• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單原子層Pd殼的Pt3Ni納米立方體的甲酸氧化性能

    2016-11-18 07:29:17羅柳軒沈水云朱鳳鵑章俊良
    物理化學(xué)學(xué)報 2016年1期
    關(guān)鍵詞:晶面立方體甲酸

    羅柳軒 沈水云 朱鳳鵑 章俊良

    (上海交通大學(xué)燃料電池研究所,上海 200240)

    LUO Liu-Xuan SHEN Shui-Yun ZHU Feng-Juan ZHANG Jun-Liang*

    (Institute of Fuel Cells, Shanghai Jiao Tong University, Shanghai 200240, P. R. China)

    單原子層Pd殼的Pt3Ni納米立方體的甲酸氧化性能

    羅柳軒 沈水云 朱鳳鵑 章俊良*

    (上海交通大學(xué)燃料電池研究所,上海 200240)

    通過一種結(jié)合了CO輔助合成Pt3Ni納米立方粒子和單原子層Cu殼欠電位沉積再置換為Pd的方法,成功制備出了具有單原子層Pd殼和Pt3Ni納米立方粒子核結(jié)構(gòu)的Pt3Ni@Pd/C催化劑。電感耦合等離子體元素分析、X射線衍射和透射電子顯微鏡法被用于研究表征此種Pt3Ni@Pd/C催化劑,結(jié)果顯示大部分Pt3Ni納米粒子的表面都由{100}族的晶面所構(gòu)成。而且在這些{100}族的晶面上,單原子層Pd殼通過電沉積的外延生長,也獲得了{100}族的晶面。本文進一步對Pt3Ni@Pd/C作為甲酸氧化電催化劑的性能進行了研究,并與商業(yè)Pd/C和原Pt3Ni/C催化劑進行了比較。結(jié)果顯示,由于Pt3Ni@Pd/C的單原子層Pd殼的結(jié)構(gòu)和所暴露出的Pd{100}族的晶面,Pt3Ni@Pd/C催化劑具有優(yōu)異的甲酸氧化電催化性能。與原Pt3Ni/C催化劑相比較,Pt3Ni@Pd/C催化劑的貴金屬質(zhì)量比活性提高到了7.5倍。此外,與商業(yè)Pd/C催化劑相比,Pt3Ni@Pd/C催化劑的比表面活性和Pd質(zhì)量比活性也分別提高到了2.5和8.3倍。

    電催化劑;甲酸氧化;單原子層Pd殼;立方體結(jié)構(gòu);核殼結(jié)構(gòu)

    LUO Liu-Xuan SHEN Shui-Yun ZHU Feng-Juan ZHANG Jun-Liang*

    (Institute of Fuel Cells, Shanghai Jiao Tong University, Shanghai 200240, P. R. China)

    1 Introduction

    In recent years, direct formic acid fuel cells (DFAFCs) have been generating huge interest as an alternative power source to direct methanol fuel cells (DMFCs)1–3. Unlike the methanol used in the DMFCs, formic acid used in the DFAFCs is nontoxic4–6. Moreover, the DFAFCs also have higher theoretical open circuit voltage (~1.45 V), lower fuel crossover as well as higher energy densities than the DMFCs do7–9. Among various catalysts, Pt is the most studied one for formic acid oxidation(FAO), and generally, the FAO on pure Pt catalysts in an acid medium undergoes the so-called dual pathways as follows.

    The indirect pathway,

    The direct pathway,

    Usually, Pt possesses very low activity towards FAO, because Pt can be easily poisoned by the CO intermediate in the indirect pathway as shown in equation (1). By contrast, it has been reported that the FAO on Pd mostly follows the direct pathway as shown in equation (2), through which the CO poisoning can be avoided2,10–12. Therefore, tremendous efforts have been made to improve the FAO activity on the Pd-based catalysts. A series of Pd-transition metal alloy catalysts have been synthesized and shown promising activity towards FAO1,2,7,13,14. Furthermore, it was also found that there existed an structural effect for the FAO on Pd catalysts, and the Pd(100) plane that belonged to the Pd{100} facets had the highest rate of FAO among the low index crystal planes of Pd15. In this regard, different shape-controlled Pd-based catalysts have been synthesized to be applied as the FAO catalysts1,13,16–21. Additionally, Pt-Pd alloy catalysts were proved to possess much less CO selfpoisoning than Pt13. And to the best of our knowledge, the cubic Pt-Ni-Pd alloy catalyst for FAO has not been reported yet.

    In this report, carbon-supported Pd monolayer shell-Pt3Ni(Pt3Ni@Pd/C) core nanoparticles were synthesized by a twostep method and investigated as the electrocatalyst for FAO. The as-synthesized Pt3Ni@Pd/C was characterized by various physicochemical techniques and its electrocatalytic activity towards FAO was determined and compared with that of the commercial Pd/C, in terms of both the area-specific and Pd mass activity.

    2 Experimental

    2.1 Preparation of carbon-supported cubic Pt3Ni NPs Unsupported cubic Pt3Ni NPs were synthesized using a CO-assisted method22. All chemicals used in this report were purchased from Sigma Aldrich and used without further purification. In a typical synthesis, 20.4 mg (0.05 mmol) of platinum acetylacetonate [Pt(acac)2, 97%] and 4.6 mg (0.017 mmol) of nickel acetylacetonate [Ni(acac)2, 95%] were dissolved in 9 mL of oleylamine (OAm, 70%) and 1 mL of oleic acid (OA, 90%)in a three-neck flask at room temperature. The mixture was vigorously stirred under a gentle argon flow for 30 min before being heated at a constant heating rate of 5 °C·min–1. When the mixture temperature reached 180 °C, the argon flow was replaced by a CO flow at the flow rate of 0.15 L·min–1(Caution: CO is toxic, the experiment should be performed in the fume hood). After the temperature reached 210 °C, the mixture was maintained at this temperature for 30 min before being cooled down to room temperature. The as-synthesized nanoparticles were washed repeatedly by the mixture of hexane and ethanol,and then separated by centrifugation. The as-treated nanoparticles were dispersed in chloroform for further use.

