• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Na2Ti3O7納米片原位制備與鈉離子電池負極材料應用

    2016-11-18 07:29:20陳程成張寧劉永暢王一菁陳
    物理化學學報 2016年1期
    關(guān)鍵詞:南開大學鈉離子粘結(jié)劑

    陳程成張 寧劉永暢王一菁陳 軍,2,*

    (1南開大學化學學院,先進能源材料教育部重點實驗室,天津 300071;2南開大學,天津化學化工協(xié)同創(chuàng)新中心,天津 300071)

    Na2Ti3O7納米片原位制備與鈉離子電池負極材料應用

    陳程成1張 寧1劉永暢1王一菁1陳 軍1,2,*

    (1南開大學化學學院,先進能源材料教育部重點實驗室,天津 300071;2南開大學,天津化學化工協(xié)同創(chuàng)新中心,天津 300071)

    報道了Na2Ti3O7納米片的原位生長和鈉離子電池負極材料的應用。通過簡單的腐蝕市售的鈦片制備出相互連接的微納結(jié)構(gòu)的Na2Ti3O7納米片。此外,腐蝕后的鈦片在不用添加導電劑或粘結(jié)劑的情況下,可以直接作為電極材料使用。這種電極材料表現(xiàn)出優(yōu)越的電化學性能,在50 mA·g–1的電流密度下具有175 mAh·g–1的可逆容量,在2000 mA·g–1的電流密度下循環(huán)3000周后,其容量仍保持120 mAh·g–1,容量保持率為96.5%。Na2Ti3O7納米片電極的優(yōu)越電化學性能歸因于二維結(jié)構(gòu)具有較短的離子/電子擴散路徑以及無粘結(jié)劑結(jié)構(gòu)能有效的增加電極的電子傳導能力。結(jié)果表明,這種微納結(jié)構(gòu)能夠有效地克服Na2Ti3O7作為電極材料離子/電子導電性差的缺點。因此,這種無粘結(jié)劑結(jié)構(gòu)的Na2Ti3O7納米片負極材料是一種很有潛力的鈉離子負極材料。

    鈦酸鈉;納米片;無粘結(jié)劑;負極材料;鈉離子電池

    1 Introduction

    Rechargeable sodium ion batteries (SIBs) have attracted interest owing to the broad distribution, abundance, and low cost of sodium resources1–3. Unfortunately, the anode materials such as carbon species, alloys, and conversion-type transition metal oxides are facing the problems of inactivity, poor cycling life, and low rate performance mainly due to the sluggish reaction caused by larger size than those of Li+and heavy molecular mass of Na ion4–6. Therefore, it remains a great challenge to exploit the anode with low cost, long cycling life, and high power density for SIBs7–9.

    Ti-base oxides have been considered as potential electrode materials for their small structural expansion and applicable operating voltage10. As a typical insertion Ti-base oxides, Na2Ti3O7(NTO) has been regarded as a promising anode material owing to its low cost, good cycling stability, and proper voltage plateau centered at 0.3 V (vs Na/Na+)11. Nevertheless, the poor ion conductivity and electron conductivity of NTO seriously impact its rate performance12,13. To solve the problems, typical methods including carbon coating and morphological control have been utilized. Na2Ti3O7/C composites were obtained by rheological phase method with capacity of 111.8 mAh·g–1at 177 mA·g–1after 100 cycles14. In addition, the micro-spheric NTO consisting of nanotubes was synthesized by hydrothermal method, displaying a capacity of 90 mAh·g–1at high current density of 1770 mA·g–1with 81% capacity retention after 100 cycles15. On the basis of such work, how to further improve rate capability of NTO electrode to satisfy the demand of high-power devices is still an urgent task16–18.

    Recently, two-dimension (2D) nanosheets with short ion transport length, large contact surface areas, and stable structure have attrated interest in enhancing the ion conductivity19–21. Specifically, Wan′s group19has successfully fabricated 2D Li4Ti5O12nanosheets for lithium ion batteries (LIBs) with excellent rate performance. However, report on NTO nanosheets as anode of SIBs is limited22. Therefore, it is worth to prepare NTO nanosheets with facile method and design the tailored structure for overcoming poor ion/electron conductivity.

    Here, we report on a facile preparation of NTO nanosheets and their application as high-performance anode for SIBs. NTO nanosheets were prepared by in-situ engraving the titanium foils. Meantime, synthesis conditions were optimized to obtain nanosheets with proper size and crystallinity. Furthermore, NTO nanosheets with interconnected micro-nano architecture can directly grow on the current collector. The unique structure not only shortens the ion pathway, but also ensures rapid electron transfer. The electrode of NTO nanosheets shows a stable reversible capacity of 175 mAh·g–1at 50 mA·g–1and 107 mAh·g–1at 4000 mA·g–1. Even at a high current density of 2000 mA·g–1, the reversible capacity still reaches 120 mAh·g–1after 3000 cycles with a capacity retention of 96.5%. This is the highest value reported for NTO. Meantime, the flexible full sodium-ion battery has been successfully assembled using the binder-free NTO as anode, displaying good electrochemical performance.

    2 Experimental

    2.1 Material synthesis

    The 30 μm thick Ti foils (99.9% purity) with excellent flexibility and toughness were chosen as Ti base. In a typical preparation, the whole Ti foil was punched into several wafers with 1 cm in diameter. Then, the Ti wafers were ultrasonically cleaned in acetone, deionized water, and ethanol for few minutes, respectively. Five Ti wafers were taken into 50 mL Teflon-lined stainless autoclave, which was filled with 10 mL 1mol·L–1sodium hydroxide solution (99.8% purity). Then, the Teflon-lined stainless autoclaves were sealed and placed in an oven at 180 °C for 24 h. After cooling down to room temperature, the corroded Ti wafers were collected and washed with deionized water and ethanol, then dried at 80 °C for 12 h. The precursor Ti wafers were calcined in air at 400, 600, and 800 °C for 5 h to obtain the Na2Ti3O7electrodes (denoted as NTO-400, NTO-600, and NTO-800). In the process of optimization, different concentrations of sodium hydroxide solution with 0, 0.1, 0.5, 1, 2 mol·L–1were chosen to react with Ti wafers (detail information in Fig.S1–Fig.S4, Supporting Information).

