• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved simulation of the East Asian winter monsoon interannual variation by IAP/LASG AGCMs

    2016-11-23 02:37:09JINChenXiZHOUTinJunGUOZhunWUBondCHENXioLong
    關(guān)鍵詞:菲律賓海反氣旋變率

    JIN Chen-Xi, ZHOU Tin-Jun, GUO Zhun, WU Bond CHEN Xio-Long

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cClimate Change Research Center, Chinese Academy of Sciences, Beijing, China

    Improved simulation of the East Asian winter monsoon interannual variation by IAP/LASG AGCMs

    JIN Chen-Xia,b, ZHOU Tian-Juna,c, GUO Zhuna, WU Boaand CHEN Xiao-Longa

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cClimate Change Research Center, Chinese Academy of Sciences, Beijing, China

    The simulation of the East Asian winter monsoon (EAWM) has been a challenge for climate models. In this study, the performances of two versions of the AGCM developed at the IAP, versions 1 and 2 of the Grid-point Atmospheric Model of the IAP/LASG (GAMIL1 and GAMIL2), are evaluated in the context of mean state and interannual variation. Signifcant improvements are shown for GAMIL2 in comparison to GAMIL1. The simulated interannual variability of the EAWM, measured by the regional average of 1000 hPa meridional wind over East Asia, has evidently improved; the correlation coefcient with reanalysis data changes from 0.37 in GAMIL1 to 0.71 in GAMIL2. The associated interannual precipitation anomalies are also improved, in terms of both spatial pattern and magnitude. Analysis demonstrates that the improvements result from the better simulation of the El Ni?o-related Philippine Sea anticyclone (PSAC) in GAMIL2. The improved moist processes,including the stratiform condensation and evaporation in GAMIL2, lead to a reasonable atmospheric heating associated with El Ni?o in the tropical Pacifc, which further drives the PSAC as a Rossbywave response.

    ARTICLE HISTORY

    Revised 19 January 2016

    Accepted 20 January 2016

    East Asian winter monsoon;El Ni?o; Grid-point

    Atmospheric Model of the IAP/LASG; Philippine Sea anticyclone; atmospheric heating

    東亞冬季風(fēng)的模擬性能一直是檢驗(yàn)氣候模式的重要指標(biāo)。本文對(duì)比分析了LASG新舊兩個(gè)版本大氣環(huán)流模式對(duì)東亞冬季風(fēng)年際變率的模擬性能。結(jié)果表明,GAMIL2模擬的東亞冬季風(fēng)指數(shù)與觀測(cè)的相關(guān)系數(shù)為0.71,相較于GAMIL1(0.37)有明顯改進(jìn)。主要原因是GAMIL2改進(jìn)了云參數(shù)化方案,能夠更合理的再現(xiàn)加熱率對(duì)厄爾尼諾的響應(yīng),有助于激發(fā)菲律賓海反氣旋,從而改進(jìn)東亞冬季風(fēng)的模擬。

    1. Introduction

    The East Asian winter monsoon (EAWM) is one of the most active regional climate systems in boreal winter. The intense variability of the EAWM can bring severe cold surges and heavy snowfall, which may cause serious damage over East Asia, such as the persistent low temperature and icy weather over southern China in January 2008 (Zhou et al. 2009). In addition to regional impacts, as a coupled extratropical—tropical system, the EAWM also has substantial impacts on far away regions through changes in large-scale deep convection over the equatorial western Pacifc, or changes in the Hadley and Walker circulations (Chang and Lau 1980, 1982; Huang, Zhou,and Chen 2003). Therefore, understanding the mechanisms of EAWM changes and improving its predictability have been important topics for the Asian climate research community(Ding 1994; Chen, Yang, and Huang 2005; Huang et al. 2012).

    The EAWM is characterized by a cold Siberian—Mongolian high, strong northerlies at the surface, a broad East Asian trough at 500 hPa, and an enhanced East Asian jet stream in the upper troposphere. It is difcult to measure all of the EAWM's characteristics using a single index because of the diference in the EAWM variability between extratropical and tropical East Asia (Wang and Chen 2010;Wang et al. 2010). The interannual variability of the EAWM can be separated into a northern mode and southern mode using EOF analysis of the 2-m air temperature (Wang et al. 2010). The northern mode is characterized by enhanced surface pressure over central Siberia, related to the Arctic Oscillation (Gong, Wang, and Zhu 2001; Wang et al. 2010;Chen et al. 2013). The southern mode is mainly attributed to the Philippine Sea anticyclone (PSAC), associated with El Ni?o forcing (Zhang, Sumi, and Kimoto 1996; Jin and Zhou2014). The main focus of the present study is the EAWM in southern East Asia.

    Numerical climate models are useful tools to study the variability of the EAWM. Wei et al. (2014) examined the climatology of the EAWM in 41 fully coupled atmosphere—ocean models from CMIP5 and found that the biases of surface air temperature and precipitation are improved in CMIP5 models compared with CMIP3 models. The interannual variabilities of the EAWM-related circulations are successfully reproduced in CMIP5 multimodel ensembles; for example, about half of CMIP5 models successfully capture the observed ENSO—EAWM relationship (Gong et al. 2014). Jiang et al. (2015) evaluated 77 coupled global climate models in CMIP3/CMIP5 and revealed an improvement in the performance of models from CMIP3 to CMIP5 with respect to temperature in China, but an underestimation of the strength of the EAWM as manifested by southerly wind anomalies.

