• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of pressure gradient force errors in a terrain-following coordinate

    2016-11-23 02:37:10LIJinXiLIYiYunndWANGBin
    關(guān)鍵詞:梯度方向特征分析坡度

    LI Jin-Xi, LI Yi-Yunnd WANG Bin,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    Characteristics of pressure gradient force errors in a terrain-following coordinate

    LI Jin-Xia,b, LI Yi-Yuanaand WANG Bina,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    A terrain-following coordinate (σ-coordinate) in which the computational form of pressure gradient force (PGF) is two-term (the so-called classic method) has signifcant PGF errors near steep terrain. Using the covariant equations of the σ-coordinate to create a one-term PGF (the covariant method)can reduce the PGF errors. This study investigates the factors inducing the PGF errors of these two methods, through geometric analysis and idealized experiments. The geometric analysis frst demonstrates that the terrain slope and the vertical pressure gradient can induce the PGF errors of the classic method, and then generalize the efect of the terrain slope to the efect of the slope of each vertical layer (φ). More importantly, a new factor, the direction of PGF (α), is proposed by the geometric analysis, and the efects of φ and α are quantifed by tan φ·tan α. When tan φ·tan α is greater than 1/9 or smaller than -10/9, the two terms of PGF of the classic method are of the same order but opposite in sign, and then the PGF errors of the classic method are large. Finally, the efects of three factors on inducing the PGF errors of the classic method are validated by a series of idealized experiments using various terrain types and pressure felds. The experimental results also demonstrate that the PGF errors of the covariant method are afected little by the three factors.

    ARTICLE HISTORY

    Revised 29 January 2016

    Accepted 1 February 2016

    Terrain-following coordinate;pressure gradient force

    errors; direction of pressure gradient; slope of each

    vertical layer; nonlinear

    vertical pressure gradient;

    pressure gradient along

    vertical layer

    “地形追隨坐標(biāo)系中氣壓梯度力誤差的特征分析”一文通過幾何分析和理想實(shí)驗(yàn),對(duì)比了地形追隨坐標(biāo)系兩種方案(經(jīng)典方案和協(xié)變方案)中氣壓梯度力(PGF)誤差的特征。結(jié)果表明:(1)經(jīng)典方案的PGF誤差受“垂直氣壓梯度”,“氣壓梯度的方向(α)”,“垂直層的坡度(φ)”三者影響,垂直氣壓梯度越大,氣壓梯度與水平方向的夾角越大,垂直層坡度越大,誤差越大;(2)協(xié)變方案的PGF誤差不受上述三因子影響 。此外,通過定義參數(shù)TT(TT = tanφ·tanα)能定量分析經(jīng)典方案的PGF誤差。

    1. Introduction

    Since a terrain-following coordinate (σ-coordinate) (Phillips 1957) can transform the complex surface of Earth into a regular coordinate surface, the σ-coordinate becomes a common choice for atmospheric and oceanic models. However, the computational form of pressure gradient force (PGF) in a σ-coordinate is two-term (the so-called classic method). These two terms are opposite in sign and of the same order near steep terrain, which induces signifcant numerical errors; namely, the PGF errors of the σ-coordinate (Haney 1991; Li, Wang, and Wang 2012; Lin 1997; Ly and Jiang 1999; Shchepetkin and McWilliams 2003; Smagorinsky et al. 1967).

    Many methods have been proposed to reduce the PGF errors, which can be categorized into three types. The frst type is to reduce the PGF errors based on the two-term PGF, and includes high-order schemes (Blumberg and Mellor 1987; Corby, Gilchrist, and Newson 1972; Mahrer 1984;Qian and Zhou 1994), standard stratifcation deduction(Zeng 1979), and so on. The second type is to overcome the PGF errors through various coordinate transformations based on the non-orthogonal σ-coordinate (Li, Wang, and Wang 2012; Qian and Zhong 1986; Smagorinsky et al. 1967;Yan and Qian 1981; Yoshio 1968). And the third type is to design an orthogonal terrain-following coordinate to bypass the PGF errors (Li et al. 2014). Both methods proposed by Li, Wang, and Wang (2012) and Li et al. (2014)create a one-term computational form of PGF, while Li,Wang, and Wang (2012) proposed to use the covariant scalar equations of the σ-coordinate (the covariant method). Note that studies on the factors inducing the PGF errors are less common than eforts made to reduce the PGF errors.

    For the classic method, there are two factors inducing the PGF errors; namely, the terrain slope and the nonlinear vertical pressure gradient (Yan and Qian 1981; Zeng and Ren 1995). Recently, Klemp (2011) proposed that the PGF errors could be minimized when the vertical pressure gradient is nearly linear. The idealized experiments implemented by Li, Li, and Wang (2015) demonstrated that the PGF errors increased according to the increasing terrain slope. However, for the covariant method, few analyses of the factors inducing the PGF errors have been carried out.

    In this study, we further explore the factors inducing the PGF errors of the classic and covariant method. In Section 2 we use geometric analysis to identify all the possible factors inducing the PGF errors of the classic method. In Section 3 we implement a series of idealized experiments of various terrain types and pressure felds to investigate the efects of all the factors identifed in Section 2 that induce the PGF errors of the classic and covariant method.

