• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    12-冠-4對非質(zhì)子Li-O2電池氧電極的影響

    2016-11-18 07:29:18王曉晨王英明白若鵬劉艷芳麗陸君濤
    物理化學(xué)學(xué)報(bào) 2016年1期
    關(guān)鍵詞:酸堿武漢大學(xué)產(chǎn)物

    王曉晨 王英明 劉 威 白若鵬 劉艷芳 肖 麗陸君濤 莊 林

    (武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,化學(xué)電源材料與技術(shù)湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430072)

    12-冠-4對非質(zhì)子Li-O2電池氧電極的影響

    王曉晨 王英明 劉 威 白若鵬 劉艷芳 肖 麗*陸君濤 莊 林

    (武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,化學(xué)電源材料與技術(shù)湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430072)

    Li-O2電池放電產(chǎn)物L(fēng)i2O2由于在有機(jī)溶劑中溶解度較差,會(huì)堵塞氣體通道,這是Li-O2電池面臨的一個(gè)主要挑戰(zhàn)。在本工作中,我們選擇12-冠-4做為添加劑捕獲Li+,來研究其對氧電極放電產(chǎn)物溶解性的影響,并采用了多種電化學(xué)表征方法,包括循環(huán)伏安法和旋轉(zhuǎn)圓盤電極等。結(jié)果顯示,僅僅添加5%的12-冠-4就能明顯提高氧還原產(chǎn)物的穩(wěn)定性,并減少固體Li2O2的生成。結(jié)合軟硬酸堿和第一性原理計(jì)算對上述實(shí)驗(yàn)結(jié)果進(jìn)行了解釋。

    Li-O2電池; 氧電極; 冠醚; 軟硬酸堿理論

    1 Introduction

    The concept of aprotic Li-air batteries has been introduced by Abraham and Jiang in 1996, and has attracted much attention because of its high theoretical energy density1,2. In recent years, many important progress, such as the concept of aqueous Li-air batteries proposed by Zhou and Wang3and the charge-discharge cyclibility of aprotic Li-air batteries achieved by Bruce's group4, has been reported in the literature5–16. In addition to Liair battery, now Na-air and K-air batteries have emerged, which also rely on the O2-electrode in aprotic solvents17,18.

    For aprotic Li-air batteries, there are some fundamental problems in the O2-electrode, especially the low conductivity and poor solubility of the discharge product (Li2O2)19. Since Li2O2is hardly soluble in organic electrolyte solutions, it can precipitate in the pores of the porous carbon-based O2-electrode, block the O2transportation channel, and may thus eventually end the cell life20.

    To avoid the above problems, the common strategy is to adjust the structure of the oxygen electrode, such as to control the size of the pores in the electrode to accommodate more solid products8; or to manipulate the size and shape of Li2O2. Recent research shows that trace amounts of H2O can dissolve LiO2and change the morphology and structure of Li2O221. Another strategy is to use aqueous electrolyte instead of aprotic electrolyte, for the discharge product will become the soluble LiOH instead of the insoluble Li2O222–24. However, there are some severe problems that must be addressed for a water-stable lithium electrode (WSLE)22. The third strategy is to use additives to promote the dissolution of the discharge products. For example, complexing cations19, strong Lewis acids (C6F5)3B, or sp3borate esters have been added to the electrolyte to dissolve Li2O2, taking the advantage of their strong interaction between the anions in the electrolyte24–26. A conceptually molecular peroxide dianion adduct that can stabilizehas also been employed as a potential soluble source of

    Given the above interest in additives for the Li-air battery, we intend to further investigate the effect of additives on the O2-electrode. We made a hypothesis that an additive having strong interaction with Li+may weaken the interaction between Li+and the anions in the electrolyte, which may thus result in soluble products. An additive that interacts strongly with Li+is 12-crown-4, also called 1,4,7,10-tetraoxacyclododecane. We investigated the change made by adding different amount of 12-crown-4 to the electrolyte, and found that, with a small amount of 12-crown-4, theproduct can be stabilized, while further increasing the concentration of 12-crown-4 in the electrolyte will decrease the stability ofCombined with ab initio calculations, we employed the hard-soft-acid-base (HSAB) theory to explain such experimental observations.

    2 Experimental

    2.1 Cyclic voltammetry (CV)

    Cyclic voltammetry was carried out in an O2saturated dimethyl sulphoxide (DMSO) (HPLC, 99.5%, hydrous) solvent and anhydrous lithium hexafluorophosphate (LiPF6) was used as supporting electrolyte (0.05 mol·L–1). A glassy carbon (GC)rotating disc electrode (4.5 mm in diameter) was used as the working electrode. An Ag/Ag+electrode, filled with DMSO containing 5 mmol·L–1AgNO3and 0.05 mol·L–1LiPF6, was employed as the reference electrode. The CV curves were recorded at a scan rate of 5 mV·s–1. The concentration of 1,4,7,10-tetraoxacyclododecane (12-crown-4, 98%, Alfa Aesar)was varied as described below. The potentiostat was a CHI660 electrochemical station. All experiments were conducted at room temperature.

    2.2 Oxygen reduction reaction (ORR) evaluation

    ORR evaluation was carried out under the same condition as CV measurements. The rotating ring-disc electrode (RRDE)system consisted of a PINE rotator (E6 Series). The ORR curves of the GC disc-electrode were recorded at a scan rate of 50 mV·s–1, and the potential of the ring-electrode (Pt ring) was hold at –0.2 V (vs Ag/Ag+).

