• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of the surface heat budget over the South China Sea

    2016-11-23 02:37:06FENGBoXinLIUHiLongLINPengFeindWANGQi
    關鍵詞:海表格點潛熱

    FENG Bo-Xin, LIU Hi-Long, LIN Peng-Feind WANG Qi

    aCollege of Physical and Environmental Oceanography, Ocean University of China, Qingdao, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    Estimation of the surface heat budget over the South China Sea

    FENG Bao-Xina, LIU Hai-Longb, LIN Peng-Feiband WANG Qia

    aCollege of Physical and Environmental Oceanography, Ocean University of China, Qingdao, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    In situ data are employed to evaluate fve gridded surface heat fux datasets over the South China Sea. The surface heat budgets for these gridded datasets are computed. The authors fnd that the gridded datasets tend to underestimate both the solar radiation and sensible heat fux in general,while the latent heat fuxes are close to the observations, except for that of NOC unadjusted version 2 (NOC2), which overestimates both the latent and sensible heat fux. The underestimation of solar radiation also indicates that the gridded datasets might underestimate the surface heat budget. The net surface heat fux of the fve gridded datasets is always positive. However, the net surface heat fux of COADS, NOC1, NOC2, and OAFlux, in the range 48—56 W m-2, is around twofold more than that of NOC1a (22 W m-2). The budget for NOC2 is smaller than that of NOC1 and OAFlux, by approximately 49 W m-2, because of the large release of latent heat fux. Based on the comparison,the authors believe that the net surface heat fux over the South China Sea should be higher than 56 W m-2, which is signifcantly larger (around 10%—20%) than previous estimations.

    ARTICLE HISTORY

    Revised 1 February 2016

    Accepted 4 February 2016

    Shortwave radiation; net

    heat fux; heat budget; South China Sea

    本文運用了南海觀測資料去評估五個海表熱通量格點資料,同時,也計算了這五種格點資料的海表熱收支平衡。結果發(fā)現這些格點資料都低估了短波輻射和感熱通量,但是潛熱通量除了NOC2外都相對接近觀測值。低估了短波輻射也表明了這些格點資料可能低估了海表熱收支。五種格點資料的凈熱通量都是正值,表明海洋從大氣中獲得熱量。綜合比較來看的話,NOC1資料所得的海表熱通量收支可能更接近于觀測值,更合理。

    1. Introduction

    The South China Sea (SCS) is the largest marginal sea in the northwestern Pacifc. It connects with the East China Sea through the shallow Taiwan Strait and with the Pacifc Ocean through the deep Luzon Strait in the northeastern part, and also with the Sulu and Java seas through the shallow Mindoro and Karimata straits in the south, respectively. Since the SCS is located in the tropics, south of the Tropic of Cancer, it receives heat from the atmosphere on average over the basin, and is balanced by the ocean heat transport through the straits (Qu, Du, and Sasaki 2006). Owing to insufcient observational data to estimate the heat transport through the straits, the surface heat budgets become an important proxy of the heat transports. Recently, Qu,Song, and Yamagata (2009) estimated the area-averaged net surface heat fux (Qnet, hereafter) over the SCS by using both OAFlux (Yu and Weller 2007) and COADS (Oberhuber 1988) data. The value from OAFlux (49 W m-2) was twice as high as that from COADS (23 W m-2). Zeng et al. (2009)used seven satellite-derived latent heat fux products to compare with moored buoy data and concluded that all of the products did not compare well to the in situ data. All of these studies suggest that there are large uncertainties in the estimation of the surface heat budget in this region(Zeng et al. 2009), meaning further investigation is needed.

    In the last 20 years, much efort has been made to produce global gridded surface heat fux datasets, and these datasets are extensively used in climate studies. They can usually be grouped into three categories: satellite-based datasets (Schulz et al. 1997; Kubota et al. 2002; Chou et al. 2003), atmosphere datasets (Kalnay et al. 1996; Gibson and Harper 1997; Uppala et al. 2005), and reconstructed datasets (Da Silva, Young, and Levitus 1994; Josey, Kent,and Taylor 1998; Large and Yeager 2008; Yu, Jin, and Weller 2008; Berry and Kent 2009). Ocean reanalysis datasets (Ji,Leetmaa, and Derber 1995; Behringer and Xue 2004; Carton and Giese 2008) come from operational system assimilated observations. Since surface fux data from atmospheric reanalysis may contain large biases on regional scales, the second of the above-listed data-set types is seldom usedin surface heat budget studies. Therefore, here, we only employ the third category.

    Table 1.Details of the fve global gridded surface heat fux datasets.

    The purpose of this study is to evaluate gridded surface heat fux products in the SCS by using in situ observations from buoys and research vessels. The observational references of the surface heat budget over the SCS are also provided. The paper is organized as follows: Section 2 describes the data used, including the fve gridded datasets of surface heat fuxes and in situ observations. Section 3 presents a comparison and evaluation of the diferent gridded datasets and in situ observations. Section 4 summarizes the key fndings.

