• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discrepancies in boreal summer monsoon rainfall between GPCP and CMAP products during 1979-2014

    2016-11-23 02:37:13HAOYuQinZHUCongWenndLIUBoQi
    關鍵詞:變率北半球年際

    HAO Yu-Qin, ZHU Cong-Wennd LIU Bo-Qi,b

    aInstitute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    Discrepancies in boreal summer monsoon rainfall between GPCP and CMAP products during 1979-2014

    HAO Yu-Qiana, ZHU Cong-Wenaand LIU Bo-Qia,b

    aInstitute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    This study compares the boreal summer monsoon (BSM) precipitation between the GPCP and CMAP products during 1979—2014. The authors apply temporal, spatial correlation and error evaluation methods to evaluate their discrepancies in terms of BSM distribution and summer rainfall interannual variability over the fve BSM regions. The results suggest that the climatology of the seasonal evolution of BSM rainfall is refected well in both datasets, and the summer rainfall anomalies of the two products are highly correlated. However, major diversity is found in the rainfall pattern and the magnitude in climatology over the oceanic monsoon areas, especially the western North Pacifc monsoon region, as well as in the interannual variability of summer rainfall anomalies over the North Africa and India monsoon regions. Although inconsistency between the two datasets is evident before the 1990s, the use of their arithmetic mean is demonstrated to be an efcient way to reduce the uncertainty between them.

    ARTICLE HISTORY

    Revised 3 March 2016

    Accepted 7 March 2016

    GPCP; CMAP; boreal summer monsoon; interannual

    variability; data evaluation

    GPCP和CMAP資料均廣泛應用于降水變率的研究中,然而兩者在描述北半球季風區(qū)降水年際變率上的差異較少受到關注。本文研究了1979—2014年北半球5大季風區(qū)降水因資料選擇造成的研究結果差異。研究發(fā)現(xiàn):在氣候態(tài)上,西北太平洋季風區(qū)夏季降水的空間分布型和降水量差異較大;在年際變率上,北非季風區(qū)和印度季風區(qū)夏季降水存在較大差異。兩者的差異在90年代后明顯減小。一般來說,兩者的算數(shù)平均可以減少資料不確定性帶來的影響。

    1. Introduction

    Several gauge—satellite merged precipitation products have been developed since the 1970s and used for estimating precipitation amounts (Yin, Gruber, and Arkin 2004). Among these products, the GPCP and CMAP products have been particularly widely utilized, due to their global coverage and long-term records. For instance, the global monsoon, characterized by the annual variation in rainfall, has been recognized in detail, while the regional monsoons are treated as its components with intense precipitation. Since the interannual variability of summer rainfall varies across the diferent monsoon regions (Wang et al. 2012), its quantifcation and understanding within the context of the global monsoon is crucial.

    The GPCP and CMAP datasets are widely utilized to examine precipitation variation on diferent timescales,but whether to use either GPCP or CMAP to investigate summer monsoon rainfall is arbitrary. For example, Lin,Zhou, and Qian (2014) used the GPCP product as the observation to evaluate reanalysis data when studying global monsoon precipitation changes, and Zhang and Cook (2014) used GPCP together with validation from TRMM to study the West African monsoon. Besides, Zhu et al. (2005) used the CMAP data-set to develop an East Asian monsoon index to represent the seasonal and interannual variations of the East Asian (EA) monsoon, and Janicot(2009) also used the CMAP product to compare the variability of the Indian (IND) and African monsoons at diferent time scales. Some studies have used the arithmetic mean to replace the original data-set, but the advantages have not been fully discussed. For instance, Hsu, Li, and Wang(2011) used both GPCP and CMAP to study global monsoon trends, and Prakash et al. (2015) used both GPCP and CMAP to study the Indian monsoon. Indeed, specifc analysis procedures and certain additional types of input data may produce distinct results between the two datasets(Gruber et al. 2000; Yin, Gruber, and Arkin 2004), leading to diferent variabilities of summer monsoon rainfall at both seasonal and interannual timescales. Recent studies havepointed out the diferent features of monsoon rainfall over land and its surrounding area as depicted by the GPCP and CMAP products (Prakash et al. 2015; Qi and Wang 2015). Meanwhile, the discrepancies over the BSM regions as a whole remain unclear, especially over the oceans where gauge observations are lacking.

    The GPCP and CMAP products have some satellite input data in common, such as SSM/I emissions estimates, SSM/I scattering estimates, and GOES precipitation index and outgoing long-wave radiation (OLR) precipitation index estimates (Hufman et al. 1997; Adler et al. 2003). However,the two products difer in terms of: (1) some of their gauge data, such as the uncorrected gauges used by CMAP in the tropical Pacifc (Gruber et al. 2000), which may result in the diferent magnitudes of precipitation over land areas and the tropical oceans in the climatology (Yin, Gruber,and Arkin 2004); and (2) their merging procedures (Xie and Arkin 1997; Gruber et al. 2000), which implies a distinction in the intensity of BSM rainfall between the two datasets.

    In the present study, we examine the recent releases of the GPCP and CMAP products during the period 1979—2014, and evaluate the quality of the data in indicating the climatological pattern and the interannual variability over the BSM regions. We apply the TRMM satellite product and global gauge observations to evaluate the similarities and discrepancies in BSM precipitation between the two datasets. The focus is on the climatology and interannual timescale over the BSM regions, and the aim is to try to provide an efective method for decreasing the uncertainty when studying the variation of boreal monsoon precipitation during a period demonstrating high levels of inconsistency.

