• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    部分水解聚丙烯酰胺與蠕蟲狀膠束在微米級毛細(xì)管中的驅(qū)替粘度

    2016-11-18 07:29:23陸業(yè)昌李文宏張永強(qiáng)李學(xué)豐董金鳳
    物理化學(xué)學(xué)報(bào) 2016年1期
    關(guān)鍵詞:牛頓流體蠕蟲長慶油田

    陸業(yè)昌李文宏張永強(qiáng)李學(xué)豐董金鳳,*

    (1武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢 430072;2低滲透油氣田勘探開發(fā)國家工程實(shí)驗(yàn)室,西安 710021;3中國石油長慶油田分公司勘探開發(fā)研究院,西安 710021)

    部分水解聚丙烯酰胺與蠕蟲狀膠束在微米級毛細(xì)管中的驅(qū)替粘度

    陸業(yè)昌1李文宏2,3張永強(qiáng)2,3李學(xué)豐1董金鳳1,*

    (1武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢 430072;2低滲透油氣田勘探開發(fā)國家工程實(shí)驗(yàn)室,西安 710021;3中國石油長慶油田分公司勘探開發(fā)研究院,西安 710021)

    部分水解聚丙烯酰胺(HPAMs)被大量地用作三次采油中驅(qū)替液的增稠劑,表面活性劑在一定的條件下可以通過自組裝形成蠕蟲狀膠束,具有與高分子相似的增稠的作用。本文在半徑為1–10 μm的毛細(xì)管中,分別考察了HPAMs與蠕蟲狀膠束的微觀驅(qū)替行為,研究結(jié)果表示毛細(xì)管內(nèi)腔的尺寸限制了這些非牛頓流體的增稠作用。隨著毛細(xì)管半徑的減小,聚合物溶液的剪切變稀越劇烈,甚至從非牛頓流體轉(zhuǎn)變?yōu)榕nD流體的流體行為。結(jié)合驅(qū)替研究和超濾、電鏡的結(jié)果,證明了高分子的纏繞結(jié)構(gòu)在毛細(xì)管中已被破壞。通過對比驅(qū)替數(shù)據(jù),蠕蟲狀膠束在毛細(xì)管中能夠更大程度地保留宏觀的粘度,我們提出表面活性劑能夠通過自組裝修復(fù)被破壞的纏繞結(jié)構(gòu),比高分子聚合物在微觀有限空間中有更好的增稠能力。

    微米級毛細(xì)管;驅(qū)替粘度;部分水解聚丙烯酰胺;蠕蟲狀膠束;毛細(xì)管壓力

    1 Introduction

    Low or ultra-low permeability oil and gas resource is abundant and has a great potential of exploration and development. Oil production in low permeability reservoirs increases continuously and the proportion in production components is increasing yearly. Pore throats or channels typically range from about 0.1 to 1 μm in the low permeability reservoir. Water-oil displacement in these reservoirs was assumed as a piston-like shock and the viscous fingers was investigated widely both using numerical simulation and experimented techniques1,2. Enhanced oil recovery (EOR) was developed to be an economic technique in increasing production from the oil left in the ground. Based on the capillary number, Ca = ηV/γ, where η is the viscosity of the liquid, V is a characteristic velocity, and γ is the surface or interfacial tension between the two fluid phases, both increasing the viscosity of the liquid and decreasing the interfacial tension are effective ways to increase Ca above 10–5which is favorable to reduce the viscous fingers3. Hydrolyzed polyacrylamides (HPAMs) have been widely applied to enhance the viscosity of aqueous injectants in pores4,5. However, the in-situ viscosity is less than the bulk viscosity due to the existence of a depleted layer near the pore wall6,7. The effect of employing polymers has been a focus in research for the last two decades8–10. One of the challenge is developing feasible insitu experimental techniques to study the flow behavior and immiscible two-phases displacement. A number of experimented techniques were reported to investigate the cores over 100 μm reserviors11–13. And some numerical simulation methods were established to estimate the behavior of fluid displacing in the nanopores14,15. We developed a digital video technique to visualize the interface movement in microscale capillary. The radii of the capillary can be as small as 1 μm due to the availability. Based on the Washburn equation, two-phase or three-phase flows have been investigated and the size of capillary was found to play a critical role in the displacement velocity and capillary pressure16–23.

    The present work employs commercial samples of HPAMs with different molecular weights as the displacing phase in quartz capillaries with radii ranging from 1 to 10 μm. Immiscible two phase displacement such as liquid-gas and liquid-liquid flow are investigated. The shear-thinning behavior of HPAMs in bulk is characterized. The capillary size effect on the in-situ viscosity during the capillary displacement is established. Significant difference between bulk viscosity and in-situ viscosity was found. Filtration and transmission electron microscopy (TEM) were employed to explain the results. In comparison, worm-like micelles (WLMs) are known as the “l(fā)iving polymers” which can be constructed by the self-assembling of surfactant molecules, was employed to replace HPAMs in the displacing agent, and the in-situ viscosity was characterized.