    2. Datasets

    2.1. Gridded datasets

    The gridded surface heat flux datasets used in this study are listed in Table 1. Two datasets, COADS and NOC adjusted version 1.1a (NOC1a), have included adjustments to the atmosphere-based surface fluxes by imposing some broad constraints of the oceanic heat transport. However, only the Qnethas been adjusted for COADS. We show both the original and constrained values for COADS in the following. Generally, we consider NOC unadjusted version 1.1 (NOC1) (Josey, Kent, and Taylor 1999), NOC1a (Grist and Josey 2003) and NOC unadjusted version 2 (NOC2) (Berry and Kent 2009) as three separate datasets. The three NOC datasets and COADS product (Da Silva, Young, and Levitus 1994) are all based on ship measurements of surface winds and clouds. However, OAFlux version 3 (Yu, Jin, and Weller 2008) uses surface winds from a combination of satellite measurements and reanalysis data to calculate the latent and sensible heat fluxes. This data-set does not contain independently derived radiative fluxes, but surface radiation from ISCCP (Zhang et al. 2004) is included in that release. The Qnetreferred to as OAFlux in this study is a combination of the objectively analyzed turbulent heat fluxes and the ISCCP radiative fluxes.

    The fve gridded surface heat fux datasets have diferences in their data sources and temporal resolutions, but the spatial resolutions are the same. They cover diferent periods of time. NOC1a is only a climatology, but the other four are monthly datasets. The fve surface fux datasets also use diferent formulas to calculate the surface turbulent fuxes.

    2.2. In situ data

    Figure 1.The positions of the in situ datasets in the SCS.

    Table 2.Details of the in situ surface heat fux datasets.

    The in situ datasets used in this paper are listed in Table 2. We use the turbulent fuxes (both latent and sensible fuxes) from the air—sea fux tower at Yongxing Island (YX)in 2008, and the turbulent fuxes computed by atmospheric and oceanic data collected by the research vessels‘ShiYan 3' (SY3) and ‘KeXue 1' (KX1) during the intensive observation period of SCSMEX in 1998. The algorithm used to calculate the turbulent heat fux for YX is COARE 3.0 (Fairall et al. 2003), while that for both SY3 and KX1 is the bulk air—sea fux formula in terms of wind speed and stratifcation of the atmosphere (Kondo 1975). We also use shortwave radiation data from three Tropical Atmosphere Ocean (TAO) buoys employed during SCSMEX. The buoys were located at (13°N, 114°E), (15°N, 115°E) and (18°N,116°E), and are referred to as TAO 1, TAO 2, and TAO 3,respectively. We regard these turbulent and shortwave radiation fuxes as the in situ datasets. The locations of these datasets are shown in Figure 1.

    3. Results

    Since the gridded datasets are all monthly means, we also use the monthly mean values of in situ data to carry out the comparison. Figure 2 is a scatter plot between the in situ and gridded data for the shortwave radiation, and the latent and sensible heat fuxes (we defne the ocean gaining heat from the atmosphere as positive, and vice versa as negative). The whole period—averaged values of the in situ data are listed in Table 3. The diferent marks stand for diferent gridded datasets. The points below (above) the diagonal mean the gridded data are smaller (larger) than the in situ data. Because the latent and sensible heat fuxes are negative, the points below (above) the diagonal mean the absolute values of the gridded data are larger (smaller)than the in situ data.

    In general, the gridded shortwave radiation fuxes are slightly smaller than the in situ observations. There are more points below the diagonal (Figure 2(a)). The ensemble mean for the in situ data is 227 W m-2, while it is only 216 W m-2for the gridded data (Table 3). However, it is clear that there are more marks for NOC2 located above the diagonal. The mean value for NOC2, 224 W m-2, is close to the in situ data, and COADS and NOC1 are a little smaller—better than NOC1a and OAFlux.

    The latent heat fux is another dominant component of the Qnet. It is apparent that the points are almost evenly distributed around the diagonal (Figure 2(b)), meaning the gridded data are close to the in situ observations. The ensemble mean for the in situ and gridded data is -98 W m-2and -100 W m-2, respectively (Table 3). However,the latent fuxes for NOC2 deviate the most from the in situ data, which is consistent with the fnding of Zeng et al.(2009) that ICOADS possesses moderate systematic errors with respect to in situ data. The mean value is -120 W m-2(Table 3)—about 20 W m-2larger than the ensemble mean and the observational data, meaning there is much more latent heat fux released from the ocean in NOC2. However,the mean value of NOC1, approximately -94 W m-2, is close to the in situ observations.

    The absolute value of sensible heat fux (<10 W m-2)is much smaller than that of the shortwave radiation and latent heat fuxes. Figure 2(c) shows that almost all the gridded datasets are above the diagonal, except for NOC2, meaning the gridded data tend to underestimate the release of sensible heat and NOC2 tends to overestimate it. The mean values in Table 3 also confrm the results: -8 W m-2for the in situ data and -5 W m-2for all of the gridded data, except -9 W m-2for NOC2.

    Based on the above comparison, the gridded datasets generally tend to underestimate both the solar radiation and the sensible heat fux, while the latent heat fuxes are close to the observations. NOC2, which is diferent from the other datasets, overestimates the turbulent heat fuxes—both the latent and sensible heat fuxes. We compute the sum of shortwave radiation and latent heat fux at YX (Table 3). Because these two terms dominate the surface heat budget, this value can explain most of the heat budget. We can see that the values for both NOC1a(121 W m-2) and NOC2 (105 W m-2) are remarkably lower than the observation (152 W m-2) and the other three datasets. The former (NOC1a) is due to the underestimated shortwave radiation, and the latter (NOC2) to the overestimated latent heat. Among the other three datasets, the sum for OAFlux is also about 10—15 W m-2larger than theother two datasets, COADS and NOC1. That is, the heat budget for COADS and NOC1 may be more reasonable than the other datasets.