    About 27 mg of carbon black powders (EC-300J, Akzo Nobel) were dispersed in chloroform and sonicated for 30 min to form a good suspension. The as-prepared nanoparticles dispersed in chloroform were added into the suspension dropwise with vigorous stirring, and then the mixture was sonicated for 30 min and stirred overnight. The final product of carbon-supported Pt3Ni (Pt3Ni/C) NPs were washed repeatedly by ethanol and separated by centrifugation.

    Acetic acid treatment was performed to remove the residual surfactants on the nanoparticles. Briefly, 30 mL of acetic acid was mixed with the as-prepared Pt3Ni/C with vigorous stirring, the mixture was then heated to 60 °C and maintained at this temperature for 2 h before being cooled down to room temperature. The treated Pt3Ni/C was washed repeatedly with ethanol and separated by centrifugation and then vacuum-dried at 65 °C for 5 h before further characterization.

    2.2 Characterization

    Selected area electron diffraction (SAED) pattern, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) images were all obtained by a JEOL 2100F field emission microscope. Energy dispersive X-ray spectroscopy (EDS) measurement was also performed on the JEOL 2100F field emission microscope equipped with an EDAX detector. X-ray diffraction (XRD) pattern was obtained on a Bruker D8-Advanced X-ray diffractometer with Cu Kαradiation (λ = 0.154 nm) at a scan rate of 2 (°)·min–1. Inductively coupled plasma (ICP) elemental analysis measurement was carried out using a Thermo iCAP6300 inductively coupled plasma-optical emission spectrometer (ICP-OES).

    2.3 Deposition of Pd monolayer shell on the Pt3Ni/C

    The deposition of Pd monolayer shell was carried out using a method involving Cu underpotential deposition (UPD) previously reported by Zhang et al.23In brief, for preparing the working electrode, 5 μL drop of the appropriate Pt3Ni/C ink was placed onto a polished glassy carbon electrode (Pine, 5 mm diameter) and dried in air. After the deposition of Cu monolayer shell, the electrode was transferred into an Ar-saturated solution containing 1.0 mmol·L–1K2PdCl4and 100 mmol·L–1HCl and then kept immersed in this solution for 3 min to completely replace Cu with Pd, thus, the Pd-monolayer-decorated Pt3Ni/C (Pt3Ni@Pd/C) was generated. Then the electrode was rinsed thoroughly with ultrapure water and covered by Nafionsolution before dried in air.

    For all the electrochemical experiments, a saturated calomel electrode (SCE) was used as the reference electrode, and a platinum foil was used as the counter electrode. All of the potentials in this paper are given regarding to the reversible hydrogen electrode (RHE).

    2.4 Electrocatalytic evaluation

    Before the FAO testing, several potential cycles between 0.05 and 1.10 V were performed in a N2-saturated solution containing 0.1 mol·L–1HClO4with a scan rate of 20 mV·s–1until a stable curve was obtained. It is worth mentioning that, the electrochemical active surface area (ECSA) used for the area-specific activity calculation is derived from the surface charge due to the oxidation of Pd atoms, since the H species adsorption area for Pd is not accurate. FAO activity of the Pt3Ni@Pd/C was evaluated in a solution containing 0.1 mol·L–1HClO4and 2mol·L–1HCOOH as compared with those of the commercial Pd/C [10% (w), Sigma Aldrich] and Pt3Ni/C.

    Fig.1 (A) XRD pattern of the Pt3Ni/C and (B) EDS pattern of the Pt3Ni NPs The intensity and position for Pt (red) and Ni (blue) in figure A are taken from the JCPDS database.

    3 Results and discussion

    3.1 Synthesis and characterization

    For the synthesis of cubic Pt3Ni NPs, OAm was used as both the solvent and surfactant, OA served as the co-surfactant while CO gas was employed as the reducing agent. In addition, CO gas also functions as the capping agent since CO molecules will bind to the {100} facets of Pt3Ni NPs and inhibit the further addition of metal atoms to them, thus a large number of {100} facets can be preserved17,22,24. Besides, the surfactants also affect the surface energy of as-prepared nanoparticles during their growing, thus influencing their shapes1. Therefore, the cubic Pt3Ni NPs obtained in this report can be attributed to the cooperation of both the above-mentioned reasons.

    The XRD patterns and EDS data for the Pt-Ni/C NPs are presented in Fig.1(A, B), respectively. The XRD pattern shows that the Pt-Ni NPs possess well-defined face-centered-cubic(fcc) nanostructures, and it's noted that all the diffraction peaks have a little shift towards higher 2θ angle as compared with those for pure Pt (inserted red lines), which can be attributed to the addition of Ni atoms into Pt lattices. The EDS analysis in Fig.1B shows that the Pt/Ni ratio for the Pt-Ni/C catalyst is 3.7/1, which is much close to Pt3.2Ni determined by ICP-OES, and the Pt-Ni/C catalyst is simply denoted as Pt3Ni/C.