    Much efort has been devoted to the development of climate models at the LASG, IAP, Chinese Academy of Sciences (see Zhou, et al. 2014b for a summary). FGOALS-g2 (Li, et al. 2013a) has shown reasonable performance in many aspects among both Chinese (Zhou,et al. 2014a) and international (Bellenger et al. 2013) CMIP5 models. However, the performance of FGOALS-g2 in simulating the EAWM remains unknown. In this study, we begin to address this knowledge gap by assessing the AGCM component of FGOALS-g2, the Grid-point Atmospheric Model of the IAP/LASG (GAMIL). By comparing AMIP runs of GAMIL driven by observational SST, we aim to evaluate the performance of two versions of GAMIL in simulating the EAWM mean state and interannual variation. We also hope to understand the physical processes that have led to the improvements.

    2. Model and data description

    Two versions of the IAP/LASG AGCM (GAMIL1 and GAMIL2)are used in this study. They employ the same horizontal(128 × 60) and vertical (26 σ-layers) resolution (Li et al. 2012). The main diferences between the two versions are their cloud-related processes, including the deep convective parameterization, convective cloud fraction, and microphysical schemes (Li, et al. 2013a, 2013b). For the deep convective scheme, the CAPE adjustment closure in GAMIL1(Zhang and McFarlane 1995) is replaced by a free-tropospheric quasi-equilibrium closure in GAMIL2 (Zhang 2002). For nonconvective cloud processes, a two-moment cloud microphysical scheme (Morrison and Gettelman 2008; Shi et al. 2010) is applied in GAMIL2 instead of the one-moment scheme (Rasch and Kristjánsson 1998) in GAMIL1. The AMIP experiments from GAMIL are performed with the same forcing data recommended by CMIP5, such as the solar constant, greenhouse gases, and HadISST data-set. Only the frst member, with the same period from 1979 to 1998, is used for analysis. All the datasets are interpolated into a 2.5° × 2.5° common grid by bilinear interpolation.

    The observational and reanalysis datasets include: (1)atmospheric circulation and air temperature from NCEP-2(Kanamitsu et al. 2002); (2) heating rate in deep convection, shallow convection, and large-scale condensation from the NCEP CFS Reanalysis (CFSR) (Saha et al. 2010);(3) precipitation data from the GPCP (Adler et al. 2003); and(4) SST data from ERSST.v3b (Smith et al. 2008).

    3. Results

    3.1. Climatology of the EAWM simulated by the IAP/ LASG AGCMs

    We assess the performance of the models in simulating the EAWM with a focus on the surface climate. The climatology of 1000-hPa wind, SLP and 2-m temperature derived from the simulations and NCEP-2 reanalysis (hereafter referred to as ‘observation' to facilitate the discussion) are shown in Figure 1. In the observation (Figures 1(a)), a salient structure of the Siberian—Mongolian high is evident at the surface, which induces strong northerlies from 60°N down to the equator. Northwesterlies prevail toward the subtropical Pacifc, north of 30°N, and turn westward along the coast of East Asia into the South China Sea. The above features are reproduced well by the two versions of GAMIL(Figure 1(b) and (c)). We further assess the performance of the models in simulating the 3D features (0°—60°N, 100—140°E) of the EAWM by using a Taylor diagram (Figure 1(d)). Generally, the performance of the models in simulating the 2-m temperature, 500-hPa geopotential height, and 300-hPa zonal wind is better than that of precipitation,SLP and 1000-hPa meridional wind (V1000). Quantitative comparison suggests that GAMIL2 performs better than GAMIL1 in simulating the climatology of precipitation, SLP,and V1000.

    3.2. Interannual variability of the EAWM simulated by the IAP/LASG AGCMs

    Following Ji et al. (1997), an EAWM index is defned as the 1000-hPa meridional wind averaged within the box(10—30°N, 115—130°E) over East Asia. The interannual variation of the EAWM is reproduced well in both GAMIL1 and GAMIL2 (Figure 2(a)). The correlation coefcients of the EAWM index between the observation and the two models indicate signifcant improvement from GAMIL1 (0.37) to GAMIL2 (0.71). The interannual variability of the EAWM is dominated by El Ni?o, as demonstrated by the signifcant correlation coefcient of -0.75 between the EAWM indexand Ni?o3.4 index in the observation. Note that in Table 1 the correlation coefcient between the Ni?o3.4 index and EAWM index is -0.59 for GAMIL1 and -0.64 for GAMIL2,demonstrating El Ni?o's forcing of the interannual variability of the EAWM.

    Figure 1.Climatology of 1000-hPa winds (vectors; m s-1), SLP (contours; hPa), and 2-m temperature (shading; °C) in winter (December—January—February), derived from (a) the observation (NCEP-2), (b) GAMIL1, and (c) GAMIL2. (d) Taylor diagram: The observation is considered as the reference (REF); the angular (vertical) coordinate is the pattern correlation coefcient (ratio of standard deviation)between the model and observation. The nearer the distance between a number and REF, the better the performance of the corresponding model.

    To show more robust evidence, we further examine the interannual EAWM anomalous patterns by regressing the observed EAWM index onto the precipitation and 1000-hPa wind anomalies (Figure 2). In the observation(Figure 2(b)), associated with a high EAWM index, there is a cyclone over the Philippine Sea, with enhanced northeasterly winds over South China. Correspondingly, the precipitation exhibits a dipole pattern, with negative anomalies extending from continental South China to the south of Japan and positive anomalies over the western Pacifc.

    Both models reproduce the cyclone and dipole rainfall patterns well. However, the Philippine Sea cyclone in GAMIL1 is weaker than that in the observation and is shifted more eastward (Figure 2(c)). Accordingly, the anomalous precipitation dipole pattern is weak and shifts eastward. Compared with GAMIL1, the performance of GAMIL2 is improved in this regard, along with a better simulation of the precipitation anomaly pattern and its magnitude (Figures 2(d) and (e)). Since the EAWM index is signifcantly negatively correlated with Ni?o3.4 index(Table 1), the cyclonic circulations associated with the positive EAWM index shown in Figure 2 are actually indicative of the impact of anticyclonic circulation over the Philippine Sea in El Ni?o-year winters (Zhang, Sumi, and Kimoto 1996). We further examine the PSAC simulated by the two versions of GAMIL.