    2.3 Ab initio calculation

    Ab initio calculations were performed at the level of B3LYP/6-31G(d, p) using GAMESS28for the ground state geometry. In order to identify the possible charge transfer, the Mulliken charge population analysis was carried out thereafter.

    3 Results and discussion

    3.1 Influence of 12-crown-4 on the CV behavior

    Cyclic voltammetry is able to study the oxygen redox couple in Li+containing electrolyte29. It is generally accepted that the reactions occurring on CV sweeps follow these mechanisms(reactions (rxn1–7): On the cathodic sweep, the first reaction is the reduction of O2to LiO2(rxn1, Epeakat –1.25 V (vs Ag/Ag+)in DMSO, the same below), and LiO2is further decomposed/reduced to form Li2O2(rxn2/3, –1.57 V)29. Rxn4 will proceed with lower cathodic potential. On the return anodic sweep, the first reaction is the oxidation of LiO2to O2(rxn5, –0.95 V)29, and then Li2O2is decomposed to form O2(rxn6, –0.45 V). Rxn7will proceed if there is Li2O formed30. As an intermediate, LiO2is quite unstable upon scanning. In order to observe the oxidation current of LiO2, two conditions are required: firstly, the solvent should not react with it; secondly, the scan rate on the return anodic sweep should be fast enough to avoid the reactions of rxn2 and rxn3.

    Cathodic

    Anodic

    DMSO is chosen as the solvent in the present work, for it would not consume LiO230. As shown in Fig.1, the CV curve without adding 12-crown-4 ether is shown in black, where no oxidation peak of LiO2(at –0.9 V) is observed when the scan rate is as slow as 5 mV·s–1. It can be observed more clearly from the inset of Fig.1A, no peak current was found near –0.9 V. Meanwhile, the oxidation peak of Li2O2(P2, –0.45 V) is ob-vious, which demonstrates that LiO2has enough time to convert to Li2O2upon cathodic sweeping under this condition.

    However, by adding 5% (as a percentage of Li+concentration) of 12-crown-4 ether, P1 referring to the oxidation of LiO2(at –0.9 V) increased sharply, while P2 declined, indicating that 5% of 12-crown-4 ether can strongly improve the stability of the LiO2and reduce the formation proportion of Li2O2. The peak current of P1 does not increase by further adding of 12-crown-4 ether (from 10% to 30%), and the peak current of P2 decreases gradually with increasing the concentration of 12-crown-4 ether.

    The relationship between the concentration of 12-crown-4 ether and the peak currents of P1 and P2 is shown in Fig.1B. By increasing the concentration of 12-crown-4 from 0 to 50%, the peak current of P1 and P2 will change accordingly. Only 1% of 12-crown-4 ether is sufficient to make a difference to the peak currents of P1 and P2. The increase of the peak current of P1 indicates that the stability of LiO2is improved. The highest peak current of P1 is observed with 5% of 12-crown-4 ether, further adding 12-crown-4 ether will slightly decrease the peak current of P1. Meanwhile, the peak current of P2 decreases continuously by increasing the concentration of 12-crown-4 ether, suggesting that the formation of Li2O2was gradually inhibited.

    3.2 Determine Nkby RRDE

    Rotating ring disc electrode (RRDE) is a more precise way to observe the stability change ofupon adding 12-crown-4 ether. To do so, the collection efficiency, Nk, should be calculated through RRDE method31,32. Nkis the absolute ratio of the ring current to the disc current, which can be described quantitatively by the following equation33,34

    where Ngeois the geometrical collection efficiency of the RRDE, corresponding to the fraction of a species electrochemically generated at the disc that will be detected at the ring in the absence of side-reactions with the electrolyte. For our RRDE electrode, Ngeo= 0.20. X is the item caused by the consumption of the species through reacting with the electrolyte. In the present work, X should be caused by the reaction ofin the electrolyte through reactions rxn2 and rxn3. Thus the amount ofconsumed will depend on its effective transport time, Ts, between the disc and the ring. The longer transport time will lead to an increase in the consumption ofand a decrease in theoxidation current at the ring. Thus the variation of Nkwith the electrode rotation rate (ω) can reflect the stability ofThe lower the ω, the longer the transport time, and the Nkwill decrease with ω, ifis not stable in the electrolyte. In contrast, if theis very stable in the electrolyte, Nkwill not change with ω.

    In the present work, we performed RRDE measurements in electrolyte containing 0% and 10% of 12-crown-4 ether, at a sweep rate of 50 mV·s–1and rotation rates ranging from 100 to 2500 r·min–1. The ring was set at a potential at which the electro-oxidation ofis diffusion limited (Ering= –0.2 V, at the positive potential limit used in Fig.1A).

    Fig.2 Disc and ring currents recorded at 50 mV·s-1in O2saturated DMSO with 0.05 mol·L-1LiPF6at electrode rotation rates between 100 and 2500 r·min-1and continuously holding the Au ring at -0.2 V (vs Ag/Ag+)

    The variation of Nkwith the electrode rotation rate is plotted in the insert of Figs.2A and 2B, where the trends are quite different depending on the concentration of 12-crown-4 ether. Without 12-crown-4, Nkdecreases with ω. Specifically, Nkis on the whole not changed with the rotation rates from 900 to 2500 r·min–1, but rapidly decreases to 0.17 at 400 r·min–1, and further decreases to 0.04 at 100 r·min–1. This is becauses the longer transport time at lower rotation rates increases the reaction time ofthrough reactions rxn2 and rxn3, so the concentration ofoxidized at the ring electrode becomes lower. All values of Nkare smaller than the electrode's Ngeo(0.20), due to the consumption ofIn contrast, Nkalmost remains constant with the electrolyte containing 10% of 12-crown-4 ether, with only a slightly decrease at 100 r·min–1, which indicates littlewas consumed through reactions rxn2 and rxn3 in this system. Thus we can infer that theis much more stable in the electrolyte containing certain amount of 12-crown-4 ether.