    Fig.2A shows the typical TEM image of the as-synthesized Pt3Ni NPs, and it is observed that most of the Pt3Ni NPs possess cubic nanostructures. The inset in Fig.2A is the corresponding SAED pattern, that agrees well with the fcc structure proved by XRD. As shown in Fig.2B, the particle edge length of these nanoparticles ranges from 10 to 30 nm and the average length is about 22.44 nm. Fig.2C demonstrates that all the Pt3Ni NPs are well dispersed on the carbon support. The HR-TEM image for the Pt3Ni NPs in Fig.2D shows that the d-spacings for(111) and (200) planes are 0.215 and 0.189 nm, respectively, both of which are smaller than those of pure Pt obtained from the JCPDS database [0.227 nm for (111) planes and 0.196 nm for (200) planes]. This observation is in well agreement with the XRD result, both of which are ascribed to the partial displacement of Pt by Ni. Since Ni has a smaller atomic radius than Pt, the displacement of Pt by Ni will lead to the lattice contraction for the Pt3Ni NPs, and thus smaller d-spacings than pure Pt.

    3.2 Deposition of Pd monolayer shell on the Pt3Ni/C

    The deposition of Pd monolayer shell on the Pt3Ni/C involved two steps. One is the formation of Cu monolayer shell on Pt3Ni/C, which was underpotentially deposited using the similar method mentioned in the literature23, and the other is the displacement of Cu atoms by Pd atoms, which was accomplished by immersing the electrode in an Ar-saturated solution containing 1.0 mmol·L–1K2PdCl4and 100 mmol·L–1HCl. These two steps were all performed under Ar atmosphere in case that the deposited Cu atoms were oxidized during the transfer of electrode. The amount of Cu monolayer shell deposited on Pt3Ni/C was calculated by the surface charge due to the adsorption of Cu atoms from 0.34 to 0.9 V. As shown in Fig.3A, several peaks in both cathodic and anodic scan direction can be observed in the cyclic voltammogram (CV) curve(red line) of the Cu underpotential deposition on Pt3Ni/C, indicating the adsorption and desorption of Cu atoms on the corresponding crystal planes of Pt3Ni NPs. The characteristic peaks ofthe CV curve for the original Pt3Ni/C cannot be observed in the CV curve for the Pt3Ni@Pd/C, implying the Pd monolayer coverage on the surface of the Pt3Ni/C.

    Fig.2 (A) TEM image of the Pt3Ni NPs, the inset is the SAED pattern of these nanoparticles, (B) histogram of particle edge length distribution of the Pt3Ni NPs in (A), (C) TEM image of the carbon-supported Pt3Ni (Pt3Ni/C) NPs, (D) HR-TEM image of the Pt3Ni NPs

    Fig.3 (A) CV curves of the Cu UPD on Pt3Ni/C (red line), the original Pt3Ni/C (blue line), and the as-prepared Pt3Ni@Pd/C (black line),(B) CV curve of the commercial Pd/C

    3.3 FAO activity

    The FAO activity of the as-synthesized Pt3Ni@Pd/C catalyst can be determined by the peak current of CV curve in the anodic scan for FAO. Fig.4A presents the CV curves of the FAO on both Pt3Ni/C (black line) and Pt3Ni@Pd/C (red line) catalysts. As shown, both the onset oxidation potential for FAO and the potential for the peak current density of the Pt3Ni@Pd/C catalyst are more negative than those for the Pt3Ni/C, indicating of an excellent FAO activity for the Pt3Ni@Pd/C catalyst25. More importantly, the noble-metal mass activity for the original Pt3Ni/C catalyst is only 0.15 A·mg–1, while that for the Pt3Ni@Pd/C reaches as high as 1.12 A·mg–1, which is almost 7.5 times that of the Pt3Ni/C (Fig.4B).

    In addition, the FAO activity of the commercial Pd/C was also evaluated and compared with that of the Pt3Ni@Pd/C, in terms of both the area-specific and Pd mass activities.

    As shown in Fig.5(A, B), both the area-specific and Pd mass activities of the Pt3Ni@Pd/C are much higher than those of the Pd/C, achieving 36.81 mA·cm–2and 28.68 A·mg–1, respectively. They are almost 2.5 and 8.3 times as compared with those of the Pd/C, which are merely 14.97 mA·cm–2and 3.46A·mg–1, respectively.

    The excellent FAO activity on the Pt3Ni@Pd/C catalyst can be ascribed to two aspects. One is the exposed Pd(100) planes, the other is the monolayer structure of Pd shell. As proven bythe prior literature15, Pd(100) has the highest rate of FAO in the low index planes of Pd. In this work, for the Pt3Ni@Pd/C catalyst, the Pd monolayer shell was electro-deposited epitaxially on the {100} facets of cubic Pt3Ni NPs, thus preserving the substrate's crystallographic orientation26. Therefore, the Pd monolayer shell on the {100} facets of cubic Pt3Ni NPs also possessed the Pd{100} facets. Moreover, the Pt3Ni@Pd/C catalyst has an extremely high enhancement factor of 8.3 for Pd mass activity. This high enhancement in the Pd mass activity is not only attributed to the improvement of area-specific activity, more importantly, to the monolayer structure of Pd shell. Theoretically, all Pd atoms in the monolayer shell can take apart into catalytic reaction. Furthermore, the substrate of Pt3Ni NPs on which Pd monolayer shell is deposited also plays a very important role in the enhancement of FAO activity. It is believed that the differences in d-spacings of the substrate can alter the electronic property of the Pd monolayer shell, resulting in different FAO activity26. Although the noble-metal mass activity of the Pt3Ni@Pd/C was not desirable because of the large size of the Pt3Ni nanoparticle substrates (Fig.5C), through shrinking the particle size of Pt3Ni NPs, the noble-metal mass activity can be further improved to be satisfactory.