    2. Data and methods

    The datasets used include the monthly GPCP (Hufman et al. 1997, 2009; Adler et al. 2003) and monthly CMAP (Xie and Arkin 1997) from 1979 to 2014, with a spatial resolution of 2.5° × 2.5°. In addition, the satellite-observed precipitation of TRMM 3B43 Version 7 during 1998—2014 is used to inspect the performance of the two datasets, in conjunction with the global gauge observations from the Global Historical Climatology Network (GHCN) Version 1.0 during 1979—1997. The TRMM product (Hufman et al. 2010), provided by the Distributed Active Archive Center, GSFC, NASA, is available via http://trmm/gsfc.nasa.gov/. The GHCN records (Vose et al. 1992) include 31,446 global stations, subjected to precise data integration and multiple statistical tests.

    The focus in this work is on the area-averaged summer monsoon rainfall anomalies during 1979—2014 over the fve monsoon regions of the Northern Hemisphere,including the tropical monsoon over North America(NAM), North Africa (NAF), India (IND), and the western North Pacifc (WNP), and the subtropical summer monsoon over EA (Wang et al. 2012). The interannual variability of each element is obtained after removing the linear trend and the 11-yr running mean from its original value. The absolute diference and relative diference are calculated to reveal the discrepancies between GPCP and CMAP. In addition, temporal and spatial correlations are employed to evaluate the similarity in the rainfall anomalies between the two products over the monsoon regions, with the spatial correlation measured using the anomaly correlation coefcient (ACC) (Murphy and Epstein 1989). In addition,the frequency of discrepancy (defned as the ratio of the concurrent negative phases of rainfall anomalies between GPCP and CMAP in a 36-yr record), the RMSE (Levinson 1947) and the Taylor diagram (Taylor 2001) are used to quantitatively evaluate the interannual inconsistency between the two datasets. Meanwhile, the ability of the arithmetic mean in reducing the uncertainty in rainfall variability over the BSM regions is discussed.

    3. Results

    3.1. Climatological pattern

    We begin by investigating the climatological pattern of the BSM based on the two diferent datasets. Following the defnition of Wang et al. (2012), the monsoon domain is defned here as where the local summer-minus-winter precipitation rate exceeds 2.5 mm d-1and the local summer precipitation exceeds 55% of the annual total. Considering the distinct characteristics of monsoon rainfall and circulation between the eastern Tibetan Plateau (TP) and India(Chu et al. 2011), we exclude the TP area (i.e. topography above 1500 m) from the IND monsoon region defned by Wang et al. (2012), as shown in Figure 1.

    It is apparent that the BSM domains are generally refected in both the GPCP and CMAP products (Figure 1). Nonetheless, there are diferences in the domains, mostly in the WNP and EA monsoon regions. Specifcally, the CMAP WNP monsoon region is larger and extends eastward to 165°E (Figure 1(b)), while the GPCP EA monsoon region is larger and with its northern boundary near 56°N (Figure 1(a)). Thus, we select common domains for the subsequent data evaluation; the domain details are presented in Table 1.

    Figure 1.The boreal monsoon regions based on (a) GPCP and (b) CMAP. Red (blue) marks indicate common (distinct) regions between GPCP and CMAP.

    Table 1.Domains of the fve boreal summer monsoon regions,and the temporal correlation coefcient (CC) for the interannual rainfall variability between the GPCP and CMAP products over the specifc monsoon regions.

    Figure 2 shows the seasonal evolution of precipitation over the fve boreal monsoon regions in the climatology (Figures 2(a) and (b)), as well as the absolute diference (Figure 2(c)) and relative diference (Figure 2(d)) of June—July—August (JJA) precipitation. Generally, the two products depict a similar seasonal cycle and precipitation intensity from May to October over the BSM regions(Figures 2(a) and (b)), except for the maximum absolute inconsistencies in summer precipitation in terms of the climatological pattern appear over the oceanic WNP and a fragmentary part of the NAM and IND monsoon regions. diference (>1.5 mm d-1) over the WNP monsoon region from July to September (Figure 2(c)). Figure 2(d) indicates largely positive relative diferences (>30%) in JJA precipitation between GPCP and CMAP, located in the southern WNP and a fragmentary part of the NAM and IND monsoon regions. Therefore, the pattern and magnitude of regional monsoon rainfall in the GPCP and CMAP datasets is similar across the BSM regions, except for distinct inconsistencies found mostly over the WNP oceanic monsoon areas, which can be partly attributed to the controversial input of atoll gauges over the tropical Pacifc in CMAP, according to Yin,Gruber, and Arkin (2004). Indeed, changes to input data(e.g. atoll gauges in CMAP in January 1996) have implications in the behavior of the two datasets. The atoll data have been improperly used by CMAP for constructing the oceanic precipitation. This input data change and atoll gauges sampling problem can explain the fact that the two products have much less in common over the ocean than over land (Yin, Gruber, and Arkin 2004). Thus, distinct

