• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The relationship between the Arctic Oscillation and ENSO as simulated by CCSM4

    2016-11-23 02:37:07ZHUYaliandWANGTao
    關(guān)鍵詞:正位二者北極

    ZHU Yaliand WANG Tao

    aNansen-Zhu International Research Centre, Chinese Academy of Sciences, Beijing, China;bClimate Change Research Centre, Chinese Academy of Sciences, Beijing, China

    The relationship between the Arctic Oscillation and ENSO as simulated by CCSM4

    ZHU Yalia,band WANG Taoa,b

    aNansen-Zhu International Research Centre, Chinese Academy of Sciences, Beijing, China;bClimate Change Research Centre, Chinese Academy of Sciences, Beijing, China

    The correlation between the Arctic Oscillation (AO) and ENSO refects the strength of the interaction between climate systems in the low and high latitudes. Based on the long-term (501 years) control simulation of CCSM4, the authors investigated the linkage between the AO and ENSO in boreal winter. Based on the correlation coefcients between them, the authors divided the entire period into two groups: one that included the years with statistically signifcant correlations (G1), and the other the years with insignifcant correlations (G2). In G1, the AO-related atmospheric circulation pattern resembles the ENSO-related one. The Aleutian Low (AL) acts as a bridge linking these two modes. In G2, however, the AO and ENSO signals are confned to the mid-high and mid-low latitudes,respectively. There is no signifcant linkage between the AO and ENSO in boreal winter, showing a low correlation coefcient. Further analysis suggests that changes in the climatological features,including the strengthened AO, the negative Pacifc Decadal Oscillation phase, and the weakened AL, may be responsible for the enhanced relationships.

    ARTICLE HISTORY

    Revised 29 December 2015

    Accepted 4 January 2016

    Arctic Oscillation; ENSO;

    CCSM4; Aleutian Low;

    climate interaction between low and high latitude

    北極濤動(dòng)(AO)和ENSO可以顯著影響我國冬季氣候。我們基于CCSM4的長期(501年)參照試驗(yàn)結(jié)果, 揭示了冬季AO和ENSO間的關(guān)系存在年代際變化。在二者相關(guān)顯著時(shí)期,二者對(duì)我國南、北氣溫均有顯著影響; 而在相關(guān)不顯著時(shí)期, 二者分別主要影響我國北部和南部的氣溫。氣候態(tài)上出現(xiàn)的正位相AO、負(fù)位相太平洋年代際振蕩和減弱的阿留申低壓,可能有利于高低緯之間異常信號(hào)的傳播, 導(dǎo)致AO和ENSO的聯(lián)系顯著。

    1. Introduction

    Internal climate interactions between the low and high latitudes are important for regional climate variations. One example of such interaction is that between the Arctic Oscillation(AO) and ENSO. ENSO is the strongest signal at interannual timescales, and it can robustly infuence regional climate in the mid-low latitudes, such as the East Asian monsoon region(Alexander, Bladé, and Newman 2002; Wang 2002; Wang, Wu,and Fu 2000; Webster and Yang 1992). The AO, or its Atlantic counterpart, the North Atlantic Oscillation, is a dominant atmospheric mode in the northern high latitudes that can exert signifcant infuence on the Eurasian and African climate(e.g. Gong and Ho 2003; Gong, Wang, and Zhu 2001; McHugh and Rogers 2001; Sun and Wang 2006, 2012; Sun, Wang, and Yuan 2008; Thompson and Wallace 2001; Zhou 2013; Zhou and Cui 2014; Zhou and Wang 2015).

    Actually, the relationship between the AO and ENSO represents the collaboration of, and competition between,climate systems in the high and low latitudes. Therefore,it has critical implications for global and regional climate variations (e.g. Fraedrich and Müller 1992; Greatbatch and Jung 2007; Jia, Lin, and Derome 2009). Previous studies have revealed interdecadal changes in the relationship between the AO and ENSO (e.g. Greatbatch, Lu, and Peterson 2004; Li, Wang, and Liu 2014). Li, Wang, and Liu(2014) showed that the Aleutian Low (AL) acts as a bridge in the strengthening relationship between the AO and ENSO in January after the mid-1990s.

    In the present study, a long-term pre-industrial simulation by CCSM4 (Mu?oz et al. 2012) was used to explore the interdecadal variations in the relationship between the AO and ENSO, and associated atmospheric circulation.

    2. Data and methods

    CCSM4 is a global coupled climate model with a 1°, 26-level atmosphere coupled to a 1° (down to 1/48 in the equatorial tropics), 60-level ocean and state-of-the-art sea-ice and land-surface schemes (Gent et al. 2011). The 501-year control simulation was conducted with no interannual variations in external forcing agents, and greenhouse gas andtropospheric sulfate aerosol concentrations were fxed at pre-industrial (1850) levels. Thus, there was no long-term trend in the control simulation. Additionally, the changes in the AO and ENSO connection were mainly caused by the internal variability of the climate system in this study.

