• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種新型對苯乙炔基苯衍生物:熒光行為與傳感應(yīng)用

    2016-11-18 07:29:25祁彥宇孫曉環(huán)常興茂劉凱強
    物理化學(xué)學(xué)報 2016年1期
    關(guān)鍵詞:沙林毒氣乙炔

    祁彥宇 孫曉環(huán) 常興茂 康 蕊 劉凱強 房 喻

    (陜西師范大學(xué)化學(xué)化工學(xué)院,應(yīng)用表面與膠體化學(xué)教育部重點實驗室,西安 710119)

    一種新型對苯乙炔基苯衍生物:熒光行為與傳感應(yīng)用

    祁彥宇 孫曉環(huán) 常興茂 康 蕊 劉凱強 房 喻*

    (陜西師范大學(xué)化學(xué)化工學(xué)院,應(yīng)用表面與膠體化學(xué)教育部重點實驗室,西安 710119)

    設(shè)計合成了一種以8-羥基喹啉(8-HQ)為捕獲基團,膽固醇(Chol)為輔助結(jié)構(gòu)的新型光化學(xué)穩(wěn)定的對苯乙炔基苯(BPEB)衍生物(OPBMQ)。研究表明,該化合物熒光光譜由8-HQ的熒光發(fā)射和BPEB的熒光發(fā)射組成,且其熒光發(fā)射對沙林毒氣模擬物(DCP)的存在極為敏感。計算檢出限可達1 × 10?9mol·L–1以下。此外,其它相關(guān)神經(jīng)毒劑模擬物、有機磷農(nóng)藥,甚至它們的混合物的存在均不顯著干擾化合物對DCP的傳感。更為重要的是,無論是以高純水、自來水,還是海水作為介質(zhì),均對測定結(jié)果沒有顯著影響。需要指出的是,對沙林毒氣模擬物的靈敏、高選擇性測定也可以在濾紙片上以目視法進行。基于這些結(jié)果,發(fā)展了一種概念性沙林毒氣模擬物檢測儀器。

    1,4-二苯乙炔基苯;熒光;沙林;8-羥基喹啉;氯磷酸二乙酯

    1 lntroduction

    Sarin is an important nerve agent and was created for use in military operations to kill, injure, or incapacitate human owing to its deadly physiological effects1–3. Although production, storage, and application of never agents nowadays are totally prohibited, unanticipated terrorist use of them has caused tremendous harm on society security and human health4–9. To be clear, Scheme S1 (c.f. Supporting Information) shows the structures of some typical nerve agents, some organo-phosphorus pesticides, and relevant compounds, such as diethyl chlorophosphate (DCP), diethyl cyanidophosphate (DECP), and diethyl methylphosphate (DEMP), which have similar reactivity to the corresponding nerve agents but lack the efficacy of them. For the reasons, they have been used as model compounds for designing antidotes and creating indicators.

    Among the nerve agents, Sarin is the most dangerous and frequently used one in the terrorist attacks, and thereby fast discovery of the toxic chemical at very low concentrations is of crucial importance for adopting prompt countermeasures and minimizing damages10–17. Accordingly, photo-acoustics18–20, mass spectrometry21, capillary electrophoresis, electrical sensors22–24, biosensors25–27, ion mobility spectrometry28, and nuclear magnetic resonance (NMR) spectroscopy29have been used or developed for the test. However, these techniques suffer from one or another limitation, such as high cost, poor sensitivity, slow response, lack of selectivity, non-portability and complex to use, and thereby their real-life uses are limited30,31. Thus, development of methods with advantages of portable and capable of sensitive and selective detection of the chemical on site and in real time still remains a challenge.

    As it is well known, compared to other methods, fluorescence techniques are unique due to their great sensitivity, fast response, multiple parameters, and in particular design-ability of sensory materials32–36. Their uses in the detection has demonstrated superiorities, but most of the methods reported can be only used in organic media, which is a regret for real-life applications37,38.

    Literature survey reveals that functional groups, such as amino39, hydroxyl40,41or oxime moieties42, are typical structures that can be employed for anchoring antidotes of sensing molecules on the simulants of nerve agents43. 1,4-Bis(phenylethynyl)benzene (BPEB) is unique because it is easy to be modified, and possesses two-dimensional structure and various packing modes, and thereby its derivatives are valuable building blocks for constructing functional supramolecular architectures44–46. Cholesterol (Chol) is a natural compound and demonstrates strong tendency to form aggregates via van der Waals interactions47,48. Meanwhile, 8-hydroxyquinoline (8-HQ) is a chelate and widely used in coordination chemistry and organic solids49. It was expected that combination of 8-HQ into a fluorescent unit would bring affinity to some organophosphorus derivatives because it contains not only pyridine structure but also phenolic hydroxyl group.

    In this study, a fluorescent compound, OPBMQ (Scheme 1), was designed and synthesized, of which BPEB was adopted as a core structure, two Chol units were introduced by bonding them at the side chains, and two moities of 8-HQ were capped at the two ends of BPEB. The structure of OPBMQ is depicted below. With inspection of the structure, it is seen that a tertiary amine structure was also introduced, which may be favourable for binding some of the toxic chemicals via cooperation with 8-HQ. Fluorescence tests revealed that the compound as developed is an excellent sensor for DCP, which is a typical simulant of Sarin50.

    2 Experimental

    Scheme 1 Molecular structure of compound OPBMQ

    2.1 Materials and reagents

    1,4-Dimethoxybenzene (TCI, 99%), 4-ethinylbenzaldehyde(Alfa aesar, 99%), propylamine (Aladdin, 98%), 8-hydroxyquinoline (Aladdin, 98%), Pd(PPh3)4(Alfa aesar, 99%), and CuI (Alfa aesar, 98%) were used as received. DCP, DECP, tributil phosphate (TBP), triethyl phosphate (TEP), and dimethyl phosphate (DMP) are of analytical grade and were bought from Aladdin. Dimethyl methylphosphonate (DMMP)was bought from MAYA Reagent. DEMP was bought from Heowns Biochem Technologies LLC (Tianjin, China). All the reagents are of, at least, analytical grade and used without further purification. The preparation of the compounds was conducted using standard vacuum line and Schlenk technique under a purified argon atmosphere. Dimethyl formamide (DMF)and dichloromethane were distilled from calcium hydride under argon prior to use. Methanol was distilled from magnesium under argon before use. Tetrahydrofuran (THF) and toluenewere distilled from sodium benzophenone ketyl under argon prior to use. Water used in this work was acquired from a Milli-Q reference system except those specially specified.