    3.3 Understanding the stability change ofbased on Person′s HSAB theory

    In Abraham′s work29, Pearson′s HSAB theory was used to explain the stabilization ofin tetrabutylammonium (TBA+) solution, it is also applicable to explain the stability change ofobserved in this work. The cation in the electrolyte is Li+, an alkali metal ion with a small radius, which is a hard acid. The anions present in the electrolyte in this study includeand those generated electrochemically, i.e.,Within the four anions in the electrolyte, the first one has little interaction with Li+, which will not be discussed. For the other three electrochemically generated anionshas a relatively large radius and low charge density, which is a moderately soft base; while the other two are moderately hard base. According to HSAB theory, hard acids prefer hard bases and soft bases prefer soft acids35, thus the hard Li+with a high affinity for hard Lewis bases stabilizedwill be not stable and quickly convert tothrough reactions rxn2 and rxn3. When certain amount of 12-crown-4 ether is added to the system, Li+will be captured by it, thus the Lewis acidity of Li+is decreased with increasing its radius through coordinating with 12-crown-4 to form Li+-(crown ethers). As a result, theformed in rxn1 will have an increased affinity for these Li+-(crown ethers), and was stabilized in solution.

    3.4 Superoxide becoming unstable with high concentration of 12-crown-4 ether

    As the concentration of 12-crown-4 ether increased above 5%, the peak currents of P1 and P2 were both decreased as shown in Fig.1B, indicating thatwas consumed besides reactions rxn2 and rxn3. The decreasing of the peak current was even more evident when the concentration of 12-crown-4 ether was higher than 50%. When the concentration was increased to 70%, the peak current of P1 slightly decreased with the peakpotential shifting to the positive direction; while the peak current of P2 was almost undetectable (Fig.3A), which means that nearly no Li2O2was formed during the cathodic sweeping through reactions rxn2 and rxn3. By further increasing the concentration of 12-crown-4 ether to 100%, the peak current of P1 decreased to 0 mA, which indicates thatis significantly consumed by some other reactions. The determination of Nkby RRDE experiments also gave the same result. The trends of Nkobtained with the various rotation rate are similar for electrolyte containing 10% and 100% 12-crown-4 ether, but the values are quite different. Nkwas 2.5 times larger in electrolyte containing 10% of 12-crown-4 ether in all rotation rates than that in electrolyte containing 100% of 12-crown-4 ether, which also indicates theis extremely unstable in high concentration of 12-crown-4 ether (Fig.3B).

    Fig.3 Cyclic voltammograms recorded in O2saturated DMSO with 0.05 mol·L-1LiPF6at 5 mV·s-1

    The side reactions consumingother than reactions rxn2 and rxn3 may be attributed to the reaction betweenand 12-crown-4 ether. According to the research of Bruce's group, ether-based electrolytes are unstable with reduced O2species36. As a kind of ether, 12-crown-4 would also be unstable in the electrolyte containing electrochemically generatedgenerated through reaction rxn1 will either disproportionate or reduce to Li2O2, or uptake a proton from 12-crown-4 ether to form an alkyl radical, and leads to the oxidative decomposition reactions to form H2O, CO2, lithium formate, and lithium acetate37. In fact, the 12-crown-4 ether can become more attackable by upon coordinating with Li+([Li]+) according to theoretical calculations. Sinceis a weak nucleophile, it prefers to attack species containing C-atom with lower charge density. The optimized geometrical structures of 12-crown-4 ether with/without Li+are shown in Fig.4. According to ab initio calculations, by coordinating with Li+to form [Li]+, the Mulliken charge population of C-atom in 12-crown-4 has increased from–0.102e to –0.062e (Table 1). When the concentration of [Li]+is low,can be stabilized according to HSBA theory; when the concentration of [Li]+is further increased, there will be more chance for theto attack the C-atom of 12-crown-4, thus its stability will decrease again.

    4 Conclusions

    In this work, the effects of 12-crown-4 ether on the oxygen electrode of lithium-air batteries were studied. CV and RRDE measurements suggested that 12-crown-4 ether can strongly improve the stability of the reduction productand inhibit the formation of solid Li2O2. However, excess 12-crown-4 etherwill lower the stability ofby consuming

    through chemical reactions. The present work has furthered our understanding of the electrode reaction, and provided new insights for improving the performance of Li-air battery.

    Fig.4 Optimized geometrical structures of 12-crown-4 ether with and without Li+

    Table 1 Ab initio calculations on Mulliken charge population of atoms in 12-crown-4 with and without Li+

    (1)Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1. doi: 10.1149/1.1836378

    (2)Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.;Wilcke, W. J. Phys. Chem. C 2010, 1, 2193.

