• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單原子層Pd殼的Pt3Ni納米立方體的甲酸氧化性能

    2016-11-18 07:29:17羅柳軒沈水云朱鳳鵑章俊良
    物理化學(xué)學(xué)報 2016年1期
    關(guān)鍵詞:晶面立方體甲酸

    羅柳軒 沈水云 朱鳳鵑 章俊良

    (上海交通大學(xué)燃料電池研究所,上海 200240)

    LUO Liu-Xuan SHEN Shui-Yun ZHU Feng-Juan ZHANG Jun-Liang*

    (Institute of Fuel Cells, Shanghai Jiao Tong University, Shanghai 200240, P. R. China)

    單原子層Pd殼的Pt3Ni納米立方體的甲酸氧化性能

    羅柳軒 沈水云 朱鳳鵑 章俊良*

    (上海交通大學(xué)燃料電池研究所,上海 200240)

    通過一種結(jié)合了CO輔助合成Pt3Ni納米立方粒子和單原子層Cu殼欠電位沉積再置換為Pd的方法,成功制備出了具有單原子層Pd殼和Pt3Ni納米立方粒子核結(jié)構(gòu)的Pt3Ni@Pd/C催化劑。電感耦合等離子體元素分析、X射線衍射和透射電子顯微鏡法被用于研究表征此種Pt3Ni@Pd/C催化劑,結(jié)果顯示大部分Pt3Ni納米粒子的表面都由{100}族的晶面所構(gòu)成。而且在這些{100}族的晶面上,單原子層Pd殼通過電沉積的外延生長,也獲得了{100}族的晶面。本文進一步對Pt3Ni@Pd/C作為甲酸氧化電催化劑的性能進行了研究,并與商業(yè)Pd/C和原Pt3Ni/C催化劑進行了比較。結(jié)果顯示,由于Pt3Ni@Pd/C的單原子層Pd殼的結(jié)構(gòu)和所暴露出的Pd{100}族的晶面,Pt3Ni@Pd/C催化劑具有優(yōu)異的甲酸氧化電催化性能。與原Pt3Ni/C催化劑相比較,Pt3Ni@Pd/C催化劑的貴金屬質(zhì)量比活性提高到了7.5倍。此外,與商業(yè)Pd/C催化劑相比,Pt3Ni@Pd/C催化劑的比表面活性和Pd質(zhì)量比活性也分別提高到了2.5和8.3倍。

    電催化劑;甲酸氧化;單原子層Pd殼;立方體結(jié)構(gòu);核殼結(jié)構(gòu)

    LUO Liu-Xuan SHEN Shui-Yun ZHU Feng-Juan ZHANG Jun-Liang*

    (Institute of Fuel Cells, Shanghai Jiao Tong University, Shanghai 200240, P. R. China)

    1 Introduction

    In recent years, direct formic acid fuel cells (DFAFCs) have been generating huge interest as an alternative power source to direct methanol fuel cells (DMFCs)1–3. Unlike the methanol used in the DMFCs, formic acid used in the DFAFCs is nontoxic4–6. Moreover, the DFAFCs also have higher theoretical open circuit voltage (~1.45 V), lower fuel crossover as well as higher energy densities than the DMFCs do7–9. Among various catalysts, Pt is the most studied one for formic acid oxidation(FAO), and generally, the FAO on pure Pt catalysts in an acid medium undergoes the so-called dual pathways as follows.

    The indirect pathway,

    The direct pathway,

    Usually, Pt possesses very low activity towards FAO, because Pt can be easily poisoned by the CO intermediate in the indirect pathway as shown in equation (1). By contrast, it has been reported that the FAO on Pd mostly follows the direct pathway as shown in equation (2), through which the CO poisoning can be avoided2,10–12. Therefore, tremendous efforts have been made to improve the FAO activity on the Pd-based catalysts. A series of Pd-transition metal alloy catalysts have been synthesized and shown promising activity towards FAO1,2,7,13,14. Furthermore, it was also found that there existed an structural effect for the FAO on Pd catalysts, and the Pd(100) plane that belonged to the Pd{100} facets had the highest rate of FAO among the low index crystal planes of Pd15. In this regard, different shape-controlled Pd-based catalysts have been synthesized to be applied as the FAO catalysts1,13,16–21. Additionally, Pt-Pd alloy catalysts were proved to possess much less CO selfpoisoning than Pt13. And to the best of our knowledge, the cubic Pt-Ni-Pd alloy catalyst for FAO has not been reported yet.

    In this report, carbon-supported Pd monolayer shell-Pt3Ni(Pt3Ni@Pd/C) core nanoparticles were synthesized by a twostep method and investigated as the electrocatalyst for FAO. The as-synthesized Pt3Ni@Pd/C was characterized by various physicochemical techniques and its electrocatalytic activity towards FAO was determined and compared with that of the commercial Pd/C, in terms of both the area-specific and Pd mass activity.

    2 Experimental

    2.1 Preparation of carbon-supported cubic Pt3Ni NPs Unsupported cubic Pt3Ni NPs were synthesized using a CO-assisted method22. All chemicals used in this report were purchased from Sigma Aldrich and used without further purification. In a typical synthesis, 20.4 mg (0.05 mmol) of platinum acetylacetonate [Pt(acac)2, 97%] and 4.6 mg (0.017 mmol) of nickel acetylacetonate [Ni(acac)2, 95%] were dissolved in 9 mL of oleylamine (OAm, 70%) and 1 mL of oleic acid (OA, 90%)in a three-neck flask at room temperature. The mixture was vigorously stirred under a gentle argon flow for 30 min before being heated at a constant heating rate of 5 °C·min–1. When the mixture temperature reached 180 °C, the argon flow was replaced by a CO flow at the flow rate of 0.15 L·min–1(Caution: CO is toxic, the experiment should be performed in the fume hood). After the temperature reached 210 °C, the mixture was maintained at this temperature for 30 min before being cooled down to room temperature. The as-synthesized nanoparticles were washed repeatedly by the mixture of hexane and ethanol,and then separated by centrifugation. The as-treated nanoparticles were dispersed in chloroform for further use.