    Figure 2.(a) Normalized EAWM index (1000-hPa meridional wind averaged within the box (10—30°N, 115—130°E)) derived from the observation (NCEP-2; black line), GAMIL1 (red line), and GAMIL2 (blue line). Green line: normalized (-1) × Ni?o3.4 index. (b—e) Regression coefcients of the December—January—February 1000-hPa winds (vectors; m s-1) and precipitation (shaded; mm d-1) with respect to the EAWM index derived from (b) the observation (NCEP-2), (c) GAMIL1, (d) GAMIL2, and (e) the diference between GAMIL2 and GAMIL1.

    Table 1.Time correlation coefcients among the EAWM index (EAWMI) derived from GAMIL and the observation (NCEP-2), and the Ni?o3.4 index.

    The establishment of the PSAC in boreal winter associated with El Ni?o events is remotely driven by the warm SST anomalies in the central-eastern Pacifc and enhanced by the local cold SST via wind—evaporation—SST feedback(Wang, Wu, and Fu 2000). To understand the response of the models to El Ni?o-related SST forcing, the anomalies of precipitation, 1000-hPa wind and 500-hPa vertical velocity are regressed onto the Ni?o3.4 index (Figure 3). In the observation (Figures 3(a) and (b)), in response to the warming SST, positive precipitation anomalies and anomalous upward motion are seen over the equatorial central Pacifc, whereas the western North Pacifc witnesses negative precipitation anomalies along with anomalous sinking motion. The PSAC induced by the Rossby-wave response in the lower troposphere (Wang, Wu, and Fu 2000) and local anomalous sinking motion signifcantly afects the EAWM. In comparison to the observation, the positive (negative)responses of precipitation and upward (sinking) motion over the equatorial central Pacifc (western North Pacifc) to El Ni?o are weakly simulated by GAMIL1 (Figures 3(c) and(d)), whereas signifcant improvement is seen in GAMIL2(Figures 3(e) and (f)). The improvement of the simulation of the PSAC from GAMIL1 to GAMIL2 ultimately results in a better simulation of the EAWM interannual variation.

    Figure 3.Regression coefcients of the December—January—February 1000-hPa winds (vectors; m s-1), precipitation (left column; shaded;mm d-1), 500-hPa omega (right column; shaded; pa s-1), and SST (contours; °C) with respect to the Ni?o3.4 index derived from (a, b) the observation (NCEP-2), (c, d) GAMIL1, and (e, f) GAMIL2.

    Figure 4.Regression coefcients of the December—January—February heating rate (K d-1) vertically integrated from 1000 to 200 hPa in total moist processes with respect to the Ni?o3.4 index derived from (a) the observation (CFSR), (b) GAMIL1, (c) GAMIL2, and (d) the diference between GAMIL2 and GAMIL1.

    But why does GAMIL2 better reproduce the PSAC? Since in the AMIP-type simulation both the central equatorial Pacifc warming and the local colder SST in the western Pacifc are prescribed as the observation, the improved response should result from the improved sensitivity of the model to the SST forcing. In comparison to GAMIL1, cloud-related processes, including deep convective parameterization, the convective cloud fraction and microphysical schemes, are much improved in GAMIL2 (Li, et al. 2013a). Associated with the enhanced stratiform condensation and evaporation in GAMIL2, the climatology of annual mean water vapor (or relative humidity), cloud fraction, and in-cloud liquid water path, are also improved (Li, Wang, and Zhang 2014). In Figure 4, we examine the regression coefcients of the vertically integrated heating rate with respect to the Ni?o3.4 index. Clearly, the heating rate simulated by GAMIL1 is too weak in comparison to the observation, while the result of GAMIL2 isgreatly improved and closer to the observation. The improved moist physical processes in GAMIL2 lead to a more reasonable anomalous atmospheric heating associated with El Ni?o forcing in the tropical Pacifc, which further drives a better PSAC as the Rossby-wave response. The improved simulation of the PSAC further results in more reasonable wind anomalies over the East Asian continent.

    A previous study of GAMIL suggested that improved simulation of the tropical mean climate is associated with an improved representation of the tropical climate anomalies related to El Ni?o events (Li, Wang, and Zhang 2014). Our analysis fnds that the EAWM simulated by GAMIL2 is better than that by GAMIL1, suggesting a connection between the EAWM mean states and the interannual variation. Further work based on multi-model intercomparisons is needed to clarify the issue.

    4. Summary

    The climatology and interannual variability of the EAWM simulated by two versions of the IAP/LASG AGCM, GAMIL1 and GAMIL2, are evaluated in this study. The physical processes that dominate the model performance are analysed. The main fndings can be summarized as follows:

    (1) The two versions of GAMIL reasonably simulate the climatological pattern of the winter monsoon over the East Asian continent, including the 2-m temperature, SLP, and V1000. The performance for the upper troposphere (500-hPa geopotential height and 300-hPa zonal wind) are better than that for precipitation, SLP, and V1000. GAMIL2 shows better performance than GAMIL1 in simulating the climatology of precipitation, SLP, and V1000.

    (2) The interannual variability of the EAWM simulated by GAMIL2 is signifcantly improved compared to GAMIL1, as evidenced by change in correlation coefcient from 0.37 to 0.71. The improvement is also evident in the surface wind anomalies and the dipole rainfall pattern and its magnitude. The improved simulation of monsoon anomalies derives from the better simulation of the PSAC associated with El Ni?o forcing. The improved moist processes in GAMIL2, including stratiform condensation and evaporation, have led to a reasonable atmospheric heating associated with El Ni?o forcing in the tropical Pacifc, which further drives the PSAC as a Rossby-wave response.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant numbers 41330423 and 41420104006].