    2.2 Material characterization

    The crystal structure of samples were determined by powder X-ray diffraction (XRD, Rigaku D/Max-2500, Cu-Kαradiation). Raman spectra were recorded using a confocal Raman microscope (DXR, Thermo-Fisher Scientific). The contents of Ti and Na in the solution were measured by using an ICP-9000 (N + M) USA Thermo Jarrell-Ash Corp instrument. The morphology and structure of Na2Ti3O7were characterized using scanning electron microscope (SEM, JEOL JSM-6700F Field Emission, operating at 5 kV) and high-resolution transmission electron microscope (HRTEM, JEOL JEM-2010 FEF TEM, operating at 200 kV). The electronic states of samples were investigated by X-ray photoelectron spectroscopy (XPS, PHI 5000Versa Probe).

    2.3 Electrochemical measurement

    The electrochemical performance was measured using a two electrode coin-type cell (CR2032) and assembled in an argonfilled glove box. One side of the as-prepared Na2Ti3O7wafers was scraped off by blade to expose the Ti bases as current collector. Then, the wafers were directly used as anode for sodium ion battery without further operation. The pure sodium foils were used as the counter electrode. The glass fibers were used as separators. The electrolyte was 1 mol·L–1NaPF6in propylene carbonate (PC) solution with 0.7 mmol fluoroethylene carbonate (FEC). Mass of active material was calculated from the increase amount of Ti foils. The loading density of anode is about 0.74 mg·cm–2. The charge-discharge cycle tests and galvanostatic intermittent titration technique (GITT) were run under different current densities between cut off voltages of 0.01–2.5 V (vs Na/Na+) on a CT2001A cell test instrument(LAND Electronic Co.) at room temperature. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)were measured on a CHI660E electrochemical work station.

    3 Results and discussion

    3.1 Structure and morphology analysis

    Fig.1(a) shows XRD pattern of NTO on Ti substrate. The main peaks of NTO-400 and NTO-600 are in good agreement with the characteristic peaks of NTO (JCPDS No. 31-1329)14,15. However, NTO-800 exists TiO2phase, which may be due to the oxidation of part Ti substrate at such a high temperature. Therefore, 400 and 600 °C should be the appropriate temperature to obtain pure NTO. Raman spectra of NTO-400 and NTO-600were also used to prove their further structure (Fig.S5a). The Raman bands at about 280, 450, 640, 902 cm–1should be assigned to the feature of NTO nanostructure23. Bands at 280 and 450 cm–1are attributed to the Na―O―Ti stretching. The peaks close to 140 and 902 cm–1represent symmetric stretch of short Ti―O bonds involving non-bridging oxygen coordinated with sodium ions. The broad peaks located at 640 and 703 cm–1belong to Ti―O―Ti stretching in edge shared TiO612. Meanwhile, SEM with energy dispersive X-ray spectrum (EDX) (Fig.S5b)exhibits that three elements of Na, Ti, and O are uniformly distributed on the nanosheets. The mole ratio of Na : Ti : O (14.6 : 31.9 : 53.5) is in good agreement with Na2Ti3O7. The crystal structure of Na2Ti3O7along the b-axis is illustrated in Fig.1b. The layered structure is composed of three abreast TiO6octahedra, which build up the extended zigzag (Ti3O7)2–layers. Within the layers, there are enough spaces for sodium ions insertion/extraction during electrochemical process. Fig.1(c, d) shows the SEM images of NTO-600. The morphology of NTO-600 is homogeneous nanosheets. Nanosheets have extremely smooth surface with about 35 nm in thickness. The NTO-400 shows the similar sheet-like morphology(Fig.S6(a, b). Compared the cross-section SEM of NTO-600(Fig.1(e) with NTO-400 (Fig.S6c), the active material layer of NTO-600 is more thick and porous than that of NTO-400. Moreover, NTO nanosheets firmly grow on the Ti substrate, which can provide better electronic conductivity and superior stability than that of traditional electrodes24,25. Fig.1(f) shows the TEM image of the NTO-600. It can be clearly seen that the nanosheets interconnected with each other build up a firm micron cluster. Fig.1(g) shows the TEM image of a single nanosheet with 100 nm in width. The corresponding energy dispersive spectrometer (EDS) mapping demonstrates the uniform distribution of Na, Ti, and O elements. Fig.1(h) displays the HRTEM image of NTO-600, exhibiting obvious lattice fringe with high crystallinity26,27. The lattice fringes of 0.84 nm matches well with the (001) faces. However, it is hard to find clear lattice fringe in NTO-400 (Fig.S7(a, b)). This suggests that proper heating temperature produces high crystallinity of NTO.

    3.2 Electrochemical performance

    Fig.1 Structural and morphological analyses of NTO nanosheets

    Fig.2(a) shows the CV of NTO-600 in the potential range of 0.1–2.5 V (vs Na/Na+) at a scan rate of 0.2 mV·s–1. In the first cathodic scan, a weak peak around 1.1 V could be attributed to contribution from pseudo-capacitive process. The large peak ranged from 0.7 to 0.13 V corresponds to the insertion of Na+and the formation of solid electrolyte interface (SEI) layer. In this process, the Na+ions insert into Na2Ti3O7forming theNa2+xTi3O7, meantime, part Ti4+ions are reduced to Ti3+ions to keep charge balance (detailed valence variation in Fig.S8). During the initial anodic process, the prominent peak at about 0.5 V is related to the extraction of Na+and oxidation process of Ti3+to Ti4+. In particular, a broad peak located at around 1.5 V, vanishing in following cycles, is attributed to the structure change to accommodate the electrochemical reaction, which corresponds to incomplete oxidation of Ti3+after charging to 2.0 V. Furthermore, the curves of the second and the third cycles are almost coincident, implying the excellent reversibility. Fig.2(b)shows the corresponding charge-discharge curves. The initial discharge capacity and charge capacity are 296 and 145 mAh·g–1, respectively, with the coulombic efficiency of 49%. The large capacity loss in the following discharge stages is mainly due to the irreversible formation of SEI layer, which is consistent with the CV analysis. Subsequently, the coulombic efficiency rapidly increases to above 90% and the reversible capacity becomes stable around 188 mAh·g–1. Notably, the average Na+insertion potential is relatively low, which is suitable for the high energy density anode material.

