电影 | 夜夜爽天天搞| 老司机福利观看| 亚洲色图av天堂| 欧美黄色片欧美黄色片| 久久久久国产一级毛片高清牌| 热re99久久精品国产66热6| 这个男人来自地球电影免费观看| 高清欧美精品videossex| 日韩欧美三级三区| 大片电影免费在线观看免费| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 亚洲va日本ⅴa欧美va伊人久久| 91精品三级在线观看| 校园春色视频在线观看| 亚洲精品久久成人aⅴ小说| 久99久视频精品免费| 欧美不卡视频在线免费观看 | 免费少妇av软件| 制服诱惑二区| 97人妻天天添夜夜摸| 久久天躁狠狠躁夜夜2o2o| 热re99久久国产66热| av视频免费观看在线观看| 日韩欧美在线二视频 | 人成视频在线观看免费观看| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品久久久久5区| 亚洲精品久久午夜乱码| 黄色视频不卡| 黄色丝袜av网址大全| 精品人妻1区二区| 久久久国产成人免费| 精品福利观看| 亚洲人成77777在线视频| 看片在线看免费视频| 99热只有精品国产| 亚洲avbb在线观看| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 久久久久久人人人人人| av片东京热男人的天堂| 三上悠亚av全集在线观看| 欧美日韩成人在线一区二区| 999久久久精品免费观看国产| 亚洲七黄色美女视频| 看黄色毛片网站| 人人妻人人爽人人添夜夜欢视频| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 首页视频小说图片口味搜索| 国产精品久久久av美女十八| 99久久国产精品久久久| 丝袜在线中文字幕| 亚洲人成电影免费在线| 亚洲精品国产区一区二| 丝袜人妻中文字幕| 动漫黄色视频在线观看| 国产黄色免费在线视频| 亚洲色图av天堂| 一夜夜www| 亚洲欧美一区二区三区久久| 日本a在线网址| 男男h啪啪无遮挡| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 欧美激情 高清一区二区三区| 老司机午夜福利在线观看视频| 飞空精品影院首页| 很黄的视频免费| 少妇粗大呻吟视频| 久久性视频一级片| 伊人久久大香线蕉亚洲五| 99riav亚洲国产免费| 国产精品国产高清国产av | 国产高清videossex| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 日韩精品免费视频一区二区三区| 最新在线观看一区二区三区| av视频免费观看在线观看| 欧美另类亚洲清纯唯美| 国产一区有黄有色的免费视频| 午夜成年电影在线免费观看| 亚洲欧美色中文字幕在线| 后天国语完整版免费观看| x7x7x7水蜜桃| 国产亚洲av高清不卡| 欧美在线一区亚洲| 老司机亚洲免费影院| 在线观看午夜福利视频| 手机成人av网站| 18禁美女被吸乳视频| 97人妻天天添夜夜摸| 香蕉丝袜av| 亚洲av成人一区二区三| 免费女性裸体啪啪无遮挡网站| 看片在线看免费视频| 99在线人妻在线中文字幕 | 久久久久久久午夜电影 | 王馨瑶露胸无遮挡在线观看| 男女免费视频国产| 欧美日韩国产mv在线观看视频| av有码第一页| 久久精品亚洲熟妇少妇任你| 欧美激情高清一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲三区欧美一区| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 一区二区三区精品91| 黄网站色视频无遮挡免费观看| 女警被强在线播放| 12—13女人毛片做爰片一| 在线观看免费日韩欧美大片| 看黄色毛片网站| 亚洲av美国av| 精品一区二区三区四区五区乱码| 亚洲专区国产一区二区| 51午夜福利影视在线观看| 国产成人av激情在线播放| 亚洲少妇的诱惑av| 国产黄色免费在线视频| 男男h啪啪无遮挡| 国产欧美日韩一区二区三| 日本一区二区免费在线视频| 成人精品一区二区免费| 少妇被粗大的猛进出69影院| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 中出人妻视频一区二区| 午夜福利视频在线观看免费| 国产一区在线观看成人免费| 亚洲精品乱久久久久久| 国产xxxxx性猛交| 制服人妻中文乱码| 一进一出好大好爽视频| 男女高潮啪啪啪动态图| 成人亚洲精品一区在线观看| 热re99久久国产66热| 在线看a的网站| 超碰成人久久| 99国产综合亚洲精品| 国产精品1区2区在线观看. | 99久久精品国产亚洲精品| 中文亚洲av片在线观看爽 | 看黄色毛片网站| 久久久国产精品麻豆| 窝窝影院91人妻| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美| 丰满的人妻完整版| 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 亚洲精品一卡2卡三卡4卡5卡| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 久久99一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 建设人人有责人人尽责人人享有的| 久久精品成人免费网站| 一区二区三区激情视频| 女人被狂操c到高潮| 国产成人系列免费观看| 50天的宝宝边吃奶边哭怎么回事| a级片在线免费高清观看视频| 午夜免费鲁丝| 日本a在线网址| 国产精品国产高清国产av | 黄色成人免费大全| 电影成人av| www日本在线高清视频| 国产欧美日韩一区二区精品| 成人特级黄色片久久久久久久| 一进一出好大好爽视频| 国产精品偷伦视频观看了| 亚洲少妇的诱惑av| x7x7x7水蜜桃| 欧美激情 高清一区二区三区| 精品久久久精品久久久| 岛国毛片在线播放| 欧美日韩精品网址| 亚洲人成伊人成综合网2020| 丰满的人妻完整版| 亚洲精品av麻豆狂野| 久久亚洲真实| 亚洲专区国产一区二区| e午夜精品久久久久久久| 91麻豆精品激情在线观看国产 | 看黄色毛片网站| a级毛片在线看网站| 中文亚洲av片在线观看爽 | 在线永久观看黄色视频| 国产在线精品亚洲第一网站| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品古装| 老司机午夜十八禁免费视频| 亚洲精品一二三| 人妻丰满熟妇av一区二区三区 | 黄色a级毛片大全视频| 久久久久久久午夜电影 | 在线观看66精品国产| 日本wwww免费看| 国产成人系列免费观看| 啦啦啦在线免费观看视频4| 亚洲熟妇熟女久久| 国产精品免费视频内射| 亚洲免费av在线视频| 欧美精品高潮呻吟av久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲一码二码三码区别大吗| 亚洲中文字幕日韩| 18禁裸乳无遮挡动漫免费视频| www.999成人在线观看| 精品卡一卡二卡四卡免费| 国产精华一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产精品永久免费网站| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 亚洲欧美激情综合另类| 99re6热这里在线精品视频| 中文字幕av电影在线播放| 免费看十八禁软件| 国产成人系列免费观看| 国产日韩一区二区三区精品不卡| 在线看a的网站| ponron亚洲| 色综合欧美亚洲国产小说| 色94色欧美一区二区| 超碰成人久久| 无人区码免费观看不卡| 国产不卡av网站在线观看| 国产日韩一区二区三区精品不卡| 最近最新中文字幕大全免费视频| 三上悠亚av全集在线观看| 国产精品亚洲av一区麻豆| 成年人免费黄色播放视频| 久久精品国产综合久久久| 18在线观看网站| 国产在线观看jvid| 精品久久蜜臀av无| 91成年电影在线观看| 亚洲成人免费电影在线观看| 精品国产一区二区久久| 午夜福利,免费看| 一区二区三区国产精品乱码| 18禁裸乳无遮挡免费网站照片 |