    2.2 Measurements and characterization

    1H NMR and13C NMR spectra were acquired on Bruker AV 400 NMR and 600 NMR spectrometer at room temperature. Pressed KBr disks for the powder samples were used for the Fourier transform infrared (FTIR) spectroscopy measurements, and their FTIR spectra were measured on a Bruker VERTEX 70v spectrometer. The mass spectra (MS) were collected on a Bruker maxis UHR-TOF mass spectrometer in electronic spray ion (ESI) positive mode. Melting point measurement was conducted on X-5 Microscopic melting point meter (Beijing Tech Instrument). Optical photos were carried out on a Canon 70D camera. Dynamic light scattering (DLS) measurement was conducted on a Malvern Zeta Sizer Nano-ZS90. The pH was measured by a Leinuo pH meter. Fluorescence measurements were performed at room temperature on a time-correlated single photon counting Edinburgh Instruments FLS 920 fluorescence spectrometer.

    2.3 Synthesis of the compound OPBMQ

    The details of the synthesis of OPBMQ can be found at the Supporting Information of this paper. The compounds as obtained were fully characterized by1H NMR, FTIR, and ESI-MS etc.

    3 Results and discussion

    3.1 Optical behavior of OPBMQ in solution state

    3.1.1 Concentration effect

    Fig.1 depicts the fluorescence emission spectra of OPBMQ recorded at different concentrations in water. It reveals that with progressively increasing the concentration, the intensity of the emission increased dramatically. But when the concentration reached 2 × 10?5mol·L–1, the fluorescence intensity did not increase further but decreased along with further increasing the concentration. The phenomenon might be rationalized by considering the well-known inner-filtering or self-quenching effect as evidenced by the results from the concentration-dependent absorption spectroscopy studies shown in Fig.S1 (Supporting Information), from which it is seen that the intensity of the absorption decreases after the concentration of the compound exceeds a certain value.

    Fig.1 Fluorescence emission spectra of OPBMQ recorded at different concentrations in aqueous phase and excited at 370 nm

    With further inspection of the spectra shown in Fig.1, it is found with surprise that for solutions with concentrations lower than 2 × 10?6mol·L–1, the maximum emission appears at ~540 nm, but for those greater than 1.5 × 10?5mol·L–1, the emission appears at ~445 nm. The systems with concentrations between them are composed of the two emissions. To our knowledge, this is a result never reported before. The reasons behind should be related with the fact that OPBMQ contains two distinct fluorescent units, BPEB and 8-HQ. This argument was confirmed by fluorescence and DLS studies of a number of reference compounds as well as UV-Vis absorption studies of OPBMQ (see Supporting Information). In addition, the effect of pH on the fluorescence behavior of the probe has been investigated. It was shown that the probe emits at shorter wavelengths at an acidic solution, but at longer wavelengths at neutral and basic solutions. The relevant results and discussion can be found at the Section about pH effect on the fluorescence emission of OPBMQ and relevant Fig.S2 (Supporting Information).

    3.1.2 Solνent effect

    To investigate the solvent effect upon the fluorescence emission of OPBMQ, a variety of solvents of different polarities including n-hexane, toluene, benzene, THF, ethanol, chloroform, acetone, 1,4-dioxane, acetonitrile, DMF, methanol, dimethylsulfoxide (DMSO), and water were used to dissolve OPBMQ to make solutions of a concentration of 1 × 10?6mol·L–1, and the fluorescence spectra of them are shown in Fig.2. Inspection of the emissions reveals that both the intensities and profiles of them are largely dependent upon the polarity of the solvent employed. For example, the emissions from DMSO, methanol, and water are dominated by a band around 540 nm, but the others appear at much shorter wavelengths, which must be a result of solubility difference.

    3.1.3 Photochemical stability of OPBMQ in solution phase

    Photo-bleaching is one of the most challenging problems to limit the usability of photonic devices including fluorescent probes and sensors, and thereby it has become an indispensable part of work to evaluate the photochemical stability of a fluorescent probe before it is put into practical uses51,52. Accordingly, the fluorescence emissions of the n-hexane and aqueous solutions of OPBMQ (1 × 10?6mol·L–1) were monitored, separately, as a function of scanning time, and the results are shown in Fig.3. Reference to the spectra reveals that at the concentration under study: (1) the spectra are dominated by BPEB emissionin n-hexane but 8-HQ emission in water, and (2) the emission intensity of the n-hexane system showed no change, but for the aqueous solution of OPBMQ there had been some change during the repeated scanning. It is to be noted, however, the change is not unidirectional, but fluctuated, which may be originated from scattering as shown in the inset of the figure. In other words, the compound is photo-chemically stable in aqueous phase.

    Fig.2 Fluorescence emission spectra of OPBMQ recorded at 1 × 10-6mol·L-1in different solvents and excited at 370 nm

    Fig.3 Photochemical stability of OPBMQ in n-hexane (a) or in aqueous phase (b) (1 × 10?6mol·L-1, λex= 370 nm)

    3.2 Sensing performance studies

    Considering the importance of detection of organo-phosphorus agents and the possibility of the interaction of the analytes with OPBMQ, relevant tests were conducted. It was found that the emission of OPBMQ is very sensitive to the presence of DCP in aqueous phase. The fluorescent spectra recorded at different DCP concentrations and the relevant plots of the measurement are shown in Fig.4. Reference to the figure reveals that: (1) a trace amount (2 × 10?6mol·L–1) of the simulant could result in 36% reduction of the initial emission, (2) 94% of the original emission was quenched in the presence of 1 × 10?5mol·L–1of DCP, and (3) further increase in the concentration of DCP induced no additional quenching. The calculated detection limit (DL) of the method is close to 9.5 × 10?10mol·L–1at room temperature, a lowest value reported in the literature (c.f. Table S1, Supporting Information). The details of the test and calculations are provided in the Supporting Information.

    Fig.S3 (Supporting Information) shows the time-dependence of the fluorescence emission of the compound in the presence of 1 × 10?5mol·L–1DCP. It is seen that the response is instantaneous, and a few seconds contact of DCP with the probe could result in more than 10% reduction of the initial emission, which is no difficult to observe. Equilibration of the quenching takes much longer time possibly due to diffusion difficult of the analyte within the aggregates of the probe. But this should not affect its application for the timely pre-emptive detection of the chemicals since the response of the detection is instantaneous and the sensitivity of the method is good.