    2 Materials and methods

    2.1 Materials

    Glycol (≥ 99.0%) and n-decane (≥ 99.0%) were obtained from Sinopharm Chemical Reagent Co., Ltd. Glycol was used as received and diluted by deionized water to required concentration. n-Decane was used as the oil phase after being purified following a text book process until the decane/water interfacial reaches 50 mN·m–124. Polyacrylamides with different molecular weights listed in Table 1 were supplied by SNF FLOERGER and used as received. The polymer solutions were prepared by introducing weighed amounts of HPAM in ultrapure deionized water (Milli-Q system) and stirred by 60 r·min–1at least 24 h to ensure complete dissolution, then left at 25 °C for 3 d before any measurement. The WLM samples were prepared following the previous report25, the concentration of sodium oleate (NaOA, > 99%, from STREM CHEMICALS) was 50 mmol·L–1, and 1-[2-(4-phenylazo-phenoxy)-ethyl]-3-methylimidazolium bromide (C0AZOC2IMB, synthesized by our group) was 17.5 mmol·L–1, the mole ratio [C0AZOC2IMB]/[NaOA] was 0.35. 99.99% nitrogen was used as the gas phase. Capillaries of high-purity quartz (> 99.99% of SiO2) were purchased from Polymicro Technologies (U.S.).

    2.2 Surface or interfacial tension

    The surface tension γ and the interfacial tension between aqueous phase and decane γ12were measured via Pendant Drop method (DSA100 droplet shape analysis, Krüss, Germany) at 25 °C. Corresponding experimental results were given in Table S1 in the Supporting Information.

    2.3 Rheological measurements

    Measurements were performed on a RS 600 stress-controlled rheometer (HAKKE RS600, Thermo Fisher Scientific, Germany) using a couvette geometry Z20 according to the fluid viscosities. A Peltier-based temperature controller maintained the sample at 25 oC. The samples were equilibrated for at least 30 min before measurements. A solvent trap was used to minimize sample evaporation.

    2.4 Capillary tubes

    The radii of the capillary were measured by the method referred to the previous literature26–28. Dry capillaries were first saturated with water for an hour, and then, liquid in capillaries was expelled by blowing nitrogen gas before experiments. The determined results of the capillaries used in this study were 1.13, 2.88, 5.38, 9.18 μm, respectively.

    Table 1 Molecular weight of HPAMs

    2.5 Displacement

    The experiment setup was designed according to the reported apparatus28. In all of the experiments, the capillary was cut into a length L ≈ 180 mm. In the liquid-gas displacement, the experiments were setup by the same way as the method of determination of capillary radii. In the liquid-liquid displacement, the capillary was first placed in one end into the oil reservoir, and then the capillary would be saturated with oil spontaneously until it was completely saturated. Subsequently, the oth-er end of capillary was placed into the water solution reservoir and the solution could displace the oil phase spontaneously. After that, the capillary was placed horizontally, attached each end with a reservoir containing the displacing and displaced phases, respectively. Following the procedure reported earlier26–28, the displacement rate v was measured from the time required for the interface of liquid-gas or liquid-liquid system to travel a very small distance ΔL = 500 μm (ΔL << L) at a specific point.

    2.6 Filtration

    Microporous filters with pore diameters 2, 5, 10, 20 μm were purchased from Xingya purification materials plant (Shanghai). The viscous polymer fluids were forced to pass the microporous filters under external pressure of 100 kPa.

    2.7 Transmission electron microscopy

    The configuration of HPAMs molecules were observed on a JEM-2100 TEM operated at an acceleration voltage of 200 kV. Samples for TEM observation were prepared as follows. One drop of sample with a concentration of 1000 mg·mL–1was placed on a carbon-coated copper grid and the excess fluid was drained off with a filter paper. Then, a drop of 2% (w, mass fraction) aqueous phosphotungstic acid solution was added and the residue of the aqueous solution was removed with a filter paper after several minutes. The samples were finally dried at room temperature prior to measurement.

    3 Results and discussion

    Washburn equation describes Newtonian fluids displacement in the capillary assuming that the viscosity of the fluid is constant. The relationship between the displacement rate and external pressure is linear. The polymer solution investigated here is a shear-thinning fluid. Its viscosity of polymer solution decreases with the increase of shear rate, corresponding to the displacement rate in the capillary. The displacement rate of polymer solution is predicted to be a power-law function of the external pressure by the theory and previous experiments in which the flows are displacing in capillary over 100 μm11–13. Fig.1 shows the shear viscosity of polymer solutions and wormlike micelle solution. Polymer and worm-like micelle solution is a shear-thinning fluid, and the viscosity curves show a Newtonian plateau at low shear rate and drop at high shear rate for the breakage of entanglement of the long chains. The viscosity drop can be seen as a power-law function of shear rate.

    Fig.1 Shear viscosity vs shear rate for the non-Newtonian systems

    In the classic Washburn equation16, for the liquid-gas flow, the relationship between displacing rate v (the rate of meniscus displacement) and external pressure ΔP is

    where r is the capillary radius, η is the viscosity of the fluid, Pcis the capillary pressure, and L is the length of the fluid. And for the liquid-liquid flow,

    where ηiand Liare the viscosity and length of each phase, respectively.