    Fig.4 (A) CV curves of the Pt3Ni/C (black line) and the Pt3Ni@Pd/C (red line) for FAO in solutions containing 0.1 mol·L-1HClO4and 2 mol·L-1HCOOH, (B) noble-metal mass activity of the two catalysts for FAO

    Fig.5 Area-specific (A), Pd mass (B), and noble metal (Pd + Pt) mass (C) activities of the Pd/C and the Pt3Ni@Pd/C for FAO;(D) overall FAO activity comparison of the Pd/C and the Pt3Ni@Pd/C

    4 Conclusions

    In this work, we have designed and successfully prepared the Pt3Ni@Pd/C catalyst based on the method mainly involving theCO-assisted synthesis of Pt3Ni NPs followed by the electro-deposition of Pd monolayer shell. The as-synthesized Pt3Ni NPs were found to largely possess cubic nanostructures enclosed by{100} facets, on which the Pd monolayer shell grew epitaxially by electro-deposition and thus acquired the crystallographic orientation of {100} facets. The catalytic performance of the Pt3Ni@Pd/C towards FAO has been investigated and compared with those of the original Pt3Ni/C and the commercial Pd/C. The deposition of Pd monolayer shell on the Pt3Ni/C led to an enhancement of 7.5 times compared with Pt3Ni/C in the noblemetal mass activity, moreover, the FAO activity of the Pt3Ni@Pd/C showed approximately 2.5 and 8.3 times that of the Pd/C in area-specific and Pd mass activities, respectively. The high FAO activity for the Pt3Ni@Pd/C is ascribed to both its monolayer structure and exposed Pd{100} facets. Undesirable noble-metal mass activity of the Pt3Ni@Pd/C can be improved to be satisfactory by shrinking the particle size of Pt3Ni nanoparticle substrates. Therefore, this synthetic method may provide a feasible strategy of the future catalyst design for FAO.

    (1)Niu, Z.; Peng, Q.; Gong, M.; Rong, H.; Li, Y. Angew. Chem. 2011, 123, 6439. doi: 10.1002/ange.201100512

    (2)Mazumder, V.; Chi, M.; Mankin, M. N.; Liu, Y.; Metin, O.; Sun, D.; More, K. L.; Sun, S. Nano Lett. 2012, 12, 1102. doi: 10.1021/nl2045588

    (3)Wang, R.; Liao, S.; Ji, S. J. Power Sources 2008, 180, 205. doi: 10.1016/j.jpowsour.2008.02.027

    (4)Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.;Barnard, T. J. Power Sources 2002, 111, 83. doi: 10.1016/S0378-7753(02)00271-9

    (5)Chen, M.; Wang, Z. B.; Zhou, K.; Chu, Y. Y. Fuel Cells 2010,10, 1171. doi: 10.1002/fuce.v10.6

    (6)Wang, S.; Kristian, N.; Jiang, S.; Wang, X. Electrochem. Commun. 2008, 10, 961. doi: 10.1016/j.elecom.2008.04.018

    (7)Yang, J.; Tian, C.; Wang, L.; Fu, H. J. Mater. Chem. 2011, 21, 3384. doi: 10.1039/c0jm03361h

    (8)Babu, P. K.; Kim, H. S.; Chung, J. H.; Oldfield, E.; Wieckowski, A. J. Phys. Chem. B 2004, 108, 20228. doi: 10.1021/jp0403893

    (9)Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R. I. J. Power Sources 2006, 157, 78. doi: 10.1016/j.jpowsour.2005.07.066

    (10)Li, H.; Sun, G.; Jiang, Q.; Zhu, M.; Sun, S.; Xin, Q. Electrochem. Commun. 2007, 9, 1410. doi: 10.1016/j.elecom.2007.01.032

    (11)Ha, S.; Larsen, R.; Masel, R. I. J. Power Sources 2005, 144, 28. doi: 10.1016/j.jpowsour.2004.12.031

    (12)Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 229. doi: 10.1016/S0378-7753(03)00026-0

    (13)Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. D. J. Am. Chem. Soc. 2008, 130, 5406. doi: 10.1021/ja800656y

    (14)Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, L. A.;Rodríguez, H. G.; Alvarez-Contreras, L.; Arriaga, L. G. J. Power Sources 2010, 195, 461. doi: 10.1016/j.jpowsour.2009.08.014

    (15)Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. J. Phys. Chem. B 2006, 110, 12480. doi: 10.1021/jp0608372

    (16)Shao, M.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. J. Phys. Chem. C 2013, 117, 4172. doi: 10.1021/jp312859x

    (17)Dai, Y.; Mu, X.; Tan, Y.; Lin, K.; Yang, Z.; Zheng, N.; Fu, G. J. Am. Chem. Soc. 2012, 134, 7073. doi: 10.1021/ja3006429

    (18)Huang, X.; Tang, S.; Zhang, H.; Zhou, Z.; Zheng, N. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409

    (19)Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nat. Nanotech. 2011, 6, 28. doi: 10.1038/nnano.2010.235

    (20)Xia, X.; Choi, S. I.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H. C.; Wang, J.; Mavrikakis, M.; Kim, M. J.; Xia, Y. J. Am. Chem. Soc. 2013, 135, 15706. doi: 10.1021/ja408018j

    (21)Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Energy Environ. Sci. 2012, 5, 6352. doi: 10.1039/C2EE02866B

    (22)Wu, J.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p

    (23)Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.;Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953

    (24)Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    (25)Mazumder, V.; Lee, Y.; Sun, S. Adv. Funct. Mater. 2010, 20, 1224. doi: 10.1002/adfm.v20:8

    (26)Baldauf, M.; Kolb, D. M. J. Phys. Chem. 1996, 100, 11375. doi: 10.1021/jp952859m

    Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes

    We designed and synthesized carbon-supported cubic Pt3Ni nanoparticles (NPs) with Pd monolayer shells (Pt3Ni@Pd/C) by a two-step method: generally, CO-assisted preparation of cubic Pt3Ni NPs, Pd monolayer deposition through underpotential deposition of a Cu monolayer, and displacement of Cu with Pd. The as-synthesized Pt3Ni@Pd/C catalyst was characterized with inductiνely coupled plasma elemental analysis, X-ray diffraction, and transmission electron microscopy. Most Pt3Ni NPs had a cubic nanostructure enclosed by {100} facets, on which the Pd monolayer shells were deposited epitaxially via electrodeposition, by which the Pd monolayers gained the crystallographic orientation of the {100} facets. We then used Pt3Ni@Pd/C as an electrocatalyst for formic acid oxidation (FAO), comparing it with commercial Pd/C and the pristine Pt3Ni/C catalysts. The Pt3Ni@Pd/C exhibited superior electrocatalytic performance because of its monolayer structure and exposed Pd{100} facets. The noble-metal mass actiνity of the Pt3Ni/C with the deposited Pd monolayer shell was 7.5 times greater than that of the Pt3Ni/C catalyst alone. Moreoνer, the area-specific and Pd mass actiνities of Pt3Ni@Pd/C were 2.5 and 8.3 times greater than those of the commercial Pd/C catalyst, respectiνely.

    Electrocatalyst; Formic acid oxidation; Palladium monolayer; Cubic structure; Core-shell structure

    O646

    10.3866/PKU.WHXB201509144

    Received: August 24, 2015; Revised: September 11, 2015; Published on Web: September 14, 2015.

    *Corresponding author. Email: junliang.zhang@sjtu.edu.cn; Tel: +86-21-34207439.

    The project was supported by the National Natural Science Foundation of China (21373135), Science Foundation of Ministry of Education of China(413064), and Program of Introducing Talents of Discipline to Universities, China (“111 Project”) (B13018).

    國家自然科學(xué)基金(21373135), 中國教育部科學(xué)基金(413064)及高等學(xué)校學(xué)科創(chuàng)新引智計劃(B13018)資助