    Figure 1.The 21-year running correlation between the AO and Ni?o3.4 indices during the entire period.

    The variables used included SLP, surface air temperature(SAT), wind felds, and SST. In this study, the ENSO index was defned as the areal mean SST in the Ni?o3.4 region(5° S—5° N, 120—170° W). The AO index was defned as the leading principal component of monthly SLPs north of 20° N (Thompson and Wallace 1998). Here, we focus on the boreal winter season (i.e. December—February). The sign of the AO index was reversed (-AO) before calculating the spatial correlation patterns to facilitate the comparison between AO-related and ENSO-related signals.

    Prominent interdecadal changes can be found in the 21-year running correlation between the AO and ENSO indices (Figure 1). To perform composite analysis, we grouped years into those with statistically signifcant (G1,129 years) and insignifcant (G2, 136 years) AO—ENSO correlations. Group G1 included years with correlation coeffcients greater than the 95% confdence level (-0.41),while group G2 included years with correlation coefcients smaller than -0.2. The criterion of -0.2 was used to eliminate marginal efects of running correlation and keep G2 clear of the AO—ENSO relationship, as well as to obtain a sample size of G2 comparable with that of G1.

    3. Results

    Large-scale signifcant positive correlations between -AO and SLP are evident over northern high latitudes in both G1 and G2 (Figures 2(a) and (b)). For group G1, correlations are opposite across the meridian line (east, positive; west,negative) in the low latitudes, resembling warm ENSO signals (Figures 2(a) and (e)). In group G2, however, there is no signifcant correlation between the AO index and SLP over the Maritime Continent and Indian Ocean. At the same time, the negative correlations over the northern and eastern tropical Pacifc become weaker than those in G1 (Figure 2(b)). For the -AO and SAT, positive correlations can be observed over the eastern tropical Pacifc (Figure 2(c)), suggesting a warm ENSO pattern during the negative AO phase. However, there is no ENSO signal during the negative AO phase in G2 (Figure 2(d)). In G1, the correlation patterns between the ENSO index and SLP (Figure 2(e)),as well as between the ENSO index and SAT (Figure 2(g))are both similar to the -AO-related SLP and SAT patterns(Figures 2(a) and (c)). However, the -AO-related SLP and SAT are stronger than their ENSO-related counterparts over the polar region, but weaker over the lower latitudes. In G2, signifcant correlations exist, mostly in the mid-low latitudes, while almost no signifcant correlations exist in the polar region.

    Because the correlations with wind felds in the lower and upper levels present similar patterns, we have shown those in the upper level, which show stronger signals. In G1, -AO is signifcantly related to an anomalous anticyclone—cyclone—anticyclone wave-train pattern from the northern high latitudes through the North Pacifc to the tropical Pacifc (Figure 3(a)). The ENSO-related patterns in G1 (Figure 3(c)) are very similar to the -AO patterns (Figure 3(a)), with the exception of weaker correlations in the high latitudes and higher correlations in the mid-low latitudes. A negative AO can induce signifcant easterly anomalies in the midlatitudes, leading to signifcant cyclonic anomalies in the North Pacifc and anticyclonic anomalies in the northwestern Pacifc in G2 (Figure 3(b)). However, no robust signals can be found in the eastern tropical Pacifc. Similarly, a warm ENSO can induce signifcant circulation anomalies over the tropics, as well as cyclonic anomalies over the North Pacifc (Figure 3(d)). However, there are only weak anomalies over the high latitudes (Figure 3(d)). This suggests that the connection between the AL and both the AO and ENSO is enhanced in G1 compared with G2,which validates the AL bridging efect linking the AO and ENSO (Li, Wang, and Liu 2014).

    Figure 2.The correlation patterns between the -AO index and both (a, b) SLP and (c, d) SAT, as well as between the Ni?o3.4 index and both (e, f) SLP and (g, h) SAT in G1 (left column) and G2 (right column).

    To determine why there are diferences in the relationship between the AO and ENSO, as well as any connections with the atmospheric circulation in G1 and G2, we analyzed the climatological diferences in SLP, SAT, and wind felds between G1 and G2 (Figure 4). Statistically signifcant negative SLP anomalies are evident in the north of the Eurasian continent corresponding to a positive AO anomaly in G1 (Figure 4(a)). Positive SLP anomalies appear over the North Pacifc, though the values are not statistically signifcant. In the SAT felds, signifcant warming is observed over an area spanning from Northeast Asia to the central North Pacifc, which is accompanied by cooling to the east (Figure 4(c)). This distribution resembles a negative Pacifc Decadal Oscillation (PDO) pattern. Lowerlevel (not shown) and upper-level (Figure 4(e)) winds showsignifcant westerlies occurring over northern Eurasia; this indicates a positive AO. Meanwhile, anticyclonic anomalies appear over the North Pacifc, indicating a weakened AL. However, no systematic anomalies can be found in the climate variables in group G2.