    About 27 mg of carbon black powders (EC-300J, Akzo Nobel) were dispersed in chloroform and sonicated for 30 min to form a good suspension. The as-prepared nanoparticles dispersed in chloroform were added into the suspension dropwise with vigorous stirring, and then the mixture was sonicated for 30 min and stirred overnight. The final product of carbon-supported Pt3Ni (Pt3Ni/C) NPs were washed repeatedly by ethanol and separated by centrifugation.

    Acetic acid treatment was performed to remove the residual surfactants on the nanoparticles. Briefly, 30 mL of acetic acid was mixed with the as-prepared Pt3Ni/C with vigorous stirring, the mixture was then heated to 60 °C and maintained at this temperature for 2 h before being cooled down to room temperature. The treated Pt3Ni/C was washed repeatedly with ethanol and separated by centrifugation and then vacuum-dried at 65 °C for 5 h before further characterization.

    2.2 Characterization

    Selected area electron diffraction (SAED) pattern, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) images were all obtained by a JEOL 2100F field emission microscope. Energy dispersive X-ray spectroscopy (EDS) measurement was also performed on the JEOL 2100F field emission microscope equipped with an EDAX detector. X-ray diffraction (XRD) pattern was obtained on a Bruker D8-Advanced X-ray diffractometer with Cu Kαradiation (λ = 0.154 nm) at a scan rate of 2 (°)·min–1. Inductively coupled plasma (ICP) elemental analysis measurement was carried out using a Thermo iCAP6300 inductively coupled plasma-optical emission spectrometer (ICP-OES).

    2.3 Deposition of Pd monolayer shell on the Pt3Ni/C

    The deposition of Pd monolayer shell was carried out using a method involving Cu underpotential deposition (UPD) previously reported by Zhang et al.23In brief, for preparing the working electrode, 5 μL drop of the appropriate Pt3Ni/C ink was placed onto a polished glassy carbon electrode (Pine, 5 mm diameter) and dried in air. After the deposition of Cu monolayer shell, the electrode was transferred into an Ar-saturated solution containing 1.0 mmol·L–1K2PdCl4and 100 mmol·L–1HCl and then kept immersed in this solution for 3 min to completely replace Cu with Pd, thus, the Pd-monolayer-decorated Pt3Ni/C (Pt3Ni@Pd/C) was generated. Then the electrode was rinsed thoroughly with ultrapure water and covered by Nafionsolution before dried in air.

    For all the electrochemical experiments, a saturated calomel electrode (SCE) was used as the reference electrode, and a platinum foil was used as the counter electrode. All of the potentials in this paper are given regarding to the reversible hydrogen electrode (RHE).

    2.4 Electrocatalytic evaluation

    Before the FAO testing, several potential cycles between 0.05 and 1.10 V were performed in a N2-saturated solution containing 0.1 mol·L–1HClO4with a scan rate of 20 mV·s–1until a stable curve was obtained. It is worth mentioning that, the electrochemical active surface area (ECSA) used for the area-specific activity calculation is derived from the surface charge due to the oxidation of Pd atoms, since the H species adsorption area for Pd is not accurate. FAO activity of the Pt3Ni@Pd/C was evaluated in a solution containing 0.1 mol·L–1HClO4and 2mol·L–1HCOOH as compared with those of the commercial Pd/C [10% (w), Sigma Aldrich] and Pt3Ni/C.

    Fig.1 (A) XRD pattern of the Pt3Ni/C and (B) EDS pattern of the Pt3Ni NPs The intensity and position for Pt (red) and Ni (blue) in figure A are taken from the JCPDS database.

    3 Results and discussion

    3.1 Synthesis and characterization

    For the synthesis of cubic Pt3Ni NPs, OAm was used as both the solvent and surfactant, OA served as the co-surfactant while CO gas was employed as the reducing agent. In addition, CO gas also functions as the capping agent since CO molecules will bind to the {100} facets of Pt3Ni NPs and inhibit the further addition of metal atoms to them, thus a large number of {100} facets can be preserved17,22,24. Besides, the surfactants also affect the surface energy of as-prepared nanoparticles during their growing, thus influencing their shapes1. Therefore, the cubic Pt3Ni NPs obtained in this report can be attributed to the cooperation of both the above-mentioned reasons.

    The XRD patterns and EDS data for the Pt-Ni/C NPs are presented in Fig.1(A, B), respectively. The XRD pattern shows that the Pt-Ni NPs possess well-defined face-centered-cubic(fcc) nanostructures, and it's noted that all the diffraction peaks have a little shift towards higher 2θ angle as compared with those for pure Pt (inserted red lines), which can be attributed to the addition of Ni atoms into Pt lattices. The EDS analysis in Fig.1B shows that the Pt/Ni ratio for the Pt-Ni/C catalyst is 3.7/1, which is much close to Pt3.2Ni determined by ICP-OES, and the Pt-Ni/C catalyst is simply denoted as Pt3Ni/C.