    Notes on contributors

    Chen-xi Jin is PhD candidate at Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on East Asian winter monsoon. Recent publications include papers in Atmospheric and Oceanic Sciences Letters, and Chinese Journal of Atmospheric Sciences.

    Tian-jun Zhou is a scientist in the LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. His research interests include coupled atmosphere—ocean modeling and climate dynamics, East Asian climate change and climate variability, air—sea interaction and Asian-Australian monsoon predictability. Recent publications include papers in Journal of Climate, Scientifc Reports,Journal of Geophysical Research — Atmospheres, Climate Dynamics and other journals.

    References

    Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. P. Xie, J. Janowiak, B. Rudolf, et al. 2003. “The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979—Present).” Journal of Hydrometeorology 4: 1147—1167.

    Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard. 2013. “ENSO Representation in Climate Models: From CMIP3 to CMIP5.” Climate Dynamics 42: 1999—2018.

    Chang, C. P., and K. M. Lau. 1980. “Northeasterly Cold Surges and near-Equatorial Disturbances over the Winter MONEX Area during December 1974. Part II: Planetary-Scale Aspects.”Monthly Weather Review 108: 298—312.

    Chang, C. P., and K. M. Lau. 1982. “Short-Term Planetary-Scale Interaction over the Tropics and Midlatitudes during Northern Winter. Part I: Contrast between Active and Inactive Periods.” Monthly Weather Review 110: 933—946.

    Chen, W., K. Wei, L. Wang, and Q. Zhou. 2013. “Climate Variability and Mechanisms of the East Asian Winter Monsoon and the Impact from the Stratosphere.” [In Chinese.] Chinese Journal of Atmospheric Sciences 37 (2): 425—438.

    Chen, W., S. Yang, and R. H. Huang. 2005. “Relationship between Stationary Planetary Wave Activity and the East Asian Winter Monsoon.” Journal of Geophysical Research 110: D14110. doi:10.1029/2004JD005669.

    Ding, Y. H. 1994. Monsoon over China. Dordrecht: Kluwer Academic Publishers, 419pp.

    Gong, H. N., L. Wang, W. Chen, R. G. Wu, K. Wei, and X. F. Cui. 2014. “The Climatology and Interannual Variability of the East Asian Winter Monsoon in CMIP5 Models.” Journal of Climate 27: 1659—1678.

    Gong, D. Y., S. W. Wang, and J. H. Zhu. 2001. “East Asian Winter Monsoon and Arctic Oscillation.” Geophysical Research Letters 28: 2073—2076.

    Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin. 2012.“Characteristics, Processes, and Causes of the Spatio-Temporal Variabilities of the East Asian Monsoon System.”Advances in Atmospheric Sciences 29 (5): 910—942.

    Huang, R. H., L. T. Zhou, and W. Chen. 2003. “The Progresses of Recent Studies on the Variabilities of the East Asian Monsoonand Their Causes.” Advances in Atmospheric Sciences 20 (1): 55—69.

    Ji, L. R., S. Q. Sun, K. Arpe, and L. Bengtsson. 1997. “Model Study on the Interannual Variability of Asian Winter Monsoon and Its Infuence.” Advances in Atmospheric Sciences 14: 1—22.

    Jiang, D. B., Z. P. Tian, and X. M. Lang. 2015. “Reliability of Climate Models for China through the IPCC Third to Fifth Assessment Reports.” International Journal of Climatology. doi:10.1002/ joc.4406.

    Jin, C. X., and T. J. Zhou. 2014. “Analysis of the Interannual Variations of the East Asian Winter Monsoon Simulation by Four CMIP5 GCMs.” [In Chinese.] Chinese Journal of Atmospheric Sciences 38 (3): 453—468.

    Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter. 2002. “NCEP—DOE AMIP-II Reanalysis(R-2).” Bulletin of the American Meteorological Society 83: 1631—1643.

    Li, L. J., P. F. Lin, Y. Q. Yu, B. Wang, T. J. Zhou, L. Liu, and J. P. Liu. 2013a. “The Flexible Global Ocean-Atmosphere-Land System Model, Grid-Point Version 2: FGOALS-g2.” Advances in Atmospheric Sciences 30: 543—560.

    Li, L. J., B. Wang, L. Dong, L. Liu, S. Shen, N. Hu, and W. Q. Sun. 2013b. “Evaluation of Grid-Point Atmospheric Model of IAP LASG Version 2 (GAMIL2).” Advances in Atmospheric Sciences 30: 855—867.

    Li, L. J., B. Wang, and G. J. Zhang. 2014.“The Role of Nonconvective Condensation Processes in Response of Surface Shortwave Cloud Radiative Forcing to El Ni?o Warming.” Journal of Climate 27: 6721—6736.

    Li, L. J., X. Xie, B. Wang, and L. Dong. 2012. “Evaluating the Performances of GAMIL1.0 and GAMIL2.0 during TWP-ICE with CAPT.” Atmospheric and Oceanic Science Letters 5: 38—42. Morrison, H., and A. Gettelman. 2008. “A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and Numerical Tests.” Journal of Climate 21: 3642—3659.

    Rasch, P. J., and J. E. Kristjánsson. 1998. “A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations.” Journal of Climate 11: 1587—1614.

    Saha, S., S. Moorthi, H. L. Pan, X. R. Wu, J. D. Wang, S. Nadiga, and P. Tripp. 2010. “The NCEP Climate Forecast System Reanalysis.”Bulletin of the American Meteorological Society 91: 1015—1057. Shi, X. J., B. Wang, X. H. Liu, M. H. Wang, L. L. Juan, and L. Dong. 2010. “Aerosol Indirect Efects on Warm Clouds in the Grid-Point Atmospheric Model of IAP LASG (GAMIL).” Atmospheric and Oceanic Science Letters 3 (4): 237—241.