    3.2. Interannual variability

    Table 1 lists the temporal correlation coefcients (CCs)of interannual rainfall variability over the fve monsoon regions, based on the two datasets. The results suggest that the interannual variability over the monsoon regions is very similar in GPCP and CMAP, except for the NAM and IND monsoon regions. Figure 3 shows the ACC evolution of BSM rainfall between GPCP and CMAP during 1979—2014. It can be seen that the ACC over the fve monsoon regions primarily increases with time, presenting a rising trend in ACCs over each monsoon region from 1979 to 2014. This is probably due to the development of microwave estimates from SSM/I and the improvement in merging methods of each data type providing more accurate instantaneous rainfall estimates, especially over the oceans where there is a lack of gauge observations (Gruber et al. 2000). Specifcally, the ACC between the two products is largest over the WNP and EA monsoon regions (Figures 3(d) and (e)), but lowest over the NAF and IND monsoon regions (Figures 3(b) and (c)). For instance, the ACC over the NAF and IND monsoon regions decreases abruptly in the 1980s, but increases in the early 2010s (Figures 3(b)and (c)). Therefore, even in recent decades, the ACC over the NAF and IND monsoon regions shows evident oscillation, which implies considerable discrepancies in monsoonrainfall variability over the two regions between the GPCP and CMAP datasets (Figure 1).

    Figure 2.Climatological (1979—2014) evolution of precipitation in (a) GPCP and (b) CMAP (units: mm d-1) over the fve monsoon regions.(c) Absolute diference in the averaged seasonal cycle between the two products (CMAP minus GPCP; units: mm d-1). (d) Relative diference of the averaged summer precipitation between the two products (0.5 × (CMAP-GPCP) × (CMAP + GPCP)-1; red: >30%; blue:<-30%).

    To further quantify the interannual inconsistency between the two datasets, we investigated the spatial distribution of negative frequency and the RMSE between the two datasets (fgure not shown). It was found that the discrepancy percentage of interannual variability between the two products was greater than 25% over the NAM,NAF, and IND regions, as well as their surrounding marine areas. Note that the largest frequency and RMSE were observed over low-latitude North Africa and India, and the largest disagreement appeared over the NAF and IND monsoon regions, where the magnitude of RMSE reached 5.0 mm d-1. Therefore, discrepancy in the interannual variability between the two datasets is mainly observed over the NAF and IND monsoon regions, characterized by smaller and unstable ACCs, while they agree with each other very well over the WNP and EA monsoon regions.

    3.3. Validation by satellite and in situ observations The TRMM product and global land in situ observations are treated as benchmarks to evaluate the accuracy of the GPCP and CMAP products. Due to the availability of the TRMM product and the increasing linear trend of GPCP/ CMAP spatial correlation (the cross point are approximately at 1997/98), the evaluation is divided into two periods: 1979—97 and 1998—2014. Figures 4(a) and (b) are Taylor diagrams of the GPCP and CMAP products for the two periods. It can be seen that the CMAP patterns generally agree well with those of the GPCP over the fve monsoon regions during the period 1998—2014. However, the consistency between the two datasets is relatively lower over the BSM regions during the period 1979—1997, especially over the NAM and IND monsoon regions (Figure 4(a)), as compared to the period 1998—2014 (Figure 4(b)). The consistency is better over the WNP and EA monsoon regions in the more recent period, but the disagreement is still robust over the NAF monsoon region, even in the latter two decades.

    Since the GHCN gauge observations and the TRMM products are highly consistent in terms of common regions and episodes (fgure not shown), they can act as reliable criteria for optimal selection with respect to the two datasets, especially over the high-discrepancy regions and episodes. Figure 4(c) compares the arithmetic mean of land GPCP and CMAP records and GHCN gauge observations during 1979—1997. The CC between the arithmetic mean and the GHCN product is somewhat improved over the BSM regions, except for the WNP area. Whereas, the changes in the standard deviation (STD) of the arithmetic mean are more complicated. Specifcally, the arithmetic mean becomes slightly worse than the GPCP over the NAM region and CMAP over the NAF region, respectively. However, it improves over the IND region where there is considerable GPCP/CMAP inconsistency. Over the WNP region, the arithmetic mean is better than CMAP but worsethan GPCP. Furthermore, the improvement in the STD over the EA region is insignifcant (Figure 4(c)). It is important to note that the quality of the GHCN product, used as reference, will be sensitive to the comparison in the period 1979—1997. Thus, the arithmetic mean has better skill over the IND region, and shows worse skill than GPCP but better skill than CMAP over the NAM, NAF, and WNP regions. Over the EA region, the arithmetic mean shows exactly the same skill as GPCP. Generally, using the arithmetic mean of the GPCP and CMAP records is able to reduce the uncertainty of their individual use over the BSM regions.

    Figure 3.Evolution of the anomaly correlation coefcient (ACC) between the GPCP and CMAP summer precipitation over the fve boreal monsoon regions during 1979—2014.

    Figure 4.Taylor diagram of the GPCP, CMAP, TRMM, and GHCN summer precipitation on the interannual timescale. Panels (a) and (b) are Taylor diagrams of the GPCP and CMAP products during 1979—1997 and 1998—2014, respectively. The GPCP is set as ‘Reference’ (REF). The GHCN gauge observations and TRMM products are used to validate the two datasets. Panels (c) and (d) are Taylor diagrams of the GHCN gauge observations and TRMM products with the GPCP and CMAP and their arithmetic mean values of 1979—1997 and 1998—2014,respectively.