    Fig.2A shows the typical TEM image of the as-synthesized Pt3Ni NPs, and it is observed that most of the Pt3Ni NPs possess cubic nanostructures. The inset in Fig.2A is the corresponding SAED pattern, that agrees well with the fcc structure proved by XRD. As shown in Fig.2B, the particle edge length of these nanoparticles ranges from 10 to 30 nm and the average length is about 22.44 nm. Fig.2C demonstrates that all the Pt3Ni NPs are well dispersed on the carbon support. The HR-TEM image for the Pt3Ni NPs in Fig.2D shows that the d-spacings for(111) and (200) planes are 0.215 and 0.189 nm, respectively, both of which are smaller than those of pure Pt obtained from the JCPDS database [0.227 nm for (111) planes and 0.196 nm for (200) planes]. This observation is in well agreement with the XRD result, both of which are ascribed to the partial displacement of Pt by Ni. Since Ni has a smaller atomic radius than Pt, the displacement of Pt by Ni will lead to the lattice contraction for the Pt3Ni NPs, and thus smaller d-spacings than pure Pt.

    3.2 Deposition of Pd monolayer shell on the Pt3Ni/C

    The deposition of Pd monolayer shell on the Pt3Ni/C involved two steps. One is the formation of Cu monolayer shell on Pt3Ni/C, which was underpotentially deposited using the similar method mentioned in the literature23, and the other is the displacement of Cu atoms by Pd atoms, which was accomplished by immersing the electrode in an Ar-saturated solution containing 1.0 mmol·L–1K2PdCl4and 100 mmol·L–1HCl. These two steps were all performed under Ar atmosphere in case that the deposited Cu atoms were oxidized during the transfer of electrode. The amount of Cu monolayer shell deposited on Pt3Ni/C was calculated by the surface charge due to the adsorption of Cu atoms from 0.34 to 0.9 V. As shown in Fig.3A, several peaks in both cathodic and anodic scan direction can be observed in the cyclic voltammogram (CV) curve(red line) of the Cu underpotential deposition on Pt3Ni/C, indicating the adsorption and desorption of Cu atoms on the corresponding crystal planes of Pt3Ni NPs. The characteristic peaks ofthe CV curve for the original Pt3Ni/C cannot be observed in the CV curve for the Pt3Ni@Pd/C, implying the Pd monolayer coverage on the surface of the Pt3Ni/C.

    Fig.2 (A) TEM image of the Pt3Ni NPs, the inset is the SAED pattern of these nanoparticles, (B) histogram of particle edge length distribution of the Pt3Ni NPs in (A), (C) TEM image of the carbon-supported Pt3Ni (Pt3Ni/C) NPs, (D) HR-TEM image of the Pt3Ni NPs

    Fig.3 (A) CV curves of the Cu UPD on Pt3Ni/C (red line), the original Pt3Ni/C (blue line), and the as-prepared Pt3Ni@Pd/C (black line),(B) CV curve of the commercial Pd/C

    3.3 FAO activity

    The FAO activity of the as-synthesized Pt3Ni@Pd/C catalyst can be determined by the peak current of CV curve in the anodic scan for FAO. Fig.4A presents the CV curves of the FAO on both Pt3Ni/C (black line) and Pt3Ni@Pd/C (red line) catalysts. As shown, both the onset oxidation potential for FAO and the potential for the peak current density of the Pt3Ni@Pd/C catalyst are more negative than those for the Pt3Ni/C, indicating of an excellent FAO activity for the Pt3Ni@Pd/C catalyst25. More importantly, the noble-metal mass activity for the original Pt3Ni/C catalyst is only 0.15 A·mg–1, while that for the Pt3Ni@Pd/C reaches as high as 1.12 A·mg–1, which is almost 7.5 times that of the Pt3Ni/C (Fig.4B).

    In addition, the FAO activity of the commercial Pd/C was also evaluated and compared with that of the Pt3Ni@Pd/C, in terms of both the area-specific and Pd mass activities.

    As shown in Fig.5(A, B), both the area-specific and Pd mass activities of the Pt3Ni@Pd/C are much higher than those of the Pd/C, achieving 36.81 mA·cm–2and 28.68 A·mg–1, respectively. They are almost 2.5 and 8.3 times as compared with those of the Pd/C, which are merely 14.97 mA·cm–2and 3.46A·mg–1, respectively.

    The excellent FAO activity on the Pt3Ni@Pd/C catalyst can be ascribed to two aspects. One is the exposed Pd(100) planes, the other is the monolayer structure of Pd shell. As proven bythe prior literature15, Pd(100) has the highest rate of FAO in the low index planes of Pd. In this work, for the Pt3Ni@Pd/C catalyst, the Pd monolayer shell was electro-deposited epitaxially on the {100} facets of cubic Pt3Ni NPs, thus preserving the substrate's crystallographic orientation26. Therefore, the Pd monolayer shell on the {100} facets of cubic Pt3Ni NPs also possessed the Pd{100} facets. Moreover, the Pt3Ni@Pd/C catalyst has an extremely high enhancement factor of 8.3 for Pd mass activity. This high enhancement in the Pd mass activity is not only attributed to the improvement of area-specific activity, more importantly, to the monolayer structure of Pd shell. Theoretically, all Pd atoms in the monolayer shell can take apart into catalytic reaction. Furthermore, the substrate of Pt3Ni NPs on which Pd monolayer shell is deposited also plays a very important role in the enhancement of FAO activity. It is believed that the differences in d-spacings of the substrate can alter the electronic property of the Pd monolayer shell, resulting in different FAO activity26. Although the noble-metal mass activity of the Pt3Ni@Pd/C was not desirable because of the large size of the Pt3Ni nanoparticle substrates (Fig.5C), through shrinking the particle size of Pt3Ni NPs, the noble-metal mass activity can be further improved to be satisfactory.