    Figure 3.The correlation coefcients between both the (a, b) -AO index and (c, d) Ni?o3.4 index and wind at the 200 hPa level for G1(left column) and G2 (right column).

    4. Summary and discussion

    Using data from the control experiment conducted by CCSM4, we separated years based on the presence of signifcant (G1) or insignifcant (G2) AO—ENSO relationships. Composite analysis showed that AO- and ENSO-correlated patterns are diferent in G1 and G2. Connections with atmospheric circulation were statistically signifcant in both low and high latitudes in G1, while in G2 signifcant correlations were confned to the mid-high latitudes for AO and the mid-low latitudes for ENSO. In G1, the ENSO signal can propagate northward to the high latitudes, and the AO signal can propagate southward to tropical areas. The interactions between climate systems in the low and high latitudes are enhanced in G1, and the AL is likely to act as a bridge in the AO—ENSO linkage. The changes in climatological felds may be responsible for the diferent connections with the atmospheric circulation, such as the anomalous negative geopotential height over northern Eurasia, anomalous warming in the North Pacifc, and the weakened AL. These changes in the background circulation are consistent with the internal decadal changes in the climate system, such as an anomalous positive AO, negative PDO phase, and weakened AL. However, the underlying mechanisms for internal decadal changes are still unclear.

    Both ENSO and the AO have statistically signifcant implications for the winter East Asian climate (e.g. Chen et al. 2013; Gong, Wang, and Zhu 2001; Wang, He, and Liu 2013; Zhou, Chen, and Zhou 2013). The connection to the East Asian climate varies and accompanies changes in AO—ENSO relationships. In periods with insignifcant AO—ENSO interactions, the ENSO signals dominate East Asian temperature (Figure 2(h)), while the AO signals can only be found over small areas in northern East Asia (Figure 2(d)). Conversely, the infuence of the AO on East Asian temperature becomes stronger during periods with signifcant AO—ENSO interactions (Figure 2(c)); in the meantime, the impact from ENSO becomes weaker (Figure 2(g)). These phenomena indicate that the implications of predicting ENSO for East Asian temperature may decrease to some extent, accompanying a strengthened AO—ENSO relationship. In the real climate, the PDO shifted to a negative phase and the AL became weaker after the late 1990s, and a strengthened AO—ENSO connection appeared concurrently (Li, Wang, and Liu 2014). These results imply that the prediction of East Asian winter temperature, the success of which derives mainly from the ENSO phase, may become increasingly difcult.

    Figure 4.The climatological diference between G1 and the entire period (left column) and between G2 and the entire period (right column) for the (a, b) SLP, (c, d) TAS, and (e, f) 200 hPa wind feld. The maximum zonal wind in (e) is 1.21 m s-1.

    Funding

    This work was jointly supported by the Special Fund for the Public Welfare Industry (Meteorology) [grant number 201306026];National Natural Science Foundation of China [grant numbers 41130103, 41205054, and 41205051].

    Notes on contributors

    Yali Zhu is an associate professor. Yali Zhu's research interest is on interdecadal change in East Asian climate. Yali Zhu's publications are: Zhu, Y. L., H. J. Wang, J. H. Ma, T. Wang, and J. Q. Sun,2015: Contribution of the phase transition of Pacifc Decadal Oscillation to the late 1990s' shift in East China summer rainfall. Journal of Geophysical Research, 120(17), 8817-8827; Zhu, Y. L., 2012: Variations of the summer Somali and Australia cross-equatorial fows and the implications for the Asian summer monsoon. Advances in Atmospheric Sciences, 29(3), 509-513; Zhu,Y. L. H. J. Wang, W. Zhou, and J. H. Ma, 2010: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dynamics, 36, 1463-1473.

    Tao Wang is an associate professor. Wang's research interests are paleoclimate simulation, interdecadal climate change in East Asian climate.Wang's publications are: Wang, T., and H.J. Wang,2013: Mid-Holocene Asian summer climate and its responses to cold ocean surface simulated in the PMIP2 OAGCMs experiments. Journal of Geophysical Research, 118, 4117-4128; Wang,T., H. J. Wang, O. H. Otter?, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu,2013: Anthropogenic agent implicated as a prime driver of shiftin precipitation in eastern China in the late 1970s. Atmospheric Chemistry and Physics, 13, 12433-12450; Wang, T., O.H. Otter?,Y.Q. Gao, and H.J. Wang, 2012: The response of the North Pacifc Decadal Variability to strong tropical volcanic eruptions. Climate Dynamics, 39, 2917-2936.

    References

    Alexander, M. A., I. Bladé, and M. Newman. 2002. “The Atmospheric Bridge: The Infuence of ENSO Teleconnections on Air-sea Interaction over the Global Oceans.” Journal of Climate 15 (16): 2205—2231.

    Chen, W., X. Q. Lan, L. Wang, Y. Ma. 2013. “The Combined Efects of the ENSO and the Arctic Oscillation on the Winter Climate Anomalies in East Asia.” Chinese Science Bulletin 58 (12): 1355—1362.

