• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discrepancies in boreal summer monsoon rainfall between GPCP and CMAP products during 1979-2014

    2016-11-23 02:37:13HAOYuQinZHUCongWenndLIUBoQi
    關鍵詞:變率北半球年際

    HAO Yu-Qin, ZHU Cong-Wennd LIU Bo-Qi,b

    aInstitute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    Discrepancies in boreal summer monsoon rainfall between GPCP and CMAP products during 1979-2014

    HAO Yu-Qiana, ZHU Cong-Wenaand LIU Bo-Qia,b

    aInstitute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    This study compares the boreal summer monsoon (BSM) precipitation between the GPCP and CMAP products during 1979—2014. The authors apply temporal, spatial correlation and error evaluation methods to evaluate their discrepancies in terms of BSM distribution and summer rainfall interannual variability over the fve BSM regions. The results suggest that the climatology of the seasonal evolution of BSM rainfall is refected well in both datasets, and the summer rainfall anomalies of the two products are highly correlated. However, major diversity is found in the rainfall pattern and the magnitude in climatology over the oceanic monsoon areas, especially the western North Pacifc monsoon region, as well as in the interannual variability of summer rainfall anomalies over the North Africa and India monsoon regions. Although inconsistency between the two datasets is evident before the 1990s, the use of their arithmetic mean is demonstrated to be an efcient way to reduce the uncertainty between them.

    ARTICLE HISTORY

    Revised 3 March 2016

    Accepted 7 March 2016

    GPCP; CMAP; boreal summer monsoon; interannual

    variability; data evaluation

    GPCP和CMAP資料均廣泛應用于降水變率的研究中,然而兩者在描述北半球季風區(qū)降水年際變率上的差異較少受到關注。本文研究了1979—2014年北半球5大季風區(qū)降水因資料選擇造成的研究結果差異。研究發(fā)現(xiàn):在氣候態(tài)上,西北太平洋季風區(qū)夏季降水的空間分布型和降水量差異較大;在年際變率上,北非季風區(qū)和印度季風區(qū)夏季降水存在較大差異。兩者的差異在90年代后明顯減小。一般來說,兩者的算數(shù)平均可以減少資料不確定性帶來的影響。

    1. Introduction

    Several gauge—satellite merged precipitation products have been developed since the 1970s and used for estimating precipitation amounts (Yin, Gruber, and Arkin 2004). Among these products, the GPCP and CMAP products have been particularly widely utilized, due to their global coverage and long-term records. For instance, the global monsoon, characterized by the annual variation in rainfall, has been recognized in detail, while the regional monsoons are treated as its components with intense precipitation. Since the interannual variability of summer rainfall varies across the diferent monsoon regions (Wang et al. 2012), its quantifcation and understanding within the context of the global monsoon is crucial.

    The GPCP and CMAP datasets are widely utilized to examine precipitation variation on diferent timescales,but whether to use either GPCP or CMAP to investigate summer monsoon rainfall is arbitrary. For example, Lin,Zhou, and Qian (2014) used the GPCP product as the observation to evaluate reanalysis data when studying global monsoon precipitation changes, and Zhang and Cook (2014) used GPCP together with validation from TRMM to study the West African monsoon. Besides, Zhu et al. (2005) used the CMAP data-set to develop an East Asian monsoon index to represent the seasonal and interannual variations of the East Asian (EA) monsoon, and Janicot(2009) also used the CMAP product to compare the variability of the Indian (IND) and African monsoons at diferent time scales. Some studies have used the arithmetic mean to replace the original data-set, but the advantages have not been fully discussed. For instance, Hsu, Li, and Wang(2011) used both GPCP and CMAP to study global monsoon trends, and Prakash et al. (2015) used both GPCP and CMAP to study the Indian monsoon. Indeed, specifc analysis procedures and certain additional types of input data may produce distinct results between the two datasets(Gruber et al. 2000; Yin, Gruber, and Arkin 2004), leading to diferent variabilities of summer monsoon rainfall at both seasonal and interannual timescales. Recent studies havepointed out the diferent features of monsoon rainfall over land and its surrounding area as depicted by the GPCP and CMAP products (Prakash et al. 2015; Qi and Wang 2015). Meanwhile, the discrepancies over the BSM regions as a whole remain unclear, especially over the oceans where gauge observations are lacking.

    The GPCP and CMAP products have some satellite input data in common, such as SSM/I emissions estimates, SSM/I scattering estimates, and GOES precipitation index and outgoing long-wave radiation (OLR) precipitation index estimates (Hufman et al. 1997; Adler et al. 2003). However,the two products difer in terms of: (1) some of their gauge data, such as the uncorrected gauges used by CMAP in the tropical Pacifc (Gruber et al. 2000), which may result in the diferent magnitudes of precipitation over land areas and the tropical oceans in the climatology (Yin, Gruber,and Arkin 2004); and (2) their merging procedures (Xie and Arkin 1997; Gruber et al. 2000), which implies a distinction in the intensity of BSM rainfall between the two datasets.

    In the present study, we examine the recent releases of the GPCP and CMAP products during the period 1979—2014, and evaluate the quality of the data in indicating the climatological pattern and the interannual variability over the BSM regions. We apply the TRMM satellite product and global gauge observations to evaluate the similarities and discrepancies in BSM precipitation between the two datasets. The focus is on the climatology and interannual timescale over the BSM regions, and the aim is to try to provide an efective method for decreasing the uncertainty when studying the variation of boreal monsoon precipitation during a period demonstrating high levels of inconsistency.