    Fig.4 (A) CV curves of the Pt3Ni/C (black line) and the Pt3Ni@Pd/C (red line) for FAO in solutions containing 0.1 mol·L-1HClO4and 2 mol·L-1HCOOH, (B) noble-metal mass activity of the two catalysts for FAO

    Fig.5 Area-specific (A), Pd mass (B), and noble metal (Pd + Pt) mass (C) activities of the Pd/C and the Pt3Ni@Pd/C for FAO;(D) overall FAO activity comparison of the Pd/C and the Pt3Ni@Pd/C

    4 Conclusions

    In this work, we have designed and successfully prepared the Pt3Ni@Pd/C catalyst based on the method mainly involving theCO-assisted synthesis of Pt3Ni NPs followed by the electro-deposition of Pd monolayer shell. The as-synthesized Pt3Ni NPs were found to largely possess cubic nanostructures enclosed by{100} facets, on which the Pd monolayer shell grew epitaxially by electro-deposition and thus acquired the crystallographic orientation of {100} facets. The catalytic performance of the Pt3Ni@Pd/C towards FAO has been investigated and compared with those of the original Pt3Ni/C and the commercial Pd/C. The deposition of Pd monolayer shell on the Pt3Ni/C led to an enhancement of 7.5 times compared with Pt3Ni/C in the noblemetal mass activity, moreover, the FAO activity of the Pt3Ni@Pd/C showed approximately 2.5 and 8.3 times that of the Pd/C in area-specific and Pd mass activities, respectively. The high FAO activity for the Pt3Ni@Pd/C is ascribed to both its monolayer structure and exposed Pd{100} facets. Undesirable noble-metal mass activity of the Pt3Ni@Pd/C can be improved to be satisfactory by shrinking the particle size of Pt3Ni nanoparticle substrates. Therefore, this synthetic method may provide a feasible strategy of the future catalyst design for FAO.

    (1)Niu, Z.; Peng, Q.; Gong, M.; Rong, H.; Li, Y. Angew. Chem. 2011, 123, 6439. doi: 10.1002/ange.201100512

    (2)Mazumder, V.; Chi, M.; Mankin, M. N.; Liu, Y.; Metin, O.; Sun, D.; More, K. L.; Sun, S. Nano Lett. 2012, 12, 1102. doi: 10.1021/nl2045588

    (3)Wang, R.; Liao, S.; Ji, S. J. Power Sources 2008, 180, 205. doi: 10.1016/j.jpowsour.2008.02.027

    (4)Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.;Barnard, T. J. Power Sources 2002, 111, 83. doi: 10.1016/S0378-7753(02)00271-9

    (5)Chen, M.; Wang, Z. B.; Zhou, K.; Chu, Y. Y. Fuel Cells 2010,10, 1171. doi: 10.1002/fuce.v10.6

    (6)Wang, S.; Kristian, N.; Jiang, S.; Wang, X. Electrochem. Commun. 2008, 10, 961. doi: 10.1016/j.elecom.2008.04.018

    (7)Yang, J.; Tian, C.; Wang, L.; Fu, H. J. Mater. Chem. 2011, 21, 3384. doi: 10.1039/c0jm03361h

    (8)Babu, P. K.; Kim, H. S.; Chung, J. H.; Oldfield, E.; Wieckowski, A. J. Phys. Chem. B 2004, 108, 20228. doi: 10.1021/jp0403893

    (9)Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R. I. J. Power Sources 2006, 157, 78. doi: 10.1016/j.jpowsour.2005.07.066

    (10)Li, H.; Sun, G.; Jiang, Q.; Zhu, M.; Sun, S.; Xin, Q. Electrochem. Commun. 2007, 9, 1410. doi: 10.1016/j.elecom.2007.01.032

    (11)Ha, S.; Larsen, R.; Masel, R. I. J. Power Sources 2005, 144, 28. doi: 10.1016/j.jpowsour.2004.12.031

    (12)Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 229. doi: 10.1016/S0378-7753(03)00026-0

    (13)Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. D. J. Am. Chem. Soc. 2008, 130, 5406. doi: 10.1021/ja800656y

    (14)Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, L. A.;Rodríguez, H. G.; Alvarez-Contreras, L.; Arriaga, L. G. J. Power Sources 2010, 195, 461. doi: 10.1016/j.jpowsour.2009.08.014

    (15)Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. J. Phys. Chem. B 2006, 110, 12480. doi: 10.1021/jp0608372

    (16)Shao, M.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. J. Phys. Chem. C 2013, 117, 4172. doi: 10.1021/jp312859x

    (17)Dai, Y.; Mu, X.; Tan, Y.; Lin, K.; Yang, Z.; Zheng, N.; Fu, G. J. Am. Chem. Soc. 2012, 134, 7073. doi: 10.1021/ja3006429

    (18)Huang, X.; Tang, S.; Zhang, H.; Zhou, Z.; Zheng, N. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409

    (19)Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nat. Nanotech. 2011, 6, 28. doi: 10.1038/nnano.2010.235

    (20)Xia, X.; Choi, S. I.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H. C.; Wang, J.; Mavrikakis, M.; Kim, M. J.; Xia, Y. J. Am. Chem. Soc. 2013, 135, 15706. doi: 10.1021/ja408018j

    (21)Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Energy Environ. Sci. 2012, 5, 6352. doi: 10.1039/C2EE02866B

    (22)Wu, J.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p

    (23)Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.;Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953

    (24)Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    (25)Mazumder, V.; Lee, Y.; Sun, S. Adv. Funct. Mater. 2010, 20, 1224. doi: 10.1002/adfm.v20:8