    Fraedrich, K., and K. Müller. 1992. “Climate Anomalies in Europe Associated with ENSO Extremes.” International Journal of Climatology 12: 25—31.

    Gent, P. R., G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, et al. 2011. “The Community Climate System Model Version 4.” Journal of Climate 24: 4973—4991.

    Gong, D.-Y., and C.-H. Ho. 2003. “Arctic Oscillation Signals in the East Asian Summer Monsoon.” Journal of Geophysical Research 108 (D2): 4066, doi:10.1029/2002JD002193.

    Gong, D.-Y., S. Wang, and J. Zhu. 2001. “East Asian Winter Monsoon and Arctic Oscillation.” Geophysical Research Letters 28: 2073—2076.

    Greatbatch, R., and T. Jung. 2007. “Local versus Tropical Diabatic Heating and the Winter North Atlantic Oscillation.” Journal of Climate 20: 2058—2075.

    Greatbatch, R. J., J. Lu, and K. A. Peterson. 2004. “Nonstationary Impact of ENSO on Euro-Atlantic Winter Climate.” Geophysical Research Letters 31: L02208.

    Jia, X., H. Lin, and J. Derome. 2009. “The Infuence of Tropical Pacifc Forcing on the Arctic Oscillation.” Climate Dynamics 32: 495—509.

    Li, F., H. J. Wang, and J. P. Liu. 2014. “The Strengthening Relationship between Arctic Oscillation and ENSO after the mid-1990s.” International Journal of Climatology 34: 2515—2521.

    McHugh, M. J., and J. C. Rogers. 2001. “North Atlantic Oscillation Infuence on Precipitation Variability around the Southeast African Convergence Zone.” Journal of Climate 14: 3631—3642. Mu?oz, E., W. Weijer, S. A. Grodsky, S. C. Bates, I. Wainer. 2012.“Mean and Variability of the Tropical Atlantic Ocean in the CCSM4.” Journal of Climate 25: 4860—4882.

    Sun, J. Q., and H. J. Wang. 2006. “Relationship between Arctic Oscillation and Pacifc Decadal Oscillation on Decadal Timescale.” Chinese Science Bulletin 51 (1): 75—79.

    Sun, J. Q., and H. J. Wang. 2012. “Changes of the Connection between the Summer North Atlantic Oscillation and the East Asian Summer Rainfall.” Journal of Geophysical Research 117: D08110.

    Sun, J. Q., H. J. Wang, and W. Yuan. 2008. “Decadal Variations of the Relationship between the Summer North Atlantic Oscillation and Middle East Asian Air Temperature.” Journal of Geophysical Research 113: D15107.

    Thompson, D. W. J., and J. M. Wallace. 1998. “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields.” Geophysical Research Letters 25: 1297—1300.

    Thompson, D. W. J., and J. M. Wallace. 2001. “Regional Climate Impacts of the Northern Hemisphere Annular Mode.” Science 293: 85—89.

    Wang, H. J. 2002. “The Instability of the East Asian Summer Monsoon-ENSO Relations.” Advances in Atmospheric Science 19 (1): 1—11.

    Wang, B., R. G. Wu, and X. H. Fu. 2000. “Pacifc—East Asian Teleconnection: How Does ENSO Afect East Asian Climate?”Journal of Climate 13 (9): 1517—1536.

    Wang, H. J., S. P. He, and J. P. Liu. 2013. “Present and Future Relationship between the East Asian Winter Monsoon and ENSO: Results of CMIP5.” Journal of Geophysical Research 118(10): 5222—5237.

    Webster, P. J., and S. Yang. 1992. “Monsoon and Enso: Selectively Interactive Systems.” Quarterly Journal of the Royal Meteorological Society 118 (507): 877—926.

    Zhou, B. T. 2013. “Weakening of Winter North Atlantic Oscillation Signal in Spring Precipitation over Southern China.”Atmospheric and Oceanic Science Letters 6: 248—252.

    Zhou, B. T., and X. Cui. 2014. “Interdecadal Change of the Linkage between the North Atlantic Oscillation and the Tropical Cyclone Frequency over the Western North Pacifc.” Science China Earth Sciences 57: 2148—2155.

    Zhou, B. T., and Z. Y. Wang. 2015. “On the Signifcance of the Interannual Relationship between the Asian-Pacifc Oscillation and the North Atlantic Oscillation.” Journal of Geophysical Research 120: 6489—6499.

    Zhou, Q., W. Chen, and W. Zhou. 2013. “Solar Cycle Modulation of the ENSO Impact on the Winter Climate of East Asia.” Journal of Geophysical Research 118 (11): 5111—5119.