    The capillary pressure at each interface caused by interfacial tension could be written as Young-Laplace equation

    where γ is the tension of the surface or interface, θ is the wetting contact angle. Measured fluids firstly saturate the capillary and are expelled by blowing nitrogen gas before experiments, so the capillary is pre-wetted by the fluid and the contact angle θ can be treated as 0°.

    Equations (1)–(3) are used to describe the kinetics of mutual displacement of the Newtonian fluid whose viscosity is taken as a constant value η. In a cylindrical capillary with radius r, the displacing rate v and external pressure ΔP show a linear relationship in which the length of each phase Lican easily be identified, with slope k = r2/8ΣηiLi. So the in-situ viscosities of fluid can be calculated from this slope of the v–ΔP line.

    The in-situ viscosities of some known Newtonian fluid, including decane and 65% glycol aqueous solution, measured by this displacement method are shown in Table 2. Clearly, the viscosity measured by displacement method fits well with that by rheometer. The Newtonian fluid′s viscosity keeps the same in different sizes of capillaries, which assures that the displacement method is feasible.

    Table 2 Viscosity of known fluids at 25 oC

    For shear-thinning fluid, the in-situ viscosity is a function of the shear rate. The power law is the simplest one of the models which is given by the relation

    where C is the consistency factor,is the shear rate, and n is the flow behavior index. The power-law is usually used to model shear-thinning behavior when n = 1, the value of C is equal to the viscosity of Newtonian fluids.

    If the fluid is treated as a power-law model, the Washburn equation of liquid-gas flow could be extended as29

    The relationship between displacing rate v and total pressure drop (ΣP = ΔP + Pc) could be a power-law function with flow index 1/n when the length of liquid L is identified in specified capillary, where Pccan be calculated by equation (3).

    3.1 Liquid-gas displacement

    Fig.2 shows the displacement rate as a function of the external pressure when the HPAM solution with molecular weight 2 × 106Da flowed into the microscale capillaries. Apparently, the linear relationship only holds for certain curves, meaning that the fluid is non-Newtonian type, and the viscosity is not constant. The experimental data can be fitted with power-law function (equation (6) and all the fittings have a correlation coefficient of r2≥ 0.99. From this fitting, the consistency factor C and the flow behavior index n can be calculated which are presented in Table 3. It can be seen clearly that C decreases and n increases with the decrease in the capillary radius, indicating that the smaller the size of capillary is, the fluid behavior is more approaching the Newtonian fluid. For example, in the capillary with radius of 1.13 μm (see Fig.2a), the displacement rate is completely a linear function of the external pressure (also can be considered as that the power-law index increased to 1), the viscosity does not change with the change of displacement rate, which can be represented by the classic Washburn equation(equation (1). Furthermore, the HPAMs with different molecular weights show similar result (See Figs.S1, S2 in the Supporting Information). The results suggest that when the HPAM solution flows into the capillary with radii below 10 μm, the viscosity of fluids decreases and turns to the Newtonian type in the capillary with a radius of 1.13 μm.

    Fig.2 Displacement rate of FP3130S solution (1000 mg·L-1) with a range of length under different external pressures in capillaries with radii of (a) 1.13, (b) 2.88, (c) 5.38, (d) 9.18 μm

    3.2 Liquid-liquid displacement

    When the gas phase is replaced by an oil phase such as decane, the displacement is similar although the oil-water interfacial tension is reduced. Fig.3 presents the displacement rate of HPAM solution displacing the decane phase under different external pressures on different saturation of water phase (local volume fraction of total length of capillary) in the capillary with radius of 1.13 μm.

    Table 3 Consistency factor (C) and power-law index (n) of in-situ polymer flow

    The linear relationship between the displacement rate and external pressure suggests that the in-situ viscosity of the fluid is a constant value ηd, which can be calculated through the slope k by employing Washburn equation (equation (4)). The results are shown in Table 4, together shown are the zero-shear viscosity of the bulk η0which is obtained from the extending of Newtonian plateau in Fig.1. Clearly, the viscosities of the displacing fluid in-situ were much smaller than η0of the bulk and just about five times to that of water. Moreover, the η0of HPAM fluids increases with the increase of molecular weight at the same concentration, whereas it changes little with different molecular weights of HPAMs in both liquid-liquid and liquid-gas displacement in 1.13 μm capillary. This suggests that the size of the capillary has a decisive effect on the displacement in-situ viscosity of HPAM fluids in the micro-scale capillaries. The smaller the molecular weight is, the more pronounced deviation is.

    Fig.3 Displacement rate of HPAM solutions displacing decane with a range of saturation under different external pressure drop in capillaries with radius of 1.13 μm with molecular weight of(a) 2 × 106, (b) 8 × 106, (c) 18 × 106-20 × 106Da

    ηd1: the in-situ viscosity of displacing phase in liquid-gas flow;ηd2: the in-situ viscosity of displacing phase in liquid-liquid flow

    It is well known that the bulk viscosity enhancement of a polymer solution is due to the formation of network configuration. This network can be broken down by shearing and the bulk viscosity decreases as a function of shear rate, which is known as shear-thinning behavior. The apparent disagreement in micro-scale capillary displacement may be explained in two ways. One of them is that the volume of polymer molecules with ultra-high molecular weight is too large to enter into the pore. In this case, the displacing phase is only pure water, so the flow behaves as a Newtonian fluid. The other possibility is that the polymer molecules can enter into the pore, but the original entangled network and the fragments cannot recover their configuration in-situ, resulting in the loss of viscosity and Newtonian fluid behavior.