    Selectivity study was conducted by investigating the effect of DECP35,36, DMMP39, TBP53, TEP53, and DEMP35,36, as well as other organo-phosphorus pesticides, such as DMP, β-cypermethrin(BCT), dichlorvos (DDVP), and glyphosate isopropylammonium (GIS), to the fluorescence emission of OPBMQ in aqueousphase, and the results are shown in Fig.5. Analysis of the results indicates that the organo-phosphorus studied shows little effect upon the fluorescence emission of the compound in aqueous phase. Further inspection of the results revealed that among the interferents studied, TBP, DECP, and TEP demonstrated some quenching effect upon the emission of the fluorophore but the maximum quenching efficiency is less than 8%, but for DDVP and BCT, presence of them slightly enhanced the emission. In addition, further interference tests with ammonia and seven organic amines as additional interferents were also conducted, and it was shown again that these compounds show little effect upon the test (c.f. Fig.S4, Supporting Information).

    Fig.5 Quantitative histograms of the fluorescence response of OPBMQ (1 × 10-6mol·L-1, λex/λem= 370 nm/540 nm) to the presence of different organophosphates: DCP, TBP, DECP, TEP, DMMP, DMP,DEMP, GIS, DDVP, BCT (1 × 10?5mol·L-1for each)

    Fig.6 Photographs of the OPBMQ (1 × 10?3mol·L-1, 20 μL) coated test strips in the presence of different amount of DCP on a contact mode when viewed under 365 nm UV illumination

    Considering the importance of solvents upon the real-life applications of the method under development, additional interference tests from solvents were conducted. The results are depicted in Figs.S5–S7 (Supporting Information). Clearly, whatever in the Milli-Q water, tap-water, or seawater, mixing the interferents still shows no significant effect upon the emission of the system. However, addition of DCP in the presence of the interferents induces remarkable reduction of the fluorescence emission as observed, indicating that the OPBMQ-based method as developed possesses excellent tolerance to external interference, and shows great potential for real-life uses.

    Fig.7 A conceptual device for monitoring “DCP pollution”

    After demonstrating the superior sensing ability of the compound via utilization of an instrument, it would be more interesting if the test could be conducted in a visualized manner54. To verify this possibility, test strips were prepared first, of which OPBMQ was dissolved in THF to make a solution with a concentration of 1 × 10–3mol·L–1, then 20 μL of the solution was put onto a pre-prepared ordinary filter paper and then driedin air. Based upon the strips, instrument-free DCP test can be realized by addition of 1 μL DCP contaminated water onto the strips (c.f. the visualization test of DCP, Supporting Information). A dark spot suggests presence of DCP. Fig.6 shows some of the results. It is seen that the lowest concentration visually detectable in the test is ~0.56 pg·cm–2.

    To further explore the practical applicability of the method as developed, a conceptual device was developed (c.f. Fig.7). As shown in a short video (c.f. video S1 (Supporting Information)), the system works very well, and moreover, continuous test is possible.

    3.3 Quenching mechanism studies

    To interrogate the nature of the detection, fluorescence lifetime and intensity of the aqueous solution of DCP were measured at different concentrations, and the results are shown in Stern-Volmer plots (c.f. Fig.S8, Supporting Information). It is seen that the intensity-based plot shows an upward curvature, while the lifetime-based one is almost a straight line with a slop of nearly zero, suggesting that the quenching is dominated by formation of a non-fluorescent complex, OPBMQ-DCP, a typical static quenching process.

    The reasons behind the selectivity is attributable to the reaction of DCP with the 8-HQ unit of the compound as confirmed by the results from1H NMR titration studies, which is depicted in Fig.S9 (Supporting Information). The possible reaction equation and the product signal in the MS trace are displayed in Fig.S10 (Supporting Information).

    4 Conclusions

    In summary, a sensitive and highly selective fluorescence probe, OPBMQ, for the detection of Sarin simulant in aqueous phase was developed. Fluorescence studies demonstrated that the compound as prepared possesses two distinct, independent emissions in aqueous phase, of which one originates from 8-HQ and the other from BPEB. Importantly, the fluorescence emission of OPBMQ in aqueous phase is highly selective and sensitive to the presence of DCP, a simulant of Sarin. The calculated DL is lower than 1 × 10?9mol·L–1. Moreover, no significant response was observed when the probe was exposed to simulants of other nerve agents, relevant organo-phosphorus pesticides, or even their mixtures. In addition, no matter Milli-Q water, tapwater or sea water was employed as solvent, presence of the mixtures of the interferents studied did not show any significant effect upon the detection of DCP. In particular, unprecedented sub-picogram detection with high selectivity and fast response achieved by naked-eye observation provides a simple and low-cost protocol for the on-site and real-time detection of DCP. On the basis of the discovery, a DCP monitoring device was successfully developed.

    Supporting lnformation: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Kim, H. J.; Lee, J. H.; Lee, H.; Lee, J. H.; Lee, J. H.; Jung, J. H.;Kim, J. S. Adv. Funct. Mater. 2011, 21, 4035. doi: 10.1002/adfm.v21.21

    (2)Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Chem. Rev. 2011, 111, 5345. doi: 10.1021/cr100193y

    (3)Zhou, X.; Lee, S. Y.; Xu, Z. C.; Yoon, J. Chem. Rev. 2015, 115, 7944. doi: 10.1021/cr500567r

    (4)Okumura, T.; Ariyoshi, K.; Hitomi, T.; Hirahara, K.; Itoh, T.;Iwamura, T.; Nakashima, A.; Motomura, Y.; Taki, K.; Suzuki, K. Toxin Rev. 2009, 28, 255. doi: 10.3109/15569540903338040

    (5)Chao, L. L.; Rothlind, J. C.; Cardenasa, V. A.; Meyerhoff, D. J.;Weiner, M. W. Neurotoxicology 2010, 31, 493. doi: 10.1016/j.neuro.2010.05.006

    (6)Carniato, F.; Bisio, C.; Psaro, R.; Marchese, L.; Guidotti, M. Angew. Chem. Int. Edit. 2014, 53, 10095. doi: 10.1002/anie.201405134

    (7)Mahapatra, A. K.; Maiti, K.; S. Manna, K.; Maji, R.; Mondal, S.;Mukhopadhyay, C. D.; Sahooc, P.; Mandald, D. Chem. Commun. 2015, 51, 9729. doi: 10.1039/C5CC02991K