    (3)Wang, Y. G.; Zhou, H. S. J. Power Sources 2010, 195, 358. doi: 10.1016/j.jpowsour.2009.06.109

    (4)Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. doi: 10.1021/ja056811q

    (5)Leskes, M.; Drewett, N. E.; Hardwick, L. J.; Bruce, P. G.;Goward, G. R.; Grey, C. P. Angew. Chem. Int. Edit. 2012, 51, 8560. doi: 10.1002/anie.201202183

    (6)Choi, N.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y.;Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Edit. 2012, 51, 9994. doi: 10.1002/anie.201201429

    (7)Yoshino, A. Angew. Chem. Int. Edit. 2012, 51, 5798. doi: 10.1002/anie.201105006

    (8)Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Adv. Funct. Mater. 2012, 22, 3699. doi: 10.1002/adfm.v22.17

    (9)Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.;Zhang, J. G.; Wang, Y.; Liu, J. Adv. Funct. Mater. 2013, 23, 987. doi: 10.1002/adfm.v23.8

    (10)Park, M.; Sun, H.; Lee, H.; Lee, J.; Cho, J. Adv. Funct. Mater. 2012, 2, 780.

    (11)Cao, R. G.; Lee, J.; Liu, M. L.; Cho, J. Adv. Funct. Mater. 2012,2, 816.

    (12)Oh, S. H.; Nazar, L. F. Adv. Funct. Mater. 2012, 2, 903.

    (13)Lim, H.; Park, K.; Song, H.; Jang, E. Y.; Gwon, H.; Kim, J.;Kim, Y. H.; Lima, M. D.; Robles, R. O.; Lepró, X.; Baughman, R. H.; Kang, K. Adv. Mater. 2013, 25, 1348. doi: 10.1002/adma.v25.9

    (14)Shao, Y. Y.; Park, S.; Xiao, J.; Zhang, J. G.; Wang, Y.; Liu, J. ACS Catal. 2012, 2, 844. doi: 10.1021/cs300036v

    (15)Schaetz, A.; Zeltner, M.; Stark, W. J. ACS Catal. 2012, 2, 1267. doi: 10.1021/cs300014k

    (16)Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. doi: 10.1038/nmat3191

    (17)Ren, X. D.; Wu, Y. Y. J. Am. Chem. Soc. 2013, 135, 2923. doi: 10.1021/ja312059q

    (18)Hartmann, P.; Bender, C. L.; Vracar, M.; Dürr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. Nat. Mater. 2013, 12, 228.

    (19)Li, C. M.; Fontaine, O.; Freunberger, S. A.; Johnson, L.;Grugeon, S.; Laruelle, S.; Bruce, P. G.; Armand, M. J. Phys. Chem. C 2014, 118, 3393.

    (20)Laoire, C.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.;Abraham, K. M. J. Electrochem. Soc. 2011, 158, A302.

    (21)Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.;Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50.

    (22)Liu, T.; Leskes, M.; Yu, W. J.; Moore, A. J.; Zhou, L. N.;Bayley, P. M.; Kim, G.; Grey, C. P. Science 2015, 350, 530. doi: 10.1126/science.aac7730

    (23)Li, L. F.; Lee, H. S.; Li, H.; Yang, X. Q.; Huang, X. J. Electrochem. Commun. 2009, 11, 2296. doi: 10.1016/j.elecom.2009.10.015

    (24)Zheng, D.; Lee, H. S.; Yang, X. Q.; Qu, D. Electrochem. Commun. 2013, 28, 17. doi: 10.1016/j.elecom.2012.12.003

    (25)Shanmukaraj, D.; Grugeon, S.; Gachot, G.; Laruelle, S.;Mathiron, D.; Tarascon, J. M.; Armand, M. J. Am. Chem. Soc. 2010, 132, 3055. doi: 10.1021/ja9093814

    (26)Xie, B.; Lee, H. S.; Li, H.; Yang, X. Q.; McBreen, J.; Chen, L. Q. Electrochem. Commun. 2008, 10, 1195. doi: 10.1016/j.elecom.2008.05.043

    (27)Lopez, N.; Graham, D. J.; McGuire, R., Jr.; Alliger, G. E.; Yang, S. H.; Cummins, C. C.; Nocera, D. G. Science 2012, 335, 3243.

    (28)Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M. J. Comput. Chem. 1993, 14, 1347.

    (29)Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.;Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178. doi: 10.1021/jp102019y

    (30)Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.;Abrahama, K. M. J. Electrochem. Soc. 2013, 160, A259.

    (31)Allen, C. J.; Hwang, J.; Kautz, R.; Mukerjee, S.; Plichta, E. J.;Hendrickson, M. A.; Abraham, K. M. J. Phys. Chem. C 2012,116, 20755. doi: 10.1021/jp306718v

    (32)Herranz, J.; Garsuch, A.; Gasteiger, H. A. J. Phys. Chem. C 2012, 116, 19084.

    (33)Albery, J. W.; Hitchman, L. M.; Ulstrup, J. Trans. Faraday Soc. 1968, 64, 2831. doi: 10.1039/tf9686402831

    (34)Bard, J.; Faulkner, L. R. Electrochemical Methods: Fundamentals & Applications, 2nd ed.; Wiley: Hoboken, 2001;p 669.