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    晶面立方體甲酸
    疊出一個立方體
    乙酸乙酯與ε-CL-20不同晶面的微觀作用機制
    NaCl單晶非切割面晶面的X射線衍射
    物理實驗(2019年7期)2019-08-06 05:35:56
    (100)/(111)面金剛石膜抗氧等離子刻蝕能力
    不同硅晶面指數(shù)上的類倒金字塔結(jié)構(gòu)研究與分析?
    甲酸治螨好處多
    圖形前線
    立方體星交會對接和空間飛行演示
    太空探索(2016年9期)2016-07-12 09:59:53
    折紙
    甲酸鹽鉆井液完井液及其應(yīng)用之研究
    亚洲四区av| 久久99一区二区三区| 男女国产视频网站| 巨乳人妻的诱惑在线观看| 亚洲精品日本国产第一区| 欧美人与性动交α欧美软件| av女优亚洲男人天堂| 国产精品99久久99久久久不卡 | 国产av精品麻豆| 国产人伦9x9x在线观看| 国语对白做爰xxxⅹ性视频网站| 婷婷色综合www| 少妇人妻精品综合一区二区| 极品少妇高潮喷水抽搐| 亚洲欧美成人精品一区二区| av.在线天堂| av网站免费在线观看视频| 国产精品一国产av| 久久精品久久久久久噜噜老黄| 亚洲精品日韩在线中文字幕| 三上悠亚av全集在线观看| 青春草亚洲视频在线观看| 亚洲av电影在线观看一区二区三区| 一区二区三区精品91| 亚洲成av片中文字幕在线观看| 欧美激情 高清一区二区三区| 涩涩av久久男人的天堂| 国产老妇伦熟女老妇高清| 激情五月婷婷亚洲| 欧美日韩福利视频一区二区| 蜜桃国产av成人99| 男男h啪啪无遮挡| 国产1区2区3区精品| 欧美日韩亚洲国产一区二区在线观看 | 男男h啪啪无遮挡| 国产男女内射视频| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费日韩欧美大片| 伦理电影大哥的女人| 久久久欧美国产精品| 免费黄频网站在线观看国产| 女人被躁到高潮嗷嗷叫费观| netflix在线观看网站| 人人妻人人添人人爽欧美一区卜| 日韩大码丰满熟妇| 天天添夜夜摸| 亚洲少妇的诱惑av| 亚洲国产精品成人久久小说| 多毛熟女@视频| 国产av码专区亚洲av| 久久久精品免费免费高清| 免费日韩欧美在线观看| 啦啦啦在线观看免费高清www| 亚洲国产欧美一区二区综合| 亚洲中文av在线| 国产亚洲精品第一综合不卡| 国产精品99久久99久久久不卡 | 七月丁香在线播放| 国产高清不卡午夜福利| 人妻 亚洲 视频| 天天躁日日躁夜夜躁夜夜| 中文精品一卡2卡3卡4更新| 精品国产一区二区三区久久久樱花| 国产精品.久久久| 成年人免费黄色播放视频| 日韩电影二区| 欧美日韩av久久| 亚洲婷婷狠狠爱综合网| 好男人视频免费观看在线| 男男h啪啪无遮挡| 高清不卡的av网站| 丰满迷人的少妇在线观看| 满18在线观看网站| 黄色视频不卡| 成人三级做爰电影| 国产成人欧美| 亚洲 欧美一区二区三区| 丰满迷人的少妇在线观看| 两性夫妻黄色片| 久久久久久久久久久久大奶| 国产爽快片一区二区三区| 久久精品久久久久久久性| 色婷婷av一区二区三区视频| 黄频高清免费视频| 欧美黄色片欧美黄色片| 午夜福利视频在线观看免费| av女优亚洲男人天堂| 七月丁香在线播放| 精品久久久久久电影网| 成年美女黄网站色视频大全免费| 国产一区有黄有色的免费视频| 最近中文字幕高清免费大全6| 成人手机av| 少妇被粗大的猛进出69影院| 18禁动态无遮挡网站| 人妻人人澡人人爽人人| 国产亚洲欧美精品永久| 老鸭窝网址在线观看| 欧美黑人欧美精品刺激| 超碰97精品在线观看| 欧美乱码精品一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲伊人久久精品综合| 最黄视频免费看| 国产熟女午夜一区二区三区| 日本一区二区免费在线视频| 成年人免费黄色播放视频| 国产不卡av网站在线观看| 1024香蕉在线观看| 久久久精品免费免费高清| 在线精品无人区一区二区三| 捣出白浆h1v1| 国产成人精品久久久久久| 丝袜人妻中文字幕| 久久久久精品久久久久真实原创| 91aial.com中文字幕在线观看| 久久这里只有精品19| 国产精品女同一区二区软件| 99久国产av精品国产电影| 国产精品麻豆人妻色哟哟久久| 欧美日韩亚洲综合一区二区三区_| 波多野结衣一区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 99久久综合免费| 999精品在线视频| 18禁国产床啪视频网站| 成年美女黄网站色视频大全免费| 最新在线观看一区二区三区 | 一级a爱视频在线免费观看| 亚洲久久久国产精品| 男人添女人高潮全过程视频| 涩涩av久久男人的天堂| 亚洲成人一二三区av| 日韩制服丝袜自拍偷拍| 黄色视频在线播放观看不卡| 国产乱来视频区| 午夜91福利影院| 精品久久久久久电影网| 久久久久久久久久久久大奶| 丝袜人妻中文字幕| 欧美日韩视频精品一区| 99久久精品国产亚洲精品| 中国三级夫妇交换| 亚洲综合色网址| 一级片'在线观看视频| 国产免费一区二区三区四区乱码| 亚洲图色成人| 黄色视频不卡| 成人国产麻豆网| 精品一区二区三区av网在线观看 | 亚洲色图 男人天堂 中文字幕| 亚洲欧洲日产国产| 欧美国产精品va在线观看不卡| 亚洲国产精品国产精品| 狠狠婷婷综合久久久久久88av| 亚洲欧洲国产日韩| 日韩欧美精品免费久久| 国产在线一区二区三区精| 久久久国产欧美日韩av| 考比视频在线观看| 十八禁人妻一区二区| 日韩中文字幕视频在线看片| 丝袜脚勾引网站| 亚洲精品在线美女| 免费在线观看完整版高清| 婷婷色麻豆天堂久久| 久久久久国产一级毛片高清牌| 王馨瑶露胸无遮挡在线观看| 高清在线视频一区二区三区| 大香蕉久久网| 国产麻豆69| netflix在线观看网站| 伊人久久大香线蕉亚洲五| 日韩欧美一区视频在线观看| 视频在线观看一区二区三区| 亚洲国产精品一区三区| 青春草国产在线视频| 少妇被粗大的猛进出69影院| 免费人妻精品一区二区三区视频| 一级毛片电影观看| 不卡av一区二区三区| 男女午夜视频在线观看| 国产成人精品在线电影| 99久久精品国产亚洲精品| 国产免费视频播放在线视频| 18禁动态无遮挡网站| 亚洲国产看品久久| 亚洲精品自拍成人| 国产不卡av网站在线观看| 亚洲一码二码三码区别大吗| 女人精品久久久久毛片| 天美传媒精品一区二区| 欧美日韩av久久| 亚洲国产看品久久| 久久精品久久久久久久性| 久久久久精品人妻al黑| 只有这里有精品99| 日本爱情动作片www.