    Microporous filters with pores of Ф 2–20 μm were employed to exam whether the polymer can pass through the micropores or not. The polymer concentration and viscosity of the filtrate were measured by UV-Vis spectrophotometer and rheometer respectively. The results (Fig.4) show that only FP3130S, molecular weight 2 × 106Da, could pass through the filter. The others could only pass certain fractions of the sample, the lager the molecular weight was, the less the polymer could pass through the microporous filters. TEM images of polymers samples in the concentration of 1000 mg·L–1are shown in Fig.5. Clearly, long and entangled polymer network are formed in the solutions, and the size of the coils is over microns. Furthermore, it was noticed that a certain amount of polymer molecules could still pass through the smallest size of filters with pores of Ф 2 μm. This can be appreciated from the polydispersity of HPAMs provided. However, it is hard to quantify the filtrate due to the lack of standard samples. Nevertheless, it suggests that the fluid flooding into the micro-scale capillaries is not pure water, but a solution of polymer with lower molecular weight and concentration than the bulk.

    In comparison with HPAMs, the so-called “l(fā)iving polymers”, worm-like micelles (WLMs) are self-assembled by small molecular weight surfactant molecules. It is interesting to examine the displacement of a worm-like micelle solution in the microscale capillaries. An anionic surfactant (sodium oleate) wormlike micelle solution was employed as the displacing phase whose viscosity is shown in Fig.1. The WLM solution could not flow smoothly in the capillary with a radius of 1.13 μm and stopped in the halfway even under high pressure drop (~1000kPa). The capillaries with a radius of 5.38 μm was employed to perform the displacement. The results are shown in Fig.6. Clearly, when the external pressure drop is small, the displacement rate and external pressure drop is a linear relationship(solid line, r2≥ 0.99); when the external pressure drop is above a threshold value, the displacement rate and the external pressure drop is a non-linear relationship (dashed line). This behavior is a correspondent to the shear rheology which has a long plateau and drop sharply in high shear area. The in-situ viscosity of the WLM system in the linear area can be calculated byusing Washburn equation (equation (4). For comparison of insitu viscosity between WLMs and HPAMs, in-situ viscosity of HPAMs in the 5.38 μm capillary is not constant but can be calculated by the equation (5) with= (3n + 1/4n)n(4v/r)29. The results and the ratio between in-situ viscosity and zero shear viscosity of bulk ηi/η0are listed in Table 5. The viscosity ratio of WLM system was approximately 60% of bulk viscosity recovered in the capillary displacement and higher than the HPAM solution. Although, the bulk viscosity of WLM system is much lower than that of HPAM solution, its in-situ viscosity is much higher than that of HPAMs. A full comparison running of liquid-gas displacement with FP3130S (1000 mg·L–1) is shown in Fig.7. A very similar velocity at the same external pressure can be observed regardless of the significant difference in bulk viscosity of the two fluids. This demonstration shows that when the WLM system flows into the capillary with a limited size, the assembled structure could be recovered insitu quickly, therefore, the fluid can maintain its bulk viscosity to a higher degree than that of HPAMs.

    Fig.4 Rheology and UV-Vis spectra of the HPAMs filtrate through the microporous filters

    Fig.5 TEM images of polyacrylamides in concentration of 1000 mg·L-1

    Fig.6 Displacement rate of 50 mmol·L-1WLM system displacing gas under different external pressure drop in capillaries with radius of 5.38 μm

    Table 5 In-situ shear viscosity of flow in the capillary with a radius of 5.38 μm at external pressure drop from 0 to 50 kPa

    Fig.7 Comparison of FP3130S (1000 mg·L-1) and WLM (50 mmol·L-1)displacement in 5.38 μm capillary

    4 Conclusions

    In summary, the in-situ viscosity and capillary size dependency of the HPAM fluids in capillaries with radii below 10 μm were demonstrated. Although the polymer molecules were able to enter into the micro-scale pores, the polymer cannot be reestablished in-situ, therefore, the ‘loss’ of bulk viscosity of polymers is very high. On the contrary, WLM composed by surfactant molecules exhibits higher maintainability of its bulk viscosity. It is well known that surfactant is the main component in displacing agents to achieve the ultra-low oil-water interfacial tension. The WLM system with much lower viscosity displays more effective thickening power by the self-assembly of surfactant molecules compared to large polymers. But in the real oil reservoirs, the low-permeability channels are much more complicated, and the temperature of the reservoirs is generally higher than 25 °C adopted in this work, we have a plan to study the in-situ viscosity difference between polymers and WLMs in the core in the later work.

    Supporting Information: The tensions of HPAMs solution, and displacement rate of FP3330S and ST5030 solution(1000 mg·L–1) with a range of length under different external pressures in capillaries with different radii have been included. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Lake, L. Enhanced Oil Recovery; Prentice Hall: New Jersey, 1989; pp 2–16, 43–92, 317–353.