    2. Data and methods

    The datasets used include the monthly GPCP (Hufman et al. 1997, 2009; Adler et al. 2003) and monthly CMAP (Xie and Arkin 1997) from 1979 to 2014, with a spatial resolution of 2.5° × 2.5°. In addition, the satellite-observed precipitation of TRMM 3B43 Version 7 during 1998—2014 is used to inspect the performance of the two datasets, in conjunction with the global gauge observations from the Global Historical Climatology Network (GHCN) Version 1.0 during 1979—1997. The TRMM product (Hufman et al. 2010), provided by the Distributed Active Archive Center, GSFC, NASA, is available via http://trmm/gsfc.nasa.gov/. The GHCN records (Vose et al. 1992) include 31,446 global stations, subjected to precise data integration and multiple statistical tests.

    The focus in this work is on the area-averaged summer monsoon rainfall anomalies during 1979—2014 over the fve monsoon regions of the Northern Hemisphere,including the tropical monsoon over North America(NAM), North Africa (NAF), India (IND), and the western North Pacifc (WNP), and the subtropical summer monsoon over EA (Wang et al. 2012). The interannual variability of each element is obtained after removing the linear trend and the 11-yr running mean from its original value. The absolute diference and relative diference are calculated to reveal the discrepancies between GPCP and CMAP. In addition, temporal and spatial correlations are employed to evaluate the similarity in the rainfall anomalies between the two products over the monsoon regions, with the spatial correlation measured using the anomaly correlation coefcient (ACC) (Murphy and Epstein 1989). In addition,the frequency of discrepancy (defned as the ratio of the concurrent negative phases of rainfall anomalies between GPCP and CMAP in a 36-yr record), the RMSE (Levinson 1947) and the Taylor diagram (Taylor 2001) are used to quantitatively evaluate the interannual inconsistency between the two datasets. Meanwhile, the ability of the arithmetic mean in reducing the uncertainty in rainfall variability over the BSM regions is discussed.

    3. Results

    3.1. Climatological pattern

    We begin by investigating the climatological pattern of the BSM based on the two diferent datasets. Following the defnition of Wang et al. (2012), the monsoon domain is defned here as where the local summer-minus-winter precipitation rate exceeds 2.5 mm d-1and the local summer precipitation exceeds 55% of the annual total. Considering the distinct characteristics of monsoon rainfall and circulation between the eastern Tibetan Plateau (TP) and India(Chu et al. 2011), we exclude the TP area (i.e. topography above 1500 m) from the IND monsoon region defned by Wang et al. (2012), as shown in Figure 1.

    It is apparent that the BSM domains are generally refected in both the GPCP and CMAP products (Figure 1). Nonetheless, there are diferences in the domains, mostly in the WNP and EA monsoon regions. Specifcally, the CMAP WNP monsoon region is larger and extends eastward to 165°E (Figure 1(b)), while the GPCP EA monsoon region is larger and with its northern boundary near 56°N (Figure 1(a)). Thus, we select common domains for the subsequent data evaluation; the domain details are presented in Table 1.

    Figure 1.The boreal monsoon regions based on (a) GPCP and (b) CMAP. Red (blue) marks indicate common (distinct) regions between GPCP and CMAP.

    Table 1.Domains of the fve boreal summer monsoon regions,and the temporal correlation coefcient (CC) for the interannual rainfall variability between the GPCP and CMAP products over the specifc monsoon regions.

    Figure 2 shows the seasonal evolution of precipitation over the fve boreal monsoon regions in the climatology (Figures 2(a) and (b)), as well as the absolute diference (Figure 2(c)) and relative diference (Figure 2(d)) of June—July—August (JJA) precipitation. Generally, the two products depict a similar seasonal cycle and precipitation intensity from May to October over the BSM regions(Figures 2(a) and (b)), except for the maximum absolute inconsistencies in summer precipitation in terms of the climatological pattern appear over the oceanic WNP and a fragmentary part of the NAM and IND monsoon regions. diference (>1.5 mm d-1) over the WNP monsoon region from July to September (Figure 2(c)). Figure 2(d) indicates largely positive relative diferences (>30%) in JJA precipitation between GPCP and CMAP, located in the southern WNP and a fragmentary part of the NAM and IND monsoon regions. Therefore, the pattern and magnitude of regional monsoon rainfall in the GPCP and CMAP datasets is similar across the BSM regions, except for distinct inconsistencies found mostly over the WNP oceanic monsoon areas, which can be partly attributed to the controversial input of atoll gauges over the tropical Pacifc in CMAP, according to Yin,Gruber, and Arkin (2004). Indeed, changes to input data(e.g. atoll gauges in CMAP in January 1996) have implications in the behavior of the two datasets. The atoll data have been improperly used by CMAP for constructing the oceanic precipitation. This input data change and atoll gauges sampling problem can explain the fact that the two products have much less in common over the ocean than over land (Yin, Gruber, and Arkin 2004). Thus, distinct

    3.2. Interannual variability

    Table 1 lists the temporal correlation coefcients (CCs)of interannual rainfall variability over the fve monsoon regions, based on the two datasets. The results suggest that the interannual variability over the monsoon regions is very similar in GPCP and CMAP, except for the NAM and IND monsoon regions. Figure 3 shows the ACC evolution of BSM rainfall between GPCP and CMAP during 1979—2014. It can be seen that the ACC over the fve monsoon regions primarily increases with time, presenting a rising trend in ACCs over each monsoon region from 1979 to 2014. This is probably due to the development of microwave estimates from SSM/I and the improvement in merging methods of each data type providing more accurate instantaneous rainfall estimates, especially over the oceans where there is a lack of gauge observations (Gruber et al. 2000). Specifcally, the ACC between the two products is largest over the WNP and EA monsoon regions (Figures 3(d) and (e)), but lowest over the NAF and IND monsoon regions (Figures 3(b) and (c)). For instance, the ACC over the NAF and IND monsoon regions decreases abruptly in the 1980s, but increases in the early 2010s (Figures 3(b)and (c)). Therefore, even in recent decades, the ACC over the NAF and IND monsoon regions shows evident oscillation, which implies considerable discrepancies in monsoonrainfall variability over the two regions between the GPCP and CMAP datasets (Figure 1).