    (8)Jo, S.; Kim, J.; Noh, J.; Kim, D.; Jang, G.; Lee, N.; Lee, E.; Lee, T. S. ACS Appl. Mater. Interfaces 2014, 6, 22884. doi: 10.1021/am507206x

    (9)Bai, H. H.; Guo, L.; Feng, J. L.; Feng, C. L.; Chen, J.; Xie, J. W. Chin. J. Anal. Chem. 2008, 36, 1269. [白海紅, 郭 磊, 馮建林,馮翠玲, 陳 佳, 謝劍煒. 分析化學(xué), 2008, 36, 1269.] doi: 10.1016/S1872-2040(08)60069-9

    (10)Sarkar, S.; Shunmugam, R. Chem. Commun. 2014, 50, 8511. doi: 10.1039/C4CC03361B

    (11)Wu, W. H.; Dong, J. J.; Wang, X.; Li, J.; Sui, S. H.; Chen, G. Y.;Liu, J. W.; Zhang, M. Analyst 2012, 137, 3224. doi: 10.1039/C2AN35428D

    (12)Ramaseshan, R.; Sundarrajan, S.; Liu, Y. J.; Barhate, R. S.; Lala, N. L.; Ramakrishna, S. Nanotechnology 2006, 17, 2947. doi: 10.1088/0957-4484/17/12/021

    (13)Wallace, K. J.; Morey, J.; Lynch, V. M.; Anslyn, E. V. New J. Chem. 2005, 29, 1469. doi: 10.1039/B506100H

    (14)Cojocaru, B.; Nea?u, ?.; Parvulescu, V. I.; ?omoghi, V.; Petrea, N.; Epure, G.; Alvaro, M.; Garcia, H. ChemSusChem 2009, 2, 427. doi: 10.1002/cssc.200800246

    (15)Rusu, A. D.; Moleavin, I. A.; Hurduc, N.; Hamel, M.; Rocha, L. Chem. Commun. 2014, 50, 9965. doi: 10.1039/c4cc03580a

    (16)Brown, K. Science 2004, 305, 1228. doi: 10.1126/science.305.5688.1228

    (17)Eubanks, L. M.; Dickerson, T. J.; Janda, K. D. Chem. Soc. Rev. 2007, 36, 458. doi: 10.1039/B615227A

    (18)Yang, Y. M.; Ji, H. F.; Thundat, T. J. Am. Chem. Soc. 2003, 125, 1124. doi: 10.1021/ja028181n

    (19)Thompson, C. H.; Hu, J.; Kaganove, S. N.; Keinath, S. E.;Keeley, D. L.; Dvornic, P. R. Chem. Mater. 2004, 16, 5357. doi: 10.1021/cm040346z

    (20)Gurton, K. P.; Felton, M.; Tober, R. Opt. Lett. 2012, 37, 3474. doi: 10.1364/OL.37.003474

    (21)Steiner, W. E.; Klopsch, S. J.; English, W. A.; Clowers, B. H.;Hill, H. H. Anal. Chem. 2005, 77, 4792. doi: 10.1021/ac050278f

    (22)Lin, Y. H.; Lu, F.; Wang, J. Electroanalysis 2004, 16, 145. doi: 10.1002/elan.200302933

    (23)Zhou, Y. X.; Yu, B.; Shiu, E.; Levon, K. Anal. Chem. 2004, 76, 2689. doi: 10.1021/ac035072y

    (24)Hammonda, M. H.; Johnson, K. J.; Rose-Pehrsson, S. L.; Ziegler, J.; Walker, H.; Caudy, K.; Gary, D.; Tillett, D. Sens. Actuators B 2006, 116, 135.

    (25)Cao, X. H.; Mello, S. V.; Leblanc, R. M.; Rastogi, V. K.; Cheng, T. C.; DeFrank, J. J. J. Colloids Surf. A 2004, 250, 349. doi: 10.1016/j.colsurfa.2004.01.043

    (26)Orbulescu, J.; Constantine, C. A.; Rastogi, V. K.; Shah, S. S.;DeFrank, J. J.; Leblanc, R. M. Anal. Chem. 2006, 78, 7016. doi: 10.1021/ac061118m

    (27)Viveros, L.; Paliwal, S.; McCrae, D.; Wild, J.; Simonian, A. Sens. Actuators B 2006, 115, 150. doi: 10.1016/j.snb.2005.08.032

    (28)Asbury, G. R.; Wu, C.; Siems, W. F.; Hill, H. H., Jr. Anal. Chim. Acta 2000, 404, 273. doi: 10.1016/S0003-2670(99)00726-6

    (29)Zhang, Z.; Fan, J.; Yu, J. M.; Zheng, S. R.; Chen, W. J.; Li, H. G.; Wang, Z. J.; Zhang, W. G. ACS Appl. Mater. Interfaces 2012,4, 944. doi: 10.1021/am201603n

    (30)Xuan, W. M.; Cao, Y. T.; Zhou, J. H.; Wang, W. Chem. Commun. 2013, 49, 10474. doi: 10.1039/C3CC46095A

    (31)Kwon, O. S.; Park, S. J.; Lee, J. S.; Park, E.; Kim, T.; Park, H. W.; You, S. A.; Yoon, H.; Jang, J. Nano Lett. 2012, 12, 2797. doi: 10.1021/nl204587t

    (32)Zhang, S. W.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 3420. doi: 10.1021/ja029265z

    (33)Louise-Leriche, L.; Pǎunescu, E.; Saint-André, G.; Baati, R.;Romieu, A.; Wagner, A.; Renard, P. Y. Chem. Eur. J. 2010, 16, 3510. doi: 10.1002/chem.200902986

    (34)Singh, V. V.; Kaufmann, K.; Orozco, J.; Li, J. X.; Galarnyk, M.;Arya, G.; Wang, J. Chem. Commun. 2015, 51, 11190. doi: 10.1039/C5CC04120A

    (35)Zhao, L.; Yan, Y.; Huang, J. B. Acta Phys. -Chim. Sin. 2010, 26, 840. [趙 莉, 閻 云, 黃建濱. 物理化學(xué)學(xué)報, 2010, 26, 840.]doi: 10.3866/PKU.WHXB20100429

    (36)Lei, Z. H.; Yang, Y. J. J. Am. Chem. Soc. 2014, 136, 6594. doi: 10.1021/ja502945q

    (37)Jo, S.; Kim, D.; Son, S. H.; Kim, Y.; Lee, T. S. ACS Appl. Mater. Interfaces 2014, 6, 1330. doi: 10.1021/am405430t