    It can also be seen that the GPCP and CMAP products correspond well to the TRMM product over all BSM regions during 1998—2014 (Figure 4(d)). The interannual variability derived from the arithmetic mean of GPCP and CMAP exhibits remarkable positive correlation with the TRMM product over all the monsoon regions. Specifcally,over the NAF region where there is considerable GPCP/ CMAP inconsistency, the arithmetic mean shows better skill than either GPCP or CMAP, presenting an increased CC and decreased STD diference with the TRMM product. Improvement can also be found over the NAM, WNP,and EA monsoon regions. Compared with the TRMM product, the arithmetic mean over the IND region shows a higher CC than the CMAP data-set, but a larger STD diference than the GPCP record. Although it remains hard to identify an optimal precipitation data-set for the BSM, the use of the arithmetic mean of the GPCP and CMAP products nevertheless provides an efective way to reduce the level of uncertainty when studying BSM rainfall variation.

    4. Concluding remarks

    GPCP and CMAP have been popularly used in climate monitoring and research due to their global coverage and long-term records. The present paper evaluates the climatology and interannual variability of boreal monsoon precipitation in these two datasets during 1979—2014. The results suggest that the climatology of the seasonalcycle of BSM rainfall can be refected by both datasets,but their absolute diference is still robust, with a maximum over the WNP monsoon region during July—October. Discrepancies in the summer rainfall pattern and magnitude are found over the oceanic WNP and a fragmentary part of the oceanic NAM and IND monsoon regions. On the interannual timescale, the rainfall anomaly is mostly correlated between the two products. A number of signifcant diferences are, however, still observed over the NAF and IND monsoon regions, as revealed by smaller and more unstable ACCs, higher frequency of discrepancy, and greater RMSE. It is noted that consistency between the two datasets has greatly increased in recent decades. The use of the arithmetic mean of the GPCP and CMAP products is evaluated by comparing with TRMM and global in situ observations, demonstrating it to be an efcient method for reducing the uncertainties in rainfall anomalies over the BSM regions. It is hoped that the present evaluation will provide useful information for future BSM climate research.

    Acknowledgements

    We thank the anonymous reviewers for their innovative suggestions. The GPCP and CMAP datasets were downloaded from http://www.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html and ftp://ftpprd.ncep.noaa.gov/pub/precip/cmap, respectively.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 41475057], [grant number 41221064], [grant number 91437218], [grant number 41505049]; the Key Program of Chinese Academy of Meteorological Sciences [grant number 2015Z001].

    Notes on contributors

    HAO Yu-Qian is graduate student at Institute of Climate System,Chinese Academy of Meteorological Sciences. Her main research interests focus on the climate change of East Asian monsoon.

    ZHU Cong-Wen is Senior Researcher at Institute of Climate System, Chinese Academy of Meteorological Sciences. His main research interests focus on the East Asian monsoon and seasonal climate prediction. Recent publication includes papers in Int. J. Climatol., Chinese journal of Atmosphere Sciences, Adv. Atmos. Sci., Geophys. Res. Lett., and other journals.

    LIU Bo-Qi is associated researcher at Institute of Climate System,Chinese Academy of Meteorological Sciences, and Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics. His main research interests focus on monsoon dynamics and air-sea interaction. Recent publications include papers in Journal of Climate, Climate Dynamics, Adv. Atmos. Sci, and Chin Sci Bull, and other journals.

    References

    Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. P. Xie, J. Janowiak,and B. Rudolf. 2003. “The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979—Present).” Journal of Hydrometeorology 4 (6): 1147—1167.

    Chu, D., T. Pubu, G. Norbu, B. Sagar, S. Mandira, and J. P. Guo. 2011. “Validation of the Satellite-Derived Rainfall Estimates over the Tibet.” Acta Meteorologica Sinica 25 (6): 734—741.

    Gruber, A., X. Su, M. Kanamitsu, and J. Schemm. 2000.“The Comparison of Two Merged Rain Gauge—Satellite Precipitation Datasets.” Bulletin of the American Meteorological Society 81: 2631—2644.

    Hsu, P. C., T. Li, and B. Wang. 2011. “Trends in Global Monsoon Area and Precipitation over the past 30 Years.”Geophysical Research Letters 38: L08701. doi:http://dx.doi. org/10.1029/2011GL046893.

    Hufman, G. J., R. F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber,J. Janowiak, A. McNab, B. Rudolf, and U. Schnelder. 1997. “The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset.” Bulletin of the American Meteorological Society 78: 5—20.

    Hufman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu. 2009.“Improving the Global Precipitation Record: GPCP Version 2.1.” Geophysical Research Letters 36: L17808. doi:http:// dx.doi.org/10.1029/2009GL040000.

    Hufman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin. 2010.“Chapter 1 in Satellite Rainfall Applications for Surface Hydrology.” In The TRMM Multi-Satellite Precipitation Analysis(TMPA), edited by G. Mekonnen and H. Faisal, 3—22. Berlin: Springer Verlag.

    Janicot, S. 2009. “A Comparison of Indian and African Monsoon Variability at Diferent Time Scales.” Comptes Rendus Geoscience 341: 575—590.

    Levinson, N. 1947. “The Wiener RMS (Root Mean Square)Error Criterion in Filter Design and Prediction.” Journal of Mathematical Physics 25: 261—278.

    Lin, R. P., T. J. Zhou, and Y. Qian. 2014. “Evaluation of Global Monsoon Precipitation Changes Based on Five Reanalysis Datasets.” Journal of Climate 27: 1271—1289.

    Murphy, A. H., and E. S. Epstein. 1989. “Skill Scores and Correlation Coefcients in Model Verifcation.” Monthly Weather Review 117: 572—582.