    Figure 2.Scatter diagrams of (a) shortwave radiation, (b) latent heat fux, and (c) sensible heat fux, between the in situ (x-axis) and gridded (y-axis) datasets.

    Table 3.The period-average values of the in situ datasets and the fve gridded datasets at the observational stations.

    We next compute the period-averaged surface heat budget over the SCS for the fve gridded datasets (Table 4). The Qnetis generally calculated through four components: the shortwave radiation, longwave radiation, latent heat fux, and sensible heat fux. The period is from 1984 to 1993 for the fve gridded datasets. The averaged domain is(1.5—22.5°N, 106.5—121.5°E), shown in Figure 1. The Qnetofthe fve gridded datasets is always positive; that is, the SCS receives heat from the atmosphere. However, the Qnetof the non-constrained COADS, NOC1, NOC2, and OAFlux, in the range of 45—60 W m-2, is around twofold that of NOC1a and more than fourfold that of the constrained COADS. This can be explained by NOC1a having smaller shortwaveradiation but larger latent heat fux. As mentioned above,the shortwave radiation for COADS, NOC1, and OAFlux are underestimated according to the comparison with the in situ data. Therefore, the Qnetover the SCS should be higher than 56 W m-2, which is signifcantly larger (around 10%—20%) than previous estimations (e.g. Qu, Song, and Yamagata 2009).

    Table 4.The surface heat fux budget for the fve gridded datasets in the SCS for the period 1984—1993. The averaged domain is shown in Figure 1.

    Figure 3.The annual mean (a—e) shortwave radiation and (f—j) latent heat fux for the fve gridded datasets during 1984—1993.

    Figure 4.The annual mean net surface heat fux for the fve gridded datasets over the domain shown in Figure 1.Notes: The constrained COADS, NOC1, NOC1a, NOC2, and OAFlux are shown as red dashed, green solid, brown dash-dot, blue dashed, and purple solid lines,respectively. The unconstrained net surface heat fux data for COADS (black solid line), which is calculated from the sum of the shortwave radiation, longwave radiation, latent heat, and sensible heat fux, are also shown. Units: W m-2.

    Figure 3 shows the annual mean pattern of the shortwave radiation and latent heat fux for the fve gridded datasets. The average period is the same as that in Table 4,i.e. from 1984 to 1993. We can see that the patterns of the fve gridded datasets are all similar. The large incident solar radiation and the latent heat fux releases occur between 5°N and 20°N, north of the region favorable for convection. Clearly, the solar radiation for NOC1a and OAFlux is smaller than for the other three datasets (Figures 3(c) and (e)), and the latent heat fuxes for NOC1a and NOC2 are larger than the other three datasets (Figures 3(h) and (i)). The diferences among the datasets are mostly homogeneous.

    It is also apparent that the Qnetpossesses a clear decreasing trend (Figure 4). The Qnetvalues of NOC1, NOC2, and OAFlux are all near 50—60 W m-2for the period from 1984 to 1993—around twofold more than the value for NOC1a(approximately 20 W m-2). The NOC1 and OAFlux data are mostly larger than the NOC2 data during this period. This also explains why the period-mean values of NOC1 and OAFlux are larger than those of NOC2. The NOC1 and NOC2 values decrease to approximately 30 W m-2around 1998—2001, and then increase to around 50 W m-2and 40 W m-2,respectively. The OAFlux decrease is much slower than that of NOC1 and NOC2; it decreases to approximately 40 W m-2around 2003 and remains there until the end of the record.

    4. Summary and discussion

    This study employs in situ observations to evaluate fve gridded surface heat fux datasets over the SCS. The surface heat budgets for these gridded datasets are computed. It is found that the gridded datasets generally tend to underestimate both the solar radiation and sensible heat fux, while the latent heat fuxes are close to observations, except for NOC2, which overestimates both the latent and sensible heat fux. The underestimation of the solar radiation indicates that the gridded datasets might also underestimate the surface heat budget. Based on the better performance regarding shortwave radiation, latent heat fux, and the sum of these two heat fuxes (Table 3),we speculate that NOC1 is the relatively better gridded data-set among the fve, although it underestimates the sensible heat fux and Qnet.

    There are also possible errors in the observational datasets. For instance, the observation tower is only 360 m away from the island. It could overestimate the ocean turbulent heat fux loss, because the shallow coastal water around the island may be much warmer than the SST far away from land. However, based on our results (Table 3), three of the fve datasets possess a larger latent heat release than that of YongXing Island. It is therefore hard to say, based on the observation data, whether or not it is overestimated in the present study. More observations of the surface fuxes are required.

    The Qnetof the fve gridded datasets is always positive. However, the Qnetof COADS, NOC1, NOC2, and OAFlux,ranging from 48 to 56 W m-2, is around twice that of NOC1a(22 W m-2). The imbalance for NOC2 is smaller than that for NOC1 and OAFlux, at about 49 W m-2, because of the large release of latent heat fux. Based on the comparison, we believe that the Qnetover the SCS should be higher than 56 W m-2, which is signifcantly larger (roughly 10%—20%)than previous estimations (e.g. Qu, Song, and Yamagata 2009).