    北極濤動(dòng); ENSO; CCSM4;阿留申低壓; 高低緯相互作用

    21 December 2015

    CONTACT ZHU Yali zhuyl@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    正位二者北極
    滌綸正位/換位紡復(fù)合結(jié)構(gòu)紗的試制及性能評(píng)價(jià)
    關(guān)于鐵路貨車制動(dòng)管系漏泄原因分析及對(duì)策建議
    北極有個(gè)“放屁湖”
    Sweden's Icehotel went all out for its 30th anniversary
    搖曳
    北極兔乖乖,唱起歌來
    北極
    心聲歌刊(2017年4期)2017-09-20 11:43:48
    金融委的意義在于為金融“正位”
    去北極嘍!
    幼兒園(2016年22期)2017-03-01 13:57:52
    需要給合作學(xué)習(xí)“正位”
    欧美+亚洲+日韩+国产| 午夜免费鲁丝| 久久久久视频综合| 国产精品成人在线| 国产av精品麻豆| 欧美日本中文国产一区发布| 宅男免费午夜| 久热这里只有精品99| 精品一品国产午夜福利视频| 亚洲欧美色中文字幕在线| 黄色 视频免费看| 亚洲熟女毛片儿| 免费在线观看视频国产中文字幕亚洲 | 久久久久国内视频| av欧美777| 黑人猛操日本美女一级片| 老司机午夜十八禁免费视频| 国产成人影院久久av| 国产精品av久久久久免费| 亚洲精品美女久久av网站| 亚洲国产日韩一区二区| 在线永久观看黄色视频| 黄片小视频在线播放| 91麻豆精品激情在线观看国产 | 三上悠亚av全集在线观看| 欧美亚洲日本最大视频资源| 亚洲精品在线美女| 国产亚洲一区二区精品| av免费在线观看网站| 精品福利观看| 亚洲国产精品成人久久小说| 丝袜脚勾引网站| 国产精品1区2区在线观看. | 国产av一区二区精品久久| 男女无遮挡免费网站观看| 在线观看一区二区三区激情| 亚洲成人免费av在线播放| 国产一区有黄有色的免费视频| 国产野战对白在线观看| 国产亚洲精品第一综合不卡| 欧美精品高潮呻吟av久久| 午夜福利乱码中文字幕| 国产欧美日韩一区二区三 | 1024视频免费在线观看| 国产黄色免费在线视频| 汤姆久久久久久久影院中文字幕| 免费看十八禁软件| 最新的欧美精品一区二区| 91国产中文字幕| 国产色视频综合| 国产成人av教育| 亚洲av男天堂| 国产成人欧美在线观看 | 久久狼人影院| 美女中出高潮动态图| 青春草视频在线免费观看| 搡老岳熟女国产| 人人妻,人人澡人人爽秒播| 日韩制服丝袜自拍偷拍| 99国产极品粉嫩在线观看| 啦啦啦免费观看视频1| 久久亚洲精品不卡| 欧美老熟妇乱子伦牲交| 亚洲国产日韩一区二区| 免费观看av网站的网址| 久久国产精品大桥未久av| 免费女性裸体啪啪无遮挡网站| 国产成人精品无人区| 视频在线观看一区二区三区| 如日韩欧美国产精品一区二区三区| 后天国语完整版免费观看| 国产一区二区在线观看av| 久久这里只有精品19| 成年女人毛片免费观看观看9 | 日韩制服丝袜自拍偷拍| 一个人免费看片子| 伊人久久大香线蕉亚洲五| 黑人巨大精品欧美一区二区蜜桃| 免费少妇av软件| 久久av网站| 十八禁网站网址无遮挡| 日韩视频一区二区在线观看| 狠狠婷婷综合久久久久久88av| 亚洲精品在线美女| a 毛片基地| 青青草视频在线视频观看| 亚洲精品av麻豆狂野| 我要看黄色一级片免费的| 又紧又爽又黄一区二区| av线在线观看网站| 国产淫语在线视频| 国产91精品成人一区二区三区 | 日韩,欧美,国产一区二区三区| 国产精品自产拍在线观看55亚洲 | 亚洲伊人色综图| 老熟女久久久| 在线观看一区二区三区激情| 18禁国产床啪视频网站| 亚洲av电影在线进入| 高清黄色对白视频在线免费看| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久噜噜老黄| 日韩大片免费观看网站| 国产精品欧美亚洲77777| 窝窝影院91人妻| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产日韩一区二区| 国产一区二区激情短视频 | 在线观看免费高清a一片| 在线 av 中文字幕| 动漫黄色视频在线观看| 极品少妇高潮喷水抽搐| 少妇被粗大的猛进出69影院| 黄色视频不卡| 欧美激情高清一区二区三区| 久久久久国内视频| 国产av又大| 日韩一卡2卡3卡4卡2021年| 久久这里只有精品19| 人妻久久中文字幕网| 午夜免费鲁丝| 不卡av一区二区三区| 一区二区三区激情视频| 在线亚洲精品国产二区图片欧美| 亚洲少妇的诱惑av| a级片在线免费高清观看视频| 99精国产麻豆久久婷婷| 亚洲精品自拍成人| 热99re8久久精品国产| 国产亚洲欧美精品永久| 