    Prakash, S., A. K. Mitra, I. M. Momin, E. N. Rajagopal, S. Basu, M. Collins, A. G. Turner, K. A. Rao, and K. Ashok. 2015. “Seasonal Intercomparison of Observational Rainfall Datasets over India during the Southwest Monsoon Season.” International Journal of Climatology 35: 2326—2338.

    Qi, L., and Y. Q. Wang. 2015. “Discrepancies in Diferent Precipitation Data Products in the Bay of Bengal during Summer Monsoon Season.” Advances in Meteorology 2015: 1—13. doi: http://dx.doi.org/10.1155/2015/806845.

    Taylor, K. E. 2001. “Summarizing Multiple Aspects of Model Performance in a Single Diagram.” Journal of Geophysical Research: Atmospheres 106: 7183—7192.

    Vose, R. S., R. L. Schmoyer, T. C. Peterson, P. M. Steurer, R. R. Jr. Heim, T. R. Karl, and J. K. Eischeid. 1992. The Global HistoricalClimatology Network: Long-Term Monthly Temperature,Precipitation, Sea Level Pressure, and Station Pressure Data,189. Oak Ridge, Tennessee: Oak Ridge National Laboratory.

    Wang, B., J. Liu, H. J. Kim, P. J. Webster, and S. Y. Yim. 2012. “Recent Change of the Global Monsoon Precipitation (1979—2008).”Climate Dynamics 39: 1123—1135.

    Xie, P. P., and P. A. Arkin. 1997. “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs.” Bulletin of the American Meteorological Society 78: 2539—2558.

    Yin, X., A. Gruber, and P. Arkin. 2004. “Comparison of the GPCP and CMAP Merged Gauge—Satellite Monthly Precipitation Products for the Period 1979—2001.” Journal of Hydrometeorology 5: 1207—1222.

    Zhang, G., and K. H. Cook. 2014. “West African Monsoon Demise: Climatology, Interannual Variations, and Relationship to Seasonal Rainfall.” Journal of Geophysical Research 119: 175—193. doi:http://dx.doi.org/10.1002/ 2014JD022043.

    Zhu, C. W., W. S. Lee, H. W. Kang, and C. K. Park. 2005. “A Proper Monsoon Index for Seasonal and Interannual Variations of the East Asian Monsoon.” Geophysical Research Letters 32: L02811. doi:http://dx.doi.org/10.102 9/2004GL021295.