在线观看| 水蜜桃什么品种好| 亚洲图色成人| 欧美日本中文国产一区发布| 欧美日韩一级在线毛片| 婷婷色综合www| 免费黄频网站在线观看国产| 制服丝袜香蕉在线| 精品午夜福利在线看| 色婷婷久久久亚洲欧美| 日韩视频在线欧美| 亚洲一码二码三码区别大吗| 在线观看国产h片| 中文字幕av电影在线播放| av在线播放精品| 免费在线观看视频国产中文字幕亚洲 | 国产淫语在线视频| 久久99精品国语久久久| 一区二区三区四区激情视频| 伊人久久大香线蕉亚洲五| 伦理电影大哥的女人| 国产欧美日韩综合在线一区二区| 美女福利国产在线| 日本91视频免费播放| 亚洲欧美一区二区三区黑人| 极品人妻少妇av视频| 老司机深夜福利视频在线观看 | 亚洲av中文av极速乱| 成人国语在线视频| 高清欧美精品videossex| 国产精品麻豆人妻色哟哟久久| 国产福利在线免费观看视频| 欧美日韩视频精品一区| 久久性视频一级片| 97精品久久久久久久久久精品| 亚洲国产最新在线播放| 久久精品国产综合久久久| 国产1区2区3区精品| 99久国产av精品国产电影| 午夜免费鲁丝| 亚洲,一卡二卡三卡| 日韩欧美精品免费久久| 最近的中文字幕免费完整| 黑人巨大精品欧美一区二区蜜桃| 丝袜喷水一区| 在线天堂中文资源库| 国产福利在线免费观看视频| 久久久亚洲精品成人影院| 多毛熟女@视频| 亚洲熟女毛片儿| 99re6热这里在线精品视频| 90打野战视频偷拍视频| 成人免费观看视频高清| 日韩不卡一区二区三区视频在线| 亚洲欧洲日产国产| 亚洲成人一二三区av| 国产精品久久久人人做人人爽| 夫妻性生交免费视频一级片| 亚洲国产中文字幕在线视频| 久久久久久免费高清国产稀缺| 亚洲国产日韩一区二区| 黄片无遮挡物在线观看| 亚洲综合精品二区| 考比视频在线观看| 大片电影免费在线观看免费| av片东京热男人的天堂| 国产在线免费精品| 亚洲av日韩在线播放| 国产 一区精品| 精品少妇久久久久久888优播| 日韩中文字幕欧美一区二区 | 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 啦啦啦啦在线视频资源| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 精品人妻一区二区三区麻豆| 亚洲七黄色美女视频| 午夜久久久在线观看| 性色av一级| 亚洲在久久综合| 69精品国产乱码久久久| 亚洲精品第二区| 黑丝袜美女国产一区| 一级毛片电影观看| 波多野结衣av一区二区av| 18在线观看网站| 99久久99久久久精品蜜桃| 少妇被粗大的猛进出69影院| 各种免费的搞黄视频| 欧美日韩成人在线一区二区| 热99国产精品久久久久久7| 日本黄色日本黄色录像| 国产高清国产精品国产三级| 精品亚洲乱码少妇综合久久| 国产成人精品无人区| 国产成人免费无遮挡视频| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| 精品少妇一区二区三区视频日本电影 | 中文字幕高清在线视频| 18禁国产床啪视频网站| 欧美日韩亚洲国产一区二区在线观看 | 色婷婷久久久亚洲欧美| 亚洲人成77777在线视频| 在线观看国产h片| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人澡人人看| 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 一二三四中文在线观看免费高清| 欧美激情 高清一区二区三区| 久久久久视频综合| 伊人久久国产一区二区| 日本色播在线视频| 亚洲欧美一区二区三区国产| 亚洲欧美精品自产自拍| 99久久综合免费| 久久毛片免费看一区二区三区| 日日撸夜夜添| 狠狠精品人妻久久久久久综合| 久久天躁狠狠躁夜夜2o2o | 亚洲成人免费av在线播放| 日本av免费视频播放| 国产黄色视频一区二区在线观看| 最近最新中文字幕大全免费视频 | 丝瓜视频免费看黄片| 亚洲一区二区三区欧美精品| 久久久久网色| 精品国产一区二区三区久久久樱花| 观看美女的网站| 亚洲国产看品久久| 国产成人欧美在线观看 | 国产免费现黄频在线看| 精品少妇久久久久久888优播| 考比视频在线观看| 高清av免费在线| 亚洲av在线观看美女高潮| 两性夫妻黄色片| 下体分泌物呈黄色| 国产熟女欧美一区二区| 久久精品久久精品一区二区三区| 日本91视频免费播放| 伊人亚洲综合成人网| 国产在视频线精品| 欧美最新免费一区二区三区| 丁香六月欧美| 欧美激情极品国产一区二区三区| 久久97久久精品| 亚洲精华国产精华液的使用体验| 欧美中文综合在线视频| 欧美av亚洲av综合av国产av | 热99久久久久精品小说推荐| 国产视频首页在线观看| 亚洲精品一二三| 高清av免费在线| 欧美在线黄色| 欧美日韩亚洲国产一区二区在线观看 | 国产成人欧美| 一级片免费观看大全| 下体分泌物呈黄色| 1024视频免费在线观看| 97精品久久久久久久久久精品| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 国产1区2区3区精品| av在线老鸭窝| 国产精品av久久久久免费| 欧美人与性动交α欧美精品济南到| 大话2 男鬼变身卡| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 一级a爱视频在线免费观看| 国产精品香港三级国产av潘金莲 | 亚洲成人国产一区在线观看 | 亚洲欧美一区二区三区黑人| 国产精品成人在线| 国产男女内射视频| 亚洲欧美精品综合一区二区三区| 日韩一区二区视频免费看| 精品少妇黑人巨大在线播放| 视频在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 精品少妇久久久久久888优播| 久久久久久久大尺度免费视频| 亚洲成色77777| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡 | 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| 午夜久久久在线观看| 久久久精品免费免费高清| 日本猛色少妇xxxxx猛交久久| avwww免费| 欧美日韩亚洲国产一区二区在线观看 | 国产欧美日韩一区二区三区在线| 亚洲欧洲国产日韩| 午夜福利视频在线观看免费| 亚洲综合色网址| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 