    It is also found that the Qnetpossesses a clear decreasing trend. The decreasing trend in the Qnetis caused by the decreasing trend in the latent heat fux, not the shortwave radiation (not shown). We also calculate the surface heat budget for NOC1, NOC2, and OAFlux during the period 1994—2005 (not shown). The shortwave and longwave radiation of the three datasets are almost similar to that in Table 4. However, the latent heat fux becomes much larger and the Qnetdecreases to 42, 33, and 45 W m-2for NOC1,NOC2, and OAFlux, respectively. This is consistent with the decreasing trend shown in Figure 4, and the Qnetof NOC1 and OAFlux is still larger than that of NOC2. The decreasing trend is also closely related to the Pacifc Decadal Oscillation index. Song et al. (2014) found that the upper layer heat content possesses an increasing trend during our study period. That may indicate that the increasing surface temperature will increase the temperature diferences between the atmosphere and ocean, and ultimately increase the release of turbulent heat fux and decrease the Qnet. However, this may be not as simple as what we have explained, and so further analysis is required.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was supported by the National Key Basic Research Program of China [grant number 2013CB956204]; the National Natural Science Foundation of China [grant number 41576025],[grant number 41275084], [grant number 41075059]; and the Strategic Priority Research Program entitled ‘Western Pacifc Ocean System: Structure, Dynamics and Consequences' of the Chinese Academy of Sciences [grant number XDA11010304].

    References

    Behringer, D., and Y. Xue. 2004. “Evaluation of the Global Ocean Data Assimilation System at NCEP: The Pacifc Ocean.”Preprints, Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere: Oceans, and Land Surface, Seattle, Washington, American Meteorological Society, Vol. 2.

    Berry, D. I., and E. C. Kent. 2009. “A New Air—Sea Interaction Gridded Dataset from ICOADS with Uncertainty Estimates.”Bulletin of the American Meteorological Society 90 (5): 645—656. Carton, J. A., and B. S. Giese. 2008. “A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA).” Monthly Weather Review 136 (8): 2999—3017.

    Chou, S. H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C. L. Shie. 2003. “Surface Turbulent Heat and Momentum Fluxes over Global Oceans Based on the Goddard Satellite Retrievals,Version 2 (GSSTF2).” Journal of Climate 16 (20): 3256—3273.

    Da Silva, A., C. Young, and S. Levitus. 1994. “Algorithms and Procedure. Vol. 1, Atlas of Surface Marine Data 1994.”Washington: NOAA Atlas NESDIS 6: 83.

    Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson. 2003. “Bulk Parameterization of Air—Sea Fluxes: Updates and Verifcation for the COARE Algorithm.” Journal of Climate 16(4): 571—591.

    Gibson, M. M., and R. D. Harper. 1997. “Calculation of Impingingjet Heat Transfer with the Low-Reynolds-Number Q- ζ Turbulence Model.” International Journal of Heat and Fluid Flow 18 (1): 80—87.

    Grist, J., and S. Josey. 2003. “Inverse Analysis Adjustment of the SOC Air—Sea Flux Climatology Using Ocean Heat Transport Constraints.” Journal of Climate 16 (20): 3274—3295.

    Ji, M., A. Leetmaa, and J. Derber. 1995. “An Ocean Analysis System for Seasonal to Interannual Climate Studies.” Monthly Weather Review 123 (2): 460—481.

    Josey, S., E. Kent, and P. Taylor. 1998. The Southampton Oceanography Center (SOC) Ocean-atmosphere Heat,Momentum and Freshwater Flux Atlas. Southampton: Southampton Oceanography Centre.

    Josey, S., E. Kent, and P. Taylor. 1999. “New Insights into the Ocean Heat Budget Closure Problem from Analysis of the SOC Air—Sea Flux Climatology.” Journal of Climate 12 (9): 2856—2880.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. “The NCEP/NCAR 40-Year Reanalysis Project.” Bulletin of the American Meteorological Society 77 (3): 437—471.

    Kondo, J. 1975. “Air—Sea Bulk Transfer Coefcients in Diabatic Conditions.” Boundary-Layer Meteorology 9 (1): 91—112.

    Kubota, M., N. Iwasaka, S. Kizu, M. Konda, and K. Kutsuwada. 2002. “Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO).” Journal of Oceanography 58 (1): 213—225.

    Large, W. G., and S. G. Yeager. 2008. “The Global Climatology of an Interannually Varying Air—Sea Flux Data Set.” Climate Dynamics 33 (2—3): 341—364.

    Oberhuber, J. M. 1988. An Atlas Based on COADS Data Set: The Budgets of Heat Buoyancy and Turbulent Kinetic Energy at the Surface of the Global Ocean. Hamburg: Max-Planck-Institut fur Meteorologie.

    Qu, S., F. Hu, and Y. Li. 2000. “Some Characteristics of Air—Sea Exchange for the South China Sea Summer Monsoon in the Period of SCSMEX98.” Climatic and Environmental Research 5(4): 434—446.

    Qu, T., Y. Du, and H. Sasaki. 2006. “South China Sea Throughfow: A Heat and Freshwater Conveyor.” Geophysical Research Letters 33: L23617. doi:10.1029/2006GL028350.

    Qu, T., Y. Song, and T. Yamagata. 2009. “An Introduction to the South China Sea Throughfow: Its Dynamics, Variability,and Application for Climate.” Dynamics of Atmospheres and Oceans 47 (1): 3—14.