    29 January 2016

    CONTACT ZHU Cong-Wen tomzhu@camscma.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    變率北半球年際
    內部變率和全球變暖對春季北太平洋維多利亞模態(tài)增強的相對貢獻
    北半球最強“星空攝影師”開工啦
    軍事文摘(2023年24期)2023-12-19 06:50:06
    研究顯示降水變率將隨氣候增暖而增強
    清涼一夏
    北緯30°中層頂區(qū)域鈉與鐵原子層的結構和年際變化
    南北半球天象
    軍事文摘(2019年18期)2019-09-25 08:09:22
    Does a monsoon circulation exist in the upper troposphere over the central and eastern tropical Pacifc?
    亞洲夏季風的年際和年代際變化及其未來預測
    與北大西洋接壤的北極海冰和年際氣候變化
    基于M-K法對圖們江干流含沙量年際變化的分析
    吉林地質(2014年3期)2014-03-11 16:47:25
    精品熟女少妇av免费看| 午夜亚洲福利在线播放| 老司机影院成人| 亚洲国产色片| 亚洲三级黄色毛片| 久久中文看片网| 日本a在线网址| 免费人成视频x8x8入口观看| 国产亚洲精品久久久com| 欧美国产日韩亚洲一区| 日本成人三级电影网站| 美女黄网站色视频| 给我免费播放毛片高清在线观看| 欧美一级a爱片免费观看看| 成人亚洲欧美一区二区av| 最新中文字幕久久久久| 国产一区二区激情短视频| 99久久精品国产国产毛片| 麻豆精品久久久久久蜜桃| 国产精品野战在线观看| 日韩人妻高清精品专区| 舔av片在线| 熟女人妻精品中文字幕| 亚洲人成网站在线观看播放| 欧美不卡视频在线免费观看| 久久精品久久久久久噜噜老黄 | 中文字幕av成人在线电影| 亚洲自偷自拍三级| 丰满乱子伦码专区| a级毛色黄片| 在线国产一区二区在线| 亚洲欧美日韩无卡精品| 一区二区三区四区激情视频 | 国产免费男女视频| 18禁黄网站禁片免费观看直播| 日日撸夜夜添| 在现免费观看毛片| 亚洲人成网站在线观看播放| 国产精品无大码| 日韩欧美三级三区| 欧美色视频一区免费| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线 | 国产精品人妻久久久久久| 午夜福利在线观看免费完整高清在 | 1024手机看黄色片| 久久久久性生活片| 六月丁香七月| 欧美色视频一区免费| av黄色大香蕉| 国产探花极品一区二区| 我的老师免费观看完整版| 国产伦精品一区二区三区视频9| 九九热线精品视视频播放| 成人午夜高清在线视频| 亚洲人与动物交配视频| 国产乱人偷精品视频| 内射极品少妇av片p| 亚洲国产高清在线一区二区三| 寂寞人妻少妇视频99o| 三级国产精品欧美在线观看| 91av网一区二区| 国产欧美日韩精品亚洲av| 亚洲av一区综合| 午夜精品在线福利| 国产精品伦人一区二区| 国产色爽女视频免费观看| 搡老熟女国产l中国老女人| 99视频精品全部免费 在线| 亚洲精品一区av在线观看| 久久中文看片网| 欧美日韩乱码在线| 亚洲av免费高清在线观看| 久久精品国产亚洲网站| 国产精品99久久久久久久久| 精品久久久久久久久亚洲| 亚洲七黄色美女视频| 午夜福利成人在线免费观看| .国产精品久久| 香蕉av资源在线| 最近手机中文字幕大全| 真人做人爱边吃奶动态| 美女免费视频网站| 中国美女看黄片| 精品人妻一区二区三区麻豆 | 国产精品一区二区三区四区久久| 秋霞在线观看毛片| 久久久久国产精品人妻aⅴ院| 国产一区二区在线观看日韩| 亚洲精品久久国产高清桃花| 免费人成在线观看视频色| 日韩一本色道免费dvd| 亚洲精品粉嫩美女一区| 男人狂女人下面高潮的视频| 婷婷亚洲欧美| 久久人人爽人人爽人人片va| 国产真实乱freesex| 少妇的逼水好多| av天堂在线播放| 超碰av人人做人人爽久久| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 国产一区二区三区在线臀色熟女| 一卡2卡三卡四卡精品乱码亚洲| 亚洲经典国产精华液单| 高清日韩中文字幕在线| 欧美xxxx性猛交bbbb| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 欧美日韩综合久久久久久| 亚洲av美国av| 97超级碰碰碰精品色视频在线观看| 欧美激情国产日韩精品一区| 久久久久久久久大av| 亚洲四区av| 亚洲第一电影网av| 日日摸夜夜添夜夜添av毛片| 悠悠久久av| 国产蜜桃级精品一区二区三区| 乱人视频在线观看| 精品一区二区三区视频在线| 别揉我奶头 嗯啊视频| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕 | 日日干狠狠操夜夜爽| 免费黄网站久久成人精品| 成年版毛片免费区| 国产三级中文精品| 欧美性猛交黑人性爽| 久久99热6这里只有精品| 欧美激情久久久久久爽电影| 国产亚洲91精品色在线| 欧美成人免费av一区二区三区| 人人妻人人澡人人爽人人夜夜 | 亚洲精品乱码久久久v下载方式| 欧美日韩综合久久久久久| 五月玫瑰六月丁香| 晚上一个人看的免费电影| 婷婷精品国产亚洲av| 国产一区亚洲一区在线观看| 成人二区视频| 欧美日韩综合久久久久久| 久久精品影院6| 99热这里只有是精品在线观看| 欧美不卡视频在线免费观看| 亚洲自偷自拍三级| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av| 日韩强制内射视频| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站 | 亚洲图色成人| 国产女主播在线喷水免费视频网站 | 99热这里只有是精品50| 日韩精品青青久久久久久| 我要搜黄色片| 联通29元200g的流量卡| 欧美bdsm另类| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 久久久久久伊人网av| 可以在线观看的亚洲视频| 欧美人与善性xxx| 99久久精品热视频| 国产视频内射| 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 国产亚洲欧美98| av福利片在线观看| 中国国产av一级| 99热这里只有精品一区| 亚洲精品亚洲一区二区| 一边摸一边抽搐一进一小说| 97人妻精品一区二区三区麻豆| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频| 国产乱人视频| 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| 最好的美女福利视频网| 久久久色成人| 婷婷精品国产亚洲av| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看免费完整高清在 | 亚洲一区高清亚洲精品| 欧美一级a爱片免费观看看| 国产av在哪里看| 一区二区三区四区激情视频 | 国产精品99久久久久久久久| 国产av不卡久久| 欧美丝袜亚洲另类| 国产一级毛片七仙女欲春2| 激情 狠狠 欧美| 精品久久久久久成人av| 国产三级在线视频| 久久午夜亚洲精品久久| 老熟妇乱子伦视频在线观看| 噜噜噜噜噜久久久久久91| 99热这里只有精品一区| 国产三级在线视频| 午夜爱爱视频在线播放| 国产老妇女一区| 国产一区二区激情短视频| 亚洲av电影不卡..