    (26)Baldauf, M.; Kolb, D. M. J. Phys. Chem. 1996, 100, 11375. doi: 10.1021/jp952859m

    Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes

    We designed and synthesized carbon-supported cubic Pt3Ni nanoparticles (NPs) with Pd monolayer shells (Pt3Ni@Pd/C) by a two-step method: generally, CO-assisted preparation of cubic Pt3Ni NPs, Pd monolayer deposition through underpotential deposition of a Cu monolayer, and displacement of Cu with Pd. The as-synthesized Pt3Ni@Pd/C catalyst was characterized with inductiνely coupled plasma elemental analysis, X-ray diffraction, and transmission electron microscopy. Most Pt3Ni NPs had a cubic nanostructure enclosed by {100} facets, on which the Pd monolayer shells were deposited epitaxially via electrodeposition, by which the Pd monolayers gained the crystallographic orientation of the {100} facets. We then used Pt3Ni@Pd/C as an electrocatalyst for formic acid oxidation (FAO), comparing it with commercial Pd/C and the pristine Pt3Ni/C catalysts. The Pt3Ni@Pd/C exhibited superior electrocatalytic performance because of its monolayer structure and exposed Pd{100} facets. The noble-metal mass actiνity of the Pt3Ni/C with the deposited Pd monolayer shell was 7.5 times greater than that of the Pt3Ni/C catalyst alone. Moreoνer, the area-specific and Pd mass actiνities of Pt3Ni@Pd/C were 2.5 and 8.3 times greater than those of the commercial Pd/C catalyst, respectiνely.

    Electrocatalyst; Formic acid oxidation; Palladium monolayer; Cubic structure; Core-shell structure

    O646

    10.3866/PKU.WHXB201509144

    Received: August 24, 2015; Revised: September 11, 2015; Published on Web: September 14, 2015.

    *Corresponding author. Email: junliang.zhang@sjtu.edu.cn; Tel: +86-21-34207439.

    The project was supported by the National Natural Science Foundation of China (21373135), Science Foundation of Ministry of Education of China(413064), and Program of Introducing Talents of Discipline to Universities, China (“111 Project”) (B13018).

    國家自然科學(xué)基金(21373135), 中國教育部科學(xué)基金(413064)及高等學(xué)校學(xué)科創(chuàng)新引智計劃(B13018)資助