    Schulz, J., J. Meywerk, S. Ewald, and P. Schlüssel. 1997. “Evaluation of Satellite-derived Latent Heat Fluxes.” Journal of Climate 10(11): 2782—2795.

    Song, W., J. Lan, Q. Liu, D. Sui, L. Zeng, and D. Wang. 2014.“Decadal Variability of Heat Content in the South China Sea Inferred from Observation Data and an Ocean Data Assimilation Product.” Ocean Science 10 (1): 135—139.

    Sun, Q., J. Chen, and J. Yan. 2010. “The Variation Characteristics of Air Sea Fluxes over Xisha Area before and after the Onset of the South China Sea Monsoon in 2008.” Acta Oceanologica Sinica 32 (4): 12—23.

    Uppala, S. M., and P. W. K?llberg, A. J. Simmons, U. Andrae, V. D. C. Bechtold, M. Fiorino, J. K. Gibson, et al. 2005. “The ERA-40 Re-analysis.” Quarterly Journal of the Royal Meteorological Society 131 (612): 2961—3012.

    Yu, L., and R. A. Weller. 2007. “Objectively Analyzed Air—Sea Heat Fluxes for the Global Ice-free Oceans (1981—2005).” Bulletin of the American Meteorological Society 88 (4): 527—539.

    Yu, L., X. Jin, and R. Weller. 2008. Mutidecade Global Flux Datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Tech. Rep. OA-2008-01, Woods Hole: Woods Hole Oceanographic Institution,64 pp.

    Zeng, L., P. Shi, W. T. Liu, and D. Wang. 2009. “Evaluation of a Satellite-derived Latent Heat Flux Product in the South China Sea: A Comparison with Moored Buoy Data and Various Products.” Atmospheric Research 94 (1): 91—105.

    Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko. 2004. “Calculation of Radiative Fluxes from the Surface to Top of Atmosphere Based on ISCCP and Other Global Data Sets: Refnements of the Radiative Transfer Model and the Input Data.” Journal of Geophysical Research 109: D19105. doi:10.1029/2003JD004457.