    (38)Wu, Z. S.; Wu, X. J.; Yang, Y. H.; Wen, T. B.; Han, S. F. Bioorg. Med. Chem. Lett. 2012, 22, 6358. doi: 10.1016/j.bmcl.2012.08.077

    (39)Bencic-Nagale, S.; Sternfeld, T.; Walt, D. R. J. Am. Chem. Soc. 2006, 128, 5041. doi: 10.1021/ja057057b

    (40)Dale, T. J.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 4500. doi: 10.1021/ja057449i

    (41)Jang, Y. J.; Tsay, O. G.; Murale, D. P.; Jeong, J. A.; Segev, A.;Churchill, D. G. Chem. Commun. 2014, 50, 7531. doi: 10.1039/C4CC02689F

    (42)Dale, T. J.; Rebek, J., Jr. Angew. Chem. Int. Edit. 2009, 48, 7850. doi: 10.1002/anie.200902820

    (43)Wu, X. J.; Wu, Z. S.; Han, S. F. Chem. Commun. 2011, 47, 11468. doi: 10.1039/C1CC15250E

    (44)He, L. P.; Liang, J. J.; Cong, Y.; Chen, X.; Bu, W. F. Chem. Commun. 2014, 50, 10841. doi: 10.1039/C4CC04243C

    (45)Kim, I. B.; Erdogan, B.; Wilson, J. N.; Bunz, U. H. F. Chem. -Eur. J. 2004, 10, 6247. doi: 10.1002/chem.200400788

    (46)Tolosa, J.; Zucchero, A. J.; Bunz, U. H. F. J. Am. Chem. Soc. 2008, 130, 6498. doi: 10.1021/ja800232f

    (47)Klok, H. A.; Hwang, J. J.; Iyer, S. N.; Stupp, S. I. Macromolecules 2002, 35, 746. doi: 10.1021/ma010907x

    (48)Xue, M.; Miao, Q.; Fang, Y. Acta Phys. -Chim. Sin. 2013, 29, 2005. [薛 敏, 苗 青, 房 喻. 物理化學(xué)學(xué)報, 2013, 29, 2005.] doi: 10.3866/PKU.WHXB201306142

    (49)Zhang, L.; You, C. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Acta Phys. -Chim. Sin. 2006, 22, 326. [張 魯, 游長江, 陳金平, 楊國強, 李 嫕. 物理化學(xué)學(xué)報, 2006, 22, 326.] doi: 10.1016/S1872-1508(06)60008-9

    (50)Pangeni, D.; Nesterov, E. E. Macromolecules 2013, 46, 7266. doi: 10.1021/ma4016278

    (51)Chang, X. M.; Wang, G.; Yu, C. M.; Wang, Y. R.; He, M. X.;Fan J.; Fang, Y. J. Photochem. Photobiol. A 2015, 298, 9. doi: 10.1016/j.jphotochem.2014.10.008

    (52)Marx, V. Nat. Methods 2015, 12, 187. doi: 10.1038/nmeth.3295

    (53)Dennison, G. H.; Johnston, M. R. Chem. -Eur. J. 2015, 21, 6328. doi: 10.1002/chem.201406213

    (54)Goswami, S. Das, S.; Aich, K. RSC Adv. 2015, 5, 28996. doi: 10.1039/C5RA01216C

    A New Type of 1,4-Bis(phenylethynyl)benzene Derivatives: Optical Behavior and Sensing Applications

    QI Yan-Yu SUN Xiao-Huan CHANG Xing-Mao KANG Rui LIU Kai-Qiang FANG Yu*
    (Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China)

    A new and optically stable fluorescent deriνatiνe (OPBMQ) of 1,4-bis(phenylethynyl)benzene(BPEB) with 8-hydroxyquinoline (8-HQ) as a capturing unit and cholesterol (Chol) as an auxiliary structure was designed and synthesized. Fluorescence studies demonstrated that the fluorescence emission of the compound in the aqueous phase is characterized by two distinct and independent emissions, of which one originates from 8-HQ and the other from BPEB. Importantly, the emission is highly selectiνe and sensitiνe to the presence of diethyl chlorophosphate (DCP), a simulant of Sarin. The calculated detection limit (DL)is lower than 1 × 10?9mol·L?1. Moreoνer, no significant response was obserνed when the probe was exposed to simulants of other nerνe agents, releνant organophosphorus pesticides, or eνen their mixtures. More importantly, regardless of whether Milli-Q water, tap water or eνen sea water was employed as solνent, the presence of the mixture of the interferents studied did not show any significant effect on the detection of DCP. In particular, the sensitiνe and highly selectiνe detection of DCP was also realized by naked-eye obserνation, proνiding a simple and low-cost protocol for the on-site and real-time detection of the chemical. Based on this discoνery, a DCP monitoring deνice was successfully deνeloped.

    1,4-Bis(phenylethynyl)benzene; Fluorescence; Sarin; 8-Hydroxyquinoline; Diethyl chlorophosphate

    O644

    10.3866/PKU.WHXB201511091

    Received: October 11, 2015; Revised: November 9, 2015; Published on Web: November 9, 2015.

    *Corresponding author. Email: yfang@snnu.edu.cn; Tel: +86-29-81530787.

    The project was supported by the National Natural Science Foundation of China (21273141, 21527802), “111 Project”, China (B14041), and Program for Changjiang Scholars and Innovative Research Team in Universities, China (IRT1070).