色视频在线一区二区三区| 日韩免费高清中文字幕av| 亚洲欧美精品综合一区二区三区| 亚洲精品国产区一区二| 亚洲成人免费av在线播放| 国产在线视频一区二区| 中文字幕人妻丝袜制服| 久久天躁狠狠躁夜夜2o2o| 国产成人av教育| av一本久久久久| 天天躁日日躁夜夜躁夜夜| 国产精品1区2区在线观看. | 性色av乱码一区二区三区2| 中国美女看黄片| 国产成人av教育| 成人影院久久| 久久久久久久精品精品| 老司机影院成人| 一级毛片精品| 91麻豆精品激情在线观看国产 | 看免费av毛片| 手机成人av网站| 精品高清国产在线一区| 美女国产高潮福利片在线看| 丝袜在线中文字幕| 一区福利在线观看| 亚洲中文av在线| 久久精品成人免费网站| 亚洲国产av影院在线观看| 欧美另类一区| 啦啦啦在线免费观看视频4| 97人妻天天添夜夜摸| 飞空精品影院首页| 在线观看免费视频网站a站| 久久国产精品大桥未久av| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 王馨瑶露胸无遮挡在线观看| 久久久久国产精品人妻一区二区| 乱人伦中国视频| 久久亚洲国产成人精品v| 国产免费福利视频在线观看| 欧美日韩福利视频一区二区| 婷婷丁香在线五月| 91精品国产国语对白视频| 亚洲精品一卡2卡三卡4卡5卡 | 成年人免费黄色播放视频| 国产精品 国内视频| 亚洲精品乱久久久久久| 国产成人欧美在线观看 | 欧美97在线视频| 成年人免费黄色播放视频| 高清视频免费观看一区二区| 免费观看av网站的网址| 日韩有码中文字幕| 亚洲av电影在线观看一区二区三区| 在线 av 中文字幕| 日韩欧美国产一区二区入口| 精品一品国产午夜福利视频| videosex国产| 久久精品成人免费网站| 精品欧美一区二区三区在线| av在线播放精品| 一级黄色大片毛片| 波多野结衣av一区二区av| 亚洲国产日韩一区二区| 欧美亚洲 丝袜 人妻 在线| 中文精品一卡2卡3卡4更新| 99久久综合免费| 777久久人妻少妇嫩草av网站| 女人高潮潮喷娇喘18禁视频| 久久亚洲精品不卡| 成年av动漫网址| 亚洲国产精品999| 在线看a的网站| 亚洲欧美成人综合另类久久久| 成人18禁高潮啪啪吃奶动态图| 日韩 亚洲 欧美在线| 午夜影院在线不卡| 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 老司机靠b影院| 日韩欧美一区二区三区在线观看 | 欧美少妇被猛烈插入视频| 亚洲精品国产av成人精品| 人人妻,人人澡人人爽秒播| 国产精品九九99| a在线观看视频网站| 777米奇影视久久| 丝袜美足系列| 男人舔女人的私密视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲综合一区二区三区_| 最黄视频免费看| 黄片播放在线免费| 日韩一区二区三区影片| 美女中出高潮动态图| 成在线人永久免费视频| 制服诱惑二区| av一本久久久久| 国产老妇伦熟女老妇高清| 十八禁高潮呻吟视频| 国产精品一区二区在线观看99| 国产av又大| 国产高清国产精品国产三级| 亚洲欧美清纯卡通| 999久久久国产精品视频| 精品乱码久久久久久99久播| 交换朋友夫妻互换小说| 性少妇av在线| 日本av手机在线免费观看| 亚洲三区欧美一区| 久久亚洲精品不卡| 人成视频在线观看免费观看| 大码成人一级视频| 亚洲自偷自拍图片 自拍| 久久人人97超碰香蕉20202| 精品视频人人做人人爽| 天天添夜夜摸| 欧美日韩一级在线毛片| 91老司机精品| 婷婷成人精品国产| 日本黄色日本黄色录像| 久久精品亚洲av国产电影网| av一本久久久久| 777久久人妻少妇嫩草av网站| 亚洲国产看品久久| 国产伦人伦偷精品视频| av片东京热男人的天堂| 国产成人av激情在线播放| 不卡一级毛片| 日本精品一区二区三区蜜桃| 两性夫妻黄色片| 精品一区在线观看国产| 欧美 亚洲 国产 日韩一| 午夜免费成人在线视频| 日本精品一区二区三区蜜桃| 国产黄频视频在线观看| 夫妻午夜视频| 水蜜桃什么品种好| 91麻豆精品激情在线观看国产 | 一区二区日韩欧美中文字幕| 男女下面插进去视频免费观看| 精品久久蜜臀av无| 国产亚洲精品一区二区www | 在线观看免费午夜福利视频| 精品国产乱子伦一区二区三区 | 亚洲精品日韩在线中文字幕| 国产精品欧美亚洲77777| 精品少妇一区二区三区视频日本电影| 久久亚洲精品不卡| 人成视频在线观看免费观看| 国产成人啪精品午夜网站| 亚洲精品第二区| 18禁国产床啪视频网站| 成人手机av| 真人做人爱边吃奶动态| videos熟女内射| 狠狠婷婷综合久久久久久88av| 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 黄片播放在线免费| 日韩欧美国产一区二区入口| 日韩视频一区二区在线观看| 亚洲成国产人片在线观看| 欧美人与性动交α欧美软件| 欧美变态另类bdsm刘玥| 