    2. Geometric analysis of the PGF errors of theclassic method

    The two-term expression of PGF of the classic method is given by

    We abbreviate the frst and second term on the RHS of Equation (1) as PGF1 and PGF2, respectively. According to Equation (1), the PGF of the classic method is relevant to three factors:

    (1) The pressure gradient along each vertical layer

    Since the terrain slope equals the slope of the bottom vertical layer in a model, the efect of terrain slope can be included in the efect of each vertical layer on inducing the PGF errors. The efect of the vertical pressure gradient on inducing the PGF errors has been analyzed by many researchers (e.g. Zeng and Ren 1995). Therefore, we only investigate the efects of the pressure gradient along each vertical layer and slope of each vertical layer.

    Figure 1.Schematic diagrams of PGF vectors and their components of diferent coordinates.Notes: Green curves represent a certain vertical layer; blue lines are its tangent and normal directions. S1, S2, and S3in (a) indicate the areas of diferent directions of PGF. Panels (b—d) are schematic diagrams of PGF in S1, S2, and S3, respectively. Red lines with solid arrows(AC) represents ?p. Black- and red-arrowed lines are the components of the PGF of the σ- and z-coordinate, respectively.

    The pressure gradient along each vertical layer is AB:the direction of PGF (α) is∠CAB, and the slope of each vertical layer (φ) is given by

    In addition, according to the geometric relationship in Figures 1(b)—(d), we obtain

    Equation (6) manifests that the pressure gradient along each vertical layer (AB) can be represented by the vertical pressure gradient (CD), the direction of PGF (α) and the slope of each vertical layer (φ). Therefore, the possible factors inducing the PGF errors of the classic method are as follows: (1) the direction of PGF (α); (2) the slope of each vertical layer (φ); (3) the vertical pressure gradient (CD).

    The direction of PGF (α) in S1is given by

    while both of them in S2and S3are given as follows:

    Substituting Equations (2), (3), (5), and (7)/(8) into Equation(1), we obtain the expression of PGF in S1, S2, and S3,respectively: According to Equation (11), the expression of PGF in S3is a summation of AB and BD; namely, the PGF errors are consistently small regardless of the terrain slope. Therefore, we only investigate the PGF errors in S1and S2in the following calculation.

    First, using Equations (5) and (6), we calculate the proportion between the PGF2 and PGF1 in S1(BD and AB in Equation (9)) as follows:

    The 1/9 on the RHS of Equation (13) is the TTcin S1.

    Second, using Equations (5) and (6), we calculate the proportion between PGF2 and PGF1 in S2(AB and BD in Equation (10)) as follows:

    The -10/9 on the RHS of Equation (15) is the TTcin S2. The expressions of PGF in S1, S2, and S3, and TTcin both S1and S2, are all summarized in Table 1.

    In conclusion, there are three factors inducing the PGF errors of the classic method: (1) the direction of PGF (α); (2) the slope of each vertical layer (φ); (3) thevertical pressure gradient. The efects of α and φ can be quantifed by tan φ·tan α (Table 1).Specifcally, when tan φ·tanor tan φ·tan α, the PGF errors of the classic method are large; and the closer α or φ is to the vertical direction, the larger the PGF errors of the classic method are.

    Table 1.Expressions of PGF, TT, and PGF errors of the classic method in three situations of diferent directions of PGF.

    3. Idealized experiments

    In order to investigate the efects of the three factors obtained in Section 2 on inducing the PGF errors of the classic and covariant method, idealized experiments using various terrain types and pressure felds are performed. For consistency, we use the same parameters as Li, Wang, and Wang (2012), except for the terrain and pressure felds. The basic parameters of all the experiments are introduced in Section 3.1. The experiments investigating the efects of the slope of each vertical layer and the direction of PGF are illustrated in Section 3.2. The experiments analyzing the efect of the vertical pressure gradient are demonstrated in Section 3.3.

    3.1. Basic parameters

    We use the central spatial discretization in the horizontal direction, and the forward scheme in the vertical direction,for the PGF of both methods. The expressions are given as follows:

    A 2D bell-shaped terrain type, is used (Figure 2), where H is the maximum height, a = 5 km is the half width, and h0= 50 km is the middle point of the terrain. We use two types of idealized pressure felds,defned as follows (Figure 2): (i) a pressure feld with a linear vertical pressure gradient (LP),

    and (ii) a pressure feld with an exponential vertical pressure gradient (EP),

    3.2. Effects of the direction of the PGF and slope of each vertical layer

    We set H in Equation (18) from 10 to 20 km at 1-km intervals to create steep terrain, and also increase the slope of each vertical layer; and set Hpin Equation (20) from 0.5H to 1.5H km at 0.1-km intervals to obtain pressure felds with diferent directions of PGF.

    Figure 2.Pressure felds given by Equations (19) and (20).

    Figure 3.Average of PGF1 and PGF2 at diferent TT: (a) The variation of PGF1 and PGF2 according to diferent TT; (b—g) The PGF1 and PGF2 at TT = -2.728, -0.902, and -0.757, respectively.

    Figure 4.REs of the PGF of the classic and covariant method: (a) The variation of REs of the two methods according to diferent TT; (b, c)The patterns of TT and RE of the classic method when the average TT is -1.247, respectively; (d, e) The patterns of TT and RE of the classic method when the average TT is -0.902, respectively.