    Smith, T., R. Reynolds, T. Peterson, and J. Lawrimore. 2008.“Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880—2006).” Journal of Climate 21: 2283—2296.

    Wang, L., and W. Chen. 2010. “How Well Do Existing Indices Measure the Strength of the East Asian Winter Monsoon?”Advances in Atmospheric Sciences 27 (4): 855—870.

    Wang, B., Z. W. Wu, C. P. Chang, J. Liu, J. P. Li, and T. J. Zhou. 2010.“Another Look at Interannual-to-Interdecadal Variations of the East Asian Winter Monsoon: The Northern and Southern Temperature Modes.” Journal of Climate 23: 1495—1512.

    Wang, B., R. G. Wu, and X. H. Fu. 2000. “Pacifc-East Asian Teleconnection: How Does ENSO Afect East Asian Climate?”Journal of Climate 13: 1517—1536.

    Wei, K., T. Xu, Z. C. Du, H. N. Gong, and B. H. Xie. 2014. “How Well Do the Current State-of-the-Art CMIP5 Models Characterise the Climatology of the East Asian Winter Monsoon?” Climate Dynamics 43: 1241—1255.

    Zhang, G. J. 2002. “Convective Quasi-Equilibrium in Midlatitude Continental Environment and Its Efect on Convective Parameterization.” Journal of Geophysical Research 107: 4220. doi:10.1029/2001JD001005.

    Zhang, G. J., and N. A. McFarlane. 1995. “Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model.”Atmosphere Ocean 33: 407—446.

    Zhang, R. H., A. Sumi, and M. Kimoto. 1996. “Impact of El Nino on the East Asian Monsoon: A Diagnostic Study of the ‘86/87 and‘91/92 Events.” Journal of the Meteorological Society of Japan 74 (1): 49—62.

    Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. Pinto, and Y. P. Shao. 2009. “Synoptic-Scale Controls of Persistent Low Temperature and Icy Weather over Southern China in January 2008.”Monthly Weather Review 137 (11): 3978—3991.

    Zhou, T. J., X. L. Chen, L. Dong, B. Wu, W. M. Man, L. X. Zhang, R. P. Lin,J. C. Yao, F. F. Song, and C. B. Zhao. 2014a. “Chinese Contribution to CMIP5: An Overview of Five Chinese Models' Performances.”Journal of Meteorological Research 28 (4): 481—509.

    Zhou, T. J., Y. Q. Yu, Y. M. Liu, and B. Wang. 2014b. Flexible Global Ocean-Atmosphere-Land System Model. Heidelberg: Springer,483 pp.