    Fig.2 (a) Cyclic voltammograms of the initial three cycles for NTO-600 range from 0.1 to 2.5 V at a rate of 0.2 mV·s-1; (b) charge-discharge curves of the initial three cycles; (c) cycling performance of the binder-free NTO and traditional NTO electrodes (using the CMC and PVdF as binder); (d) rate performance of the binder-free NTO electrodes; (e) a long-term cycling performance of NTO-600 electrode started from the fourth cycle at 2000 mA·g-1(after the activation of three cycles at 50 mA·g-1)

    Fig.2(c) displays the cycling performance in the voltage range of 0.1–2.5 V (vs Na/Na+) at current density of 50 mA·g–1. For comparison, the electrodes of bulk NTO (NTO-B) were prepared using sodium carboxy-methyl cellulose (CMC) and polyvinylidene fluoride (PVdF) as binder, respectively. Clearly, the discharge capacities of binder-free NTO nanosheets electrodes are generally higher than that of traditional bulk NTO electrodes. This may be due to the insufficient utilization of bulk NTO during the electrochemical process. Moreover, the discharge capacities of binder-free NTO electrodes keep stable after the activation of a few cycles. However, the traditional electrodes have serious capacity fade, especially in the initial 20 cycles. This could be ascribed to the poor electronic conductivity and easy exfoliation of traditional bulk NTO electrodes. More importantly, the NTO-600 electrode exhibits preferable electrochemical performance with the discharge capacity of 175 mAh·g–1, nearly its theoretical capacity (177 mAh·g–1). The capacity retention is 94.7% after 100 cycles implying the excellent cyclic property. This is because the binder-free nanosheets in-situ generate on the Ti foil with tight adhesion and superior electronic conductivity. In addition, comparing the coulombic efficiency of two binder-free electrodes (Fig.S9), the coulombic efficiency of NTO-600 is above 90% after activated for 5 cycles. But the coulombic efficiency of NTO-400 is always below 90% and quite unstable even after 40 cycles. It indicates that NTO-600 are more stable than NTO-400 during the Na+insertion/extraction process. It could be attributed to the more porous architecture and fine crystallinity of NTO-600. Fig.2(d)shows the rate performance of binder-free electrodes at different current densities from 50 to 4000 mA·g–1. It can be observed that NTO-600 electrodes have the best rate performance. The discharge capacities of NTO-600 electrode is 186 (50 mA·g–1), 166 (100 mA·g–1), 141 (500 mA·g–1), 120 (1000 mA·g–1), 114 (2000 mA·g–1), and 107 mAh·g–1(4000 mA·g–1)shown in Fig.S10, respectively. More importantly, when the current density returns to 50 mA·g–1, the capacities revert to 175 mAh·g–1with 94% capacity retention implying the outstanding adaptability. The negligible potential polarization and high stability of NTO-600 at such a high current density demonstrate the excellent reaction kinetics.

    Fig.2(e) shows the long-term cycling performance of NTO-600 at a high current density of 2000 mA·g–1. Under such rapid sodium ion insertion/extraction conditions, NTO-600 electrode still keeps considerable average capacities of 120 mAh·g–1with capacity retention of 96.5% even after 3000 cycles. Meanwhile, the coulombic efficiency is close to 100% all the time, indicating the excellent reversibility. Furthermore, the corresponding charge-discharge curves (Fig.S11) show that the charge/discharge time consumption is only 250 s at 2000 mA·g–1, which meets the demands of efficient and rapid charging/discharging for high performance SIBs.28As expected, compared with other various Na2Ti3O7anode materials reported recently (Fig.S12), the binder-free NTO nanosheet electrode exhibits the best electrochemical capability, especially in high rate performance. To satisfy the commercial demands for wide temperature range, the charge-discharge curves operated at –15, 25, 50, and 80 °C are exhibited in Fig.S13. With the increase of temperature, the discharge capacities have great improvements. This is due to the increase of the activity of Na+at high temperature25. More inspiringly, the discharge capacity remains 138 mAh·g–1at –15 °C with the coulombic efficiency of 92.3%, implying the favorable temperature adaptability29.

    Fig.3 (a) GITT profiles of NTO-600 electrode at a current density of 20 mA·g-1; (b) a selected pulse of GITT profile during the stage of charge process (insert image: the linear relationship between Eτwith τ1/2); (c) Nyquist plots of the intial state of NTO-B, NTO-600 and the charged-state(100th) of NTO-600 (inset: the corresponding the equivalent circuit); (d) schematic diagram of electron/ion transport in the tailored binder-free 2D nanosheets architecture

    3.3 Flexible SIBs

    In order to further study the relationship between structure and electrochemical property, the GITT and EIS have been employed to analyze ion/electron conductivity of binder-free nanosheet NTO electrode. Fig.3(a) displays the GITT mode corresponding to kinetic characteristic of the insertion of Na+into Na2Ti3O7. The quasi-equilibrium redox potential curve of the NTO-600 is very similar to the above charge-discharge curve (Fig.2(b)). It demonstrates that the NTO-600 has good ionic conductivity30. Moreover, sodium ion diffusion coefficient (DNa+) of NTO can be calculated from the GITT curves18,31. Fig.3(b) shows the selected pulse at stable charging process(0.55–0.62 V). For the linear relationship between Eτ(cell voltage) and τ1/2(radication of the time period of the current pulse) shown in the insert image, the DNa+ can be obtained from the equation below (related physical quantities in Supporting Information: GITT discussion)

    The value of sodium chemical diffusion coefficient during the extraction Na+process is estimated to be approximately 4.37 × 10–11cm2·s–1. The result is considerably higher than that of reported NTO and other electrode materials for sodium ion battery (Table S3). It firmly evidences that the tailored 2D nanostructure greatly increases the ion diffusion during electrochemical process.

    Subsequently, EIS plots are performed to corroborate the electronic conductivity of binder-free NTO nanosheets electrode. Fig.3(c) shows that the charge-transfer resistance (Rct, the value of which corresponds to the diameter of the semicirclediameter) of binder-free NTO-600 electrode (132 Ω, fitted by Zview) is much smaller than that of traditional NTO-B electrode (354 Ω). This result should be attributed to good electronic conductivity of binder-free structure. Moreover, Rctof NTO-600 remains 134 Ω after 100 cycles, which is very close to the initial state implying the excellent electronic conductivity during the electrochemical process.

    Fig.4 (a) Schematic illustration of flexible full SIB; (b) a green LED lighted up by the flexible sodium ion full battery under the bended status;(c) the charge-discharge profiles of flexible full SIB at 50 mA·g-1

    To clarify the reason for the excellent rate performance and super-long life, the unique architecture and morphology should also be paid more attention. Fig.S14 shows the SEM images of NTO-600 after 100 and 500 cycles. The nanosheets remain in the original morphology after 100 cycles. Even after 500 cycles, the porous architecture still can be observed. Furthermore, the structure and morphology of NTO-600 electrodes after 3000 cycles have been measured in Fig.S15. The results show that pulverization and agglomeration occur on the electrode surface, leading to the slight capacity loss. However, the NTO-600 maintains the Na2Ti3O7phase with well crystallinity.