    國家自然科學(xué)基金(21273141, 21527802), “111”計劃(B14041)及長江學(xué)者與創(chuàng)新團隊發(fā)展計劃(IRT1070)資助項目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    沙林毒氣乙炔
    驚魂毒氣戰(zhàn)
    毒氣、偵探和筆記
    走開!毒氣君
    寫在美麗的沙林
    兵團工運(2019年1期)2019-12-15 23:01:31
    毒氣
    烷美無炔
    不知保釋金降至2美元白坐5月牢
    東西南北(2016年14期)2016-08-16 09:47:08
    超導(dǎo)電乙炔炭黑DENKA BLACK(電池用途)
    在線激光乙炔分析儀在醋酸乙烯合成中的應(yīng)用
    自動化博覽(2014年8期)2014-02-28 22:33:06
    水環(huán)壓縮機組在乙炔生產(chǎn)中的應(yīng)用
    中國氯堿(2014年10期)2014-02-28 01:04:59
    黄色毛片三级朝国网站| 韩国高清视频一区二区三区| 满18在线观看网站| 看免费成人av毛片| 日韩一区二区三区影片| 久久久精品94久久精品| 久久久久久久久久人人人人人人| 中文字幕制服av| videossex国产| 国产男女内射视频| 亚洲精品自拍成人| 伦精品一区二区三区| 999精品在线视频| 久久国产亚洲av麻豆专区| 欧美日韩视频精品一区| 免费在线观看完整版高清| 香蕉精品网在线| 在线观看免费高清a一片| 大片免费播放器 马上看| 国产精品一区www在线观看| 韩国av在线不卡| 亚洲精品国产色婷婷电影| 久久99蜜桃精品久久| 欧美激情国产日韩精品一区| 丰满饥渴人妻一区二区三| 校园人妻丝袜中文字幕| 亚洲欧洲国产日韩| 免费在线观看黄色视频的| videosex国产| 天天影视国产精品| 久久人人爽人人片av| 亚洲,一卡二卡三卡| 日韩三级伦理在线观看| 最新的欧美精品一区二区| 亚洲中文av在线| 国产精品久久久av美女十八| 免费黄色在线免费观看| 国产1区2区3区精品| 日韩中文字幕视频在线看片| 亚洲精品,欧美精品| 性高湖久久久久久久久免费观看| 亚洲少妇的诱惑av| 侵犯人妻中文字幕一二三四区| 国内精品宾馆在线| 久久久国产一区二区| 免费人妻精品一区二区三区视频| 少妇高潮的动态图| 久久久久久久亚洲中文字幕| 下体分泌物呈黄色| xxxhd国产人妻xxx| 各种免费的搞黄视频| 1024视频免费在线观看| 九草在线视频观看| 久久精品国产亚洲av天美| 老司机影院成人| 久久精品久久精品一区二区三区| 亚洲av.av天堂| 91午夜精品亚洲一区二区三区| 看十八女毛片水多多多| 亚洲三级黄色毛片| 国产69精品久久久久777片| 国产免费一区二区三区四区乱码| 久久人人爽人人爽人人片va| 免费观看a级毛片全部| 日本黄大片高清| 人人妻人人澡人人爽人人夜夜| 少妇精品久久久久久久| 秋霞在线观看毛片| 热re99久久国产66热| 精品久久国产蜜桃| 观看av在线不卡| 亚洲av日韩在线播放| 国产成人午夜福利电影在线观看| 黄色 视频免费看| www日本在线高清视频| 美女xxoo啪啪120秒动态图| 久久久久久伊人网av| 18在线观看网站| 狠狠婷婷综合久久久久久88av| 日韩在线高清观看一区二区三区| av在线app专区| 亚洲综合色惰| 22中文网久久字幕| 老司机影院毛片| 免费看不卡的av| 国产精品蜜桃在线观看| av电影中文网址| 国产日韩一区二区三区精品不卡| videossex国产| 制服人妻中文乱码| 日韩制服骚丝袜av| 国产精品偷伦视频观看了| 欧美日韩综合久久久久久| 18禁国产床啪视频网站| 97在线人人人人妻| 热re99久久精品国产66热6| 毛片一级片免费看久久久久| 国产成人精品婷婷| 欧美日韩精品成人综合77777| 国产精品.久久久| 亚洲国产精品999| 成年女人在线观看亚洲视频| 黑人巨大精品欧美一区二区蜜桃 | www.色视频.com| 超色免费av| 亚洲人成77777在线视频| 宅男免费午夜| 国产在线一区二区三区精| 97精品久久久久久久久久精品| 久久国产亚洲av麻豆专区| 欧美人与性动交α欧美软件 | 午夜激情av网站| 丝袜美足系列| 狂野欧美激情性xxxx在线观看| 精品午夜福利在线看| 看非洲黑人一级黄片| 午夜日本视频在线| 日韩大片免费观看网站| 最近最新中文字幕免费大全7| www.熟女人妻精品国产 | 日韩一区二区三区影片| 大香蕉97超碰在线| 久久国产亚洲av麻豆专区| 搡老乐熟女国产| 777米奇影视久久| 精品久久久久久电影网| 婷婷色麻豆天堂久久| 欧美xxⅹ黑人| 国产有黄有色有爽视频| 精品国产露脸久久av麻豆| 国产男女超爽视频在线观看| 免费在线观看完整版高清| 人妻 亚洲 视频| av在线老鸭窝| 久热久热在线精品观看| 色婷婷久久久亚洲欧美| 人妻人人澡人人爽人人| 咕卡用的链子| 丝袜美足系列| 9191精品国产免费久久| 亚洲婷婷狠狠爱综合网| 午夜福利视频精品| 中文字幕av电影在线播放| 久久99热这里只频精品6学生| 日本av手机在线免费观看| 亚洲精品国产色婷婷电影| 日韩三级伦理在线观看| 国产精品人妻久久久影院| av又黄又爽大尺度在线免费看| 美女国产视频在线观看| www.色视频.com| 国产精品国产三级国产av玫瑰| 久久久久精品久久久久真实原创| 国产一区二区在线观看日韩| 丝袜人妻中文字幕| 亚洲精品视频女| 婷婷色麻豆天堂久久| 亚洲精品,欧美精品| 国产 一区精品| 久久精品久久久久久噜噜老黄| 免费在线观看黄色视频的| 久久这里只有精品19| 精品久久久久久电影网| 久久久久久伊人网av| 我的女老师完整版在线观看| 一本—道久久a久久精品蜜桃钙片| 爱豆传媒免费全集在线观看| 成人国语在线视频| 各种免费的搞黄视频| 一级片'在线观看视频| 2018国产大陆天天弄谢| 我的女老师完整版在线观看| 久久久久久伊人网av| 久久青草综合色| 日日摸夜夜添夜夜爱| 国产老妇伦熟女老妇高清| 卡戴珊不雅视频在线播放| 久久久久久人人人人人| 青春草视频在线免费观看| 精品人妻偷拍中文字幕| 日日撸夜夜添| 又黄又粗又硬又大视频| 热re99久久精品国产66热6| 久久鲁丝午夜福利片| 亚洲精品乱码久久久久久按摩| 