    (35)Pearson, G. R. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001

    (36)Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.;Bardé F.; Bruce, P. G. Angew. Chem. Int. Edit. 2011, 50, 8609. doi: 10.1002/anie.201102357

    (37)Peng, Z. Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y. H.;Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J. M.;Bruce, P. G. Angew. Chem. Int. Edit. 2011, 50, 6351. doi: 10.1002/anie.201100879

    Influence of 12-Crown-4 on Oxygen Electrode of Aprotic Li-O2Battery

    WANG Xiao-Chen WANG Ying-Ming LIU Wei BAI Ruo-Peng LIU Yan-Fang XIAO Li*LU Jun-Tao ZHUANG Lin
    (College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, P. R. China)

    One of the major challenges with Li-O2batteries is that the discharge product, Li2O2, blocks the gas pathway because of its poor solubility in aprotic solνents. In this work, 12-crown-4 ether was used as an additiνe to capture Li+, and its influence on the solubility of the discharge products of the oxygen electrode was inνestigated. Multiple electrochemical methods, including cyclic νoltammetry and rotatingring disk electrode, were used. The results show that the addition of only 5% of 12-crown-4 ether significantly improνes the stability of the oxygen reduction productand decreases the formation of solid Li2O2. We used a combination of the hard-soft-acid-base theory and ab initio calculations to explain these obserνations.

    Li-O2battery; Oxygen electrode; Crown ether; Hard-soft-acid-base theory

    O646

    10.3866/PKU.WHXB201510133

    Received: August 12, 2015; Revised: October 9, 2015; Published on Web: October 13, 2015.

    *Corresponding author. Email: chem.lily@whu.edu.cn; Tel: +86-27-68753833.

    The project was supported by the National Key Basic Research Program of China (973) (2012CB932800, 2012CB215500), National Natural Science Foundation of China (21125312, 21203142, 21573167), Doctoral Fund of Ministry of Education of China (20110141130002), and Fundamental Research Funds for the Central Universities, China (2014203020207).