    28 December 2015

    CONTACT ZHOU Tian-Jun zhoutj@lasg.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    菲律賓海反氣旋變率
    內(nèi)部變率和全球變暖對(duì)春季北太平洋維多利亞模態(tài)增強(qiáng)的相對(duì)貢獻(xiàn)
    研究顯示降水變率將隨氣候增暖而增強(qiáng)
    2021年10月3日,美、英、日海軍艦艇在菲律賓海進(jìn)行多航母打擊群作戰(zhàn)演習(xí)
    軍事文摘(2021年21期)2021-11-14 10:14:56
    2021年8月23日,在菲律賓海的貴族聯(lián)盟演習(xí)期間,新奧爾良號(hào)航空母艦與日本艦艇JS Shimokit a一起航行
    軍事文摘(2021年19期)2021-10-10 13:32:42
    “羅斯?!碧?hào)航母突發(fā)艦載機(jī)墜海
    案例教學(xué)法在“氣旋、反氣旋與天氣”教學(xué)設(shè)計(jì)中的應(yīng)用
    考試周刊(2019年2期)2019-01-28 10:08:56
    《低壓(氣旋)、高壓(反氣旋)與天氣》教學(xué)設(shè)計(jì)
    考試周刊(2017年66期)2018-01-30 22:20:31
    關(guān)于反氣旋(高壓)的若干問題解析
    關(guān)于反氣旋(高壓)的若干問題解析
    Does a monsoon circulation exist in the upper troposphere over the central and eastern tropical Pacifc?
    日韩电影二区| 亚洲精品,欧美精品| 在线观看免费日韩欧美大片 | 国产乱人视频| 亚洲欧洲国产日韩| 女人十人毛片免费观看3o分钟| 97精品久久久久久久久久精品| 欧美一级a爱片免费观看看| 国产成人精品福利久久| 少妇人妻一区二区三区视频| 色视频在线一区二区三区| 国产成人aa在线观看| 直男gayav资源| 尾随美女入室| 国产精品偷伦视频观看了| 97在线视频观看| 99久久精品国产国产毛片| 丝瓜视频免费看黄片| 亚洲无线观看免费| 亚洲欧美日韩无卡精品| 精品少妇久久久久久888优播| 亚洲精品第二区| 丝袜喷水一区| 在线天堂最新版资源| 成人国产麻豆网| 日本av手机在线免费观看| 97精品久久久久久久久久精品| 成人一区二区视频在线观看| 国产免费一级a男人的天堂| 久久久久久伊人网av| av在线播放精品| 青春草国产在线视频| 一级毛片aaaaaa免费看小| 国产av精品麻豆| 黄片wwwwww| 99九九线精品视频在线观看视频| 干丝袜人妻中文字幕| av视频免费观看在线观看| 国产有黄有色有爽视频| 一本色道久久久久久精品综合| 久久韩国三级中文字幕| 99热这里只有精品一区| 看十八女毛片水多多多| 久久久久久伊人网av| 天天躁日日操中文字幕| av黄色大香蕉| av.在线天堂| 国产精品秋霞免费鲁丝片| 少妇猛男粗大的猛烈进出视频| 国产亚洲一区二区精品| 黄色配什么色好看| 成人国产麻豆网| 高清不卡的av网站| 久久综合国产亚洲精品| 韩国av在线不卡| 人妻 亚洲 视频| 亚洲av日韩在线播放| 一本色道久久久久久精品综合| 大片免费播放器 马上看| 国产精品蜜桃在线观看| 欧美激情极品国产一区二区三区 | 国产久久久一区二区三区| 亚洲欧美成人精品一区二区| 亚洲色图av天堂| 老司机影院毛片| 欧美激情国产日韩精品一区| 亚洲国产精品999| 三级国产精品欧美在线观看| 日本猛色少妇xxxxx猛交久久| 久久久色成人| 日韩在线高清观看一区二区三区| 精品人妻视频免费看| 午夜免费鲁丝| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 五月玫瑰六月丁香| 亚洲欧美日韩另类电影网站 | 国产精品一及| 国产精品熟女久久久久浪| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 免费久久久久久久精品成人欧美视频 | 亚洲av不卡在线观看| 免费看光身美女| 亚洲天堂av无毛| 日本爱情动作片www.在线观看| 男人狂女人下面高潮的视频| 国产男女超爽视频在线观看| 一边亲一边摸免费视频| 三级国产精品片| 久久久欧美国产精品| 边亲边吃奶的免费视频| 综合色丁香网| 欧美日韩亚洲高清精品| av福利片在线观看| 国产精品人妻久久久影院| 在线 av 中文字幕| 美女中出高潮动态图| 我的老师免费观看完整版| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 国产成人精品一,二区| 免费观看av网站的网址| 精品久久国产蜜桃| 久久精品久久久久久久性| 伦精品一区二区三区| 欧美日韩视频精品一区| 丰满少妇做爰视频| 国产伦精品一区二区三区四那| 亚洲精品自拍成人| 国产黄片视频在线免费观看| 极品少妇高潮喷水抽搐| 两个人的视频大全免费| 18禁在线播放成人免费| 欧美成人午夜免费资源| 国产精品一区二区性色av| 日韩av免费高清视频| 午夜激情福利司机影院| 看免费成人av毛片| 爱豆传媒免费全集在线观看| 国产精品99久久99久久久不卡 | 国产色婷婷99| 国产精品福利在线免费观看| 最后的刺客免费高清国语| 黄色欧美视频在线观看| 国产真实伦视频高清在线观看| 女人十人毛片免费观看3o分钟| 97在线人人人人妻| 日韩av不卡免费在线播放| 中国国产av一级| 热re99久久精品国产66热6| 久久久久国产网址| xxx大片免费视频| 亚洲精品第二区| 亚洲最大成人中文| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 久久鲁丝午夜福利片| 最新中文字幕久久久久| 简卡轻食公司| 国产在线免费精品| 七月丁香在线播放| 久久人人爽人人片av| 亚洲,欧美,日韩| 99热国产这里只有精品6| 97热精品久久久久久| 99热这里只有是精品50| 亚洲欧美一区二区三区黑人 | 人妻系列 视频| 久久鲁丝午夜福利片| 美女国产视频在线观看| 51国产日韩欧美| 久久鲁丝午夜福利片| 色婷婷av一区二区三区视频| 最近的中文字幕免费完整| 日韩国内少妇激情av| 亚洲av男天堂| 简卡轻食公司| 老司机影院毛片| 亚洲欧洲日产国产| 免费黄网站久久成人精品| 亚洲国产高清在线一区二区三| 有码 亚洲区| 免费看日本二区| 精品国产一区二区三区久久久樱花 | 我要看黄色一级片免费的| 午夜免费观看性视频| av播播在线观看一区| 国精品久久久久久国模美| av在线app专区| 亚洲av欧美aⅴ国产| 日本爱情动作片www.