    短波輻射; 凈熱通量; 南海;熱收支

    24 November 2015

    CONTACT LIU Hai-Long lhl@lasg.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    海表格點潛熱
    帶有超二次位勢無限格點上的基態(tài)行波解
    一種電離層TEC格點預測模型
    基于無人機的海表環(huán)境智能監(jiān)測系統(tǒng)設計與應用
    2016與1998年春季北大西洋海表溫度異常的差異及成因
    融合海表溫度產品在渤黃東海的對比分析及初步驗證
    海洋通報(2020年6期)2020-03-19 02:10:08
    Effect of moxibustion combined with acupoint application on enteral nutrition tolerance in patients with severe acute pancreatitis
    太陽總輻照度對熱帶中太平洋海表溫度年代際變化的可能影響
    帶可加噪聲的非自治隨機Boussinesq格點方程的隨機吸引子
    工業(yè)革命時期蒸汽動力的應用與熱力學理論的關系
    格點和面積
    大香蕉久久网| 丝袜人妻中文字幕| 777米奇影视久久| 啦啦啦在线免费观看视频4| 精品少妇一区二区三区视频日本电影| 免费黄频网站在线观看国产| videosex国产| 69精品国产乱码久久久| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 三上悠亚av全集在线观看| 国产91精品成人一区二区三区 | 免费女性裸体啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 日韩视频在线欧美| 亚洲av日韩在线播放| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区免费欧美 | 美女主播在线视频| 国产成人免费无遮挡视频| 国产无遮挡羞羞视频在线观看| 少妇被粗大的猛进出69影院| 亚洲精品中文字幕一二三四区 | 欧美日韩国产mv在线观看视频| 999久久久国产精品视频| 午夜福利,免费看| 电影成人av| av又黄又爽大尺度在线免费看| 99九九在线精品视频| 天天躁夜夜躁狠狠躁躁| 国产男女超爽视频在线观看| 两人在一起打扑克的视频| 一级毛片精品| 亚洲伊人色综图| 女人久久www免费人成看片| 亚洲天堂av无毛| 黄片播放在线免费| 久久久久久人人人人人| 老汉色av国产亚洲站长工具| 一区二区三区精品91| 国产人伦9x9x在线观看| 黄色视频在线播放观看不卡| 久久国产精品男人的天堂亚洲| 精品国产乱码久久久久久男人| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 一区二区三区激情视频| 久久久欧美国产精品| 日韩人妻精品一区2区三区| 欧美另类亚洲清纯唯美| 欧美性长视频在线观看| 少妇精品久久久久久久| 大陆偷拍与自拍| 人人妻人人澡人人看| 日日爽夜夜爽网站| 久久久久久久大尺度免费视频| 日本精品一区二区三区蜜桃| 欧美成狂野欧美在线观看| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av香蕉五月 | 亚洲性夜色夜夜综合| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久噜噜老黄| av天堂久久9| 免费久久久久久久精品成人欧美视频| 多毛熟女@视频| 爱豆传媒免费全集在线观看| av又黄又爽大尺度在线免费看| 一级片'在线观看视频| 亚洲成国产人片在线观看| 成人影院久久| 脱女人内裤的视频| 脱女人内裤的视频| 99久久99久久久精品蜜桃| 亚洲国产精品成人久久小说| 亚洲专区中文字幕在线| 亚洲欧美精品自产自拍| 男女床上黄色一级片免费看| 欧美变态另类bdsm刘玥| 91麻豆精品激情在线观看国产 | 大陆偷拍与自拍| 亚洲精品久久久久久婷婷小说| 免费不卡黄色视频| 精品第一国产精品| 午夜福利影视在线免费观看| 一区二区三区激情视频| 国产精品久久久av美女十八| 男女床上黄色一级片免费看| 国产伦人伦偷精品视频| 欧美人与性动交α欧美精品济南到| 可以免费在线观看a视频的电影网站| 两个人看的免费小视频| 超碰97精品在线观看| 在线天堂中文资源库| 一进一出抽搐动态| 在线观看免费高清a一片| 99久久人妻综合| 叶爱在线成人免费视频播放| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 日韩电影二区| 久久免费观看电影| 欧美精品av麻豆av| 性色av一级| 在线天堂中文资源库| 久久久精品国产亚洲av高清涩受| 99久久99久久久精品蜜桃| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 欧美激情久久久久久爽电影 | 国产成人影院久久av| svipshipincom国产片| 亚洲欧美激情在线| 日本精品一区二区三区蜜桃| 女警被强在线播放| 王馨瑶露胸无遮挡在线观看| 国产亚洲av片在线观看秒播厂| 精品免费久久久久久久清纯 | 十分钟在线观看高清视频www| 国产精品熟女久久久久浪| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 国产精品一区二区免费欧美 | 成人三级做爰电影| 精品少妇一区二区三区视频日本电影| 99re6热这里在线精品视频| 别揉我奶头~嗯~啊~动态视频 | 69av精品久久久久久 | 又紧又爽又黄一区二区| 美女高潮喷水抽搐中文字幕| 美女主播在线视频| 在线观看舔阴道视频| 久久国产精品男人的天堂亚洲| 中国美女看黄片| 午夜免费鲁丝| 亚洲精品一区蜜桃| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 女人久久www免费人成看片| 十分钟在线观看高清视频www| 色老头精品视频在线观看| 在线永久观看黄色视频| 久久性视频一级片| 99国产精品99久久久久| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 丰满迷人的少妇在线观看| 亚洲 国产 在线| 精品免费久久久久久久清纯 | 亚洲综合色网址| 亚洲成人免费电影在线观看| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| 国产精品免费视频内射| 一二三四社区在线视频社区8| 99久久精品国产亚洲精品| 曰老女人黄片| 高清视频免费观看一区二区| 国产麻豆69| 国产精品久久久久久精品电影小说| 高清视频免费观看一区二区| 精品久久久久久电影网| a级毛片黄视频| 