    國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973) (2012CB932800, 2012CB215500), 國家自然科學(xué)基金(21125312, 21203142, 21573167), 國家教育部博士點(diǎn)專項(xiàng)基金(20110141130002)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(2014203020207)資助?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    酸堿武漢大學(xué)產(chǎn)物
    低共熔溶劑在天然產(chǎn)物提取中的應(yīng)用
    武漢大學(xué)
    自制酸堿指示劑
    校訓(xùn)展示墻
    在武漢大學(xué)拜謁李達(dá)塑像
    酸堿體質(zhì)與酸堿食物
    中老年保健(2021年7期)2021-08-22 07:42:58
    酸堿環(huán)境對TiO2吸附替硝唑的影響
    《天然產(chǎn)物研究與開發(fā)》青年編委會(huì)
    Ni-W-Fe-P四元合金鍍層在酸堿鹽溶液中的腐蝕行為
    隆重慶祝武漢大學(xué)建校120周年(1893-2013)
    亚洲黑人精品在线| 久久精品人人爽人人爽视色| 国产在视频线精品| 在线播放国产精品三级| 国产黄频视频在线观看| 亚洲精品国产区一区二| 黄色a级毛片大全视频| 女警被强在线播放| 嫁个100分男人电影在线观看| 亚洲av日韩在线播放| 欧美激情极品国产一区二区三区| av线在线观看网站| 久久久久网色| 99精品在免费线老司机午夜| xxxhd国产人妻xxx| √禁漫天堂资源中文www| 国产麻豆69| 在线看a的网站| 69av精品久久久久久 | 在线观看人妻少妇| 9热在线视频观看99| 国产精品98久久久久久宅男小说| 又紧又爽又黄一区二区| 在线十欧美十亚洲十日本专区| 91老司机精品| 亚洲精品国产一区二区精华液| 国产亚洲午夜精品一区二区久久| 亚洲成a人片在线一区二区| 一区二区三区乱码不卡18| 国产精品98久久久久久宅男小说| 无人区码免费观看不卡 | 亚洲欧洲精品一区二区精品久久久| 99riav亚洲国产免费| 在线观看人妻少妇| 啦啦啦在线免费观看视频4| 久久性视频一级片| 亚洲男人天堂网一区| 欧美精品啪啪一区二区三区| 国产1区2区3区精品| 国产成人精品久久二区二区免费| 国产精品 欧美亚洲| 人人妻人人澡人人看| 中亚洲国语对白在线视频| 日本a在线网址| 国产一区二区三区在线臀色熟女 | 天天添夜夜摸| 久久久久久久大尺度免费视频| 国产精品欧美亚洲77777| 亚洲视频免费观看视频| 男人操女人黄网站| 一区二区日韩欧美中文字幕| 水蜜桃什么品种好| 黄色a级毛片大全视频| 十分钟在线观看高清视频www| 国产成人影院久久av| 极品教师在线免费播放| 久久精品国产亚洲av香蕉五月 | 精品一区二区三区视频在线观看免费 | 美女扒开内裤让男人捅视频| 久久久久久久精品吃奶| 亚洲国产成人一精品久久久| 国产人伦9x9x在线观看| 久久久国产精品麻豆| av有码第一页| 少妇裸体淫交视频免费看高清 | 在线观看免费日韩欧美大片| 欧美亚洲 丝袜 人妻 在线| 菩萨蛮人人尽说江南好唐韦庄| 成人影院久久| 久久精品亚洲精品国产色婷小说| 亚洲中文字幕日韩| 国产野战对白在线观看| 亚洲男人天堂网一区| 亚洲七黄色美女视频| 后天国语完整版免费观看| 国产区一区二久久| 亚洲色图综合在线观看| 国产亚洲一区二区精品| 精品视频人人做人人爽| 日韩视频一区二区在线观看| 国产免费福利视频在线观看| 男女之事视频高清在线观看| 五月开心婷婷网| 久久精品人人爽人人爽视色| 亚洲av电影在线进入| 在线看a的网站| 亚洲国产av影院在线观看| 少妇的丰满在线观看| 国产黄频视频在线观看| 激情在线观看视频在线高清 | 亚洲第一欧美日韩一区二区三区 | 色视频在线一区二区三区| 国产精品久久电影中文字幕 | 男女边摸边吃奶| 免费高清在线观看日韩| 国产精品麻豆人妻色哟哟久久| 97人妻天天添夜夜摸| 国产在线精品亚洲第一网站| 国产精品美女特级片免费视频播放器 | 满18在线观看网站| 日韩中文字幕欧美一区二区| 三上悠亚av全集在线观看| 色在线成人网| 久久天堂一区二区三区四区| 国产又爽黄色视频| 亚洲欧美色中文字幕在线| 国产免费av片在线观看野外av| 考比视频在线观看| 欧美午夜高清在线| 国产欧美亚洲国产| av超薄肉色丝袜交足视频| 亚洲性夜色夜夜综合| 男女下面插进去视频免费观看| 一区二区三区精品91| 亚洲人成电影免费在线| 无人区码免费观看不卡 | 悠悠久久av| 女人高潮潮喷娇喘18禁视频| 女人爽到高潮嗷嗷叫在线视频| 成人三级做爰电影| 性色av乱码一区二区三区2| 国产一区二区激情短视频| 男人舔女人的私密视频| av在线播放免费不卡| 男男h啪啪无遮挡| 一级毛片女人18水好多| 久久中文字幕人妻熟女| 亚洲第一青青草原| 黄色 视频免费看| 一边摸一边做爽爽视频免费| 亚洲欧美精品综合一区二区三区| 超碰97精品在线观看| 999久久久精品免费观看国产| 999精品在线视频| 亚洲美女黄片视频| 精品亚洲乱码少妇综合久久| 久久久精品免费免费高清| 久久精品熟女亚洲av麻豆精品| 亚洲成av片中文字幕在线观看| 色在线成人网| 久久国产精品男人的天堂亚洲| 97在线人人人人妻| av天堂在线播放| 亚洲精品在线观看二区| 亚洲专区中文字幕在线| 考比视频在线观看| 日本a在线网址| 波多野结衣一区麻豆| 两人在一起打扑克的视频| 国产成人欧美在线观看 | 久久午夜亚洲精品久久| 欧美一级毛片孕妇| 视频区图区小说| √禁漫天堂资源中文www| 国产精品亚洲一级av第二区| 国产精品 国内视频| 亚洲第一青青草原| 亚洲全国av大片| 国产一区二区三区视频了| 激情视频va一区二区三区| 一边摸一边做爽爽视频免费| 国产精品1区2区在线观看. | 日韩人妻精品一区2区三区| 欧美日韩中文字幕国产精品一区二区三区 | 黄色成人免费大全| 久久精品亚洲精品国产色婷小说| 多毛熟女@视频| 国产精品 欧美亚洲| 人人妻人人添人人爽欧美一区卜| 制服人妻中文乱码| 午夜日韩欧美国产| 黄网站色视频无遮挡免费观看| 久久久国产欧美日韩av| www.999成人在线观看| 香蕉丝袜av| 国产一区二区激情短视频| 99精品欧美一区二区三区四区| 日韩制服丝袜自拍偷拍| 亚洲精品成人av观看孕妇| 成年人午夜在线观看视频| 少妇 在线观看| 另类精品久久| 12—13女人毛片做爰片一| 精品福利观看| 国产欧美日韩一区二区三区在线| 久久精品熟女亚洲av麻豆精品| 捣出白浆h1v1| 国产有黄有色有爽视频| 欧美成狂野欧美在线观看| 亚洲免费av在线视频| 