    Second, we use the experiments of H = 14 km(TTc= -1.121, closest to -10/9) as an example to further illustrate the efect of TTc. Figure 3(a) shows the variationof the average values of PGF1 and PGF2 in diferent TT. Specifcally, when TT < TTc, the PGF1 and PGF2 are consistently of the same order and opposite in sign (blue and red dotted lines in Figure 3(a)), and their patterns at TT = -2.728 are shown in Figures 3(b) and (c) as an example of TT < TTc. When TTc< TT < -0.857, the PGF1 and PGF2 are still opposite in sign but no longer of the same order (e.g. the PGF1 and PGF2 at TT = -0.902 shown in Figures 3(d) and (e)). When TT > -0.857 (Hp> H, α is in S3of Figure 1(a)), the PGF1 and PGF2 become the same in sign (e.g. the PGF1 and PGF 2 at TT = -0.757 shown in Figures 3(f) and (g)). These results verify the efects of TTcin S2and S3of Table 1.

    Table 2.PGF errors of the classic and covariant methods in LP and EP.

    Finally, we also use the results obtained by the experiments of H = 14 km as an example to analyze the variation of the PGF errors of the classic and covariant method according to the increasing TT (Figure 4). The pattern of TT is consistent with that of the REs of the classic method(Figures 4(b) and (c) with TT = -1.247, and Figures 4(d) and(e) with TT = -0.902). Further, the REs of the classic method increase according to the increasing|TT|(blue line in Figure 4(a)); however, the REs of the covariant method remain almost the same (red line in Figure 4(a)). These results validate that the PGF errors of the classic method increase according to the increasing TT; whereas, the PGF errors of the covariant method are afected little by it.

    3.3. Effects of vertical pressure gradient

    We implement two sets of experiments to calculate the PGF of the classic and covariant method using LP and EP. Also, we set H = 4 km in Equation (18) and Hp= 0.3 km in Equations (19) and (20) to consistently compare with the results of the experiments implemented by Li, Wang, and Wang (2012).

    The REs of the PGF of both methods are summarized in Table 2. The REs of the classic method in EP are more than twice those in LP; however, the REs of the covariant method are approximately the same in EP and LP. This reveals that the exponential vertical pressure gradient is a factor inducing the PGF errors of the classic method, but not for the covariant method.

    In conclusion, the three factors inducing the PGF errors of the classic method obtained by the geometric analysis in Section 2 are all validated by the idealized experiments;whereas, none of them has the efect of inducing the PGF errors of the covariant method.

    4. Conclusion and discussion

    This study investigates the factors inducing the PGF errors of the classic and covariant method through geometric analysis and idealized experiments. Three factors are found that induce the PGF errors of the classic method, including the direction of PGF (α), the slope of each vertical layer (φ),and the vertical pressure gradient; however, none of them induces the PGF errors of the covariant method. Moreover,the efects of α and φ can be quantifed by tan φ·tan α(Table 1).

    The geometric analysis frst demonstrates that the terrain slope and the vertical pressure gradient can induce the PGF errors of the classic method. Then, the efect of terrain slope is generalized into the efect of the slope of each vertical layer (φ). More importantly, a new factor, thedirection of PGF (α), is proposed. When tanφ·tanα or tanφ·tanα, the two terms of PGF of the classic method are of the same order and opposite in sign. Subsequently, the PGF errors of the classic method are large (Table 1), and the closer the α or φ is to the vertical direction, the larger the PGF errors of the classic method are.

    The efects of all of the three factors on inducing the PGF errors of the classic method are validated by a series of idealizedexperiments. Results frst verify the analytical value of, proposed by the geometric analysis,as well as its efect on inducing the PGF errors of the classic method (Figure 3). It is then found that the PGF errors of the classic method increase according to increasing|TT|,and their patterns are also consistent (Figure 4). Finally,results using LP and EP validate that EP can signifcantly increase the PGF errors of the classic method (Table 2). Moreover, all the idealized experiments demonstrate that the PGF errors of the covariant method are afected little by the three factors. Note that the comparison of the factors inducing the PGF errors of the classic and covariant methods in this study only considers the PGF term; the true beneft of the covariant method needs to be investigated using the equations of the classic and covariant methods in their entirety.

    In addition, the diference between the analytical TTcand the TTcobtained in the idealized experiments may be due to using the average TT of all the grids. Further analyses need to be carried out to use the average TT of selected grids, in which PGF1 and PGF2 are of the same order. Besides, the three factors tested by the idealized pressure felds in this study are simultaneously changeddue to the analytical expression of pressure, Equation (20). And, only the efects of TTcin S2and S3can be tested by this kind of pressure feld. Sensitivity experiments using a discrete pressure feld, in which each factor can be independently changed, are needed to further investigate the efects of these three factors. Furthermore, experiments using the real pressure feld are needed to verify the efect of TTc.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Basic Research Program of China [973 Program, grant number 2015CB954102];National Natural Science Foundation of China [grant numbers 41305095 and 41175064].