国产av又大| 亚洲中文日韩欧美视频| av在线老鸭窝| 色精品久久人妻99蜜桃| 人人澡人人妻人| 悠悠久久av| 午夜福利在线免费观看网站| 人妻久久中文字幕网| 国产1区2区3区精品| 三上悠亚av全集在线观看| 亚洲国产日韩一区二区| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 精品亚洲成a人片在线观看| 1024视频免费在线观看| 亚洲欧美日韩高清在线视频 | 国产成人精品无人区| 一本综合久久免费| 国产有黄有色有爽视频| 夜夜骑夜夜射夜夜干| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 99精品欧美一区二区三区四区| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 日本猛色少妇xxxxx猛交久久| 国产亚洲av片在线观看秒播厂| 国产精品秋霞免费鲁丝片| 久久久久久久国产电影| 一区二区av电影网| 午夜免费成人在线视频| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 在线观看免费午夜福利视频| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 国产亚洲一区二区精品| tocl精华| 在线亚洲精品国产二区图片欧美| 黄色片一级片一级黄色片| 少妇粗大呻吟视频| 亚洲人成电影免费在线| 午夜精品国产一区二区电影| 国产成人一区二区三区免费视频网站| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 亚洲欧美成人综合另类久久久| 国产欧美日韩一区二区三区在线| 久久久精品国产亚洲av高清涩受| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 亚洲av成人不卡在线观看播放网 | 在线观看免费视频网站a站| 久久久国产一区二区| 国产真人三级小视频在线观看| 少妇的丰满在线观看| av在线app专区| 色婷婷av一区二区三区视频| av在线老鸭窝| 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看 | 嫁个100分男人电影在线观看| 久久人人爽人人片av| 亚洲精华国产精华精| 亚洲午夜精品一区,二区,三区| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 国产成人影院久久av| 99热全是精品| 波多野结衣一区麻豆| 丝袜在线中文字幕| 精品国产一区二区久久| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频| 国产精品国产av在线观看| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看性视频| 国产精品欧美亚洲77777| 午夜福利一区二区在线看| 国产片内射在线| 另类亚洲欧美激情| 色视频在线一区二区三区| 日本黄色日本黄色录像| 亚洲av成人一区二区三| 精品免费久久久久久久清纯 | av电影中文网址| 亚洲性夜色夜夜综合| 一本综合久久免费| 欧美在线一区亚洲| 97精品久久久久久久久久精品| 亚洲精品久久久久久婷婷小说| 韩国高清视频一区二区三区| 国产欧美日韩一区二区精品| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 精品一区二区三卡| av天堂久久9| 中文字幕人妻丝袜一区二区| 男男h啪啪无遮挡| 老司机影院毛片| 无限看片的www在线观看| 在线看a的网站| av免费在线观看网站| a在线观看视频网站| 另类精品久久| 亚洲国产av影院在线观看| 91成人精品电影| 777米奇影视久久| 久热这里只有精品99| 久久影院123| 十八禁网站网址无遮挡| 黑人操中国人逼视频| 国产亚洲精品久久久久5区| 在线 av 中文字幕| 免费高清在线观看视频在线观看| 在线亚洲精品国产二区图片欧美| 国产97色在线日韩免费| 亚洲精品久久成人aⅴ小说| 成人影院久久| 亚洲中文av在线| 国产亚洲精品一区二区www | 日本a在线网址| 亚洲一区中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲日本最大视频资源| 日韩一卡2卡3卡4卡2021年| 午夜影院在线不卡| 国产精品一区二区在线不卡| 大香蕉久久网| 欧美国产精品va在线观看不卡| 久久免费观看电影| 欧美日韩黄片免| 黄色片一级片一级黄色片| 在线观看人妻少妇| 高清在线国产一区| 19禁男女啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 欧美精品一区二区大全| 最近中文字幕2019免费版| 黑人操中国人逼视频| 亚洲欧美精品自产自拍| 久热爱精品视频在线9| 