    According to above analysis, the reasonable schematic of electron/ion transport has been exhibited in Fig.3(d). Firstly, the unique 2D nanosheets possess significantly short diffusion paths of Na+and large contact surface areas. The Na+can freely diffuse between the adjacent sheets. Furthermore, the gaps and holes among the nanosheets contribute to the diffusion of electrolyte into the inner area of active materials. Second, the insitu generated nanosheets offer good electronic contact between the active materials and the Ti current collector. For the electrochemical reaction starting from the bottom to the whole electrode, it immensely accelerates the electron flowing between the Ti substrate and NTO nanosheets, which avoids the destruction of the morphological structure24. On the other hand, without the inactive and insulated polymeric binder, Na+flux could continuously and efficiently pass the surface of NTO into the lattice structure32. Thus, both the ion diffusion capability and the electron conductivity of NTO have been considerably improved by the ingenious structural design.

    We further assembled a flexible SIB to show its application for such bendable anode in flexible devices. Fig.4(a) shows the structural schematic of the flexible full SIB. In this cell, the anode is made of 2 cm × 5 cm NTO nanosheet electrode, the cathode is NaVPO4F33loaded on Al foil, and the separator is flexible glass fiber. The mass ratio of anode and cathode is carefully calculated as 1 : 1.77 described in Fig.S16. The real flexible full SIB is shown in Fig.4(b), which is very thin and light. It can easily light up a green LED. More importantly, no matter the battery is flat or bended, the light is always very bright, and the working voltage only has negligible change (Fig.S17), which declares that the bending almost has no bad effect on ions/electrons transport. This should be attributed to the good flexibility and resilience of the binder-free NTO electrode. Thus, the anode can be freely bended, then recover (insert image of Fig.4(b). Furthermore, Fig.4(c) shows the charge-discharge profiles of flexible full SIB at 50 mA·g–1within the voltage window of 1.5–4.0 V. The cell displays good electrochemical performance with stable reversible capacity of 82 mAh·g–1for 30 cycles (Fig.S18). In particular, the in-situ NTO nanosheet anode as a novel flexible electrode makes it possible to apply to various special devices, such as bendable portable energy storage equipments34.

    4 Conclusions

    In summary, Na2Ti3O7electrode with the interconnected nanosheets delicately generated on the Ti current collector is prepared by facile etch reaction. The unique structure of Na2Ti3O7nanosheets offers the short ion/electron diffusion pathway, large contact surface areas, and stable porous architecture, which greatly improved the ion/electron conductivity of Na2Ti3O7. When evaluated as anode for SIBs, NTO-600 electrode delivers a reversible capacity of 175 mAh·g–1at 50 mA·g–1with 94.7% retention after 100 cycles. Moreover, the capacity of 107 mAh·g–1even at 4000 mA·g–1and 120 mAh·g–1over 3000 cycles at 2000 mA·g–1with high capacityretention of 96.5% are obtained, showing long-term cycling life and high rate capability. The easily prepared binder-free Na2Ti3O7nanosheets provide a new insight into designing the advanced anode materials for SIBs.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Nano Lett. 2013, 13, 5480. doi: 10.1021/nl403053v

    (2)Duan, W. C.; Zhu, Z. Q.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F. Y.;Chen, J. J. Mater. Chem. A 2014, 2, 8668.

    (3)Zheng, J. Y.; Wang, R.; Li, H. Acta Phys. -Chim. Sin. 2014, 30, 1855. [鄭杰允, 汪 銳, 李 泓. 物理化學學報, 2014, 30, 1855.] doi: 10.3866/PKU.WHXB201407151

    (4)Tang, Y.; Zhang, Y.; Deng, J.; Wei, J.; Tam, H. L.; Chandran, B. K.; Dong, Z.; Chen, Z.; Chen, X. D. Adv. Mater. 2014, 26, 6111. doi: 10.1002/adma.201402000

    (5)Huang, Z. L.; Wang, L. P.; Mou, C. X.; Li, J. Z. Acta Phys. -Chim. Sin. 2014, 30 (10), 1787. [黃宗令, 王麗平, 牟成旭,李晶澤. 物理化學學報, 2014, 30 (10), 1787.] doi: 10.3866/PKU.WHXB201408052

    (6)Mao, J. F.; Luo, C.; Gao, T.; Fan, X. L.; Wang, C. S. J. Mater. Chem. A 2015, 3, 10378. doi: 10.1039/C5TA01007A

    (7)Xu, J.; Yang, D. Z.; Liao, X. Z.; He, Y. S.; Ma, Z. F. Acta Phys. -Chim. Sin. 2015, 31 (5), 913. [許 靜, 楊德志, 廖小珍,何雨石, 馬紫峰. 物理化學學報, 2015, 31 (5), 913.] doi: 10.3866/PKU.WHXB201503162

    (8)Hu, Z.; Wang, L.; Zhang, K.; Wang, J.; Cheng, F.; Tao, Z.; Chen, J. Angew. Chem. Int. Edit. 2014, 53, 12794. doi: 10.1002/anie.201407898

    (9)Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21.[李 慧, 吳 川, 吳 峰, 白 瑩. 化學學報, 2014, 72, 21.]doi: 10.6023/A13080830

    (10)Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Energy Environ. Sci. 2012,5, 6652. doi: 10.1039/c2ee03410g

    (11)Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.;Palacín, M. R. Chem. Mater. 2011, 23, 4109.