久久99蜜桃精品久久| 免费久久久久久久精品成人欧美视频 | 久久精品人人爽人人爽视色| 男女边摸边吃奶| 多毛熟女@视频| 久久久久国产精品人妻一区二区| 宅男免费午夜| 成人黄色视频免费在线看| 国产1区2区3区精品| 在线免费观看不下载黄p国产| av在线app专区| 久久精品aⅴ一区二区三区四区 | 亚洲av国产av综合av卡| 少妇高潮的动态图| freevideosex欧美| 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 成年人午夜在线观看视频| 黄网站色视频无遮挡免费观看| 日韩视频在线欧美| 天堂中文最新版在线下载| 只有这里有精品99| 国产成人免费观看mmmm| 青青草视频在线视频观看| 久久久精品94久久精品| 久久综合国产亚洲精品| 免费大片18禁| 五月天丁香电影| 三级国产精品片| 欧美激情国产日韩精品一区| 五月开心婷婷网| 欧美日韩精品成人综合77777| 免费观看性生交大片5| 97人妻天天添夜夜摸| 日韩视频在线欧美| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 王馨瑶露胸无遮挡在线观看| 看免费av毛片| 国产1区2区3区精品| 一区二区三区乱码不卡18| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 久久久久久久久久成人| 亚洲激情五月婷婷啪啪| 欧美人与性动交α欧美精品济南到 | 国产av国产精品国产| 国精品久久久久久国模美| 高清不卡的av网站| 国产视频首页在线观看| 一本久久精品| 午夜精品国产一区二区电影| 久久久欧美国产精品| 夜夜爽夜夜爽视频| 欧美最新免费一区二区三区| 91国产中文字幕| 午夜免费鲁丝| 婷婷色综合www| 夜夜爽夜夜爽视频| 成年美女黄网站色视频大全免费| 国产男人的电影天堂91| 老司机影院成人| 欧美激情 高清一区二区三区| 成人手机av| av卡一久久| 久久精品夜色国产| 秋霞伦理黄片| 久久免费观看电影| 有码 亚洲区| 成人18禁高潮啪啪吃奶动态图| 18禁在线无遮挡免费观看视频| 午夜91福利影院| 少妇精品久久久久久久| 久久av网站| 最新中文字幕久久久久| 午夜老司机福利剧场| 丝瓜视频免费看黄片| 午夜免费男女啪啪视频观看| 熟女电影av网| 七月丁香在线播放| 久久久久网色| 欧美+日韩+精品| 国产欧美日韩综合在线一区二区| 精品国产国语对白av| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 美女福利国产在线| 欧美成人精品欧美一级黄| 日韩熟女老妇一区二区性免费视频| av播播在线观看一区| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app| 18+在线观看网站| 人妻一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 日韩一本色道免费dvd| 成人国产av品久久久| 色吧在线观看| 精品久久久精品久久久| 亚洲欧美成人综合另类久久久| 最近中文字幕2019免费版| 一级,二级,三级黄色视频| 欧美日韩视频高清一区二区三区二| 久久99热6这里只有精品| 免费看光身美女| www.色视频.com| 人妻人人澡人人爽人人| av在线老鸭窝| 2022亚洲国产成人精品| 日韩欧美精品免费久久| 亚洲国产毛片av蜜桃av| 男的添女的下面高潮视频| 午夜激情久久久久久久| 色婷婷久久久亚洲欧美| 久久久久久久久久成人| 国产精品国产三级国产av玫瑰| 在线 av 中文字幕| 中文字幕亚洲精品专区| 老司机影院毛片| 五月玫瑰六月丁香| 久久人人爽人人片av| 欧美激情 高清一区二区三区| 日韩不卡一区二区三区视频在线| 丰满少妇做爰视频| 精品人妻在线不人妻| 欧美日韩精品成人综合77777| 91精品伊人久久大香线蕉| 国产亚洲av片在线观看秒播厂| 男女免费视频国产| 一本—道久久a久久精品蜜桃钙片| 少妇熟女欧美另类| 人人妻人人爽人人添夜夜欢视频| 免费av不卡在线播放| 色吧在线观看| 中文乱码字字幕精品一区二区三区| 999精品在线视频| av有码第一页| 美女主播在线视频| 日本爱情动作片www.在线观看| 自线自在国产av| 免费观看av网站的网址| 丰满乱子伦码专区| 亚洲精品国产av成人精品| 男女午夜视频在线观看 | 天堂8中文在线网| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 香蕉精品网在线| 永久网站在线| 啦啦啦在线观看免费高清www| 亚洲人与动物交配视频| 国产色婷婷99| 午夜福利视频在线观看免费| 日韩在线高清观看一区二区三区| 国产免费一级a男人的天堂| av片东京热男人的天堂| 亚洲,一卡二卡三卡| 一边摸一边做爽爽视频免费| 亚洲欧美色中文字幕在线| 免费观看在线日韩| 最近最新中文字幕免费大全7| 日日爽夜夜爽网站| 国产精品国产三级国产专区5o| 日韩一区二区视频免费看| 久久99一区二区三区| 精品第一国产精品| 欧美日韩亚洲高清精品| 伦理电影大哥的女人| 国产国语露脸激情在线看| 色哟哟·www| 国产在视频线精品| 欧美国产精品va在线观看不卡| 亚洲欧美色中文字幕在线| 欧美xxⅹ黑人| 2018国产大陆天天弄谢| 丰满饥渴人妻一区二区三| 国产成人一区二区在线| 如日韩欧美国产精品一区二区三区| 亚洲av国产av综合av卡| 精品一区在线观看国产| 免费黄色在线免费观看| 夜夜爽夜夜爽视频| 女性生殖器流出的白浆| 香蕉国产在线看| 亚洲综合色网址| 美女福利国产在线| 日韩制服丝袜自拍偷拍| 日韩在线高清观看一区二区三区| 午夜福利网站1000一区二区三区| 久久久久视频综合| 日韩一区二区三区影片| 免费黄频网站在线观看国产| 免费女性裸体啪啪无遮挡网站| 国产成人免费观看mmmm| 一区二区三区四区激情视频| 天天影视国产精品| 国产黄频视频在线观看| 久久热在线av| 黄色 视频免费看| 九九爱精品视频在线观看| 久久久久国产网址| 国产一区二区在线观看日韩| 国产成人av激情在线播放| av在线app专区| 人妻一区二区av| 中文字幕人妻熟女乱码| 欧美日韩视频高清一区二区三区二| 国产精品一区www在线观看| 日韩成人伦理影院| 欧美精品一区二区免费开放| 两个人看的免费小视频| 