    Notes on contributor

    LI Jin-Xi is a PhD candidate at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on dynamical core of atmospheric models. Recent publications include papers in Geoscientifc Model Development,Atmospheric Science Letters, and Chinese Science Bulletin.

    References

    Blumberg, A. F., and G. L. Mellor. 1987. “A Description of a Three-Dimensional Coastal Ocean Circulation Model.”Paper presented at the annual meeting for the American Geophysical Union, Washington, DC, 1—16.

    Corby, G. A., A. Gilchrist, and R. L. Newson. 1972. “A General Circulation Model of the Atmosphere Suitable for Long Period Integrations.” Quarterly Journal of the Royal Meteorological Society 98: 809—832. doi:10.1002/qj.49709841808.

    Gal-Chen, T., and R. C. J. Somerville. 1975. “On the Use of a Coordinate Transformation for the Solution of the Navier-Stokes Equations.” Journal of Computational Physics 17: 209—228. doi:10.1016/0021-9991(75)90037-6.

    Haney, R. L. 1991. “On the Pressure Gradient Force over Steep Topography in Sigma Coordinate Ocean Models.” Journal of Physical Oceanography 21: 610—619. doi:10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    Klemp, J. B. 2011. “A Terrain-following Coordinate with Smoothed Coordinate Surfaces.” Monthly Weather Review 139: 2163—2169. doi:10.1175/MWR-D-10-05046.1.

    Li, J., Y. Li, and B. Wang. 2015. “Pressure Gradient Errors in a Covariant Method of Implementing σ-Coordinate: Idealized Experiments and Geometric Analysis.” Atmospheric and Oceanic Science Letters. (Under review).

    Li, Y. Y., D. H. Wang, and B. Wang. 2012. “A New Approach to Implement Sigma Coordinate in a Numerical Model.”Communications in Computational Physics 12: 1033—1050. doi:10.4208/cicp.030311.230911a.

    Li, Y. Y., B. Wang, D. H. Wang, J. X. Li, and L. Dong. 2014. “An Orthogonal Terrain-following Coordinate and Its Preliminary Tests Using 2-D Idealized Advection Experiments.”Geoscientifc Model Development 7: 1767—1778. doi:10.5194/ gmd-7-1767-2014.

    Lin, S. J. 1997. “A Finite-Volume Integration Method for Computing Pressure Gradient Force in General Vertical Coordinates.” Quarterly Journal of the Royal Meteorological Society 123: 1749—1762. doi:10.1002/qj.49712354214.

    Ly, L. N., and L. Jiang. 1999. “Horizontal Pressure Gradient Errors of the Monterey Bay Sigma Coordinate Ocean Model with Various Grids.” Journal of Oceanography 55: 87—97. doi:10.102 3/A:1007865223735.

    Mahrer, Y. 1984. “An Improved Numerical Approximation of the Horizontal Gradients in a Terrain-following Coordinate System.” Monthly Weather Review 112 (5): 918—922. doi:10.1175/1520-0493(1984)112<0918:AINAOT>2.0.CO;2.

    Phillips, N. A. 1957. “A Coordinate System Having Some Special Advantages for Numerical Forecasting.” Journal of Meteorology 14: 184—185. doi:10.1175/1520-0469(1957)014<0184:ACSHS S>2.0.CO;2.

    Qian, Y. F., and Z. Zhong. 1986. “General Forms of Dynamic Equations for Atmosphere in Numerical Models with Topography.” Advances in Atmospheric Sciences 3: 10—22. doi:10.1007/BF02680042.

    Qian, Y. F., and T. J. Zhou. 1994. “Error Subtraction Method in Computing Pressure Gradient Force for High and Steep Topographic Areas.” Journal of Tropical Meteorology 10: 358—368. Shchepetkin, A. F., and J. C. McWilliams. 2003. “A Method for Computing Horizontal Pressure-gradient Force in an Oceanic Model with a Nonaligned Vertical Coordinate.”Journal of Geophysical Research 108: 3090—3123. doi:10.1029/2001JC001047.

    Smagorinsky, J., R. F. Strickler, W. E. Sangster, S. Manabe, J. L. Halloway Jr. and G. D. Hembree. 1967. “Prediction Experiments with a General Circulation Model.” Paper presented at Dynamics of Large Scale Atmospheric Processes, Moscow, USSR, 70—134.

    Yan, H., and Y. F. Qian. 1981. “On the Problems in the Coordinate Transformation and the Calculation of the Pressure Gradient Force in the Numerical Models with Topography.” Chinese Journal of Atmospheric Sciences 5: 175—187. doi:10.3878/j. issn.1006-9895.1981.02.07.

    Yoshio, K. 1968. “Note on Finite Diference Expressions for the Hydrostatic Relation and Pressure Gradient Force.”Monthly Weather Review 96 (9): 654—656. doi:10.1175/1520-0493(1968)096<0654:NOFDEF>2.0.CO;2.

    Zeng, Q. C. 1979. “Basic Equations and Coordinate Transformation.”Mathematical and Physical Fundamental Theory for Numerical Weather Prediction. Vol. 1, 22—25. Beijing: Science Press.

    Zeng, X. P., and Z. H. Ren. 1995. “Quantitative Analysis of the Discretization Errors of the Horizontal Pressure Gradient Force over Sloping Terrain.” Chinese Journal of Atmospheric Sciences 19: 722—732. doi:10.3878/j.issn.1006-9895.1995.06.09.