    (12)Zhang, Y.; Guo, L.; Yang, S. Chem. Commun. 2014, 50, 14029. doi: 10.1039/C4CC06451H

    (13)Pan, H.; Lu, X.; Yu, X.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. Adv. Energy Mater. 2013, 3, 1186. doi: 10.1002/aenm.v3.9

    (14)Yan, Z.; Liu, L.; Shu, H.; Yang, X.; Wang, H.; Tan, J.; Zhou, Q.;Huang, Z.; Wang, X. J. Power Sources 2015, 274, 8. doi: 10.1016/j.jpowsour.2014.10.045

    (15)Wang, W.; Yu, C.; Lin, Z.; Hou, J.; Zhu, H.; Jiao, S. Nanoscale 2013, 5, 594. doi: 10.1039/C2NR32661B

    (16)Zhang, C. L.; Jiang, W. J.; Zhang, J.; Qi, L. Acta Phys. -Chim. Sin. 2007, 23 (Supp), 31. [張春玲, 江衛(wèi)軍, 張 晶, 其 魯.物理化學學報, 2007, 23 (Supp), 31.] doi: 10.3866/PKU.WHXB2007Supp08

    (17)Cao, L. Y.; Diao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2002, 18(12), 1062. [曹林有, 刁 鵬, 劉忠范. 物理化學學報, 2002, 18(12), 1062.] doi: 10.3866/PKU.WHXB20021202

    (18)Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Chem. Soc. Rev. 2015, 44, 699. doi: 10.1039/C4CS00218K

    (19)Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 7874. doi: 10.1021/ja301266w

    (20)Guo, Y. J.; Chen, H.; Qi, L. Acta Phys. -Chim. Sin. 2007, 23(Supp), 89. [郭營軍, 晨 輝, 其 魯. 物理化學學報, 2007, 23(Supp), 89.] doi: 10.3866/PKU.WHXB2007Supp17

    (21)Wang, S.; Wang, L.; Zhang, K.; Zhu, Z.; Tao, Z.; Chen, J. Nano Letters 2013, 13, 4404. doi: 10.1021/nl402239p

    (22)Ye, F.; Wang, L.; Lian, F.; He, X. M.; Tian, G. Y.; Ouyang, M. G. Chem. Ind. Eng. Prog. 2013, 32, 1789. [葉 飛, 王 莉, 連芳, 何向明, 田光宇, 歐陽明高. 化工進展, 2013, 32, 1789.]

    (23)Liu, H.; Yang, D.; Waclawik, E. R.; Ke, X.; Zheng, Z.; Zhu, H.;Frost, R. L. J. Raman Spectrosc. 2010, 41, 1792.

    (24)Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.;Zhang, X. B. Adv. Mater. 2014, 26, 2273.

    (25)Liu, J.; Song, K.; Aken, P. A. V.; Maier, J.; Yu, Y. Nano Lett. 2014, 14, 2597. doi: 10.1021/nl5004174

    (26)Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J. Energy Environ. Sci. 2015, 8, 1309.

    (27)Zhang, K.; Hu, Z.; Tao, Z.; Chen, J. Sci. China Mater. 2014, 57, 42. doi: 10.1007/s40843-014-0006-0

    (28)Gao, P.; Jia, H.; Yang, J.; Nuli, Y.; Wang, J.; Chen, J. Phys. Chem. Chem. Phys. 2011, 13, 20108. doi: 10.1039/c1cp23062j

    (29)Chen, C. C.; Huang, Y. N.; Zhang, H.; Wang, X. F.; Li, G. Y.;Wang, Y. J.; Jiao, L. F.; Yuan, H. T. J. Power Sources 2015, 278, 693. doi: 10.1016/j.jpowsour.2014.12.075

    (30)Zhang, N.; Liu, Y. C.; Chen, C. C.; Tao, Z. L.; Chen, J. Chin. J. Inorg. Chem. 2015, 31, 1739. [張 寧, 劉永暢, 陳程成, 陶占良,陳 軍. 無機化學學報, 2015, 31, 1739.]

    (31)Shaju, K. M.; SubbaRao, G. V.; Chowdari, B. V. R. Electrochim. Acta 2003, 48, 2691. doi: 10.1016/S0013-4686(03)00317-7

    (32)Wang, L.; Zhang, K.; Hu, Z.; Duan, W.; Cheng, F.; Chen, J. Nano Res. 2013, 7, 199.

    (33)Lu, Y.; Zhang, S.; Li, Y.; Xue, L.; Xu, G.; Zhang, X. J. Power Sources 2014, 247, 770. doi: 10.1016/j.jpowsour.2013.09.018

    (34)Zhou, G.; Li, F.; Cheng, H. M. Energy Environ. Sci. 2014, 7, 1307. doi: 10.1039/C3EE43182G

    In-situ Preparation of Na2Ti3O7Nanosheets as High-Performance Anodes for Sodium Ion Batteries

    CHEN Cheng-Cheng1ZHANG Ning1LIU Yong-Chang1WANG Yi-Jing1CHEN Jun1,2,*
    (1Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China;2Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China)

    We report on the in-situ preparation of Na2Ti3O7nanosheets and their application as highperformance anode material for sodium ion batteries. Nanosheets with interconnected micro-nano architectures are prepared by simply engraνing commercial titanium foils. Furthermore, the foils can be used directly as electrodes without redundant conductiνe additiνes or binders. The electrode material exhibits excellent electrochemical performance with reνersible capacity of 175 mAh·g–1at 50 mA·g–1and 120 mAh·g–1at 2000 mA·g–1after 3000 cycles (capacity retention of 96.5%). The superior electrochemical performance of Na2Ti3O7nanosheets results from the short ion/electron diffusion pathway of the twodimensional architecture and the good conductiνe capability of the binder-free structure. The anode of the binder-free Na2Ti3O7nanosheets effectiνely oνercomes poor ion/electron conductiνity, the main drawback of Na2Ti3O7electrodes, and is promising for rechargeable sodium ion batteries.

    Na2Ti3O7; Nanosheet; Binder-free; Anode material; Sodium ion battery

    O646

    10.3866/PKU.WHXB201512073

    Received: November 6, 2015; Revised: December 7, 2015; Published on Web: December 7, 2015.

    *Corresponding author. Email: chenabc@nankai.edu.cn; Tel: +86-22-23506808.

    The project was supported by the National Natural Science Foundation of China (51231003, 21231005) and Ministry of Education (B12015, 113016A, ACET-13-0296).