在线观看| 中文字幕av成人在线电影| 成人午夜高清在线视频| 在线国产一区二区在线| 久久久成人免费电影| 成人性生交大片免费视频hd| 亚洲经典国产精华液单| 久久久精品94久久精品| 欧洲精品卡2卡3卡4卡5卡区| 蜜臀久久99精品久久宅男| 美女内射精品一级片tv| 亚洲,欧美,日韩| 日韩欧美三级三区| 99热这里只有精品一区| 最好的美女福利视频网| 国产真实乱freesex| 老熟妇乱子伦视频在线观看| 一级毛片久久久久久久久女| 真人做人爱边吃奶动态| 日产精品乱码卡一卡2卡三| 岛国在线免费视频观看| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久成人| 观看免费一级毛片| 日韩欧美 国产精品| 99久久精品热视频| av国产免费在线观看| 国产黄a三级三级三级人| 免费看av在线观看网站| 99久久九九国产精品国产免费| 日韩欧美精品v在线| 男女边吃奶边做爰视频| 春色校园在线视频观看| 美女免费视频网站| 成人午夜高清在线视频| 亚洲图色成人| 一区二区三区高清视频在线| 国产老妇女一区| a级毛片免费高清观看在线播放| 亚洲一区高清亚洲精品| 三级经典国产精品| 国产高清视频在线观看网站| 精品人妻熟女av久视频| 国产精品99久久久久久久久| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 亚洲欧美成人精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 卡戴珊不雅视频在线播放| 在线播放国产精品三级| 插逼视频在线观看| 亚洲国产欧洲综合997久久,| 麻豆成人午夜福利视频| 日韩欧美在线乱码| 美女大奶头视频| 免费搜索国产男女视频| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 久久精品夜色国产| 搞女人的毛片| 草草在线视频免费看| 最近手机中文字幕大全| 啦啦啦韩国在线观看视频| 国产av在哪里看| 美女内射精品一级片tv| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 日韩大尺度精品在线看网址| 精品一区二区三区人妻视频| 欧美性猛交黑人性爽| 男人狂女人下面高潮的视频| 少妇高潮的动态图| 国产精品,欧美在线| 日本欧美国产在线视频| 成人欧美大片| 国产精品无大码| 性插视频无遮挡在线免费观看| 真实男女啪啪啪动态图| 网址你懂的国产日韩在线| 精品久久久久久久久久免费视频| 亚洲精品日韩在线中文字幕 | 欧美日韩综合久久久久久| 免费电影在线观看免费观看| 成人性生交大片免费视频hd| 欧美高清成人免费视频www| 久久国产乱子免费精品| 久久人人爽人人爽人人片va| 久久久久性生活片| 国产黄片美女视频| 久久久午夜欧美精品| 中国国产av一级| 女的被弄到高潮叫床怎么办| 婷婷精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 亚洲成人久久性| 长腿黑丝高跟| 人妻少妇偷人精品九色| 欧美潮喷喷水| 日韩精品青青久久久久久| 成人漫画全彩无遮挡| 能在线免费观看的黄片| av在线亚洲专区| 精品国产三级普通话版| 99在线视频只有这里精品首页| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 亚洲人与动物交配视频| 亚洲av免费高清在线观看| 欧美潮喷喷水| 久久久久久九九精品二区国产| 欧美在线一区亚洲| 国产激情偷乱视频一区二区| 99久久精品热视频| 久久午夜亚洲精品久久| 国产伦在线观看视频一区| 亚洲av免费在线观看| 国产精品伦人一区二区| 永久网站在线| 乱人视频在线观看| 国产综合懂色| 亚洲精品日韩在线中文字幕 | 亚洲欧美日韩卡通动漫| 看片在线看免费视频| 亚洲一级一片aⅴ在线观看| 麻豆av噜噜一区二区三区| 在线天堂最新版资源| 亚洲最大成人av| 亚洲人成网站在线播| 成人毛片a级毛片在线播放| 免费看美女性在线毛片视频| 欧美在线一区亚洲| 男人和女人高潮做爰伦理| 久久久精品大字幕| 少妇人妻一区二区三区视频| 男插女下体视频免费在线播放| 亚洲无线观看免费| 国产精品一及| 国产精品一二三区在线看| .国产精品久久| or卡值多少钱| 99热这里只有是精品50| 国产乱人视频| 丝袜美腿在线中文| 成人综合一区亚洲| 国产精品人妻久久久久久| av.在线天堂| 俄罗斯特黄特色一大片| 内地一区二区视频在线| 日本成人三级电影网站| 嫩草影院新地址| 亚洲精华国产精华液的使用体验 | av免费在线看不卡| 麻豆乱淫一区二区| 欧美三级亚洲精品| 在线观看美女被高潮喷水网站| 午夜精品一区二区三区免费看| 亚洲精品成人久久久久久| 麻豆乱淫一区二区| 日本-黄色视频高清免费观看| 国产精品日韩av在线免费观看| 精品99又大又爽又粗少妇毛片| 国产黄色视频一区二区在线观看 | 欧美日韩精品成人综合77777| 久久午夜福利片| 51国产日韩欧美| 免费在线观看成人毛片| 国产精品久久久久久久电影| 91久久精品国产一区二区成人| 国产av麻豆久久久久久久| 日韩欧美一区二区三区在线观看| 又爽又黄无遮挡网站| 18+在线观看网站| 国产精品国产三级国产av玫瑰| 午夜精品国产一区二区电影 | 亚洲成人久久性| 国产一区二区三区在线臀色熟女| 久久精品国产鲁丝片午夜精品| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 91狼人影院| 十八禁网站免费在线| 色av中文字幕| 俺也久久电影网| 精品少妇黑人巨大在线播放 | 国产白丝娇喘喷水9色精品| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 久久国产乱子免费精品| 亚洲国产色片| 国产黄片美女视频| av在线天堂中文字幕| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区视频9| 