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码| 亚洲一区中文字幕在线| 18禁国产床啪视频网站| bbb黄色大片| 久久精品亚洲熟妇少妇任你| 91麻豆精品激情在线观看国产 | 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 国产真人三级小视频在线观看| 免费高清在线观看视频在线观看| 日日爽夜夜爽网站| 日本欧美视频一区| 国产色视频综合| 亚洲av成人一区二区三| 欧美97在线视频| 久久性视频一级片| 黑人操中国人逼视频| 国产av一区二区精品久久| 香蕉国产在线看| 91老司机精品| 亚洲熟女毛片儿| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三区在线| 中文字幕人妻丝袜一区二区| 国产av精品麻豆| 国产av又大| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久精品精品| 国产精品久久久久成人av| 国产日韩欧美视频二区| 午夜福利视频在线观看免费| 天天影视国产精品| 亚洲av电影在线进入| 中文字幕人妻丝袜制服| 日本wwww免费看| 亚洲国产欧美网| 伊人久久大香线蕉亚洲五| 在线天堂中文资源库| 久久香蕉激情| 91精品国产国语对白视频| 亚洲精品国产av蜜桃| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| www.av在线官网国产| av又黄又爽大尺度在线免费看| 妹子高潮喷水视频| 亚洲欧美精品自产自拍| 淫妇啪啪啪对白视频 | a在线观看视频网站| 国产成人a∨麻豆精品| 一区二区日韩欧美中文字幕| 在线观看免费午夜福利视频| 老司机在亚洲福利影院| 美女高潮到喷水免费观看| 法律面前人人平等表现在哪些方面 | 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 亚洲国产精品成人久久小说| 女性生殖器流出的白浆| 法律面前人人平等表现在哪些方面 | 欧美精品一区二区大全| 少妇猛男粗大的猛烈进出视频| 在线观看免费视频网站a站| bbb黄色大片| 久热爱精品视频在线9| 久久久国产精品麻豆| 国产精品 欧美亚洲| 成人国产一区最新在线观看| 最近最新免费中文字幕在线| 精品高清国产在线一区| 啦啦啦免费观看视频1| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| 国产片内射在线| 精品人妻一区二区三区麻豆| 香蕉国产在线看| 亚洲一区中文字幕在线| 色94色欧美一区二区| www.熟女人妻精品国产| 波多野结衣av一区二区av| 男人操女人黄网站| av免费在线观看网站| 色94色欧美一区二区| 制服人妻中文乱码| 国产亚洲av片在线观看秒播厂| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区 | 中文字幕最新亚洲高清| 精品亚洲成a人片在线观看| 久久性视频一级片| 亚洲国产精品成人久久小说| 亚洲av电影在线进入| 精品第一国产精品| 亚洲国产看品久久| 日本wwww免费看| 另类精品久久| 啪啪无遮挡十八禁网站| 丰满少妇做爰视频| 亚洲精品美女久久av网站| 国产男女内射视频| 涩涩av久久男人的天堂| 国产av又大| 国产精品免费视频内射| 少妇裸体淫交视频免费看高清 | 深夜精品福利| 大片电影免费在线观看免费| 老熟女久久久| 亚洲天堂av无毛| 久久国产精品影院| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 少妇被粗大的猛进出69影院| 成年女人毛片免费观看观看9 | 9191精品国产免费久久| 人人妻人人爽人人添夜夜欢视频| 2018国产大陆天天弄谢| av天堂在线播放| 国产色视频综合| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 在线观看免费视频网站a站| 女人精品久久久久毛片| 国产高清视频在线播放一区 | 亚洲精品一区蜜桃| 欧美人与性动交α欧美精品济南到| 又紧又爽又黄一区二区| 亚洲一码二码三码区别大吗| 精品卡一卡二卡四卡免费| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 亚洲成人免费av在线播放| 18禁黄网站禁片午夜丰满| 丰满饥渴人妻一区二区三| 天天操日日干夜夜撸| 黑人操中国人逼视频| 成年人免费黄色播放视频| 正在播放国产对白刺激| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 纯流量卡能插随身wifi吗| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 精品少妇内射三级| 一二三四社区在线视频社区8| 正在播放国产对白刺激| 一区福利在线观看| 欧美一级毛片孕妇| 午夜福利视频在线观看免费| 国产成人av教育| 亚洲三区欧美一区| 麻豆av在线久日| 免费日韩欧美在线观看| 大陆偷拍与自拍| 亚洲成人手机| 日本黄色日本黄色录像| 9色porny在线观看| 国产精品国产av在线观看| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 日本wwww免费看| 午夜精品国产一区二区电影| 久久九九热精品免费| 少妇 在线观看| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区| 一级毛片女人18水好多| 亚洲av美国av| 成人影院久久| 国产精品国产av在线观看| 午夜久久久在线观看| 精品亚洲成国产av| 亚洲国产av影院在线观看| 999久久久国产精品视频| 99香蕉大伊视频| 蜜桃国产av成人99| 嫁个100分男人电影在线观看| 一级黄色大片毛片| 免费看十八禁软件| 老司机在亚洲福利影院| 永久免费av网站大全| 免费在线观看视频国产中文字幕亚洲 | 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 母亲3免费完整高清在线观看| 久久久久网色| 人人妻人人澡人人爽人人夜夜| 欧美一级毛片孕妇| 丁香六月天网| 国产成人一区二区三区免费视频网站| 在线 av 中文字幕| 捣出白浆h1v1| 色视频在线一区二区三区| 亚洲成人国产一区在线观看| 91大片在线观看| 少妇被粗大的猛进出69影院| 男女国产视频网站| 国产不卡av网站在线观看| 国产高清videossex| 他把我摸到了高潮在线观看 | 97人妻天天添夜夜摸| 国产精品久久久久久人妻精品电影 | 精品少妇一区二区三区视频日本电影| 视频在线观看一区二区三区| 久热爱精品视频在线9| 亚洲精品自拍成人| 欧美成人午夜精品| 国产精品偷伦视频观看了| 