    國家自然科學基金(51231003, 21231005)和教育部重點科技項目(B12015, 113016A, ACET-13-0296)資助

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    南開大學鈉離子粘結(jié)劑
    SWAN在線鈉離子分析儀的使用及維護研究
    蠟基溫拌添加劑對橡膠粉改性瀝青性能影響研究
    南開大學制備新型超強韌人造蜘蛛絲
    隧道復合式路面高粘改性乳化瀝青防水粘結(jié)劑開發(fā)
    石油瀝青(2019年3期)2019-07-16 08:48:20
    一道南開大學自主招生試題的推廣
    一種型煤粘結(jié)劑及其制備方法
    腐植酸(2016年1期)2016-12-16 08:28:50
    鈉離子通道與慢性心力衰竭
    長焰煤型煤復合粘結(jié)劑的研究
    鈉離子電池負極材料研究進展
    還原氧化石墨烯/TiO2復合材料在鈉離子電池中的電化學性能
    亚洲精品456在线播放app| 婷婷色av中文字幕| 少妇被粗大的猛进出69影院 | 精品国产露脸久久av麻豆| 日韩av在线免费看完整版不卡| 免费观看a级毛片全部| 少妇的逼好多水| 欧美日韩国产mv在线观看视频| 九色亚洲精品在线播放| 午夜影院在线不卡| 全区人妻精品视频| 久久久久久伊人网av| 人人澡人人妻人| 人妻少妇偷人精品九色| av黄色大香蕉| 深夜精品福利| 国产 一区精品| 免费av中文字幕在线| 一本大道久久a久久精品| 天堂俺去俺来也www色官网| 国产日韩欧美在线精品| 国产av码专区亚洲av| 国产熟女午夜一区二区三区| 国产亚洲最大av| 2021少妇久久久久久久久久久| 在现免费观看毛片| 少妇精品久久久久久久| 欧美最新免费一区二区三区| 看非洲黑人一级黄片| 久久影院123| 国产黄色视频一区二区在线观看| 国产乱人偷精品视频| 十八禁网站网址无遮挡| 免费高清在线观看视频在线观看| 国产一区亚洲一区在线观看| 久久人妻熟女aⅴ| 国产欧美日韩综合在线一区二区| 日本av手机在线免费观看| 少妇 在线观看| 成年动漫av网址| 男女下面插进去视频免费观看 | 国产爽快片一区二区三区| 免费在线观看完整版高清| a级毛片在线看网站| xxx大片免费视频| 一本久久精品| 精品一区二区三卡| 国产黄色免费在线视频| 亚洲内射少妇av| 成年人午夜在线观看视频| 免费日韩欧美在线观看| 天天躁夜夜躁狠狠躁躁| 色94色欧美一区二区| 国产精品一国产av| 精品少妇内射三级| 免费黄频网站在线观看国产| 美女脱内裤让男人舔精品视频| 精品国产乱码久久久久久小说| 丰满迷人的少妇在线观看| 日韩 亚洲 欧美在线| 国产成人精品一,二区| 亚洲人成77777在线视频| 69精品国产乱码久久久| 久久99热这里只频精品6学生| 97精品久久久久久久久久精品| 丝袜喷水一区| 母亲3免费完整高清在线观看 | 黑人猛操日本美女一级片| 色婷婷久久久亚洲欧美| 成年动漫av网址| 日韩人妻精品一区2区三区| 又粗又硬又长又爽又黄的视频| 亚洲欧美清纯卡通| 成年女人在线观看亚洲视频| 一级毛片黄色毛片免费观看视频| 色吧在线观看| 久久精品国产综合久久久 | a级毛片在线看网站| 少妇的丰满在线观看| 男男h啪啪无遮挡| av线在线观看网站| 中文字幕人妻丝袜制服| 又粗又硬又长又爽又黄的视频| 婷婷色综合www| 男女午夜视频在线观看 | 欧美国产精品va在线观看不卡| 国产亚洲精品第一综合不卡 | 国产精品久久久久成人av| 蜜桃国产av成人99| 人体艺术视频欧美日本| 亚洲av.av天堂| 午夜福利影视在线免费观看| 国产亚洲精品第一综合不卡 | 日韩欧美精品免费久久| 一个人免费看片子| 一级片免费观看大全| 五月玫瑰六月丁香| 97人妻天天添夜夜摸| tube8黄色片| 大话2 男鬼变身卡| 国产亚洲欧美精品永久| 国内精品宾馆在线| 午夜福利,免费看| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡 | 在现免费观看毛片| 中国美白少妇内射xxxbb| 国产极品天堂在线| 国精品久久久久久国模美| 香蕉精品网在线| 大香蕉久久网| av又黄又爽大尺度在线免费看| 日韩欧美精品免费久久| 亚洲丝袜综合中文字幕| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线不卡| 纯流量卡能插随身wifi吗| 精品少妇黑人巨大在线播放| 亚洲国产av新网站| 欧美日韩av久久| 日韩成人伦理影院| 最新中文字幕久久久久| 午夜福利影视在线免费观看| 久热这里只有精品99| 国产免费一级a男人的天堂| xxx大片免费视频| 最近的中文字幕免费完整| 欧美变态另类bdsm刘玥| 2022亚洲国产成人精品| 黄色毛片三级朝国网站| 国产xxxxx性猛交| a级毛片在线看网站| 黑人高潮一二区| 国产 精品1| 日韩成人伦理影院| 亚洲av.av天堂| 精品一区二区三区视频在线| 精品视频人人做人人爽| 香蕉国产在线看| 少妇猛男粗大的猛烈进出视频| 久久久久久人妻| 色94色欧美一区二区| 美女国产视频在线观看| 久久国内精品自在自线图片| 精品一区二区三卡| 观看av在线不卡| 精品卡一卡二卡四卡免费| 精品亚洲乱码少妇综合久久| 日韩人妻精品一区2区三区| av天堂久久9| 欧美成人精品欧美一级黄| 亚洲中文av在线| 最近最新中文字幕免费大全7| 精品久久久精品久久久| 亚洲人成网站在线观看播放| 人人妻人人澡人人看| 久久精品国产综合久久久 | 久久久久人妻精品一区果冻| 国产精品蜜桃在线观看| 大话2 男鬼变身卡| 免费观看无遮挡的男女| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看 | 久久韩国三级中文字幕| 日韩电影二区| 精品国产一区二区久久| www日本在线高清视频| 精品人妻在线不人妻| 亚洲av欧美aⅴ国产| www.