    地形追隨坐標(biāo)系; 氣壓梯度力誤差; 垂直氣壓梯度; 氣壓梯度方向; 垂直層坡度

    31 December 2015

    CONTACT LI Yi-Yuan liyiyuan@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    梯度方向特征分析坡度
    基于機(jī)器視覺的鋼軌接觸疲勞裂紋檢測(cè)方法
    鐵道建筑(2021年11期)2021-03-14 10:01:48
    關(guān)于公路超高漸變段合成坡度解析與應(yīng)用
    基于梯度方向一致性引導(dǎo)的邊緣檢測(cè)研究
    基于光譜上下文特征的多光譜艦船ROI鑒別方法
    2012 年南海夏季風(fēng)特征分析
    基于支持向量機(jī)的分類器訓(xùn)練研究
    基于圖像處理的定位器坡度計(jì)算
    電氣化鐵道(2016年4期)2016-04-16 05:59:46
    基于PowerPC的脈內(nèi)特征分析算法的工程實(shí)現(xiàn)
    坡度在巖石風(fēng)化層解譯中的應(yīng)用
    河北遙感(2015年2期)2015-07-18 11:11:14
    CT和MR對(duì)人上脛腓關(guān)節(jié)面坡度的比較研究
    国产野战对白在线观看| 亚洲精品456在线播放app | e午夜精品久久久久久久| 真实男女啪啪啪动态图| 岛国在线观看网站| 97人妻精品一区二区三区麻豆| 欧美性猛交黑人性爽| 国产精品久久视频播放| 精品人妻一区二区三区麻豆 | 国产国拍精品亚洲av在线观看 | 又黄又爽又免费观看的视频| 欧美在线黄色| 国产伦人伦偷精品视频| 美女高潮的动态| 色综合婷婷激情| 99久久久亚洲精品蜜臀av| 久久中文看片网| 老鸭窝网址在线观看| 首页视频小说图片口味搜索| 757午夜福利合集在线观看| 亚洲成人精品中文字幕电影| 国产精品自产拍在线观看55亚洲| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看| 国产蜜桃级精品一区二区三区| 国产高清有码在线观看视频| 色av中文字幕| 成年版毛片免费区| 欧美最黄视频在线播放免费| 又粗又爽又猛毛片免费看| 99在线人妻在线中文字幕| 日本一二三区视频观看| 国产精品一区二区免费欧美| 12—13女人毛片做爰片一| 亚洲av免费在线观看| 免费看十八禁软件| 午夜精品一区二区三区免费看| 国产视频一区二区在线看| 国产高清激情床上av| 亚洲欧美日韩卡通动漫| 法律面前人人平等表现在哪些方面| 内射极品少妇av片p| 欧美一区二区精品小视频在线| 国产欧美日韩精品亚洲av| 青草久久国产| 国产精品野战在线观看| 精品久久久久久,| 99国产综合亚洲精品| 国内精品久久久久久久电影| 色综合婷婷激情| 国产精品久久久久久亚洲av鲁大| 国产精品女同一区二区软件 | 别揉我奶头~嗯~啊~动态视频| 中文字幕久久专区| 精品电影一区二区在线| 午夜福利免费观看在线| 又爽又黄无遮挡网站| 国产午夜精品论理片| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 狂野欧美激情性xxxx| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜| 久久6这里有精品| 亚洲欧美精品综合久久99| 国产探花极品一区二区| 丰满的人妻完整版| 一级作爱视频免费观看| 看片在线看免费视频| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 一级作爱视频免费观看| 特级一级黄色大片| 婷婷六月久久综合丁香| 麻豆国产av国片精品| 国内精品久久久久精免费| 我的老师免费观看完整版| 亚洲av成人av| 51国产日韩欧美| 中文字幕av在线有码专区| 国产精品影院久久| 一夜夜www| 色av中文字幕| 999久久久精品免费观看国产| 美女高潮喷水抽搐中文字幕| 午夜激情福利司机影院| 激情在线观看视频在线高清| 丰满的人妻完整版| 精品熟女少妇八av免费久了| 国产探花极品一区二区| 丰满的人妻完整版| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 无遮挡黄片免费观看| 制服丝袜大香蕉在线| 久久草成人影院| 国产探花极品一区二区| 国产精品久久久久久精品电影| www.www免费av| 两个人看的免费小视频| ponron亚洲| 亚洲av日韩精品久久久久久密| 99热6这里只有精品| 亚洲无线观看免费| 最好的美女福利视频网| 天堂√8在线中文| 国产精品精品国产色婷婷| 男女视频在线观看网站免费| 日本黄色片子视频| 级片在线观看| 天堂av国产一区二区熟女人妻| 国产精品亚洲美女久久久| 99视频精品全部免费 在线| 丁香欧美五月| 亚洲精品美女久久久久99蜜臀| 免费搜索国产男女视频| 欧美黄色淫秽网站| 色综合婷婷激情| 老汉色∧v一级毛片| 国产男靠女视频免费网站| 成人三级黄色视频| 