    (2)Buchgraber, M.; Clemens, T.; Castanier, L. M.; Kovscek, A. R. SPE Reservoir Eval. Eng. 2011, 14, 269. doi: 10.2118/122400-PA

    (3)Vizika, O.; Avraam, D. G.; Payatakes, A. C. J. Colloid Interface Sci. 1994, 165, 386. doi: 10.1006/jcis.1994.1243

    (4)Jackson, G. T.; Balhoff, M. T.; Huh, C.; Delshad, M. J. Pet. Sci. Eng. 2011, 78, 86. doi: 10.1016/j.petrol.2011.05.007

    (5)Zhang, J.; Wang, S.; Lu, X.; He, X. Pet. Sci. 2011, 8, 79. doi: 10.1007/s12182-011-0118-0

    (6)Chauveteau, G. J. Rheol. 1982, 26, 111. doi: 10.1122/1.549660

    (7)Gramain, P.; Myard, P. Macromolecules 1980, 14, 180.

    (8)Darwish, M. I. M.; McCray, J. E.; Currie, P. K.; Zitha, P. L. J. Groud Water Monitoring & Remediation 2003, 23, 92.

    (9)Wang, W.; Yue, X.; Chen, Y. J. Dispersion Sci. Technol. 2013,34, 639. doi: 10.1080/01932691.2012.686246

    (10)Gao, H. W.; Burchfield, T. E. SPE Reservoir Eng. 1995, 10, 129. doi: 10.2118/25453-PA

    (11)de Souza Mendes, P. R.; Dutra, E. S. S.; Siffert, J. R. R.;Naccache, M. F.J. Non-Newtonian Fluid Mech. 2007, 145, 30.

    (12)Srivastava, N.; Burns, M. A. Anal. Chem. 2006, 78, 1690. doi: 10.1021/ac0518046

    (13)Quintella, E. F.; Souza Mendes, P. R.; Carvalho, M. S. J. Non-Newtonian Fluid Mech. 2007, 147, 117. doi: 10.1016/j.jnnfm.2007.06.009

    (14)Chen, C.; Gao, C.; Zhuang, L.; Li, X.; Wu, P.; Dong, J.; Lu, J. Langmuir 2010, 26, 9533. doi: 10.1021/la100105f

    (15)Chen, C.; Zhuang, L.; Li, X.; Dong, J.; Lu, J. Langmuir 2012, 28, 1330. doi: 10.1021/la204207s

    (16)Washburn, E. W. Phys. Rev. 1921, 17, 273. doi: 10.1103/PhysRev.17.273

    (17)Zorin, Z. M.; Churaev, N. V. Adv. Colloid Interface Sci. 1992,40, 85. doi: 10.1016/0001-8686(92)80072-6

    (18)Zhmud, B. V.; Tiberg, F.; Hallstensson, K. J. Colloid Interface Sci. 2000, 228, 263. doi: 10.1006/jcis.2000.6951

    (19)Martic, G.; Gentner, F.; Seveno, D.; Coulon, D.; Coninck, J. D.;Blake, T. D. Langmuir 2002, 18, 7971. doi: 10.1021/la020068n

    (20)Blake, T. D.; Coninck, J. D. Colloids Surf. A 2004, 250, 395. doi: 10.1016/j.colsurfa.2004.05.024

    (21)Digilov, R. M. Langmuir 2008, 24, 13663. doi: 10.1021/la801807j

    (22)Zhou, W.; Gao, C.; Lu, Y.; Wang, Z.; Wu, P.; Li, X.; Dong, J. Energy Sources, Part A, 2011. doi: 10.1080/15567036.2011.585381

    (23)Zhou, W.; Lu, Y.; Gao, C.; Li, W.; Zhang, Y.; Li, X.; Chen, C.;Dong, J. Energy Fuels 2013, 27, 717.

    (24)Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; Elsevier Science: Burlington, 2003; p 185.

    (25)Lu, Y.; Zhou, T.; Fan, Q.; Dong, J.; Li, X. J. Colloid Interface Sci. 2013, 412, 107. doi: 10.1016/j.jcis.2013.09.014

    (26)Churaev, N. V.; Ershov, A. P.; Zorin, Z. M. J. Colloid Interface Sci. 1996, 177, 589. doi: 10.1006/jcis.1996.0073

    (27)Churaev, N. V.; Ershov, A. P.; Esipova, N. E.; Hill, R. M.;Sobolev, V. D.; Zorin, Z. M. Langmuir 2001, 17, 1349. doi: 10.1021/la000864y

    (28)Ershov, A. P.; Zorin, Z. M.; Sobolev, V. D.; Churaev, N. V. Colloid J. 2001, 63, 290. doi: 10.1023/A:1016687925562

    (29)Bird, R. B.; Armstrong, R. C.; Hassager, O. Fluid Mechanics. In Dynamics of Polymeric Liquids, Vol. 1; Wiley: New York, 1987;pp 169–179.