    Figure 2.Climatological (1979—2014) evolution of precipitation in (a) GPCP and (b) CMAP (units: mm d-1) over the fve monsoon regions.(c) Absolute diference in the averaged seasonal cycle between the two products (CMAP minus GPCP; units: mm d-1). (d) Relative diference of the averaged summer precipitation between the two products (0.5 × (CMAP-GPCP) × (CMAP + GPCP)-1; red: >30%; blue:<-30%).

    To further quantify the interannual inconsistency between the two datasets, we investigated the spatial distribution of negative frequency and the RMSE between the two datasets (fgure not shown). It was found that the discrepancy percentage of interannual variability between the two products was greater than 25% over the NAM,NAF, and IND regions, as well as their surrounding marine areas. Note that the largest frequency and RMSE were observed over low-latitude North Africa and India, and the largest disagreement appeared over the NAF and IND monsoon regions, where the magnitude of RMSE reached 5.0 mm d-1. Therefore, discrepancy in the interannual variability between the two datasets is mainly observed over the NAF and IND monsoon regions, characterized by smaller and unstable ACCs, while they agree with each other very well over the WNP and EA monsoon regions.

    3.3. Validation by satellite and in situ observations The TRMM product and global land in situ observations are treated as benchmarks to evaluate the accuracy of the GPCP and CMAP products. Due to the availability of the TRMM product and the increasing linear trend of GPCP/ CMAP spatial correlation (the cross point are approximately at 1997/98), the evaluation is divided into two periods: 1979—97 and 1998—2014. Figures 4(a) and (b) are Taylor diagrams of the GPCP and CMAP products for the two periods. It can be seen that the CMAP patterns generally agree well with those of the GPCP over the fve monsoon regions during the period 1998—2014. However, the consistency between the two datasets is relatively lower over the BSM regions during the period 1979—1997, especially over the NAM and IND monsoon regions (Figure 4(a)), as compared to the period 1998—2014 (Figure 4(b)). The consistency is better over the WNP and EA monsoon regions in the more recent period, but the disagreement is still robust over the NAF monsoon region, even in the latter two decades.

    Since the GHCN gauge observations and the TRMM products are highly consistent in terms of common regions and episodes (fgure not shown), they can act as reliable criteria for optimal selection with respect to the two datasets, especially over the high-discrepancy regions and episodes. Figure 4(c) compares the arithmetic mean of land GPCP and CMAP records and GHCN gauge observations during 1979—1997. The CC between the arithmetic mean and the GHCN product is somewhat improved over the BSM regions, except for the WNP area. Whereas, the changes in the standard deviation (STD) of the arithmetic mean are more complicated. Specifcally, the arithmetic mean becomes slightly worse than the GPCP over the NAM region and CMAP over the NAF region, respectively. However, it improves over the IND region where there is considerable GPCP/CMAP inconsistency. Over the WNP region, the arithmetic mean is better than CMAP but worsethan GPCP. Furthermore, the improvement in the STD over the EA region is insignifcant (Figure 4(c)). It is important to note that the quality of the GHCN product, used as reference, will be sensitive to the comparison in the period 1979—1997. Thus, the arithmetic mean has better skill over the IND region, and shows worse skill than GPCP but better skill than CMAP over the NAM, NAF, and WNP regions. Over the EA region, the arithmetic mean shows exactly the same skill as GPCP. Generally, using the arithmetic mean of the GPCP and CMAP records is able to reduce the uncertainty of their individual use over the BSM regions.

    Figure 3.Evolution of the anomaly correlation coefcient (ACC) between the GPCP and CMAP summer precipitation over the fve boreal monsoon regions during 1979—2014.

    Figure 4.Taylor diagram of the GPCP, CMAP, TRMM, and GHCN summer precipitation on the interannual timescale. Panels (a) and (b) are Taylor diagrams of the GPCP and CMAP products during 1979—1997 and 1998—2014, respectively. The GPCP is set as ‘Reference’ (REF). The GHCN gauge observations and TRMM products are used to validate the two datasets. Panels (c) and (d) are Taylor diagrams of the GHCN gauge observations and TRMM products with the GPCP and CMAP and their arithmetic mean values of 1979—1997 and 1998—2014,respectively.

    It can also be seen that the GPCP and CMAP products correspond well to the TRMM product over all BSM regions during 1998—2014 (Figure 4(d)). The interannual variability derived from the arithmetic mean of GPCP and CMAP exhibits remarkable positive correlation with the TRMM product over all the monsoon regions. Specifcally,over the NAF region where there is considerable GPCP/ CMAP inconsistency, the arithmetic mean shows better skill than either GPCP or CMAP, presenting an increased CC and decreased STD diference with the TRMM product. Improvement can also be found over the NAM, WNP,and EA monsoon regions. Compared with the TRMM product, the arithmetic mean over the IND region shows a higher CC than the CMAP data-set, but a larger STD diference than the GPCP record. Although it remains hard to identify an optimal precipitation data-set for the BSM, the use of the arithmetic mean of the GPCP and CMAP products nevertheless provides an efective way to reduce the level of uncertainty when studying BSM rainfall variation.