久久精品国产清高在天天线| 免费大片18禁| 99精品久久久久人妻精品| 精品久久久久久成人av| 成人一区二区视频在线观看| 在线播放无遮挡| 婷婷精品国产亚洲av| 99国产精品一区二区三区| 国产亚洲精品久久久久久毛片| 97碰自拍视频| 18禁国产床啪视频网站| 欧美在线一区亚洲| 欧美成人免费av一区二区三区| 国产探花在线观看一区二区| 丁香六月欧美| 全区人妻精品视频| 最新中文字幕久久久久| 淫秽高清视频在线观看| 男人和女人高潮做爰伦理| 成年免费大片在线观看| 国内久久婷婷六月综合欲色啪| 亚洲中文日韩欧美视频| 精品一区二区三区人妻视频| 亚洲国产精品sss在线观看| 一a级毛片在线观看| 亚洲国产欧洲综合997久久,| 一个人观看的视频www高清免费观看| 久久6这里有精品| 精品久久久久久久末码| 亚洲国产色片| 少妇的丰满在线观看| 亚洲男人的天堂狠狠| 精品99又大又爽又粗少妇毛片 | 久久性视频一级片| 亚洲五月天丁香| 亚洲avbb在线观看| 亚洲中文日韩欧美视频| 成人国产一区最新在线观看| 91av网一区二区| 热99在线观看视频| 国产真实伦视频高清在线观看 | 99久国产av精品| 老司机午夜福利在线观看视频| 99热这里只有精品一区| 久久久久免费精品人妻一区二区| 在线a可以看的网站| 久久欧美精品欧美久久欧美| 岛国视频午夜一区免费看| 欧美成人性av电影在线观看| 俺也久久电影网| 国产日本99.免费观看| 男女那种视频在线观看| 三级男女做爰猛烈吃奶摸视频| 好男人电影高清在线观看| 久久精品国产清高在天天线| 色精品久久人妻99蜜桃| 特大巨黑吊av在线直播| 国内精品一区二区在线观看| 男人舔奶头视频| 国产亚洲欧美在线一区二区| 久久午夜亚洲精品久久| 亚洲国产精品久久男人天堂| 亚洲成av人片在线播放无| 国产精品久久久久久久电影 | 99riav亚洲国产免费| 日本黄色片子视频| 脱女人内裤的视频| 国产老妇女一区| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 欧美3d第一页| 亚洲欧美日韩高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品影院久久| 精品乱码久久久久久99久播| 亚洲精品影视一区二区三区av| 天堂影院成人在线观看| 韩国av一区二区三区四区| 麻豆一二三区av精品| 一级黄色大片毛片| 三级国产精品欧美在线观看| 国产不卡一卡二| 亚洲欧美一区二区三区黑人| 欧美色欧美亚洲另类二区| 国产亚洲精品综合一区在线观看| 99视频精品全部免费 在线| 美女免费视频网站| 国产精品日韩av在线免费观看| 18禁黄网站禁片午夜丰满| 中文字幕人妻熟人妻熟丝袜美 | 中文字幕人妻丝袜一区二区| 一夜夜www| 精品一区二区三区视频在线 | 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 成人亚洲精品av一区二区| 成人高潮视频无遮挡免费网站| 99国产极品粉嫩在线观看| a级毛片a级免费在线| 亚洲人与动物交配视频| 国产综合懂色| 婷婷精品国产亚洲av| av欧美777| 两个人视频免费观看高清| 久久久国产成人精品二区| 国产精品亚洲美女久久久| 日本免费一区二区三区高清不卡| 嫩草影视91久久| 久久久久久久久大av| 国产精品免费一区二区三区在线| 亚洲欧美日韩卡通动漫| av片东京热男人的天堂| 香蕉久久夜色| 男人舔奶头视频| 国产私拍福利视频在线观看| 午夜免费激情av| e午夜精品久久久久久久| 日韩欧美国产在线观看| 婷婷亚洲欧美| 亚洲av成人不卡在线观看播放网| 草草在线视频免费看| 丰满人妻一区二区三区视频av | 又爽又黄无遮挡网站| 岛国在线观看网站| 久久这里只有精品中国| 亚洲精品影视一区二区三区av| 级片在线观看| 国产一级毛片七仙女欲春2| 岛国视频午夜一区免费看| 99精品久久久久人妻精品| 日韩欧美在线乱码| 男女午夜视频在线观看| 岛国在线免费视频观看| 久久伊人香网站| 日本黄色视频三级网站网址| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产 | 少妇人妻精品综合一区二区 | 国产av在哪里看| 亚洲五月婷婷丁香| 国产精品99久久99久久久不卡| 听说在线观看完整版免费高清| 国产在线精品亚洲第一网站| 一进一出好大好爽视频| 内地一区二区视频在线| eeuss影院久久| 在线免费观看不下载黄p国产 | 黄色日韩在线| а√天堂www在线а√下载| 中文亚洲av片在线观看爽| av在线天堂中文字幕| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 少妇丰满av| 制服丝袜大香蕉在线| 亚洲人成伊人成综合网2020| 看黄色毛片网站| 夜夜看夜夜爽夜夜摸| 哪里可以看免费的av片| 狂野欧美激情性xxxx| 小说图片视频综合网站| 他把我摸到了高潮在线观看| 天天添夜夜摸| 在线观看日韩欧美| 免费av观看视频| 亚洲成人中文字幕在线播放| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 