日本撒尿小便嘘嘘汇集6| 人人妻,人人澡人人爽秒播| 色视频www国产| 日本色播在线视频| 色尼玛亚洲综合影院| 日韩欧美一区二区三区在线观看| 天堂网av新在线| 国产精品一区二区三区四区久久| 波多野结衣巨乳人妻| 久久久久久大精品| 亚洲,欧美,日韩| 亚洲av熟女| av天堂中文字幕网| 久久久色成人| 久久久午夜欧美精品| 美女高潮的动态| 3wmmmm亚洲av在线观看| 亚洲天堂国产精品一区在线| 九色成人免费人妻av| 在线国产一区二区在线| 亚洲七黄色美女视频| 一个人看的www免费观看视频| 日韩欧美精品免费久久| 不卡一级毛片| aaaaa片日本免费| 深夜a级毛片| 亚洲久久久久久中文字幕| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添小说| 91久久精品国产一区二区三区| 日韩成人伦理影院| 欧美激情在线99| 人人妻人人澡人人爽人人夜夜 | 又黄又爽又免费观看的视频| 18禁裸乳无遮挡免费网站照片| 精品熟女少妇av免费看| 午夜激情欧美在线| 久久国产乱子免费精品| 午夜久久久久精精品| АⅤ资源中文在线天堂| 91狼人影院| 好男人在线观看高清免费视频| 久久精品人妻少妇| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品粉嫩美女一区| 亚洲av成人精品一区久久| 精品国产三级普通话版| 91精品国产九色| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲成人av在线免费| 91在线精品国自产拍蜜月| 免费av观看视频| 亚洲精品粉嫩美女一区| 成人一区二区视频在线观看| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 欧洲精品卡2卡3卡4卡5卡区| avwww免费| 精品午夜福利视频在线观看一区| 国产 一区精品| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 1024手机看黄色片| 亚洲中文字幕一区二区三区有码在线看| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 一级毛片久久久久久久久女| 日韩成人伦理影院| 乱人视频在线观看| 欧美日本视频| 亚洲无线在线观看| 国产av麻豆久久久久久久| 十八禁网站免费在线| 丝袜喷水一区| 日韩欧美三级三区| 男女那种视频在线观看| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 美女免费视频网站| 成人鲁丝片一二三区免费| 此物有八面人人有两片| 亚洲国产精品成人久久小说 | 亚洲精品日韩在线中文字幕 | 欧美高清成人免费视频www| 两个人视频免费观看高清| 高清午夜精品一区二区三区 | 在线播放无遮挡| 日日摸夜夜添夜夜爱| 成年女人看的毛片在线观看| 夜夜夜夜夜久久久久| 男女做爰动态图高潮gif福利片| 亚洲三级黄色毛片| 嫩草影院新地址| 全区人妻精品视频| 麻豆乱淫一区二区| 色综合亚洲欧美另类图片| 国产欧美日韩精品一区二区| 一区二区三区四区激情视频 | 久久精品影院6| 久久久久久久久久成人| 最近手机中文字幕大全| 人人妻人人澡欧美一区二区| 别揉我奶头 嗯啊视频| 国产黄a三级三级三级人| 国产成人freesex在线 | 色在线成人网| 一本精品99久久精品77| 久久久久久大精品| 欧美最新免费一区二区三区| 美女 人体艺术 gogo| 在线观看一区二区三区| 成人欧美大片| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站| 晚上一个人看的免费电影| 国产一区亚洲一区在线观看| 伦精品一区二区三区| 久久久久九九精品影院| 人人妻人人澡欧美一区二区| 国产又黄又爽又无遮挡在线| 18禁在线播放成人免费| 你懂的网址亚洲精品在线观看 | 99在线视频只有这里精品首页| 深夜a级毛片| 国产在线精品亚洲第一网站| 欧美日韩乱码在线| 亚洲中文字幕日韩| 久久久色成人| 国产精品综合久久久久久久免费| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线| 亚洲电影在线观看av| 日本一二三区视频观看| 亚洲成人av在线免费| 久久久久国内视频| 变态另类成人亚洲欧美熟女| 一个人观看的视频www高清免费观看| 看十八女毛片水多多多| 欧美成人一区二区免费高清观看| 国产精品1区2区在线观看.| 久久久久国内视频| 精品熟女少妇av免费看| 国产淫片久久久久久久久| 国产乱人视频| 夜夜夜夜夜久久久久| 婷婷色综合大香蕉| 午夜精品国产一区二区电影 | 黄色欧美视频在线观看| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 精品久久国产蜜桃| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av天美| 嫩草影视91久久| 国产精品人妻久久久影院| 国产成人a区在线观看| 国产精品爽爽va在线观看网站| 中文字幕av在线有码专区| 欧美一区二区亚洲| 人妻制服诱惑在线中文字幕| 中国美女看黄片| 国产精品综合久久久久久久免费| 最新在线观看一区二区三区| 一a级毛片在线观看| 观看免费一级毛片| 少妇的逼好多水| 欧美潮喷喷水| 欧美性感艳星| 欧美日韩国产亚洲二区| 国产精品女同一区二区软件| 亚洲国产精品合色在线| 久久天躁狠狠躁夜夜2o2o| 亚洲第一区二区三区不卡| 简卡轻食公司| av中文乱码字幕在线| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 级片在线观看| 色哟哟·www| 内射极品少妇av片p| 国产精品女同一区二区软件| 色综合色国产| 性色avwww在线观看| 日韩欧美 国产精品| 久久99热6这里只有精品| www日本黄色视频网| 久久久久久久久久久丰满| 国产一区亚洲一区在线观看| 波多野结衣巨乳人妻| 最近中文字幕高清免费大全6| 日本成人三级电影网站| 简卡轻食公司| 搡老岳熟女国产| 国产在视频线在精品| 亚洲精品粉嫩美女一区| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频 | 超碰av人人做人人爽久久| 国产视频一区二区在线看| 麻豆av噜噜一区二区三区| 国产成年人精品一区二区| 搞女人的毛片| 最近2019中文字幕mv第一页| 国产精品免费一区二区三区在线| 搞女人的毛片| 最近的中文字幕免费完整| 久久久久久久久久黄片| 国产毛片a区久久久久| 三级毛片av免费| 免费电影在线观看免费观看| 欧美激情久久久久久爽电影| aaaaa片日本免费|