    4. Concluding remarks

    GPCP and CMAP have been popularly used in climate monitoring and research due to their global coverage and long-term records. The present paper evaluates the climatology and interannual variability of boreal monsoon precipitation in these two datasets during 1979—2014. The results suggest that the climatology of the seasonalcycle of BSM rainfall can be refected by both datasets,but their absolute diference is still robust, with a maximum over the WNP monsoon region during July—October. Discrepancies in the summer rainfall pattern and magnitude are found over the oceanic WNP and a fragmentary part of the oceanic NAM and IND monsoon regions. On the interannual timescale, the rainfall anomaly is mostly correlated between the two products. A number of signifcant diferences are, however, still observed over the NAF and IND monsoon regions, as revealed by smaller and more unstable ACCs, higher frequency of discrepancy, and greater RMSE. It is noted that consistency between the two datasets has greatly increased in recent decades. The use of the arithmetic mean of the GPCP and CMAP products is evaluated by comparing with TRMM and global in situ observations, demonstrating it to be an efcient method for reducing the uncertainties in rainfall anomalies over the BSM regions. It is hoped that the present evaluation will provide useful information for future BSM climate research.

    Acknowledgements

    We thank the anonymous reviewers for their innovative suggestions. The GPCP and CMAP datasets were downloaded from http://www.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html and ftp://ftpprd.ncep.noaa.gov/pub/precip/cmap, respectively.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 41475057], [grant number 41221064], [grant number 91437218], [grant number 41505049]; the Key Program of Chinese Academy of Meteorological Sciences [grant number 2015Z001].

    Notes on contributors

    HAO Yu-Qian is graduate student at Institute of Climate System,Chinese Academy of Meteorological Sciences. Her main research interests focus on the climate change of East Asian monsoon.

    ZHU Cong-Wen is Senior Researcher at Institute of Climate System, Chinese Academy of Meteorological Sciences. His main research interests focus on the East Asian monsoon and seasonal climate prediction. Recent publication includes papers in Int. J. Climatol., Chinese journal of Atmosphere Sciences, Adv. Atmos. Sci., Geophys. Res. Lett., and other journals.

    LIU Bo-Qi is associated researcher at Institute of Climate System,Chinese Academy of Meteorological Sciences, and Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics. His main research interests focus on monsoon dynamics and air-sea interaction. Recent publications include papers in Journal of Climate, Climate Dynamics, Adv. Atmos. Sci, and Chin Sci Bull, and other journals.

    References

    Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. P. Xie, J. Janowiak,and B. Rudolf. 2003. “The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979—Present).” Journal of Hydrometeorology 4 (6): 1147—1167.

    Chu, D., T. Pubu, G. Norbu, B. Sagar, S. Mandira, and J. P. Guo. 2011. “Validation of the Satellite-Derived Rainfall Estimates over the Tibet.” Acta Meteorologica Sinica 25 (6): 734—741.

    Gruber, A., X. Su, M. Kanamitsu, and J. Schemm. 2000.“The Comparison of Two Merged Rain Gauge—Satellite Precipitation Datasets.” Bulletin of the American Meteorological Society 81: 2631—2644.

    Hsu, P. C., T. Li, and B. Wang. 2011. “Trends in Global Monsoon Area and Precipitation over the past 30 Years.”Geophysical Research Letters 38: L08701. doi:http://dx.doi. org/10.1029/2011GL046893.

    Hufman, G. J., R. F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber,J. Janowiak, A. McNab, B. Rudolf, and U. Schnelder. 1997. “The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset.” Bulletin of the American Meteorological Society 78: 5—20.

    Hufman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu. 2009.“Improving the Global Precipitation Record: GPCP Version 2.1.” Geophysical Research Letters 36: L17808. doi:http:// dx.doi.org/10.1029/2009GL040000.

    Hufman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin. 2010.“Chapter 1 in Satellite Rainfall Applications for Surface Hydrology.” In The TRMM Multi-Satellite Precipitation Analysis(TMPA), edited by G. Mekonnen and H. Faisal, 3—22. Berlin: Springer Verlag.

    Janicot, S. 2009. “A Comparison of Indian and African Monsoon Variability at Diferent Time Scales.” Comptes Rendus Geoscience 341: 575—590.

    Levinson, N. 1947. “The Wiener RMS (Root Mean Square)Error Criterion in Filter Design and Prediction.” Journal of Mathematical Physics 25: 261—278.

    Lin, R. P., T. J. Zhou, and Y. Qian. 2014. “Evaluation of Global Monsoon Precipitation Changes Based on Five Reanalysis Datasets.” Journal of Climate 27: 1271—1289.

    Murphy, A. H., and E. S. Epstein. 1989. “Skill Scores and Correlation Coefcients in Model Verifcation.” Monthly Weather Review 117: 572—582.

    Prakash, S., A. K. Mitra, I. M. Momin, E. N. Rajagopal, S. Basu, M. Collins, A. G. Turner, K. A. Rao, and K. Ashok. 2015. “Seasonal Intercomparison of Observational Rainfall Datasets over India during the Southwest Monsoon Season.” International Journal of Climatology 35: 2326—2338.

    Qi, L., and Y. Q. Wang. 2015. “Discrepancies in Diferent Precipitation Data Products in the Bay of Bengal during Summer Monsoon Season.” Advances in Meteorology 2015: 1—13. doi: http://dx.doi.org/10.1155/2015/806845.

    Taylor, K. E. 2001. “Summarizing Multiple Aspects of Model Performance in a Single Diagram.” Journal of Geophysical Research: Atmospheres 106: 7183—7192.