    In-situ Viscosity of Hydrolyzed Polyacrylamides and Surfactant Worm-Like Micelle Solutions in Microscale Capillaries

    LU Ye-Chang1LI Wen-Hong2,3ZHANG Yong-Qiang2,3LI Xue-Feng1DONG Jin-Feng1,*
    (1College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China;2National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710021, P. R. China;3Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710021, P. R. China)

    Hydrolyzed polyacrylamides (HPAMs) are shear-thinning polymers and haνe wide application in enhanced oil recoνery (EOR), whereas worm-like micelles (WLMs) are known as “l(fā)iνing polymers”, which can be constructed by the self-assembly of surfactant molecules. Here, a series of experiments were conducted on the fluid behaνior of HPAMs and worm-like micelles in microscale capillaries with radii from 1 to 10 μm. The results show that the size of capillary has a decisiνe effect on the in-situ νiscosity of the polymer aqueous phase. It was obserνed that the shear thinning effect of HPAMs is more pronounced in smaller size of capillaries, where the non-Newtonian polymer flow turns into the Newtonian flow. Eνidences from filtration with a microporous filter and transmission electron microscopy (TEM) reνeal that the polymer network was broken down when entering into the capillary. Conνersely, WLMs can maintain their bulk νiscosity to a wide extent. We assume that surfactant molecules may reassemble their aggregates and recoνer their network in-situ. The results suggest that WLMs haνe a much lower νiscosity, but display similar thickening power compared with large polymers in the low or ultra-low permeability reserνoirs.

    Micro-scale capillary flows; In-situ νiscosity; HPAMs; Worm-like micelles; Capillary pressure


    The project was supported by the National Natural Science Foundation of China (21573164, 21273165) and PetroChina Changqing Oilfield Co.
    國家自然科學(xué)基金(21573164, 21273165)和中國石油長慶油田分公司資助項(xiàng)目
    ?Editorial office of Acta Physico-Chimica Sinica

    O647

    10.3866/PKU.WHXB201511102

    Received: September 30, 2015; Revised: November 10, 2015; Published on Web: November 10, 2015.
    *