涩涩av久久男人的天堂| av网站在线播放免费| 久久狼人影院| 男女国产视频网站| 91精品三级在线观看| 午夜免费鲁丝| 岛国毛片在线播放| 久久韩国三级中文字幕| 丝袜美腿诱惑在线| 免费日韩欧美在线观看| 老鸭窝网址在线观看| 下体分泌物呈黄色| 国产精品偷伦视频观看了| 另类精品久久| 欧美日韩福利视频一区二区| 久久精品国产a三级三级三级| 亚洲欧美成人综合另类久久久| 999久久久国产精品视频| 国产极品粉嫩免费观看在线| 久久精品国产a三级三级三级| 国产成人免费观看mmmm| 精品视频人人做人人爽| 国产亚洲欧美精品永久| 国产精品国产av在线观看| 亚洲欧洲精品一区二区精品久久久 | 男女免费视频国产| 亚洲精品第二区| 免费人妻精品一区二区三区视频| 丝袜在线中文字幕| 超色免费av| 免费看av在线观看网站| 精品国产一区二区久久| 久久精品国产a三级三级三级| 亚洲一级一片aⅴ在线观看| 亚洲国产看品久久| 国产人伦9x9x在线观看| 九草在线视频观看| 别揉我奶头~嗯~啊~动态视频 | 侵犯人妻中文字幕一二三四区| 亚洲人成电影观看| 狂野欧美激情性bbbbbb| 国产一区二区三区av在线| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 韩国精品一区二区三区| 日韩中文字幕视频在线看片| 国产又色又爽无遮挡免| 国产乱人偷精品视频| 日本一区二区免费在线视频| videos熟女内射| 欧美日韩亚洲国产一区二区在线观看 | 91成人精品电影| 久久久国产一区二区| 亚洲精华国产精华液的使用体验| 久久久久国产一级毛片高清牌| 在线亚洲精品国产二区图片欧美| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| 亚洲中文av在线| 国产精品一区二区在线不卡| 97在线人人人人妻| 国产欧美日韩综合在线一区二区| 亚洲成人一二三区av| 一级片免费观看大全| 五月天丁香电影| 深夜精品福利| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 日韩一卡2卡3卡4卡2021年| 丰满饥渴人妻一区二区三| 欧美日韩亚洲综合一区二区三区_| 日韩大片免费观看网站| 亚洲专区中文字幕在线 | 欧美成人午夜精品| 亚洲欧美精品自产自拍| 亚洲成人手机| 免费看av在线观看网站| 成年动漫av网址| 亚洲熟女毛片儿| 免费观看av网站的网址| 黄色毛片三级朝国网站| 日本黄色日本黄色录像| 天天躁夜夜躁狠狠久久av| 欧美国产精品va在线观看不卡| 免费看不卡的av| 亚洲国产中文字幕在线视频| 蜜桃国产av成人99| 亚洲av欧美aⅴ国产| 啦啦啦视频在线资源免费观看| 青春草视频在线免费观看| 国产精品亚洲av一区麻豆 | 国产亚洲一区二区精品| 亚洲精品久久久久久婷婷小说| 久久97久久精品| 深夜精品福利| 久久久久人妻精品一区果冻| 久热这里只有精品99| 七月丁香在线播放| 老司机在亚洲福利影院| 欧美xxⅹ黑人| 大片免费播放器 马上看| 国产一卡二卡三卡精品 | 午夜激情久久久久久久| 高清在线视频一区二区三区| 中文字幕人妻熟女乱码| 在线 av 中文字幕| 精品国产露脸久久av麻豆| 国产亚洲欧美精品永久| 国产又爽黄色视频| 久久天躁狠狠躁夜夜2o2o | 久久精品亚洲熟妇少妇任你| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| 亚洲欧美色中文字幕在线| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 亚洲精品第二区| 一级片免费观看大全| 国产精品嫩草影院av在线观看| 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 熟女av电影| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| 日本vs欧美在线观看视频| 精品亚洲乱码少妇综合久久| 日韩不卡一区二区三区视频在线| 三上悠亚av全集在线观看| 女人精品久久久久毛片| 亚洲,欧美精品.| 在线观看免费高清a一片| 国产福利在线免费观看视频| 国产精品久久久久久精品古装| e午夜精品久久久久久久| 国产av一区二区精品久久| 卡戴珊不雅视频在线播放| 亚洲欧美精品自产自拍| 热re99久久精品国产66热6| 亚洲成国产人片在线观看| 亚洲精华国产精华液的使用体验| 99九九在线精品视频| 中文字幕另类日韩欧美亚洲嫩草| 毛片一级片免费看久久久久| 国产成人精品福利久久| 久久综合国产亚洲精品| 91精品三级在线观看| 亚洲成人手机| 男女之事视频高清在线观看 | 久久ye,这里只有精品| 两个人免费观看高清视频| 2018国产大陆天天弄谢| 日韩一区二区视频免费看| 亚洲av电影在线观看一区二区三区| 午夜福利一区二区在线看| 爱豆传媒免费全集在线观看| 国产精品香港三级国产av潘金莲 | 熟女少妇亚洲综合色aaa.| 精品国产一区二区三区四区第35| 啦啦啦在线观看免费高清www| 搡老岳熟女国产| 日韩大片免费观看网站| 日韩电影二区| svipshipincom国产片| 日韩欧美一区视频在线观看| 精品午夜福利在线看| 欧美97在线视频| 多毛熟女@视频| 亚洲国产精品999| 大陆偷拍与自拍| 欧美日韩国产mv在线观看视频| 欧美精品一区二区大全| 99热全是精品| 看非洲黑人一级黄片| av在线老鸭窝| 丰满乱子伦码专区| 岛国毛片在线播放| 精品少妇内射三级| 亚洲欧美一区二区三区黑人| 国产免费又黄又爽又色| 婷婷成人精品国产| 国产野战对白在线观看| 巨乳人妻的诱惑在线观看| 日韩中文字幕视频在线看片| 国产又色又爽无遮挡免| 成人影院久久| 九草在线视频观看| 日本欧美国产在线视频| 久久免费观看电影| 丝袜在线中文字幕| 一区二区av电影网| 在线观看一区二区三区激情| 99热网站在线观看| 国产xxxxx性猛交| 精品第一国产精品| 黄色一级大片看看| www日本在线高清视频| 一级,二级,三级黄色视频| 在线免费观看不下载黄p国产| 麻豆av在线久日| 三上悠亚av全集在线观看| 一本色道久久久久久精品综合| 少妇被粗大的猛进出69影院| 成人漫画全彩无遮挡| 黄色一级大片看看| 热99国产精品久久久久久7| 国产极品天堂在线| 国产精品久久久久久精品古装| 国产成人免费观看mmmm| 日韩精品免费视频一区二区三区| 青春草亚洲视频在线观看| 亚洲av日韩精品久久久久久密 | 精品国产乱码久久久久久小说| 丁香六月天网|