    Vose, R. S., R. L. Schmoyer, T. C. Peterson, P. M. Steurer, R. R. Jr. Heim, T. R. Karl, and J. K. Eischeid. 1992. The Global HistoricalClimatology Network: Long-Term Monthly Temperature,Precipitation, Sea Level Pressure, and Station Pressure Data,189. Oak Ridge, Tennessee: Oak Ridge National Laboratory.

    Wang, B., J. Liu, H. J. Kim, P. J. Webster, and S. Y. Yim. 2012. “Recent Change of the Global Monsoon Precipitation (1979—2008).”Climate Dynamics 39: 1123—1135.

    Xie, P. P., and P. A. Arkin. 1997. “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs.” Bulletin of the American Meteorological Society 78: 2539—2558.

    Yin, X., A. Gruber, and P. Arkin. 2004. “Comparison of the GPCP and CMAP Merged Gauge—Satellite Monthly Precipitation Products for the Period 1979—2001.” Journal of Hydrometeorology 5: 1207—1222.

    Zhang, G., and K. H. Cook. 2014. “West African Monsoon Demise: Climatology, Interannual Variations, and Relationship to Seasonal Rainfall.” Journal of Geophysical Research 119: 175—193. doi:http://dx.doi.org/10.1002/ 2014JD022043.

    Zhu, C. W., W. S. Lee, H. W. Kang, and C. K. Park. 2005. “A Proper Monsoon Index for Seasonal and Interannual Variations of the East Asian Monsoon.” Geophysical Research Letters 32: L02811. doi:http://dx.doi.org/10.102 9/2004GL021295.