欧美一区二区精品小视频在线| 亚洲性夜色夜夜综合| 精品日产1卡2卡| 熟女电影av网| 国产精品日韩av在线免费观看| 首页视频小说图片口味搜索| 精品福利观看| АⅤ资源中文在线天堂| x7x7x7水蜜桃| 欧美精品啪啪一区二区三区| 久久中文看片网| 亚洲人成伊人成综合网2020| 精品福利观看| 女生性感内裤真人,穿戴方法视频| 国产精品 欧美亚洲| 日韩精品青青久久久久久| 日韩av在线大香蕉| 日韩精品中文字幕看吧| 国内毛片毛片毛片毛片毛片| 91在线观看av| 亚洲精品粉嫩美女一区| a级一级毛片免费在线观看| 亚洲精品色激情综合| 精品久久久久久久久久久久久| 国产不卡一卡二| 久久久国产成人精品二区| 午夜福利在线在线| xxxwww97欧美| 村上凉子中文字幕在线| 国产亚洲欧美98| 伊人久久大香线蕉亚洲五| 亚洲国产色片| 精品人妻偷拍中文字幕| 国产美女午夜福利| 男人舔奶头视频| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 青草久久国产| 麻豆久久精品国产亚洲av| 国产精华一区二区三区| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 999久久久精品免费观看国产| 一本久久中文字幕| 国产午夜福利久久久久久| 国产成人影院久久av| 欧美日韩精品网址| 18美女黄网站色大片免费观看| 国产精品一区二区三区四区免费观看 | 熟女少妇亚洲综合色aaa.| 久久久久亚洲av毛片大全| 国产麻豆成人av免费视频| 国产免费一级a男人的天堂| 毛片女人毛片| 两个人的视频大全免费| 午夜精品久久久久久毛片777| 日本黄大片高清| 十八禁人妻一区二区| 国产精品1区2区在线观看.| 一夜夜www| 欧美绝顶高潮抽搐喷水| av视频在线观看入口| 在线十欧美十亚洲十日本专区| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 亚洲aⅴ乱码一区二区在线播放| 内射极品少妇av片p| 午夜亚洲福利在线播放| 窝窝影院91人妻| 久久亚洲精品不卡| 天天躁日日操中文字幕| 高清在线国产一区| 精品国产亚洲在线| 久久精品综合一区二区三区| 99热这里只有精品一区| 亚洲片人在线观看| 日韩欧美国产在线观看| 男女床上黄色一级片免费看| 窝窝影院91人妻| 成年女人永久免费观看视频| 中文字幕高清在线视频| 99国产综合亚洲精品| 香蕉久久夜色| 岛国在线免费视频观看| 欧美最新免费一区二区三区 | 国产成人aa在线观看| 在线观看av片永久免费下载| 国产日本99.免费观看| 国产男靠女视频免费网站| 桃色一区二区三区在线观看| 精华霜和精华液先用哪个| 免费看日本二区| 欧美av亚洲av综合av国产av| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人下体高潮全视频| 天堂影院成人在线观看| 88av欧美| 免费人成在线观看视频色| 国产黄a三级三级三级人| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 国产精品亚洲美女久久久| 一夜夜www| 日韩精品中文字幕看吧| 久久久久国内视频| 免费在线观看影片大全网站| 国产成人aa在线观看| 波多野结衣高清无吗| 欧美色欧美亚洲另类二区| 色在线成人网| 亚洲久久久久久中文字幕| 国产精品久久久人人做人人爽| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 有码 亚洲区| 久久久久久久久中文| 叶爱在线成人免费视频播放| 婷婷亚洲欧美| 桃红色精品国产亚洲av| 久久久久久九九精品二区国产| 99精品久久久久人妻精品| 97碰自拍视频| 99久久综合精品五月天人人| 久久这里只有精品中国| 国产在线精品亚洲第一网站| 久久久久久久午夜电影| 欧美+日韩+精品| 亚洲av熟女| 久久国产精品影院| 久9热在线精品视频| 嫩草影视91久久| 两人在一起打扑克的视频| 午夜福利18| 欧美日韩亚洲国产一区二区在线观看| 18禁国产床啪视频网站| 99久久精品一区二区三区| 天天添夜夜摸| 激情在线观看视频在线高清| 美女cb高潮喷水在线观看| 国内精品美女久久久久久| 在线观看日韩欧美| 色在线成人网| 国产av一区在线观看免费| 国产精品,欧美在线| 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av | 国产探花极品一区二区| 波多野结衣高清作品| 美女 人体艺术 gogo| 亚洲 欧美 日韩 在线 免费| 90打野战视频偷拍视频| 久久久久精品国产欧美久久久| 色噜噜av男人的天堂激情| 精品人妻一区二区三区麻豆 | av黄色大香蕉| 99在线人妻在线中文字幕| 在线播放无遮挡| 亚洲av熟女| 久久天躁狠狠躁夜夜2o2o| 久久精品91蜜桃| 操出白浆在线播放| 18禁黄网站禁片免费观看直播| 欧美中文综合在线视频| 亚洲av成人av| 久久精品亚洲精品国产色婷小说| 啪啪无遮挡十八禁网站| 