在线观看| 国产大屁股一区二区在线视频| 成人毛片a级毛片在线播放| 黄色怎么调成土黄色| 精品人妻一区二区三区麻豆| av在线观看视频网站免费| 日本爱情动作片www.在线观看| 老女人水多毛片| 国产免费福利视频在线观看| 丰满迷人的少妇在线观看| 伊人久久国产一区二区| 久久99蜜桃精品久久| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 老师上课跳d突然被开到最大视频| 在线观看av片永久免费下载| 97热精品久久久久久| 久久毛片免费看一区二区三区| av国产免费在线观看| 春色校园在线视频观看| 麻豆成人av视频| 国产伦精品一区二区三区视频9| av女优亚洲男人天堂| 亚洲最大成人中文| 国产视频首页在线观看| 在线观看一区二区三区激情| 亚洲欧美精品自产自拍| 国产一区二区在线观看日韩| 国产精品无大码| 亚洲av福利一区| 一区二区三区四区激情视频| 王馨瑶露胸无遮挡在线观看| 一级黄片播放器| 国产成人a区在线观看| 小蜜桃在线观看免费完整版高清| 亚洲经典国产精华液单| 只有这里有精品99| 亚洲内射少妇av| 一本一本综合久久| 国产在线一区二区三区精| 国产一区二区三区综合在线观看 | 国产视频首页在线观看| 丝袜喷水一区| 五月伊人婷婷丁香| 人妻系列 视频| 在线天堂最新版资源| 免费大片18禁| 一级毛片aaaaaa免费看小| 26uuu在线亚洲综合色| 精品一区二区三区视频在线| 九九在线视频观看精品| 久久6这里有精品| 青春草视频在线免费观看| 哪个播放器可以免费观看大片| 色婷婷久久久亚洲欧美| 欧美区成人在线视频| 国产精品一区二区在线不卡| 美女中出高潮动态图| 又大又黄又爽视频免费| 国产亚洲一区二区精品| 日韩一本色道免费dvd| 午夜福利视频精品| 人妻一区二区av| 97超视频在线观看视频| 性色av一级| av.在线天堂| av国产精品久久久久影院| 美女中出高潮动态图| 久久精品久久久久久噜噜老黄| 狂野欧美激情性bbbbbb| 国产av码专区亚洲av| 亚洲精品久久午夜乱码| 尾随美女入室| 伦理电影免费视频| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 国产精品一区www在线观看| av福利片在线观看| 91久久精品国产一区二区成人| 日韩一区二区视频免费看| 久久99热这里只有精品18| 美女高潮的动态| 我的老师免费观看完整版| 国产成人a∨麻豆精品| a级一级毛片免费在线观看| 日日撸夜夜添| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 亚洲国产色片| 亚洲电影在线观看av| 精品少妇久久久久久888优播| 秋霞伦理黄片| 国产成人精品婷婷| 国产一区有黄有色的免费视频| 美女主播在线视频| 免费看av在线观看网站| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久成人av| 九草在线视频观看| 我要看日韩黄色一级片| 午夜免费观看性视频| 最近最新中文字幕免费大全7| 国产精品久久久久久精品古装| 国产免费一级a男人的天堂| 王馨瑶露胸无遮挡在线观看| 亚洲,欧美,日韩| 黑人猛操日本美女一级片| 国产在线一区二区三区精| 男人舔奶头视频| 夜夜骑夜夜射夜夜干| 尾随美女入室| 国产亚洲午夜精品一区二区久久| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 国产v大片淫在线免费观看| 亚洲av中文av极速乱| 久久国内精品自在自线图片| 九九在线视频观看精品| 午夜福利视频精品| 亚洲欧美日韩东京热| 一级毛片电影观看| 成人综合一区亚洲| 各种免费的搞黄视频| 欧美 日韩 精品 国产| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频 | 18禁裸乳无遮挡免费网站照片| 欧美人与善性xxx| 噜噜噜噜噜久久久久久91| 纯流量卡能插随身wifi吗| 日韩av不卡免费在线播放| 亚洲四区av| 国产黄片美女视频| 老师上课跳d突然被开到最大视频| 日本黄色日本黄色录像| 精品久久久噜噜| 亚洲精品日韩在线中文字幕| 日本av手机在线免费观看| 亚洲第一av免费看| 观看av在线不卡| 国产人妻一区二区三区在| 亚洲中文av在线| 美女国产视频在线观看| 黄色视频在线播放观看不卡| av视频免费观看在线观看| av播播在线观看一区| 99九九线精品视频在线观看视频| 午夜激情福利司机影院| 亚洲欧美成人精品一区二区| 2022亚洲国产成人精品| 欧美性感艳星| 亚洲成人一二三区av| 人体艺术视频欧美日本| 亚州av有码| 最近2019中文字幕mv第一页| 亚洲精品一二三| 久久精品国产自在天天线| 夜夜骑夜夜射夜夜干| 欧美高清成人免费视频www| 黄片无遮挡物在线观看| 亚洲,一卡二卡三卡| 在线观看人妻少妇| 2022亚洲国产成人精品| 欧美成人a在线观看| 亚洲,一卡二卡三卡| 婷婷色av中文字幕| 成年女人在线观看亚洲视频| 国产精品福利在线免费观看| 王馨瑶露胸无遮挡在线观看| 观看免费一级毛片| 夫妻性生交免费视频一级片| 久久久精品免费免费高清| 亚洲精品亚洲一区二区| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 啦啦啦在线观看免费高清www| 国产淫片久久久久久久久| av黄色大香蕉| 人人妻人人澡人人爽人人夜夜| 国产成人免费观看mmmm| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| 日韩欧美 国产精品| xxx大片免费视频| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| 3wmmmm亚洲av在线观看| 亚洲av免费高清在线观看| 亚洲性久久影院| 少妇人妻久久综合中文| 亚洲精品日本国产第一区| 国产伦理片在线播放av一区| 亚洲天堂av无毛| 王馨瑶露胸无遮挡在线观看| 亚洲国产毛片av蜜桃av| 日本与韩国留学比较| 精品久久久精品久久久| 国产精品不卡视频一区二区| 国产精品秋霞免费鲁丝片| 国产淫片久久久久久久久| 亚洲中文av在线| 高清av免费在线| 极品教师在线视频| av网站免费在线观看视频| 少妇裸体淫交视频免费看高清| 免费看不卡的av| 激情五月婷婷亚洲| 国产午夜精品一二区理论片| 亚洲国产精品一区三区| 久久久久国产网址| 欧美xxxx黑人xx丫x性爽| 精品国产一区二区三区久久久樱花 | 国模一区二区三区四区视频| 欧美xxⅹ黑人| 在线免费十八禁| 在线观看av片永久免费下载| 久久99热6这里只有精品| 欧美精品一区二区免费开放| 中文字幕免费在线视频6| 免费播放大片免费观看视频在线观看| av在线app专区| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久av| 日日摸夜夜添夜夜添av毛片| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 好男人视频免费观看在线| .