    29 January 2016

    CONTACT ZHU Cong-Wen tomzhu@camscma.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    變率北半球年際
    內部變率和全球變暖對春季北太平洋維多利亞模態(tài)增強的相對貢獻
    北半球最強“星空攝影師”開工啦
    軍事文摘(2023年24期)2023-12-19 06:50:06
    研究顯示降水變率將隨氣候增暖而增強
    清涼一夏
    北緯30°中層頂區(qū)域鈉與鐵原子層的結構和年際變化
    南北半球天象
    軍事文摘(2019年18期)2019-09-25 08:09:22
    Does a monsoon circulation exist in the upper troposphere over the central and eastern tropical Pacifc?
    亞洲夏季風的年際和年代際變化及其未來預測
    與北大西洋接壤的北極海冰和年際氣候變化
    基于M-K法對圖們江干流含沙量年際變化的分析
    吉林地質(2014年3期)2014-03-11 16:47:25
    黄色一级大片看看| 免费搜索国产男女视频| 国内毛片毛片毛片毛片毛片| 亚洲狠狠婷婷综合久久图片| 欧美日韩黄片免| 人妻夜夜爽99麻豆av| 18禁黄网站禁片免费观看直播| 欧美xxxx黑人xx丫x性爽| 欧美丝袜亚洲另类 | 久久性视频一级片| 亚洲男人的天堂狠狠| 亚洲av中文字字幕乱码综合| av天堂中文字幕网| 丰满的人妻完整版| 性色avwww在线观看| 男人狂女人下面高潮的视频| 国产亚洲精品综合一区在线观看| 日本成人三级电影网站| 少妇被粗大猛烈的视频| 亚洲黑人精品在线| 欧美成人免费av一区二区三区| 看片在线看免费视频| 国产精品久久久久久久电影| 97超视频在线观看视频| 午夜精品在线福利| 夜夜躁狠狠躁天天躁| 欧美日韩综合久久久久久 | 12—13女人毛片做爰片一| 国产私拍福利视频在线观看| 成人无遮挡网站| 欧美高清性xxxxhd video| 91狼人影院| 日韩欧美国产一区二区入口| 欧美性感艳星| 简卡轻食公司| 亚洲av成人精品一区久久| 免费人成视频x8x8入口观看| 国产男靠女视频免费网站| 91午夜精品亚洲一区二区三区 | 亚洲欧美精品综合久久99| 色综合欧美亚洲国产小说| 人妻丰满熟妇av一区二区三区| 18禁黄网站禁片午夜丰满| 在线a可以看的网站| 国产精品三级大全| 亚洲国产欧洲综合997久久,| 自拍偷自拍亚洲精品老妇| 欧美日本亚洲视频在线播放| 国产高清激情床上av| 欧美bdsm另类| 成人三级黄色视频| 级片在线观看| 能在线免费观看的黄片| 最近在线观看免费完整版| 狂野欧美白嫩少妇大欣赏| 成年女人毛片免费观看观看9| 午夜激情欧美在线| 色av中文字幕| 亚洲不卡免费看| 国产av麻豆久久久久久久| 免费一级毛片在线播放高清视频| 日韩大尺度精品在线看网址| 搡老熟女国产l中国老女人| 精品一区二区三区视频在线观看免费| 一进一出抽搐gif免费好疼| 亚州av有码| 午夜精品在线福利| 国产伦精品一区二区三区四那| 成年版毛片免费区| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 丁香六月欧美| 欧美日本亚洲视频在线播放| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 日本成人三级电影网站| 变态另类丝袜制服| 国产成人av教育| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| 嫩草影院新地址| 日本撒尿小便嘘嘘汇集6| 免费人成在线观看视频色| 1000部很黄的大片| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 看十八女毛片水多多多| 美女高潮喷水抽搐中文字幕| 日韩有码中文字幕| 成年女人毛片免费观看观看9| 久久99热6这里只有精品| 女人被狂操c到高潮| 亚洲欧美精品综合久久99| 麻豆一二三区av精品| 国产视频一区二区在线看| 91久久精品电影网| 少妇丰满av| 男女床上黄色一级片免费看| 国产精品日韩av在线免费观看| a级毛片a级免费在线| 国产黄色小视频在线观看| 免费搜索国产男女视频| 久久久久性生活片| 乱码一卡2卡4卡精品| 婷婷亚洲欧美| 18禁黄网站禁片免费观看直播| 亚洲美女视频黄频| 国产黄色小视频在线观看| 在线看三级毛片| 国产激情偷乱视频一区二区| 特大巨黑吊av在线直播| 亚洲美女搞黄在线观看 | 日本黄大片高清| 欧美一区二区精品小视频在线| 亚洲国产精品sss在线观看| 欧美性感艳星| 欧美3d第一页| 亚洲精品乱码久久久v下载方式| 免费黄网站久久成人精品 | 欧美色欧美亚洲另类二区| 悠悠久久av| 中文字幕人成人乱码亚洲影| aaaaa片日本免费| 男女视频在线观看网站免费| 日韩欧美精品v在线| 日韩中文字幕欧美一区二区| 亚洲人成网站在线播放欧美日韩| 人妻夜夜爽99麻豆av| 91在线观看av| 国产精品永久免费网站| 国产精华一区二区三区| 久久九九热精品免费| 亚洲精华国产精华精| 日本 欧美在线| 久久天躁狠狠躁夜夜2o2o| 欧美zozozo另类| 亚洲自偷自拍三级| 国内揄拍国产精品人妻在线| 婷婷精品国产亚洲av| 看片在线看免费视频| 男女那种视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美乱妇无乱码| 美女xxoo啪啪120秒动态图 | 精品久久久久久成人av| 国产精品一区二区三区四区久久| 色5月婷婷丁香| 久久久国产成人精品二区| 欧美成人性av电影在线观看| 99国产精品一区二区蜜桃av| 久久久久久久精品吃奶| 亚洲av第一区精品v没综合| 俄罗斯特黄特色一大片| 免费观看人在逋| 国产高清激情床上av| 欧美日本亚洲视频在线播放| 此物有八面人人有两片| 91午夜精品亚洲一区二区三区 | 一个人看视频在线观看www免费| 乱码一卡2卡4卡精品| 99热这里只有是精品50| 国产在线男女| 天天一区二区日本电影三级| 亚洲色图av天堂| 亚洲成人久久性| 人妻夜夜爽99麻豆av| 色哟哟哟哟哟哟| 一级黄色大片毛片| 精品福利观看| 欧美日韩黄片免| 午夜两性在线视频| 91狼人影院| 日韩国内少妇激情av| 欧美日韩黄片免| 男女下面进入的视频免费午夜| 人妻夜夜爽99麻豆av| 婷婷精品国产亚洲av| 神马国产精品三级电影在线观看| 波多野结衣高清无吗| 