    猜你喜歡
    牛頓流體蠕蟲長慶油田
    蠕蟲狀MoS2/C的制備及其在鋰離子電池負(fù)極材料中的應(yīng)用
    長慶油田節(jié)能技術(shù)研究
    非牛頓流體
    秋季謹(jǐn)防家禽蠕蟲病
    什么是非牛頓流體
    少兒科技(2019年3期)2019-09-10 07:22:44
    區(qū)別牛頓流體和非牛頓流體
    長慶油田設(shè)備再制造又創(chuàng)三個(gè)國內(nèi)第一
    首款XGEL非牛頓流體“高樂高”系列水溶肥問世
    青海海晏縣牛羊寄生蠕蟲種調(diào)查與防治
    長慶油田的環(huán)保之爭
    能源(2015年8期)2015-05-26 09:15:45
    成年人黄色毛片网站| 男人舔女人的私密视频| 亚洲第一电影网av| 久久伊人香网站| 国产成年人精品一区二区| 欧美日本亚洲视频在线播放| 日本熟妇午夜| 激情在线观看视频在线高清| xxx96com| 午夜免费鲁丝| 脱女人内裤的视频| 一本精品99久久精品77| 日本一本二区三区精品| 在线观看免费午夜福利视频| 好男人在线观看高清免费视频 | 国产1区2区3区精品| 国产久久久一区二区三区| 精品欧美一区二区三区在线| 很黄的视频免费| 成人手机av| 麻豆国产av国片精品| 淫秽高清视频在线观看| 长腿黑丝高跟| 亚洲精品中文字幕一二三四区| 亚洲欧美一区二区三区黑人| 欧美性猛交黑人性爽| 成人免费观看视频高清| 亚洲人成77777在线视频| 99riav亚洲国产免费| svipshipincom国产片| 欧美精品啪啪一区二区三区| 男女下面进入的视频免费午夜 | 久久青草综合色| 不卡一级毛片| av有码第一页| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 日本 av在线| 夜夜爽天天搞| 日本一本二区三区精品| 天天躁夜夜躁狠狠躁躁| 成在线人永久免费视频| 午夜激情福利司机影院| 久久久久免费精品人妻一区二区 | 深夜精品福利| 久久人人精品亚洲av| 国产成人欧美在线观看| 在线观看午夜福利视频| 桃红色精品国产亚洲av| 很黄的视频免费| 两人在一起打扑克的视频| av在线天堂中文字幕| 欧美日韩亚洲综合一区二区三区_| 免费女性裸体啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 草草在线视频免费看| 日韩欧美三级三区| 母亲3免费完整高清在线观看| 91麻豆av在线| 一二三四在线观看免费中文在| 国产高清激情床上av| 男女视频在线观看网站免费 | av电影中文网址| 国产亚洲精品第一综合不卡| 一夜夜www| 成年女人毛片免费观看观看9| 色综合婷婷激情| 国产亚洲精品av在线| 久久狼人影院| 国产又色又爽无遮挡免费看| 神马国产精品三级电影在线观看 | 精品国产超薄肉色丝袜足j| 亚洲国产精品999在线| 亚洲国产欧洲综合997久久, | 午夜久久久在线观看| 成熟少妇高潮喷水视频| 国产片内射在线| 黄色a级毛片大全视频| 免费在线观看视频国产中文字幕亚洲| 侵犯人妻中文字幕一二三四区| 精品国产超薄肉色丝袜足j| 妹子高潮喷水视频| 久久天躁狠狠躁夜夜2o2o| av视频在线观看入口| 一本久久中文字幕| 免费看十八禁软件| 在线观看免费午夜福利视频| 狂野欧美激情性xxxx| 丰满人妻熟妇乱又伦精品不卡| 成人精品一区二区免费| 国产精品久久久久久亚洲av鲁大| 亚洲av熟女| 国产久久久一区二区三区| 一边摸一边做爽爽视频免费| 色综合站精品国产| 亚洲欧美精品综合久久99| 曰老女人黄片| 国产av一区二区精品久久| 又大又爽又粗| 啦啦啦观看免费观看视频高清| 丝袜在线中文字幕| 免费观看人在逋| 色av中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产精品久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕高清在线视频| 国产一区在线观看成人免费| 青草久久国产| 成人永久免费在线观看视频| 国产av一区二区精品久久| 午夜福利视频1000在线观看| 波多野结衣巨乳人妻| 国产三级在线视频| 丝袜人妻中文字幕| 99精品在免费线老司机午夜| 国产又爽黄色视频| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 一级a爱片免费观看的视频| 欧美zozozo另类| 伦理电影免费视频| 男人舔奶头视频| 视频区欧美日本亚洲| 18禁裸乳无遮挡免费网站照片 | 丝袜美腿诱惑在线| 少妇裸体淫交视频免费看高清 | 他把我摸到了高潮在线观看| 精品乱码久久久久久99久播| 国产精品av久久久久免费| 久久精品成人免费网站| 久久人妻av系列| 久久久久久九九精品二区国产 | 精品久久蜜臀av无| 国产99白浆流出| av有码第一页| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 啦啦啦 在线观看视频| 国产日本99.免费观看| 亚洲一区中文字幕在线| 久久久久久久久久黄片| 母亲3免费完整高清在线观看| 国产色视频综合| 免费在线观看黄色视频的| 欧美国产日韩亚洲一区| 国产亚洲精品av在线| 久久精品人妻少妇| 男人舔女人下体高潮全视频| 中文字幕精品亚洲无线码一区 | 夜夜爽天天搞| 久久这里只有精品19| 色av中文字幕| 激情在线观看视频在线高清| 国产亚洲精品第一综合不卡| 欧美日韩中文字幕国产精品一区二区三区| 亚洲黑人精品在线| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 国产av一区二区精品久久| 国产av又大| 精品高清国产在线一区| 精品人妻1区二区| 国产亚洲欧美在线一区二区| av在线天堂中文字幕| 日韩大码丰满熟妇| 国产亚洲欧美精品永久| 欧美性长视频在线观看| 欧美黑人精品巨大| 久久久精品欧美日韩精品| 啦啦啦 在线观看视频| 久久午夜亚洲精品久久| 岛国在线观看网站| 亚洲av美国av| 成熟少妇高潮喷水视频| 国产一区二区三区视频了| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播 | 日韩高清综合在线| 熟女少妇亚洲综合色aaa.| 校园春色视频在线观看| 男女那种视频在线观看| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 日本熟妇午夜| 午夜福利免费观看在线| 亚洲人成网站高清观看| 亚洲国产看品久久| 午夜激情福利司机影院| 欧美精品亚洲一区二区| 极品教师在线免费播放| 在线播放国产精品三级| 久久久久亚洲av毛片大全| 精品久久久久久久末码| 好看av亚洲va欧美ⅴa在| 国产91精品成人一区二区三区| bbb黄色大片| 免费无遮挡裸体视频| 亚洲精品粉嫩美女一区| 日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 99精品久久久久人妻精品| 色老头精品视频在线观看| 久久久水蜜桃国产精品网| 人妻久久中文字幕网| 亚洲成人久久性| 一夜夜www| 精品国产乱子伦一区二区三区| 欧美日本亚洲视频在线播放| 久久久久九九精品影院| 岛国在线观看网站| 99国产综合亚洲精品| 91大片在线观看| 欧美日本亚洲视频在线播放| 亚洲成人久久爱视频| 国产黄片美女视频| 91成年电影在线观看| 午夜久久久在线观看| 