亚洲美女黄色视频免费看| 男人舔女人的私密视频| 婷婷丁香在线五月| 久久亚洲国产成人精品v| 一级毛片精品| 欧美xxⅹ黑人| 建设人人有责人人尽责人人享有的| tocl精华| 丁香六月天网| 国产高清videossex| 捣出白浆h1v1| 欧美乱码精品一区二区三区| 亚洲国产欧美一区二区综合| 飞空精品影院首页| 狂野欧美激情性xxxx| 另类亚洲欧美激情| 国产免费视频播放在线视频| 亚洲av日韩在线播放| 午夜两性在线视频| 久久女婷五月综合色啪小说| 国产精品久久久久成人av| 日韩人妻精品一区2区三区| 婷婷色av中文字幕| 成人国产av品久久久| 日韩三级视频一区二区三区| 久久精品国产综合久久久| 永久免费av网站大全| 啦啦啦啦在线视频资源| 国产成人免费观看mmmm| 人妻 亚洲 视频| 免费在线观看日本一区| 久久人妻熟女aⅴ| 一级黄色大片毛片| 99久久国产精品久久久| 精品视频人人做人人爽| 久久青草综合色| 中文字幕另类日韩欧美亚洲嫩草| 国产视频一区二区在线看| 午夜精品久久久久久毛片777| 丁香六月天网| 成人影院久久| 国产一区二区三区在线臀色熟女 | 在线观看免费日韩欧美大片| av天堂在线播放| 日本猛色少妇xxxxx猛交久久| www.999成人在线观看| 搡老熟女国产l中国老女人| cao死你这个sao货| 欧美 日韩 精品 国产| 国产成人欧美在线观看 | 精品视频人人做人人爽| 一级毛片女人18水好多| 国产免费福利视频在线观看| 不卡一级毛片| 久久久久视频综合| 99精品欧美一区二区三区四区| 在线观看舔阴道视频| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 成年女人毛片免费观看观看9 | 999精品在线视频| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三 | 精品少妇黑人巨大在线播放| 老司机深夜福利视频在线观看 | 日本五十路高清| 久久久精品94久久精品| 亚洲中文av在线| 下体分泌物呈黄色| 操出白浆在线播放| 午夜福利乱码中文字幕| 在线观看免费高清a一片| 国产精品久久久久久人妻精品电影 | 国产欧美日韩一区二区三区在线| 亚洲综合色网址| 十八禁网站免费在线| 超碰成人久久| 男人操女人黄网站| 欧美97在线视频| 久久99热这里只频精品6学生| 男女之事视频高清在线观看| 不卡一级毛片| 婷婷丁香在线五月| 啦啦啦 在线观看视频| 久久久久网色| 男人操女人黄网站| 亚洲国产看品久久| 国产成人免费无遮挡视频| 成年美女黄网站色视频大全免费| 岛国在线观看网站| 国产成人精品无人区| 国产成人免费无遮挡视频| netflix在线观看网站| 亚洲av电影在线进入| 天天躁日日躁夜夜躁夜夜| 精品免费久久久久久久清纯 | 日本精品一区二区三区蜜桃| av天堂久久9| 宅男免费午夜| 制服人妻中文乱码| 欧美激情 高清一区二区三区| 黑人欧美特级aaaaaa片| 国产欧美日韩精品亚洲av| 窝窝影院91人妻| 老司机影院毛片| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 亚洲精品一卡2卡三卡4卡5卡 | 一区二区三区四区激情视频| 国产精品九九99| 搡老熟女国产l中国老女人| 欧美xxⅹ黑人| 狂野欧美激情性bbbbbb| 免费人妻精品一区二区三区视频| 美女视频免费永久观看网站| 热99re8久久精品国产| 午夜福利视频在线观看免费| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 色视频在线一区二区三区| 视频区欧美日本亚洲| 亚洲专区字幕在线| 午夜福利在线观看吧| 新久久久久国产一级毛片| 久久久久久久久免费视频了| 高清黄色对白视频在线免费看| 亚洲全国av大片| 久久久久精品国产欧美久久久 | 久久 成人 亚洲| 色精品久久人妻99蜜桃| 精品亚洲成国产av| 脱女人内裤的视频| 一级,二级,三级黄色视频| 涩涩av久久男人的天堂| 久久久久久久精品精品| 一级片免费观看大全| 极品少妇高潮喷水抽搐| 午夜免费鲁丝| 一级片免费观看大全| 国产日韩欧美亚洲二区| 一级毛片女人18水好多| 久久免费观看电影| 免费黄频网站在线观看国产| av在线播放精品| 中国美女看黄片| 欧美av亚洲av综合av国产av| 丁香六月欧美| 男女边摸边吃奶| 亚洲少妇的诱惑av| 久久久久久久精品精品| 一级,二级,三级黄色视频| 日本91视频免费播放| 窝窝影院91人妻| 日韩大码丰满熟妇| 国产日韩欧美亚洲二区| av国产精品久久久久影院| 视频在线观看一区二区三区| 少妇精品久久久久久久| 国产免费视频播放在线视频| 黄片大片在线免费观看| 美女中出高潮动态图| 国产免费一区二区三区四区乱码| 日本av免费视频播放| 人妻 亚洲 视频| 国产精品久久久久成人av| 一进一出抽搐动态| 午夜福利,免费看| 777久久人妻少妇嫩草av网站| 夜夜夜夜夜久久久久|