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    晶面立方體甲酸
    疊出一個立方體
    乙酸乙酯與ε-CL-20不同晶面的微觀作用機制
    NaCl單晶非切割面晶面的X射線衍射
    物理實驗(2019年7期)2019-08-06 05:35:56
    (100)/(111)面金剛石膜抗氧等離子刻蝕能力
    不同硅晶面指數(shù)上的類倒金字塔結(jié)構(gòu)研究與分析?
    甲酸治螨好處多
    圖形前線
    立方體星交會對接和空間飛行演示
    太空探索(2016年9期)2016-07-12 09:59:53
    折紙
    甲酸鹽鉆井液完井液及其應(yīng)用之研究
    欧美日韩国产亚洲二区| 亚洲av免费高清在线观看| 床上黄色一级片| 成人国产麻豆网| 亚洲成人av在线免费| 97超碰精品成人国产| 少妇的逼水好多| 亚洲欧美日韩高清在线视频| 欧美国产日韩亚洲一区| 晚上一个人看的免费电影| 最新在线观看一区二区三区| 免费看av在线观看网站| 能在线免费观看的黄片| 欧美xxxx性猛交bbbb| 亚洲av一区综合| 97在线视频观看| 国国产精品蜜臀av免费| 精品免费久久久久久久清纯| 久久久精品94久久精品| 日本撒尿小便嘘嘘汇集6| 一本一本综合久久| 91久久精品国产一区二区成人| 久久天躁狠狠躁夜夜2o2o| 一夜夜www| 亚洲欧美日韩高清专用| 国产精品伦人一区二区| 99热这里只有是精品50| 不卡视频在线观看欧美| 亚洲av二区三区四区| 午夜福利高清视频| 午夜影院日韩av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩高清在线视频| 看免费成人av毛片| 色尼玛亚洲综合影院| 成人性生交大片免费视频hd| 久久99热6这里只有精品| 午夜激情欧美在线| 国产成人影院久久av| 国产精品伦人一区二区| 中文字幕久久专区| 内射极品少妇av片p| av.在线天堂| 国产三级在线视频| 亚洲av免费在线观看| 嫩草影院新地址| av女优亚洲男人天堂| 午夜精品国产一区二区电影 | 我的老师免费观看完整版| 一级黄色大片毛片| 22中文网久久字幕| 日本免费一区二区三区高清不卡| 日本免费一区二区三区高清不卡| 国产真实伦视频高清在线观看| 久久精品夜夜夜夜夜久久蜜豆| 长腿黑丝高跟| 最近中文字幕高清免费大全6| 亚洲人与动物交配视频| 国产aⅴ精品一区二区三区波| 色综合色国产| 色在线成人网| 综合色av麻豆| 别揉我奶头~嗯~啊~动态视频| 又爽又黄a免费视频| 亚洲国产日韩欧美精品在线观看| 99视频精品全部免费 在线| 欧美最新免费一区二区三区| 日日啪夜夜撸| 有码 亚洲区| 在线观看午夜福利视频| 毛片一级片免费看久久久久| 免费看日本二区| 精品无人区乱码1区二区| 蜜桃久久精品国产亚洲av| 中文字幕av在线有码专区| 精品福利观看| 国产精品久久久久久亚洲av鲁大| 日日撸夜夜添| 我要搜黄色片| 1024手机看黄色片| 欧美中文日本在线观看视频| 国内精品久久久久精免费| 婷婷亚洲欧美| 嫩草影视91久久| 日日撸夜夜添| 国产高清有码在线观看视频| 国产黄色视频一区二区在线观看 | 国产av在哪里看| 男女做爰动态图高潮gif福利片| 日本精品一区二区三区蜜桃| 欧美一区二区国产精品久久精品| 成人特级av手机在线观看| 嫩草影院新地址| 国产午夜福利久久久久久| 亚洲激情五月婷婷啪啪| 亚洲乱码一区二区免费版| 欧美日韩精品成人综合77777| 床上黄色一级片| 亚洲五月天丁香| 国产精品永久免费网站| 国内精品美女久久久久久| 长腿黑丝高跟| 成人二区视频| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 久久久国产成人精品二区| 久久久久国产精品人妻aⅴ院| 黄片wwwwww| 久久天躁狠狠躁夜夜2o2o| 丝袜喷水一区| 99国产极品粉嫩在线观看| 校园人妻丝袜中文字幕| 极品少妇高潮喷水抽搐| 三级国产精品欧美在线观看| 18禁在线播放成人免费| av黄色大香蕉| 国产成人精品无人区| 亚洲国产欧美在线一区| 在线免费观看不下载黄p国产| 免费看不卡的av| 免费人妻精品一区二区三区视频| 美女福利国产在线| 成人综合一区亚洲| a级毛片在线看网站| 黑人猛操日本美女一级片| 日本黄色片子视频| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 亚洲欧美中文字幕日韩二区| 国产精品99久久久久久久久| 国产成人免费观看mmmm| 少妇人妻精品综合一区二区| 亚洲国产日韩一区二区| 爱豆传媒免费全集在线观看| 麻豆成人午夜福利视频| 人人妻人人爽人人添夜夜欢视频 | 成年人午夜在线观看视频| 人妻 亚洲 视频| 久久久午夜欧美精品| 亚洲情色 制服丝袜| 狂野欧美白嫩少妇大欣赏| 成人美女网站在线观看视频| 久久这里有精品视频免费| 国产精品不卡视频一区二区| 免费大片黄手机在线观看| 久久热精品热| 菩萨蛮人人尽说江南好唐韦庄| 噜噜噜噜噜久久久久久91| av国产久精品久网站免费入址| 男人狂女人下面高潮的视频| 亚洲第一区二区三区不卡| 777米奇影视久久| 水蜜桃什么品种好| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 在线观看www视频免费| www.av在线官网国产| 女人精品久久久久毛片| 亚洲国产精品成人久久小说| 成人免费观看视频高清| 亚洲欧洲日产国产| 成人二区视频| 国产女主播在线喷水免费视频网站| 激情五月婷婷亚洲| 自线自在国产av| 国产免费福利视频在线观看| 国产黄片视频在线免费观看| 久久婷婷青草| 成人国产麻豆网| 老司机影院成人| 人人妻人人看人人澡| 成人黄色视频免费在线看| 嫩草影院入口| 免费看不卡的av| 国产极品粉嫩免费观看在线 | 国产精品嫩草影院av在线观看| 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| 五月天丁香电影| 高清视频免费观看一区二区| 亚州av有码| 久久精品国产亚洲网站| 性高湖久久久久久久久免费观看| 国产视频首页在线观看| av在线老鸭窝| 最黄视频免费看| 夜夜骑夜夜射夜夜干| 午夜视频国产福利| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 午夜福利在线观看免费完整高清在| 久久影院123| 久久久久久人妻| 日本黄大片高清| 一级毛片久久久久久久久女| 99热这里只有是精品50| 久久久久精品久久久久真实原创| 免费黄色在线免费观看| 国产av码专区亚洲av| 97在线视频观看| 欧美日韩亚洲高清精品| 日韩一本色道免费dvd| 久久国产亚洲av麻豆专区| 中文字幕久久专区| 日韩制服骚丝袜av| 热re99久久精品国产66热6| .