日韩欧美国产一区二区入口| 深夜a级毛片| 久久人人爽人人爽人人片va | 亚洲aⅴ乱码一区二区在线播放| 天天躁日日操中文字幕| 亚洲欧美清纯卡通| 很黄的视频免费| 免费黄网站久久成人精品 | 免费在线观看成人毛片| 亚洲国产欧美人成| 国产欧美日韩精品亚洲av| a级毛片免费高清观看在线播放| av在线天堂中文字幕| 欧美zozozo另类| 国产真实乱freesex| 亚洲人成网站在线播| 成人美女网站在线观看视频| 免费人成在线观看视频色| 赤兔流量卡办理| 三级男女做爰猛烈吃奶摸视频| 全区人妻精品视频| 久久精品国产自在天天线| 国产精品自产拍在线观看55亚洲| 国产高清有码在线观看视频| 在线看三级毛片| 国产精品久久电影中文字幕| 国产欧美日韩精品一区二区| 亚洲av五月六月丁香网| 此物有八面人人有两片| 亚州av有码| 中国美女看黄片| 午夜激情福利司机影院| 午夜精品一区二区三区免费看| 欧美高清成人免费视频www| 国产精品乱码一区二三区的特点| 成年女人看的毛片在线观看| www日本黄色视频网| 国产不卡一卡二| 精品乱码久久久久久99久播| 中国美女看黄片| 亚洲成人久久爱视频| 午夜福利成人在线免费观看| 成人美女网站在线观看视频| 91在线观看av| 亚洲 国产 在线| 村上凉子中文字幕在线| 国产精品av视频在线免费观看| 日韩人妻高清精品专区| 亚洲精品在线观看二区| av天堂在线播放| 亚洲精品日韩av片在线观看| 国产欧美日韩一区二区三| 九九热线精品视视频播放| 午夜福利在线观看吧| 日本黄色片子视频| 亚洲在线自拍视频| 欧美激情久久久久久爽电影| 精品一区二区三区人妻视频| 色哟哟·www| 很黄的视频免费| 亚洲国产日韩欧美精品在线观看| 欧美+日韩+精品| 国产一区二区三区视频了| 久久婷婷人人爽人人干人人爱| 亚洲熟妇中文字幕五十中出| 十八禁人妻一区二区| 成年免费大片在线观看| 中文字幕久久专区| .国产精品久久| 人人妻,人人澡人人爽秒播| 91麻豆精品激情在线观看国产| 国产一区二区在线av高清观看| 超碰av人人做人人爽久久| av女优亚洲男人天堂| 夜夜躁狠狠躁天天躁| 欧美三级亚洲精品| 国产精品,欧美在线| 我要看日韩黄色一级片| 最近最新免费中文字幕在线| 午夜激情福利司机影院| 国产 一区 欧美 日韩| 成人永久免费在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美三级三区| 嫩草影院入口| 欧美成人免费av一区二区三区| 人妻丰满熟妇av一区二区三区| 9191精品国产免费久久| 久久精品91蜜桃| 国产精品一及| 亚洲精品久久国产高清桃花| 日本三级黄在线观看| 亚洲欧美日韩东京热| 波多野结衣高清无吗| 国产一区二区亚洲精品在线观看| 日本一二三区视频观看| 成人亚洲精品av一区二区| 真人做人爱边吃奶动态| 欧美日韩综合久久久久久 | 亚洲av电影不卡..在线观看| 成人特级黄色片久久久久久久| 国产精品免费一区二区三区在线| 99久久无色码亚洲精品果冻| 国产精品久久电影中文字幕| 亚洲国产高清在线一区二区三| 亚洲综合色惰| 成人av在线播放网站| 国产精品一区二区免费欧美| 亚洲中文字幕日韩| 免费电影在线观看免费观看| 超碰av人人做人人爽久久| 国产成人av教育| 亚洲最大成人中文| 成人三级黄色视频| 国产黄色小视频在线观看| 热99re8久久精品国产| 亚洲三级黄色毛片| 日韩欧美一区二区三区在线观看| 国产高清视频在线观看网站| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看| 成人国产综合亚洲| 国产蜜桃级精品一区二区三区| 亚洲性夜色夜夜综合| 国产成人aa在线观看| 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 亚洲av日韩精品久久久久久密| 免费搜索国产男女视频| 亚洲欧美精品综合久久99| 午夜免费男女啪啪视频观看 | 性插视频无遮挡在线免费观看| 美女 人体艺术 gogo| 熟妇人妻久久中文字幕3abv| 久久亚洲精品不卡| 毛片一级片免费看久久久久 | 最近中文字幕高清免费大全6 | 丰满乱子伦码专区| 最新在线观看一区二区三区| 黄色一级大片看看| 一进一出抽搐gif免费好疼| 欧美精品国产亚洲| 99在线视频只有这里精品首页| 国产aⅴ精品一区二区三区波| 国产白丝娇喘喷水9色精品| 亚洲美女视频黄频| 岛国在线免费视频观看| aaaaa片日本免费| 成人精品一区二区免费| 在线观看av片永久免费下载| 欧美一区二区国产精品久久精品| 久久久国产成人免费| av专区在线播放| 久久欧美精品欧美久久欧美| 90打野战视频偷拍视频| 非洲黑人性xxxx精品又粗又长| a级一级毛片免费在线观看| 中文字幕av成人在线电影| 欧美一区二区国产精品久久精品| 1024手机看黄色片| 天堂av国产一区二区熟女人妻| 熟女电影av网| 日本精品一区二区三区蜜桃| 日韩欧美精品免费久久 | 日本五十路高清| 亚洲自偷自拍三级| 精品欧美国产一区二区三| av在线老鸭窝| av天堂中文字幕网| 久久人人爽人人爽人人片va | 99热这里只有精品一区| 久久国产精品影院| 国产高清视频在线观看网站| 亚洲成人久久爱视频| 国产伦在线观看视频一区| 婷婷色综合大香蕉| 欧美xxxx黑人xx丫x性爽| 十八禁国产超污无遮挡网站| 亚洲一区二区三区色噜噜| 久久久久久大精品| 成人鲁丝片一二三区免费| 黄色配什么色好看| 久久精品国产清高在天天线| 日本一二三区视频观看| 看片在线看免费视频| 亚洲国产精品999在线| 亚洲黑人精品在线| 欧美一级a爱片免费观看看| 中文字幕av成人在线电影| 免费观看人在逋| 欧美高清性xxxxhd video| 欧美不卡视频在线免费观看| 日本精品一区二区三区蜜桃| 欧美日韩福利视频一区二区| 国产av麻豆久久久久久久| 亚洲乱码一区二区免费版| 亚洲五月天丁香| 人人妻人人看人人澡| 欧美午夜高清在线| 久久99热6这里只有精品| 日韩中文字幕欧美一区二区| 91久久精品国产一区二区成人| 久久久久精品国产欧美久久久| 国产乱人视频| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区av网在线观看| 大型黄色视频在线免费观看| 男女视频在线观看网站免费| 亚洲一区二区三区不卡视频| 有码 亚洲区| 亚洲精品乱码久久久v下载方式| 成人av一区二区三区在线看| 一区二区三区免费毛片| 搡老熟女国产l中国老女人| 国产成年人精品一区二区| 国产单亲对白刺激| 嫩草影视91久久| 免费观看的影片在线观看| 黄色一级大片看看| 成年女人永久免费观看视频| 