日韩中文字幕欧美一区二区| 国产黄频视频在线观看| 不卡一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟妇仑乱视频hdxx| 免费在线观看黄色视频的| 成年av动漫网址| 国产成人av教育| 99国产极品粉嫩在线观看| 日本vs欧美在线观看视频| 新久久久久国产一级毛片| 亚洲免费av在线视频| 少妇精品久久久久久久| 国产男人的电影天堂91| 国产真人三级小视频在线观看| 亚洲精品国产一区二区精华液| 久久亚洲精品不卡| 久久久精品94久久精品| 久久天堂一区二区三区四区| 久久午夜综合久久蜜桃| 在线精品无人区一区二区三| 日日爽夜夜爽网站| 午夜福利在线免费观看网站| 亚洲精品国产av成人精品| 精品免费久久久久久久清纯 | 黄片大片在线免费观看| av免费在线观看网站| 最新的欧美精品一区二区| 亚洲成人免费电影在线观看| 制服诱惑二区| 女人被躁到高潮嗷嗷叫费观| 日本wwww免费看| 丁香六月天网| 一级片'在线观看视频| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| 亚洲av美国av| 中文字幕av电影在线播放| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| www.av在线官网国产| 亚洲中文日韩欧美视频| 最新在线观看一区二区三区| 欧美av亚洲av综合av国产av| 欧美国产精品一级二级三级| 美女高潮喷水抽搐中文字幕| 91精品伊人久久大香线蕉| 精品久久久久久久毛片微露脸 | 国产精品.久久久| 欧美日韩国产mv在线观看视频| 久久人妻熟女aⅴ| 一边摸一边抽搐一进一出视频| 亚洲精品自拍成人| 悠悠久久av| bbb黄色大片| 国产亚洲av片在线观看秒播厂| 国产男人的电影天堂91| 18禁国产床啪视频网站| 啦啦啦在线免费观看视频4| 天天添夜夜摸| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 亚洲精品中文字幕在线视频| 色婷婷av一区二区三区视频| 一区福利在线观看| 国产成人av激情在线播放| 女性生殖器流出的白浆| 热99国产精品久久久久久7| av超薄肉色丝袜交足视频| 啦啦啦啦在线视频资源| 国产精品秋霞免费鲁丝片| 丁香六月天网| 欧美少妇被猛烈插入视频| 亚洲男人天堂网一区| 窝窝影院91人妻| 叶爱在线成人免费视频播放| av免费在线观看网站| 香蕉国产在线看| 日韩欧美国产一区二区入口| 欧美另类亚洲清纯唯美| 亚洲成av片中文字幕在线观看| 亚洲精品av麻豆狂野| 香蕉丝袜av| 国产精品一区二区精品视频观看| 亚洲美女黄色视频免费看| 男人舔女人的私密视频| 91麻豆av在线| 欧美黑人欧美精品刺激| 91九色精品人成在线观看| 69av精品久久久久久 | 99精品欧美一区二区三区四区| 99国产精品99久久久久| 大型av网站在线播放| 国产日韩欧美视频二区| 日本wwww免费看| 日韩 欧美 亚洲 中文字幕| 成人18禁高潮啪啪吃奶动态图| 五月开心婷婷网| 国产精品久久久久成人av| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 成人国语在线视频| 18禁国产床啪视频网站| 色播在线永久视频| 亚洲国产欧美一区二区综合| 午夜视频精品福利| 亚洲综合色网址| 亚洲av美国av| 搡老熟女国产l中国老女人| 美女大奶头黄色视频| 黄色 视频免费看| e午夜精品久久久久久久| 午夜福利一区二区在线看| 亚洲色图综合在线观看| 免费高清在线观看日韩| 一二三四在线观看免费中文在| 69精品国产乱码久久久| 欧美av亚洲av综合av国产av| 久久热在线av| 99国产综合亚洲精品| 久久国产精品影院| 日本wwww免费看| 午夜免费观看性视频| 黄色a级毛片大全视频| 久久中文字幕一级| 日韩中文字幕欧美一区二区| 免费不卡黄色视频| 1024香蕉在线观看| 在线观看舔阴道视频| 亚洲精品自拍成人| 黑人巨大精品欧美一区二区蜜桃| 午夜成年电影在线免费观看| 五月开心婷婷网| 一边摸一边抽搐一进一出视频| 成人黄色视频免费在线看| videos熟女内射| 久久ye,这里只有精品| 国产成人精品在线电影| 一二三四在线观看免费中文在| 国产欧美日韩综合在线一区二区| avwww免费| 精品少妇久久久久久888优播| 免费观看人在逋| 激情视频va一区二区三区| 国产区一区二久久| 午夜福利,免费看| 美国免费a级毛片| 亚洲人成电影观看| 亚洲精品一区蜜桃| 国产精品一区二区在线不卡| 精品国产一区二区三区久久久樱花| 亚洲精品第二区| 极品人妻少妇av视频| 另类亚洲欧美激情| 丝袜美足系列| 最新的欧美精品一区二区| 99国产极品粉嫩在线观看| 伦理电影免费视频| 国产精品一区二区在线观看99| 国产精品免费视频内射| 精品久久久久久电影网| 91麻豆精品激情在线观看国产 | 一级,二级,三级黄色视频| 自线自在国产av| 久久久精品94久久精品| 久久国产精品大桥未久av| 亚洲精品成人av观看孕妇| 极品人妻少妇av视频| kizo精华| 国产成+人综合+亚洲专区| 免费人妻精品一区二区三区视频| 丁香六月天网| 色视频在线一区二区三区| 久久精品国产亚洲av高清一级| 飞空精品影院首页| www.精华液| 亚洲av电影在线进入| 99热全是精品| 首页视频小说图片口味搜索| 一二三四社区在线视频社区8| 国产老妇伦熟女老妇高清| 别揉我奶头~嗯~啊~动态视频 | 亚洲色图综合在线观看| 啪啪无遮挡十八禁网站| 老熟女久久久| 国产日韩一区二区三区精品不卡| 性色av乱码一区二区三区2| 蜜桃国产av成人99| 美女扒开内裤让男人捅视频| 成人亚洲精品一区在线观看| 亚洲欧美激情在线| 亚洲第一欧美日韩一区二区三区 | 肉色欧美久久久久久久蜜桃| 美女视频免费永久观看网站| 大片电影免费在线观看免费| 午夜福利免费观看在线| 亚洲中文字幕日韩| 婷婷丁香在线五月| 黄色视频不卡| 久热爱精品视频在线9| 久久久久久亚洲精品国产蜜桃av| 亚洲成av片中文字幕在线观看| 亚洲一区中文字幕在线| 亚洲国产av新网站| 人妻一区二区av| 欧美性长视频在线观看| 国产极品粉嫩免费观看在线| 蜜桃在线观看..| av不卡在线播放| 欧美人与性动交α欧美精品济南到| 久久精品aⅴ一区二区三区四区| 精品高清国产在线一区| 黄片大片在线免费观看| 日韩视频在线欧美| 色播在线永久视频| 日本av免费视频播放| h视频一区二区三区| 欧美乱码精品一区二区三区| 国产av又大| 精品人妻在线不人妻| 午夜福利影视在线免费观看| 久久香蕉激情| 国产欧美日韩一区二区三 | 色94色欧美一区二区| 日韩中文字幕欧美一区二区| 老司机福利观看| 精品久久久久久久毛片微露脸 | 男女边摸边吃奶| tube8黄色片| 午夜福利视频精品| 免费人妻精品一区二区三区视频|