成人影院久久| 亚洲中文日韩欧美视频| a级毛片黄视频| 精品少妇一区二区三区视频日本电影| 在线观看一区二区三区激情| 精品人妻熟女毛片av久久网站| 亚洲人成77777在线视频| 人妻一区二区av| 最近最新中文字幕大全免费视频| 成人国产av品久久久| 久久香蕉激情| 肉色欧美久久久久久久蜜桃| 亚洲av成人不卡在线观看播放网| 97在线人人人人妻| av又黄又爽大尺度在线免费看| 99国产精品99久久久久| 一级片'在线观看视频| 日本wwww免费看| 麻豆av在线久日| 中文字幕人妻丝袜制服| 国产免费现黄频在线看| 久久久久久久精品吃奶| 午夜老司机福利片| 国产高清国产精品国产三级| 色老头精品视频在线观看| 午夜视频精品福利| videos熟女内射| 18禁国产床啪视频网站| 80岁老熟妇乱子伦牲交| 精品国产乱码久久久久久男人| 免费人妻精品一区二区三区视频| 成年女人毛片免费观看观看9 | 免费观看av网站的网址| 亚洲国产欧美一区二区综合| 热99re8久久精品国产| 黄片播放在线免费| 精品国产乱子伦一区二区三区| 国产精品电影一区二区三区 | 久久99热这里只频精品6学生| 9191精品国产免费久久| 变态另类成人亚洲欧美熟女 | 日韩大片免费观看网站| 久久久久精品国产欧美久久久| 免费在线观看视频国产中文字幕亚洲| 在线观看www视频免费| 国产精品久久久久久精品古装| 999精品在线视频| av天堂在线播放| 亚洲国产看品久久| 欧美午夜高清在线| 亚洲中文av在线| 久久人妻福利社区极品人妻图片| 国产成人精品无人区| 青草久久国产| 亚洲成a人片在线一区二区| 两个人看的免费小视频| 中国美女看黄片| 精品福利永久在线观看| 又大又爽又粗| bbb黄色大片| 国产精品一区二区在线不卡| 成人三级做爰电影| 亚洲中文日韩欧美视频| 亚洲自偷自拍图片 自拍| 免费看a级黄色片| 午夜福利在线免费观看网站| 别揉我奶头~嗯~啊~动态视频| 最近最新中文字幕大全电影3 | 亚洲国产看品久久| 国产成人精品久久二区二区91| 久久久久国产一级毛片高清牌| 国产1区2区3区精品| 日韩免费av在线播放| 日韩三级视频一区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲av欧美aⅴ国产| 亚洲人成电影观看| 免费在线观看黄色视频的| 日本撒尿小便嘘嘘汇集6| 亚洲情色 制服丝袜| 一本久久精品| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女 | 成人手机av| 亚洲欧美日韩高清在线视频 | 国产av精品麻豆| e午夜精品久久久久久久| 黄片播放在线免费| 久久精品亚洲熟妇少妇任你| 国产精品99久久99久久久不卡| 97在线人人人人妻| 99国产综合亚洲精品| 一区二区av电影网| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩中文字幕视频在线看片| 性少妇av在线| 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽 | 国产xxxxx性猛交| 午夜福利免费观看在线| 操出白浆在线播放| 成人18禁高潮啪啪吃奶动态图| av又黄又爽大尺度在线免费看| 成人永久免费在线观看视频 | 高清视频免费观看一区二区| 岛国毛片在线播放| 91成年电影在线观看| 一夜夜www| 久久免费观看电影| 嫁个100分男人电影在线观看| bbb黄色大片| 免费久久久久久久精品成人欧美视频| 久久99热这里只频精品6学生| 国产视频一区二区在线看| 国产欧美日韩一区二区三| 日本a在线网址| 中文字幕色久视频| 热99国产精品久久久久久7| 中文字幕制服av| 国产一区二区激情短视频| 99久久精品国产亚洲精品| 天堂8中文在线网| 水蜜桃什么品种好| 日韩欧美一区二区三区在线观看 | 久久久久久久大尺度免费视频| 亚洲男人天堂网一区| 免费观看人在逋| 亚洲熟女精品中文字幕| 制服人妻中文乱码| 下体分泌物呈黄色| 在线观看免费视频日本深夜| 激情视频va一区二区三区| 大型黄色视频在线免费观看| 国产日韩欧美在线精品| 国产欧美亚洲国产| 最新的欧美精品一区二区| av片东京热男人的天堂| 50天的宝宝边吃奶边哭怎么回事| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 亚洲精品一二三| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女精品中文字幕| 正在播放国产对白刺激| 欧美国产精品va在线观看不卡| 国产成人系列免费观看| 51午夜福利影视在线观看| 99精品久久久久人妻精品| 国产男女内射视频| 91九色精品人成在线观看| 国产成人欧美| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载| 中亚洲国语对白在线视频| 美女扒开内裤让男人捅视频| 在线观看免费高清a一片| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜制服| 婷婷丁香在线五月| 一本大道久久a久久精品| tube8黄色片| 亚洲一码二码三码区别大吗| 国产精品一区二区在线不卡| 国产一区二区三区视频了| av有码第一页| 精品熟女少妇八av免费久了| videosex国产| 欧美在线一区亚洲| 欧美人与性动交α欧美精品济南到| 成人国产一区最新在线观看| 欧美变态另类bdsm刘玥| 男女之事视频高清在线观看| 国产男女内射视频| 成人特级黄色片久久久久久久 | 亚洲av成人不卡在线观看播放网| 精品人妻1区二区| kizo精华| 日韩欧美免费精品| 久久精品91无色码中文字幕| 精品国产乱码久久久久久小说| 欧美一级毛片孕妇| 久久热在线av| 黄色毛片三级朝国网站| 激情在线观看视频在线高清 | 黄色丝袜av网址大全| 日日夜夜操网爽| 香蕉久久夜色| 黄色怎么调成土黄色| 中文字幕最新亚洲高清| 丰满饥渴人妻一区二区三| 欧美精品高潮呻吟av久久| 女人久久www免费人成看片| 十八禁人妻一区二区| 脱女人内裤的视频| 每晚都被弄得嗷嗷叫到高潮| 五月开心婷婷网| 两人在一起打扑克的视频| av免费在线观看网站| 午夜福利视频在线观看免费| 十八禁网站网址无遮挡| 精品久久久久久电影网| 黑人巨大精品欧美一区二区mp4| 欧美日韩亚洲综合一区二区三区_| bbb黄色大片| 精品福利观看| 亚洲av日韩精品久久久久久密| 免费av中文字幕在线| 日韩欧美国产一区二区入口| 交换朋友夫妻互换小说| 制服人妻中文乱码| av天堂在线播放| 91国产中文字幕| 一区二区三区乱码不卡18| 91字幕亚洲| 一个人免费在线观看的高清视频| av网站在线播放免费| 欧美性长视频在线观看| 亚洲国产毛片av蜜桃av| a在线观看视频网站| 国产在视频线精品| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看 | 视频区欧美日本亚洲| 亚洲欧洲日产国产| 激情视频va一区二区三区| 新久久久久国产一级毛片| www.