国产69精品久久久久777片| a级片在线免费高清观看视频| 午夜日本视频在线| av片东京热男人的天堂| 在线观看美女被高潮喷水网站| 熟女人妻精品中文字幕| 精品一区二区三卡| 男女免费视频国产| 各种免费的搞黄视频| 亚洲精品国产av成人精品| 婷婷成人精品国产| 熟女av电影| 国产精品成人在线| 伦理电影免费视频| 国产精品久久久久成人av| 狠狠精品人妻久久久久久综合| 久久av网站| 国产一区二区三区av在线| 热99国产精品久久久久久7| 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av涩爱| av免费观看日本| 国产成人免费无遮挡视频| 男人舔女人的私密视频| 欧美日韩综合久久久久久| 精品久久久久久电影网| 一本久久精品| 国产免费又黄又爽又色| 永久网站在线| 免费av中文字幕在线| 三级国产精品片| 欧美激情极品国产一区二区三区 | 国产在视频线精品| 少妇被粗大的猛进出69影院 | 精品久久久久久电影网| 亚洲精品国产av成人精品| 亚洲国产毛片av蜜桃av| 日韩人妻精品一区2区三区| 久久午夜综合久久蜜桃| 久久人人爽人人片av| 中国美白少妇内射xxxbb| 26uuu在线亚洲综合色| 丝袜美足系列| 精品亚洲成a人片在线观看| 99精国产麻豆久久婷婷| 日韩三级伦理在线观看| 久久久久网色| 国产精品国产av在线观看| 人成视频在线观看免费观看| 国产日韩一区二区三区精品不卡| 国产高清三级在线| 久久99蜜桃精品久久| 久久久久精品性色| 一区二区日韩欧美中文字幕 | 亚洲美女视频黄频| 一本久久精品| 美女中出高潮动态图| 久久99一区二区三区| www.熟女人妻精品国产 | 午夜福利在线观看免费完整高清在| 一级a做视频免费观看| 99热全是精品| 五月开心婷婷网| 亚洲精品色激情综合| 97精品久久久久久久久久精品| 91精品三级在线观看| 精品国产一区二区久久| 中文字幕精品免费在线观看视频 | 五月伊人婷婷丁香| h视频一区二区三区| 久久久久久久久久成人| www.熟女人妻精品国产 | 欧美人与性动交α欧美精品济南到 | 亚洲精品视频女| 女性被躁到高潮视频| 日韩成人伦理影院| 色婷婷av一区二区三区视频| 女人被躁到高潮嗷嗷叫费观| 久久av网站| 亚洲精品久久久久久婷婷小说| 国产成人a∨麻豆精品| 国产色婷婷99| 欧美日韩视频精品一区| 亚洲婷婷狠狠爱综合网| 亚洲丝袜综合中文字幕| 中文欧美无线码| 国产亚洲精品久久久com| 亚洲精华国产精华液的使用体验| 26uuu在线亚洲综合色| 亚洲国产色片| 日韩,欧美,国产一区二区三区| 99热网站在线观看| 51国产日韩欧美| 人妻一区二区av| 亚洲精品色激情综合| 美女视频免费永久观看网站| 成人亚洲精品一区在线观看| 搡老乐熟女国产| 亚洲国产精品国产精品| 蜜臀久久99精品久久宅男| 日韩免费高清中文字幕av| 日韩成人伦理影院| 一区二区av电影网| 亚洲精品成人av观看孕妇| 久久久久久久久久久免费av| av一本久久久久| 精品亚洲乱码少妇综合久久| 国精品久久久久久国模美| 日本欧美视频一区| 最黄视频免费看| 97人妻天天添夜夜摸| 久久国产精品大桥未久av| 777米奇影视久久| 18禁动态无遮挡网站| a级毛片在线看网站| 日日摸夜夜添夜夜爱| 精品视频人人做人人爽| 日韩精品有码人妻一区| 曰老女人黄片| 人人妻人人澡人人爽人人夜夜| 国产高清国产精品国产三级| 十八禁高潮呻吟视频| 91国产中文字幕| 美女国产高潮福利片在线看| 欧美日本中文国产一区发布| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 美国免费a级毛片| 亚洲国产精品999| 高清av免费在线| 欧美成人午夜免费资源| 汤姆久久久久久久影院中文字幕| 欧美 亚洲 国产 日韩一| 久久久久久久久久成人| 国产国拍精品亚洲av在线观看| 中文字幕制服av| 一区二区三区精品91| 亚洲高清免费不卡视频| 国产午夜精品一二区理论片| 99热网站在线观看| 国产精品久久久久久精品古装| 日本黄大片高清| 亚洲欧美日韩卡通动漫| 免费在线观看完整版高清| 又粗又硬又长又爽又黄的视频| 香蕉精品网在线| 午夜日本视频在线| 成年人午夜在线观看视频| 波野结衣二区三区在线| 久久影院123| 久久这里有精品视频免费| av免费在线看不卡| 久久久精品区二区三区| 国产女主播在线喷水免费视频网站| 久久精品国产综合久久久 | 日本vs欧美在线观看视频| 欧美亚洲日本最大视频资源| 国产精品国产三级专区第一集| 免费日韩欧美在线观看| 精品酒店卫生间| 国产精品女同一区二区软件| 国产av一区二区精品久久| 一区二区av电影网| 亚洲国产欧美日韩在线播放| 大香蕉久久成人网| 国产成人aa在线观看| 成年美女黄网站色视频大全免费| 美女内射精品一级片tv| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 国产av一区二区精品久久| 亚洲av福利一区| 久热这里只有精品99| 国产精品欧美亚洲77777| 精品人妻在线不人妻| 成人影院久久| 久久久久久久久久成人| 国产av国产精品国产| 亚洲经典国产精华液单| av卡一久久| 大陆偷拍与自拍| 午夜免费鲁丝| 亚洲在久久综合| 亚洲色图综合在线观看| 亚洲人成77777在线视频| 热99国产精品久久久久久7| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| 2022亚洲国产成人精品| 一二三四在线观看免费中文在 | 最近最新中文字幕免费大全7| 国产又爽黄色视频| 国产男女内射视频| 考比视频在线观看| 久久影院123| 91精品三级在线观看| 久久 成人 亚洲| 美女脱内裤让男人舔精品视频| 美女福利国产在线| 永久网站在线| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区国产| 最近最新中文字幕大全免费视频 | 丝袜美足系列| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 免费高清在线观看日韩| 精品国产国语对白av| 午夜福利在线观看免费完整高清在| 99热全是精品| 亚洲av成人精品一二三区| 国产色婷婷99| 天美传媒精品一区二区| 九九在线视频观看精品| 国产日韩欧美视频二区|