熟女人妻精品国产 | 亚洲国产av新网站| 99热全是精品| 国产av码专区亚洲av| 九色成人免费人妻av| 99热全是精品| 成年美女黄网站色视频大全免费| 9色porny在线观看| 精品国产一区二区三区四区第35| 成人黄色视频免费在线看| 久久韩国三级中文字幕| 亚洲欧美色中文字幕在线| 日韩一本色道免费dvd| 人人澡人人妻人| 91成人精品电影| 在线亚洲精品国产二区图片欧美| 久久久久久久久久人人人人人人| 国产成人精品婷婷| 99热这里只有是精品在线观看| 看免费成人av毛片| 黑人猛操日本美女一级片| 成人二区视频| 日韩av不卡免费在线播放| 黄片播放在线免费| 国产一区有黄有色的免费视频| 日韩一本色道免费dvd| 午夜免费鲁丝| 男女无遮挡免费网站观看| 欧美亚洲 丝袜 人妻 在线| 免费观看性生交大片5| av黄色大香蕉| 免费高清在线观看视频在线观看| 人妻人人澡人人爽人人| 精品人妻在线不人妻| 男人操女人黄网站| 亚洲人与动物交配视频| 久久久久精品人妻al黑| 国产国拍精品亚洲av在线观看| 麻豆乱淫一区二区| 亚洲国产精品一区二区三区在线| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 两性夫妻黄色片 | 亚洲久久久国产精品| 亚洲欧洲国产日韩| 黄网站色视频无遮挡免费观看| 伦理电影大哥的女人| 亚洲成国产人片在线观看| 99热6这里只有精品| 日韩,欧美,国产一区二区三区| 色婷婷av一区二区三区视频| 午夜激情av网站| 性高湖久久久久久久久免费观看| 狂野欧美激情性xxxx在线观看| 飞空精品影院首页| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 亚洲精品一二三| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 国产男女超爽视频在线观看| 人人澡人人妻人| 日本欧美视频一区| 草草在线视频免费看| www日本在线高清视频| 伦精品一区二区三区| 99久久中文字幕三级久久日本| 午夜激情av网站| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 久久久久久人人人人人| 精品福利永久在线观看| 综合色丁香网| 国产精品人妻久久久久久| 国产国语露脸激情在线看| 精品一区二区三区视频在线| 黄色配什么色好看| 丰满迷人的少妇在线观看| 中文字幕免费在线视频6| 大话2 男鬼变身卡| 国产在视频线精品| 亚洲中文av在线| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 街头女战士在线观看网站| 久久精品国产综合久久久 | 高清不卡的av网站| 欧美激情国产日韩精品一区| 国产男女内射视频| 久久久久久久亚洲中文字幕| 波多野结衣一区麻豆| 99久国产av精品国产电影| 亚洲性久久影院| 2018国产大陆天天弄谢| 国产在线一区二区三区精| 日韩av在线免费看完整版不卡| 99久久综合免费| 亚洲,欧美精品.| 在线观看三级黄色| 国产高清三级在线| 国产欧美日韩综合在线一区二区| 久久99热6这里只有精品| 国产一区二区激情短视频 | 天堂俺去俺来也www色官网| 美女脱内裤让男人舔精品视频| 久久影院123| 青春草视频在线免费观看| 观看av在线不卡| 国产黄色视频一区二区在线观看| 老司机影院毛片| 日韩成人av中文字幕在线观看| 欧美精品高潮呻吟av久久| 黄片无遮挡物在线观看| 最近2019中文字幕mv第一页| 国产熟女欧美一区二区| 色视频在线一区二区三区| videos熟女内射| 日本色播在线视频| 99热这里只有是精品在线观看| 久久人妻熟女aⅴ| 91精品伊人久久大香线蕉| 18+在线观看网站| xxx大片免费视频| 国产在线一区二区三区精| 一区二区三区精品91| 日韩免费高清中文字幕av| 熟女av电影| 九色成人免费人妻av| 老熟女久久久| 国产极品粉嫩免费观看在线| 国产精品国产三级国产专区5o| 熟女电影av网| 日日摸夜夜添夜夜爱| 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91| 如何舔出高潮| 国产一区二区三区av在线| 久久久久精品性色| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久久久99蜜臀 | 秋霞伦理黄片| 大片电影免费在线观看免费| 国产高清三级在线| 亚洲国产精品专区欧美| 亚洲国产成人一精品久久久| 亚洲美女黄色视频免费看| 中文乱码字字幕精品一区二区三区| 在线天堂中文资源库| 亚洲欧洲精品一区二区精品久久久 | 亚洲久久久国产精品| 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 欧美日韩精品成人综合77777| av女优亚洲男人天堂| 亚洲成色77777| 国产av国产精品国产| 国产av一区二区精品久久| 我的女老师完整版在线观看| 内地一区二区视频在线| 最新的欧美精品一区二区| 亚洲四区av| 国产熟女欧美一区二区| 午夜老司机福利剧场| 91精品三级在线观看| 午夜久久久在线观看| 极品少妇高潮喷水抽搐| 欧美日韩精品成人综合77777| 久久久久国产精品人妻一区二区| 亚洲av日韩在线播放| 精品少妇内射三级| 成人无遮挡网站| 亚洲在久久综合| 久久综合国产亚洲精品| 亚洲欧美成人精品一区二区| 夫妻午夜视频| 久热这里只有精品99| 精品久久蜜臀av无| 亚洲国产毛片av蜜桃av| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| 亚洲色图 男人天堂 中文字幕 | 夫妻性生交免费视频一级片| 黄色怎么调成土黄色| 赤兔流量卡办理| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 免费av中文字幕在线| 欧美97在线视频| 五月玫瑰六月丁香| 日本欧美视频一区| 少妇的逼好多水| 日韩电影二区| 国产片内射在线| 日韩欧美一区视频在线观看| 久久久国产一区二区| 国产亚洲精品第一综合不卡 | 老女人水多毛片| 精品一区二区免费观看| 丝瓜视频免费看黄片| 亚洲色图 男人天堂 中文字幕 | 欧美日韩综合久久久久久| 91精品国产国语对白视频| 国产成人一区二区在线| 精品一区在线观看国产| 免费看不卡的av| 制服人妻中文乱码| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 亚洲精品久久午夜乱码| 成年人免费黄色播放视频| 丰满迷人的少妇在线观看| 午夜视频国产福利| 国产日韩一区二区三区精品不卡| 青春草视频在线免费观看| 五月玫瑰六月丁香| 亚洲三级黄色毛片| av一本久久久久| 午夜视频国产福利| 国产综合精华液| 欧美日本中文国产一区发布| 久久青草综合色| 岛国毛片在线播放| 精品国产国语对白av| 精品酒店卫生间| 日日摸夜夜添夜夜爱| 亚洲国产日韩一区二区| 