成人美女网站在线观看视频| 欧美在线黄色| 简卡轻食公司| netflix在线观看网站| 久久久久久久久大av| 又爽又黄无遮挡网站| 老熟妇仑乱视频hdxx| 亚洲黑人精品在线| 一本综合久久免费| 日韩欧美一区二区三区在线观看| 一区二区三区四区激情视频 | 午夜福利在线观看免费完整高清在 | 午夜福利成人在线免费观看| 日本免费一区二区三区高清不卡| 亚洲狠狠婷婷综合久久图片| 亚洲天堂国产精品一区在线| av在线观看视频网站免费| 老鸭窝网址在线观看| 亚洲国产日韩欧美精品在线观看| 国产主播在线观看一区二区| 成年人黄色毛片网站| 天天一区二区日本电影三级| 国产高清视频在线观看网站| 老熟妇乱子伦视频在线观看| 男女做爰动态图高潮gif福利片| 69av精品久久久久久| 日韩欧美国产在线观看| 三级国产精品欧美在线观看| 欧美性猛交╳xxx乱大交人| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩黄片免| 亚洲欧美日韩卡通动漫| 看免费av毛片| 日本 av在线| 亚洲欧美清纯卡通| 淫妇啪啪啪对白视频| 欧美激情久久久久久爽电影| 久久精品人妻少妇| 亚洲欧美清纯卡通| 又黄又爽又刺激的免费视频.| 天天一区二区日本电影三级| 亚洲国产欧洲综合997久久,| 欧美成人免费av一区二区三区| 欧美精品啪啪一区二区三区| 国产精品,欧美在线| 久久精品国产99精品国产亚洲性色| 少妇高潮的动态图| 有码 亚洲区| 国产精品永久免费网站| 免费在线观看影片大全网站| 我要搜黄色片| 午夜福利成人在线免费观看| 久久精品91蜜桃| 欧美性猛交╳xxx乱大交人| 高清在线国产一区| 变态另类成人亚洲欧美熟女| 天堂√8在线中文| 日本在线视频免费播放| 国产三级在线视频| 在现免费观看毛片| 国产精品乱码一区二三区的特点| 国产精品影院久久| 亚洲精品影视一区二区三区av| 亚洲欧美日韩高清在线视频| 日本五十路高清| 国模一区二区三区四区视频| 丁香六月欧美| 亚洲片人在线观看| 中文字幕精品亚洲无线码一区| 亚洲天堂国产精品一区在线| 日本五十路高清| 日韩亚洲欧美综合| 99久久九九国产精品国产免费| 午夜a级毛片| 国内精品久久久久久久电影| 在线a可以看的网站| 嫩草影院精品99| 久久国产精品人妻蜜桃| eeuss影院久久| 99热这里只有是精品在线观看 | 久久国产乱子免费精品| 熟女人妻精品中文字幕| 91久久精品电影网| 一区二区三区四区激情视频 | 日本免费a在线| 可以在线观看毛片的网站| 国产主播在线观看一区二区| 高清毛片免费观看视频网站| 欧美绝顶高潮抽搐喷水| 国产国拍精品亚洲av在线观看| 国产美女午夜福利| 小说图片视频综合网站| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 国产精品一区二区性色av| 亚洲黑人精品在线| 色5月婷婷丁香| 国产成人福利小说| 亚洲欧美日韩高清在线视频| 国产精品,欧美在线| 直男gayav资源| 亚洲真实伦在线观看| 男人的好看免费观看在线视频| 在线国产一区二区在线| 男女下面进入的视频免费午夜| 一本一本综合久久| 内射极品少妇av片p| 一二三四社区在线视频社区8| 欧美丝袜亚洲另类 | 日韩欧美在线乱码| 丰满人妻一区二区三区视频av| 99精品久久久久人妻精品| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美人成| 九色国产91popny在线| 久久精品国产自在天天线| x7x7x7水蜜桃| 国产一区二区三区视频了| 性插视频无遮挡在线免费观看| 99精品在免费线老司机午夜| 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 欧美日韩黄片免| 91在线精品国自产拍蜜月| 脱女人内裤的视频| 国产蜜桃级精品一区二区三区| 午夜激情欧美在线| 久久久久久九九精品二区国产| 最近最新免费中文字幕在线| 欧美高清成人免费视频www| 欧美黑人欧美精品刺激| 老司机福利观看| 午夜福利在线在线| 真人一进一出gif抽搐免费| 国产毛片a区久久久久| 成人特级av手机在线观看| 久久人妻av系列| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 色综合婷婷激情| 精品午夜福利在线看| 亚洲第一区二区三区不卡| 日本免费a在线| 波多野结衣巨乳人妻| 五月玫瑰六月丁香| 久久伊人香网站| 国产真实伦视频高清在线观看 | 亚洲内射少妇av| 中文在线观看免费www的网站| 欧美又色又爽又黄视频| 免费观看的影片在线观看| 女同久久另类99精品国产91| 99国产精品一区二区蜜桃av| 91在线观看av| a级毛片免费高清观看在线播放| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区精品小视频在线| 性插视频无遮挡在线免费观看| 9191精品国产免费久久| 亚洲无线在线观看| 国产色婷婷99| 草草在线视频免费看| 成人鲁丝片一二三区免费| 国产三级中文精品| 1024手机看黄色片| 亚洲第一区二区三区不卡| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片| 制服丝袜大香蕉在线| 欧美绝顶高潮抽搐喷水| 一夜夜www| 搡老熟女国产l中国老女人| 少妇裸体淫交视频免费看高清| 成人一区二区视频在线观看| 色吧在线观看| 午夜久久久久精精品| 欧美午夜高清在线| 九色国产91popny在线| 99在线人妻在线中文字幕| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 99久久精品一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲,欧美,日韩| 欧美成人性av电影在线观看| 成年版毛片免费区| 一区二区三区免费毛片| 中文亚洲av片在线观看爽| 久久久久九九精品影院| 久久香蕉精品热| 中亚洲国语对白在线视频| .国产精品久久| 狠狠狠狠99中文字幕| 天天一区二区日本电影三级| 免费观看人在逋| 人妻制服诱惑在线中文字幕| 免费搜索国产男女视频| 国产精品1区2区在线观看.| 国产成人影院久久av| 国产精品一区二区性色av| 熟女人妻精品中文字幕| av中文乱码字幕在线| 特大巨黑吊av在线直播| 草草在线视频免费看| 欧美国产日韩亚洲一区| 一区福利在线观看| 校园春色视频在线观看| 九九久久精品国产亚洲av麻豆| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av|