国产精品久久| 国产精品三级大全| 日日啪夜夜爽| 国产熟女午夜一区二区三区 | 国产在线一区二区三区精| 精品人妻偷拍中文字幕| 免费观看无遮挡的男女| 男人添女人高潮全过程视频| 亚洲av成人精品一二三区| 男人爽女人下面视频在线观看| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 国产深夜福利视频在线观看| 久久久午夜欧美精品| 99九九在线精品视频 | 亚洲,一卡二卡三卡| 在线观看一区二区三区激情| 又大又黄又爽视频免费| 国产成人aa在线观看| 国产黄片美女视频| 国产精品女同一区二区软件| 日韩视频在线欧美| 99久久精品热视频| 免费看日本二区| 在线看a的网站| 久久精品久久精品一区二区三区| 久久久精品免费免费高清| 少妇人妻 视频| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| 欧美少妇被猛烈插入视频| 国产精品99久久99久久久不卡 | 国产午夜精品久久久久久一区二区三区| 成人无遮挡网站| 国产精品人妻久久久久久| 日本vs欧美在线观看视频 | 免费播放大片免费观看视频在线观看| 国产美女午夜福利| 成年美女黄网站色视频大全免费 | 特大巨黑吊av在线直播| 亚洲一区二区三区欧美精品| 久久国内精品自在自线图片| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 国产乱人偷精品视频| 这个男人来自地球电影免费观看 | 国产乱人偷精品视频| 亚洲精品,欧美精品| 春色校园在线视频观看| 性高湖久久久久久久久免费观看| 视频中文字幕在线观看| 18+在线观看网站| 搡女人真爽免费视频火全软件| 国语对白做爰xxxⅹ性视频网站| 99热这里只有精品一区| 精品酒店卫生间| 日韩制服骚丝袜av| 啦啦啦视频在线资源免费观看| 简卡轻食公司| 99热全是精品| 国产午夜精品一二区理论片| 亚洲欧美一区二区三区黑人 | 久久综合国产亚洲精品| 日韩 亚洲 欧美在线| 久久狼人影院| 插逼视频在线观看| 精品国产乱码久久久久久小说| 国产高清国产精品国产三级| 亚洲欧美中文字幕日韩二区| 久久国产精品男人的天堂亚洲 | 久久精品国产a三级三级三级| 国产成人精品久久久久久| 啦啦啦视频在线资源免费观看| 国产成人午夜福利电影在线观看| 一级片'在线观看视频| 亚洲精品乱码久久久v下载方式| 国产精品福利在线免费观看| 老司机影院成人| 夫妻性生交免费视频一级片| 久久韩国三级中文字幕| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 国产淫语在线视频| 五月玫瑰六月丁香| 丁香六月天网| 99久久精品热视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美一区二区三区黑人 | 22中文网久久字幕| 曰老女人黄片| 亚洲av日韩在线播放| 热re99久久国产66热| 在线精品无人区一区二区三| 我要看日韩黄色一级片| 久久久欧美国产精品| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 亚洲av男天堂| 国产乱人偷精品视频| 欧美日韩精品成人综合77777| 久久精品国产亚洲网站| 久久久午夜欧美精品| 麻豆成人午夜福利视频| 国产成人精品无人区| 国产在视频线精品| 99精国产麻豆久久婷婷| 国产免费一区二区三区四区乱码| 黄色日韩在线| 精品少妇内射三级| 大香蕉久久网| 91精品国产国语对白视频| 日韩成人伦理影院| 国产高清国产精品国产三级| 国产精品人妻久久久久久| 亚洲内射少妇av| 午夜影院在线不卡| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看| 免费播放大片免费观看视频在线观看| 狠狠精品人妻久久久久久综合| 欧美日韩视频精品一区| 妹子高潮喷水视频| 国产真实伦视频高清在线观看| 国产中年淑女户外野战色| 日本免费在线观看一区| 春色校园在线视频观看| 成年美女黄网站色视频大全免费 | 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 老女人水多毛片| 亚洲欧洲国产日韩| 丝瓜视频免费看黄片| 少妇被粗大猛烈的视频| 亚洲av不卡在线观看| 国产精品偷伦视频观看了| 99热6这里只有精品| 久久久久久久久久久久大奶| 国产黄色视频一区二区在线观看| 一级,二级,三级黄色视频| 国产淫片久久久久久久久| av.在线天堂| 插阴视频在线观看视频| 不卡视频在线观看欧美| 高清av免费在线| 精品亚洲成国产av| 亚洲av男天堂| 少妇精品久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩精品有码人妻一区| 人妻系列 视频| 男的添女的下面高潮视频| 久久韩国三级中文字幕| 蜜桃在线观看..| 亚洲内射少妇av| 青春草视频在线免费观看| 一本色道久久久久久精品综合| 国产日韩欧美亚洲二区| 亚州av有码| 少妇精品久久久久久久| 又粗又硬又长又爽又黄的视频| av在线老鸭窝| 欧美精品国产亚洲| 久热这里只有精品99| 国产欧美另类精品又又久久亚洲欧美| 亚洲三级黄色毛片| 精品久久久久久久久av| 18+在线观看网站| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 国国产精品蜜臀av免费| a级片在线免费高清观看视频| 一级毛片电影观看| 国产伦理片在线播放av一区| 天美传媒精品一区二区| 国产精品.