自偷自拍.com| 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 国产老妇伦熟女老妇高清| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 国产免费视频播放在线视频| 精品国产超薄肉色丝袜足j| 大香蕉久久网| 国产一区二区在线观看av| 在线十欧美十亚洲十日本专区| 欧美变态另类bdsm刘玥| 成年人黄色毛片网站| 99精品在免费线老司机午夜| 久久久久久久国产电影| 国产有黄有色有爽视频| av一本久久久久| 国产深夜福利视频在线观看| 亚洲国产欧美一区二区综合| 啦啦啦视频在线资源免费观看| 亚洲国产毛片av蜜桃av| 亚洲色图 男人天堂 中文字幕| 欧美人与性动交α欧美软件| 高清视频免费观看一区二区| 可以免费在线观看a视频的电影网站| 日韩中文字幕欧美一区二区| 老司机影院毛片| 国产欧美日韩精品亚洲av| 国产视频一区二区在线看| 人人妻人人澡人人爽人人夜夜| 高清在线国产一区| videos熟女内射| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看| 国产一区二区三区综合在线观看| 成人国语在线视频| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 国产成人av激情在线播放| 免费少妇av软件| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区| 久久久久精品人妻al黑| 一级片'在线观看视频| 亚洲美女黄片视频| 男女免费视频国产| svipshipincom国产片| 热99国产精品久久久久久7| 黄色成人免费大全| 亚洲黑人精品在线| 久久ye,这里只有精品| 国产日韩欧美视频二区| 51午夜福利影视在线观看| 精品午夜福利视频在线观看一区 | 国产精品99久久99久久久不卡| 少妇被粗大的猛进出69影院| 国产97色在线日韩免费| 亚洲va日本ⅴa欧美va伊人久久| 国产xxxxx性猛交| 又大又爽又粗| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 日韩大片免费观看网站| 免费在线观看影片大全网站| 汤姆久久久久久久影院中文字幕| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 亚洲精品国产色婷婷电影| 日韩精品免费视频一区二区三区| 国产单亲对白刺激| 精品亚洲成国产av| 国产区一区二久久| 成人国产一区最新在线观看| 操出白浆在线播放| 午夜精品国产一区二区电影| 99riav亚洲国产免费| www日本在线高清视频| 日韩欧美免费精品| 精品久久久精品久久久| 成人亚洲精品一区在线观看| 91精品国产国语对白视频| a级片在线免费高清观看视频| 99久久精品国产亚洲精品| 老汉色∧v一级毛片| 日韩人妻精品一区2区三区| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| 久久精品aⅴ一区二区三区四区| 久久久久国产一级毛片高清牌| av天堂在线播放| 99久久精品国产亚洲精品| 亚洲精品在线观看二区| aaaaa片日本免费| av天堂在线播放| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 国产精品成人在线| 建设人人有责人人尽责人人享有的| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 亚洲男人天堂网一区| 欧美日韩亚洲国产一区二区在线观看 | 久久精品人人爽人人爽视色| 国产av国产精品国产| 99精品欧美一区二区三区四区| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲欧美在线一区二区| 亚洲欧洲日产国产| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| 激情视频va一区二区三区| 欧美在线一区亚洲| 丝袜美足系列| 中文字幕人妻丝袜一区二区| 欧美成人免费av一区二区三区 | 夜夜夜夜夜久久久久| 妹子高潮喷水视频| 日韩人妻精品一区2区三区| av在线播放免费不卡| 国产亚洲精品久久久久5区| 丁香六月欧美| 欧美老熟妇乱子伦牲交| aaaaa片日本免费| 老汉色∧v一级毛片| 纵有疾风起免费观看全集完整版| 99久久99久久久精品蜜桃| 国产精品一区二区在线观看99| 午夜福利视频精品| 国产高清激情床上av| 免费久久久久久久精品成人欧美视频| 亚洲国产看品久久| 多毛熟女@视频| 一区二区三区国产精品乱码| tube8黄色片| aaaaa片日本免费| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频| 伊人久久大香线蕉亚洲五| 一区在线观看完整版| 麻豆成人av在线观看| 纵有疾风起免费观看全集完整版| 高清欧美精品videossex| 黄色视频,在线免费观看| 久久 成人 亚洲| 黄片小视频在线播放| 欧美成人免费av一区二区三区 | 一本大道久久a久久精品| 亚洲第一欧美日韩一区二区三区 | 久久av网站| 国产高清videossex| 婷婷成人精品国产| 久久精品国产亚洲av高清一级| 美国免费a级毛片| 亚洲人成77777在线视频| 大片免费播放器 马上看| av有码第一页| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 久久 成人 亚洲| 国产精品一区二区在线观看99| 国产精品电影一区二区三区 | 国产日韩欧美亚洲二区| 免费观看a级毛片全部| 在线观看66精品国产| 这个男人来自地球电影免费观看| 9热在线视频观看99| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 国产亚洲欧美在线一区二区| 欧美大码av| 欧美黑人精品巨大| av天堂久久9| 成年动漫av网址| 中文字幕色久视频| 男女午夜视频在线观看| 女警被强在线播放| 自线自在国产av| av片东京热男人的天堂| 国产男靠女视频免费网站| 亚洲国产av新网站| 丁香六月天网| 91麻豆av在线| 精品人妻在线不人妻| 欧美久久黑人一区二区| 国产精品二区激情视频| 国产成人免费无遮挡视频| 宅男免费午夜| 国产免费视频播放在线视频| 日韩视频一区二区在线观看| 亚洲午夜精品一区,二区,三区| 男女边摸边吃奶| 少妇 在线观看| 黄片大片在线免费观看| 18禁观看日本| 亚洲第一欧美日韩一区二区三区 | 大型av网站在线播放| 一边摸一边做爽爽视频免费|