国产亚洲精品久久久久久毛片| 国产真实乱freesex| 2021天堂中文幕一二区在线观| 99久久综合精品五月天人人| 日韩欧美一区二区三区在线观看| 欧美日韩精品网址| 成人一区二区视频在线观看| 成年版毛片免费区| 夜夜爽天天搞| 欧美日韩瑟瑟在线播放| 日日干狠狠操夜夜爽| 免费看光身美女| 欧美性感艳星| 麻豆一二三区av精品| 老汉色av国产亚洲站长工具| 亚洲天堂国产精品一区在线| 99久久精品热视频| 久久国产精品人妻蜜桃| 美女高潮喷水抽搐中文字幕| 国产又黄又爽又无遮挡在线| 亚洲精品日韩av片在线观看 | 日日摸夜夜添夜夜添小说| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久人妻蜜臀av| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 18禁在线播放成人免费| 成人永久免费在线观看视频| 欧美一区二区亚洲| 91九色精品人成在线观看| 亚洲av一区综合| 亚洲国产精品合色在线| 久久6这里有精品| 网址你懂的国产日韩在线| 中亚洲国语对白在线视频| 黄色成人免费大全| 嫩草影院入口| 日本成人三级电影网站| a在线观看视频网站| 在线天堂最新版资源| 毛片女人毛片| 麻豆久久精品国产亚洲av| 99精品久久久久人妻精品| 国产乱人视频| 国产中年淑女户外野战色| 成人国产一区最新在线观看| 女警被强在线播放| 亚洲av成人不卡在线观看播放网| 老司机午夜十八禁免费视频| 少妇人妻一区二区三区视频| 熟女少妇亚洲综合色aaa.| 日韩欧美一区二区三区在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费在线观看影片大全网站| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 午夜激情欧美在线| 国产午夜精品久久久久久一区二区三区 | 毛片女人毛片| 老汉色∧v一级毛片| 操出白浆在线播放| 国产精品久久久久久亚洲av鲁大| 美女高潮的动态| 亚洲成人中文字幕在线播放| 欧美日韩亚洲国产一区二区在线观看| 日本 av在线| 国产高清三级在线| 亚洲精品粉嫩美女一区| 在线播放无遮挡| 精品免费久久久久久久清纯| 亚洲av五月六月丁香网| 午夜福利在线观看吧| 国产精品亚洲一级av第二区| 久久九九热精品免费| 亚洲 国产 在线| 老司机午夜福利在线观看视频| 亚洲片人在线观看| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 高潮久久久久久久久久久不卡| 琪琪午夜伦伦电影理论片6080| 韩国av一区二区三区四区| 亚洲欧美一区二区三区黑人| 波野结衣二区三区在线 | 天堂av国产一区二区熟女人妻| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| 中亚洲国语对白在线视频| 熟女电影av网| 欧美日韩一级在线毛片| 国产精品久久久久久亚洲av鲁大| 性欧美人与动物交配| 搡女人真爽免费视频火全软件 | 欧美乱色亚洲激情| 欧美zozozo另类| 动漫黄色视频在线观看| 在线免费观看不下载黄p国产 | 欧美日韩瑟瑟在线播放| 俺也久久电影网| 大型黄色视频在线免费观看| 欧美中文日本在线观看视频| 国内揄拍国产精品人妻在线| 日本一本二区三区精品| 国产一区二区在线av高清观看| 欧美日本视频| 69av精品久久久久久| 女同久久另类99精品国产91| 国产真实乱freesex| 国产午夜精品久久久久久一区二区三区 | 国产成人aa在线观看| 久久国产乱子伦精品免费另类| 国产精品久久电影中文字幕| 中文字幕人妻丝袜一区二区| 91在线观看av| 夜夜爽天天搞| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 亚洲国产精品sss在线观看| 亚洲精品乱码久久久v下载方式 | 亚洲在线观看片| 午夜福利免费观看在线| 757午夜福利合集在线观看| 久久久久国内视频| 日韩人妻高清精品专区| 老司机午夜福利在线观看视频| 久久久久久久久大av| 美女被艹到高潮喷水动态| 免费观看人在逋| 欧美区成人在线视频| 国产精品美女特级片免费视频播放器| 久久久久亚洲av毛片大全| 亚洲av不卡在线观看| 美女黄网站色视频| 中文字幕av在线有码专区| 日本a在线网址| 精品不卡国产一区二区三区| 可以在线观看的亚洲视频| 精华霜和精华液先用哪个| 久久国产精品人妻蜜桃| 90打野战视频偷拍视频| 免费无遮挡裸体视频| 欧美色视频一区免费| 亚洲精品一区av在线观看| 国产成人啪精品午夜网站| 老汉色av国产亚洲站长工具| 又黄又粗又硬又大视频| 十八禁人妻一区二区| 97碰自拍视频| 内地一区二区视频在线| 有码 亚洲区| 久久久久国产精品人妻aⅴ院| 一本一本综合久久| 无遮挡黄片免费观看| av黄色大香蕉| 露出奶头的视频| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| www日本黄色视频网| 亚洲在线观看片| 51午夜福利影视在线观看|