黄色毛片三级朝国网站| 亚洲经典国产精华液单| 久久国产亚洲av麻豆专区| 亚洲精品美女久久久久99蜜臀 | 国产成人精品在线电影| 嫩草影院入口| 国产免费现黄频在线看| 亚洲国产最新在线播放| 全区人妻精品视频| 老司机影院成人| av网站免费在线观看视频| 精品一区二区三区视频在线| 国产精品 国内视频| 在现免费观看毛片| 视频在线观看一区二区三区| 亚洲精品成人av观看孕妇| 亚洲av国产av综合av卡| 性色av一级| 日韩中字成人| videos熟女内射| 777米奇影视久久| 日韩精品免费视频一区二区三区 | 亚洲图色成人| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲 | 97超碰精品成人国产| 男女高潮啪啪啪动态图| 色5月婷婷丁香| 国产av国产精品国产| 少妇高潮的动态图| 一本久久精品| 日韩人妻精品一区2区三区| 欧美xxxx性猛交bbbb| a级毛片在线看网站| 免费黄色在线免费观看| 国产黄频视频在线观看| 另类精品久久| 亚洲国产av新网站| 男人添女人高潮全过程视频| 久久人人爽人人爽人人片va| 久久这里有精品视频免费| 丰满乱子伦码专区| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 成年人免费黄色播放视频| 少妇猛男粗大的猛烈进出视频| 国产免费现黄频在线看| 夜夜骑夜夜射夜夜干| 满18在线观看网站| 丰满饥渴人妻一区二区三| 成人手机av| 久久久久久久大尺度免费视频| 美女主播在线视频| tube8黄色片| 免费av中文字幕在线| 亚洲精品一二三| 国精品久久久久久国模美| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 亚洲精品aⅴ在线观看| a 毛片基地| 两性夫妻黄色片 | 成人手机av| 欧美成人午夜免费资源| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 在线观看免费视频网站a站| xxx大片免费视频| 国产不卡av网站在线观看| 精品第一国产精品| 国产高清不卡午夜福利| 99久国产av精品国产电影| 22中文网久久字幕| 亚洲精品456在线播放app| 国产国语露脸激情在线看| 极品少妇高潮喷水抽搐| 高清av免费在线| 久久av网站| 91精品伊人久久大香线蕉| 插逼视频在线观看| 亚洲人与动物交配视频| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 两个人免费观看高清视频| 精品一区在线观看国产| 捣出白浆h1v1| 欧美人与性动交α欧美软件 | 天堂俺去俺来也www色官网| 欧美人与性动交α欧美精品济南到 | 97人妻天天添夜夜摸| 日产精品乱码卡一卡2卡三| 国产无遮挡羞羞视频在线观看| 日韩精品有码人妻一区| 国产成人精品一,二区| 一级毛片电影观看| 伦理电影大哥的女人| 又黄又粗又硬又大视频| 美女大奶头黄色视频| 99热这里只有是精品在线观看| 婷婷色综合大香蕉| 国产高清三级在线| 亚洲欧洲精品一区二区精品久久久 | 国产成人a∨麻豆精品| 日本免费在线观看一区| 熟女人妻精品中文字幕| 成人黄色视频免费在线看| 亚洲国产精品国产精品| 高清av免费在线| 国产一区二区三区综合在线观看 | 精品福利永久在线观看| 激情视频va一区二区三区| 哪个播放器可以免费观看大片| 高清在线视频一区二区三区| 有码 亚洲区| 精品少妇黑人巨大在线播放| 最后的刺客免费高清国语| 永久免费av网站大全| 在线观看www视频免费| 日本wwww免费看| 男女无遮挡免费网站观看| 久久人人爽av亚洲精品天堂| 波野结衣二区三区在线| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区免费开放| 亚洲国产精品国产精品| 色哟哟·www| 精品少妇内射三级| 91午夜精品亚洲一区二区三区| 妹子高潮喷水视频| 少妇的丰满在线观看| 国产精品人妻久久久久久| 国产成人免费无遮挡视频| 欧美xxⅹ黑人| 亚洲国产欧美日韩在线播放| 亚洲精品乱久久久久久| 欧美激情 高清一区二区三区| 国产1区2区3区精品| 亚洲国产精品一区二区三区在线| 欧美成人午夜精品| 成人国产av品久久久| 欧美日韩av久久| 久久精品久久久久久噜噜老黄| av在线老鸭窝| 人人妻人人添人人爽欧美一区卜| 熟女电影av网| 狂野欧美激情性bbbbbb| 欧美日韩精品成人综合77777| 国产精品麻豆人妻色哟哟久久| 狂野欧美激情性xxxx在线观看| 成人免费观看视频高清| 曰老女人黄片| 国产精品秋霞免费鲁丝片| 国产日韩欧美在线精品| 天堂8中文在线网| 久久久久久久久久人人人人人人| 亚洲欧美中文字幕日韩二区| 日本午夜av视频| 夜夜爽夜夜爽视频| 91精品国产国语对白视频| 午夜福利网站1000一区二区三区| 亚洲精品456在线播放app| 亚洲成国产人片在线观看| 熟女av电影| 欧美 亚洲 国产 日韩一| 成人手机av| 男人添女人高潮全过程视频| 91在线精品国自产拍蜜月| 欧美xxⅹ黑人| 狠狠精品人妻久久久久久综合| 国产成人精品婷婷| 久久久久久久久久久免费av| 欧美精品亚洲一区二区| 视频区图区小说| 亚洲精华国产精华液的使用体验| 国产精品久久久久久av不卡| 久久免费观看电影| 高清在线视频一区二区三区| 中文字幕最新亚洲高清| 99精国产麻豆久久婷婷| 麻豆精品久久久久久蜜桃| 色婷婷av一区二区三区视频| 亚洲精华国产精华液的使用体验| av国产久精品久网站免费入址| 国产精品 国内视频| 亚洲美女搞黄在线观看| 午夜久久久在线观看| 国产精品.久久久| 韩国av在线不卡| 精品久久蜜臀av无| 女性生殖器流出的白浆| 水蜜桃什么品种好| 日日撸夜夜添| 久久鲁丝午夜福利片| 曰老女人黄片| 99热网站在线观看| 91精品三级在线观看| 在线 av 中文字幕| 草草在线视频免费看| 国产成人午夜福利电影在线观看| 久久精品国产综合久久久 | 伊人久久国产一区二区| 激情五月婷婷亚洲| 日本-黄色视频高清免费观看| 欧美亚洲日本最大视频资源| 中文精品一卡2卡3卡4更新| 少妇的逼水好多| 毛片一级片免费看久久久久| 午夜日本视频在线| 午夜福利视频在线观看免费| 色视频在线一区二区三区| 亚洲一码二码三码区别大吗| 中文字幕免费在线视频6| www.熟女人妻精品国产 | 久久久久国产精品人妻一区二区| 日韩制服骚丝袜av| 99国产精品免费福利视频| 国产片特级美女逼逼视频|