国产精品久久| 国产免费一区二区三区四区乱码| 亚洲av二区三区四区| 校园人妻丝袜中文字幕| 中文字幕久久专区| 精品人妻视频免费看| 最后的刺客免费高清国语| 不卡视频在线观看欧美| 在线观看三级黄色| 国产在线一区二区三区精| 中文欧美无线码| a 毛片基地| 亚洲在久久综合| 欧美另类一区| 99热这里只有是精品50| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 成人亚洲欧美一区二区av| 成人影院久久| 欧美3d第一页| h日本视频在线播放| 免费av中文字幕在线| 免费看日本二区| 身体一侧抽搐| 综合色丁香网| 久久婷婷青草| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 欧美日韩一区二区视频在线观看视频在线| 中国国产av一级| 亚洲精品一区蜜桃| 只有这里有精品99| 下体分泌物呈黄色| av天堂中文字幕网| 久久久久人妻精品一区果冻| 国产日韩欧美亚洲二区| av播播在线观看一区| 国产淫片久久久久久久久| 女人久久www免费人成看片| 国产精品爽爽va在线观看网站| 亚洲国产毛片av蜜桃av| 国产亚洲91精品色在线| 午夜免费男女啪啪视频观看| 日本av手机在线免费观看| 色综合色国产| 国产精品久久久久成人av| 两个人的视频大全免费| 人妻系列 视频| 91aial.com中文字幕在线观看| 国产一级毛片在线| 国产成人91sexporn| 美女中出高潮动态图| 亚洲av电影在线观看一区二区三区| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| 交换朋友夫妻互换小说| 国产一级毛片在线| 国产精品国产三级国产av玫瑰| av专区在线播放| 久久综合国产亚洲精品| 色网站视频免费| 成年人午夜在线观看视频| 午夜日本视频在线| 亚洲成人一二三区av| 少妇人妻 视频| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 高清视频免费观看一区二区| 嫩草影院入口| 日本-黄色视频高清免费观看| 少妇人妻精品综合一区二区| 久久精品国产自在天天线| tube8黄色片| 97在线视频观看| 在线精品无人区一区二区三 | 亚洲国产日韩一区二区| 春色校园在线视频观看| 永久网站在线| 在线免费观看不下载黄p国产| 蜜臀久久99精品久久宅男| 身体一侧抽搐| 亚洲国产毛片av蜜桃av| 成年美女黄网站色视频大全免费 | 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 91狼人影院| 18禁在线播放成人免费| 亚洲精品一二三| 久久人人爽av亚洲精品天堂 | 中国国产av一级| 国产成人a区在线观看| h日本视频在线播放| 夫妻午夜视频| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www | 免费观看的影片在线观看| 黄色一级大片看看| 嫩草影院新地址| 国产毛片在线视频| 一级二级三级毛片免费看| h视频一区二区三区| 亚洲内射少妇av| 久久精品熟女亚洲av麻豆精品| 一本色道久久久久久精品综合| 老女人水多毛片| 丰满人妻一区二区三区视频av| 精品人妻一区二区三区麻豆| 久久99热这里只有精品18| 欧美成人午夜免费资源| 日韩精品有码人妻一区| 丝瓜视频免费看黄片| www.色视频.com| 老女人水多毛片| 各种免费的搞黄视频| 亚洲人成网站在线观看播放| 高清不卡的av网站| 亚洲av欧美aⅴ国产| 久久久久久久大尺度免费视频| 五月玫瑰六月丁香| 国产在线视频一区二区| 国产老妇伦熟女老妇高清| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 日韩精品有码人妻一区| 极品少妇高潮喷水抽搐| 午夜免费观看性视频| 夜夜看夜夜爽夜夜摸| 欧美一区二区亚洲| 久久久久久久久久成人| 久久久久久久精品精品| 中文资源天堂在线| 日本与韩国留学比较| 天美传媒精品一区二区| 日本黄色日本黄色录像| 久久99热这里只频精品6学生| 人妻制服诱惑在线中文字幕| 卡戴珊不雅视频在线播放| 九草在线视频观看| 欧美成人a在线观看| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 亚洲精品成人av观看孕妇| 久久99蜜桃精品久久| 国产精品蜜桃在线观看| 久久久久久久久大av| 欧美一级a爱片免费观看看| 亚洲av电影在线观看一区二区三区| 少妇高潮的动态图| 亚洲av免费高清在线观看| 亚洲精品久久久久久婷婷小说| 久热久热在线精品观看| 日本wwww免费看| tube8黄色片| 免费久久久久久久精品成人欧美视频 | 91精品国产国语对白视频| 国产av精品麻豆| 男人爽女人下面视频在线观看| 午夜福利高清视频| 国产视频内射| av免费观看日本| 狠狠精品人妻久久久久久综合| 色婷婷av一区二区三区视频| 一级爰片在线观看| 久久久久久久精品精品| 男的添女的下面高潮视频| 亚洲图色成人| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区黑人 | 看十八女毛片水多多多| a 毛片基地| 菩萨蛮人人尽说江南好唐韦庄| 中文资源天堂在线| 久久久色成人| 亚洲美女视频黄频| 国产伦理片在线播放av一区| 国产精品嫩草影院av在线观看| 在线观看一区二区三区| 蜜桃在线观看..| 午夜福利影视在线免费观看| 日本午夜av视频| h视频一区二区三区| 欧美成人一区二区免费高清观看| 国产午夜精品久久久久久一区二区三区| 日韩视频在线欧美| av卡一久久| 国产精品国产三级专区第一集| 亚洲人成网站高清观看| 啦啦啦中文免费视频观看日本| 日韩av在线免费看完整版不卡| 久久久a久久爽久久v久久| 中国国产av一级| h日本视频在线播放| 成年人午夜在线观看视频| 观看av在线不卡| av视频免费观看在线观看| 婷婷色综合www| 久久精品国产自在天天线| kizo精华| 国产老妇伦熟女老妇高清| 免费观看a级毛片全部| 最近最新中文字幕大全电影3| 一级毛片电影观看| 欧美日韩综合久久久久久| 热re99久久精品国产66热6| 亚洲精品乱久久久久久| 亚洲精品一二三| 18禁在线无遮挡免费观看视频| 国产乱人视频| 少妇精品久久久久久久| 日日摸夜夜添夜夜爱| 只有这里有精品99|