久久久| 在线观看免费高清a一片| 精品酒店卫生间| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 久久国内精品自在自线图片| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| 成人毛片60女人毛片免费| 中文乱码字字幕精品一区二区三区| 寂寞人妻少妇视频99o| 一本一本综合久久| 久久人妻熟女aⅴ| 99久国产av精品国产电影| 大话2 男鬼变身卡| 精品人妻熟女av久视频| 国产黄色免费在线视频| 国产无遮挡羞羞视频在线观看| 熟妇人妻不卡中文字幕| 日本vs欧美在线观看视频 | a级毛片免费高清观看在线播放| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 黄色毛片三级朝国网站 | av女优亚洲男人天堂| 美女大奶头黄色视频| 老司机亚洲免费影院| 男女免费视频国产| 久久久久国产精品人妻一区二区| 国产亚洲5aaaaa淫片| 韩国高清视频一区二区三区| 亚洲欧美精品专区久久| 99热这里只有精品一区| 日韩大片免费观看网站| 精品亚洲成国产av| av又黄又爽大尺度在线免费看| 青春草视频在线免费观看| 多毛熟女@视频| kizo精华| 久久6这里有精品| 性高湖久久久久久久久免费观看| 最近手机中文字幕大全| 午夜福利网站1000一区二区三区| 51国产日韩欧美| 亚洲精品,欧美精品| 国产精品久久久久久久久免| 日本vs欧美在线观看视频 | av天堂久久9| 99re6热这里在线精品视频| 高清不卡的av网站| 国产精品久久久久久久电影| 日本欧美国产在线视频| 亚洲精品乱码久久久久久按摩| 久久99热6这里只有精品| 午夜av观看不卡| 特大巨黑吊av在线直播| 99久久中文字幕三级久久日本| 欧美精品高潮呻吟av久久| 久久人人爽人人爽人人片va| 熟女av电影| 免费观看性生交大片5| 国产精品一区二区在线观看99| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 麻豆精品久久久久久蜜桃| 国产熟女午夜一区二区三区 | 欧美最新免费一区二区三区| 在线免费观看不下载黄p国产| 成人毛片60女人毛片免费| 少妇 在线观看| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 国产成人免费观看mmmm| 久久久精品免费免费高清| 一级二级三级毛片免费看| 久久鲁丝午夜福利片| 国产成人a∨麻豆精品| 久久人妻熟女aⅴ| 日韩 亚洲 欧美在线| 国产精品无大码| 亚洲美女搞黄在线观看| 国产成人精品婷婷| 色5月婷婷丁香| 久久韩国三级中文字幕| 欧美三级亚洲精品| 国产日韩欧美视频二区| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 欧美国产精品一级二级三级 | 精品国产国语对白av| 日本免费在线观看一区| 少妇熟女欧美另类| 国产极品粉嫩免费观看在线 | 97超碰精品成人国产| 国产av国产精品国产| 你懂的网址亚洲精品在线观看| 国产成人aa在线观看| 如日韩欧美国产精品一区二区三区 | 久久国内精品自在自线图片| 久久久午夜欧美精品| 中文字幕制服av| 免费不卡的大黄色大毛片视频在线观看| 久久这里有精品视频免费| 黄色怎么调成土黄色| 精品国产一区二区三区久久久樱花| 亚洲国产精品成人久久小说| 少妇人妻一区二区三区视频| 老女人水多毛片| 激情五月婷婷亚洲| 国产精品.久久久| 在现免费观看毛片| 欧美日韩在线观看h| 精品人妻一区二区三区麻豆| 国产精品三级大全| 欧美激情极品国产一区二区三区 | av在线播放精品| 一级毛片黄色毛片免费观看视频| 精品一区二区三区视频在线| 亚洲熟女精品中文字幕| 又黄又爽又刺激的免费视频.| √禁漫天堂资源中文www| av专区在线播放| 亚洲欧洲日产国产| 国产一区二区三区综合在线观看 | 日日爽夜夜爽网站| 高清黄色对白视频在线免费看 | www.色视频.com| 国产av一区二区精品久久| av国产精品久久久久影院| 精品熟女少妇av免费看| 在线观看www视频免费| 亚洲av.av天堂| 午夜免费男女啪啪视频观看| 亚洲高清免费不卡视频| 22中文网久久字幕| 熟妇人妻不卡中文字幕| 夫妻午夜视频| 成人亚洲精品一区在线观看| 五月天丁香电影| 成人黄色视频免费在线看| av在线老鸭窝| 天堂8中文在线网| 夜夜看夜夜爽夜夜摸| 国产日韩欧美视频二区| 亚洲av.av天堂| 亚洲欧美成人精品一区二区| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 亚洲av在线观看美女高潮| 丰满乱子伦码专区| 欧美最新免费一区二区三区| 国产中年淑女户外野战色| 精品一区二区免费观看| 少妇的逼水好多| 美女内射精品一级片tv| 亚洲精品亚洲一区二区| 伊人久久国产一区二区| 伦理电影免费视频| 国产av精品麻豆| 麻豆乱淫一区二区| 最近最新中文字幕免费大全7| 日韩一区二区视频免费看| av国产精品久久久久影院| 两个人的视频大全免费| 国产精品蜜桃在线观看| 午夜久久久在线观看| 女人久久www免费人成看片| 国产 精品1| 搡女人真爽免费视频火全软件| 80岁老熟妇乱子伦牲交| 99九九在线精品视频 | av卡一久久| 国产免费福利视频在线观看| 如何舔出高潮| 午夜久久久在线观看| 日韩熟女老妇一区二区性免费视频| 国产 精品1| 草草在线视频免费看| 国产精品人妻久久久久久| 人妻人人澡人人爽人人| 日本av免费视频播放| 免费少妇av软件| 国精品久久久久久国模美| 两个人的视频大全免费| 免费黄网站久久成人精品| 一级毛片电影观看| 99精国产麻豆久久婷婷| 欧美3d第一页| 又粗又硬又长又爽又黄的视频| 黄色一级大片看看| 熟女人妻精品中文字幕| 国产精品秋霞免费鲁丝片| 亚洲精华国产精华液的使用体验| 人妻人人澡人人爽人人| 如日韩欧美国产精品一区二区三区 | 久热久热在线精品观看| 日本猛色少妇xxxxx猛交久久| 人人妻人人澡人人爽人人夜夜| 一级黄片播放器| 一本色道久久久久久精品综合| 精品人妻熟女毛片av久久网站| 色婷婷久久久亚洲欧美| 日韩精品有码人妻一区| 亚洲精品一二三| 日韩免费高清中文字幕av| 亚洲精品日韩av片在线观看| 久久婷婷青草| 日韩欧美精品免费久久| 亚洲美女黄色视频免费看| 青春草视频在线免费观看| 嫩草影院入口| 久久99精品国语久久久| 午夜影院在线不卡| 嫩草影院新地址| 国产永久视频网站| 精品亚洲成a人片在线观看| 国产精品女同一区二区软件| 两个人的视频大全免费| 国产在线一区二区三区精| 一级毛片久久久久久久久女| 日韩欧美 国产精品| 精品人妻一区二区三区麻豆| 校园人妻丝袜中文字幕| 久久99蜜桃精品久久| 亚洲三级黄色毛片| 精品国产国语对白av| 国产一区二区三区av在线| 午夜免费观看性视频| 最后的刺客免费高清国语| 哪个播放器可以免费观看大片| 少妇被粗大的猛进出69影院 | 五月玫瑰六月丁香| 久久久国产精品麻豆| 国产69精品久久久久777片|