欧美+亚洲+日韩+国产| 夜夜爽天天搞| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 老司机福利观看| 日本免费一区二区三区高清不卡| 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 级片在线观看| 中文字幕av电影在线播放| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区久久 | 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 国产人伦9x9x在线观看| 亚洲电影在线观看av| 国产在线观看jvid| 亚洲av日韩精品久久久久久密| 好男人在线观看高清免费视频 | 99热只有精品国产| 在线观看免费日韩欧美大片| 国产99久久九九免费精品| 大型黄色视频在线免费观看| 在线永久观看黄色视频| 两个人视频免费观看高清| 高潮久久久久久久久久久不卡| 99re在线观看精品视频| 国产麻豆成人av免费视频| 少妇 在线观看| 国产精品av久久久久免费| 国产成人av激情在线播放| av在线播放免费不卡| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| 人成视频在线观看免费观看| 搞女人的毛片| 久久久久久大精品| 91大片在线观看| 在线视频色国产色| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 夜夜爽天天搞| 亚洲午夜精品一区,二区,三区| 视频区欧美日本亚洲| 久久人妻av系列| 国产一区在线观看成人免费| 国产成人欧美在线观看| 亚洲精品一区av在线观看| 两性夫妻黄色片| www日本在线高清视频| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 亚洲成av片中文字幕在线观看| 美女扒开内裤让男人捅视频| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 国产99白浆流出| 国产精品 国内视频| 一本综合久久免费| 极品教师在线免费播放| 国产亚洲精品综合一区在线观看 | tocl精华| 精品一区二区三区视频在线观看免费| 18美女黄网站色大片免费观看| 国产亚洲精品一区二区www| 黄色视频不卡| 免费观看精品视频网站| 免费av毛片视频| 久久草成人影院| 久久久久久九九精品二区国产 | 夜夜躁狠狠躁天天躁| 精华霜和精华液先用哪个| bbb黄色大片| 亚洲一区二区三区色噜噜| 亚洲五月天丁香| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久人人人人人| 午夜精品在线福利| 国语自产精品视频在线第100页| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 精品久久久久久久人妻蜜臀av| 日本黄色视频三级网站网址| 19禁男女啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 欧美午夜高清在线| 91国产中文字幕| 欧美最黄视频在线播放免费| 国产私拍福利视频在线观看| 高清在线国产一区| 久久天堂一区二区三区四区| 精品久久久久久久久久久久久 | 日韩一卡2卡3卡4卡2021年| 国产精品综合久久久久久久免费| tocl精华| 在线观看www视频免费| 亚洲aⅴ乱码一区二区在线播放 | 国产免费av片在线观看野外av| 亚洲成国产人片在线观看| 18禁裸乳无遮挡免费网站照片 | 精品久久久久久久毛片微露脸| 国产激情欧美一区二区| 久久久水蜜桃国产精品网| 黑人欧美特级aaaaaa片| 国产精品二区激情视频| 我的亚洲天堂| 国产精品二区激情视频| 免费在线观看日本一区| 黄色视频不卡| 中文字幕高清在线视频| 亚洲性夜色夜夜综合| 日日夜夜操网爽| 国产91精品成人一区二区三区| 两人在一起打扑克的视频| 久久精品亚洲精品国产色婷小说| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 免费在线观看黄色视频的| 亚洲国产日韩欧美精品在线观看 | 男女做爰动态图高潮gif福利片| 男人的好看免费观看在线视频 | 亚洲色图av天堂| 久久中文看片网| 婷婷丁香在线五月| 老汉色∧v一级毛片| 日本a在线网址| 午夜日韩欧美国产| 久久久久久久久久黄片| 人妻久久中文字幕网| 国产精品久久久久久亚洲av鲁大| 又大又爽又粗| 欧美日韩瑟瑟在线播放| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| 国产在线观看jvid| 99久久国产精品久久久| 国产视频一区二区在线看| 18禁美女被吸乳视频| 亚洲中文日韩欧美视频| 亚洲第一青青草原| 成人三级做爰电影| 久久久久亚洲av毛片大全| 国产av又大| 国产精品98久久久久久宅男小说| 天天添夜夜摸| 午夜久久久久精精品| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 人人妻人人看人人澡| 亚洲,欧美精品.| 99久久综合精品五月天人人| 国产高清视频在线播放一区| 欧美zozozo另类| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| 老司机福利观看| 日本五十路高清| 欧美人与性动交α欧美精品济南到| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 精品第一国产精品| 99re在线观看精品视频| 麻豆成人午夜福利视频| 一二三四在线观看免费中文在| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 欧美三级亚洲精品| 日本免费a在线| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 免费看日本二区| 久久久久久人人人人人| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 中文在线观看免费www的网站 | 国产精品一区二区三区四区久久 | 久久香蕉精品热| 亚洲aⅴ乱码一区二区在线播放 | 男女那种视频在线观看| 国产男靠女视频免费网站| 嫁个100分男人电影在线观看| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 久久精品91蜜桃| 男女视频在线观看网站免费 | 日本黄色视频三级网站网址| 欧美成人性av电影在线观看| 国产亚洲精品综合一区在线观看 | 国产黄色小视频在线观看| 久久国产精品人妻蜜桃| 午夜福利欧美成人| 国产麻豆成人av免费视频| 一区二区三区激情视频| 日本 欧美在线| 在线十欧美十亚洲十日本专区| 成在线人永久免费视频| 国产激情偷乱视频一区二区| 99热只有精品国产| 久久伊人香网站| 波多野结衣av一区二区av| 国产成人一区二区三区免费视频网站| 亚洲电影在线观看av| 亚洲五月天丁香| 色老头精品视频在线观看| 日韩视频一区二区在线观看| 久久久久久久久免费视频了| 国产野战对白在线观看| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 久久亚洲真实| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 亚洲第一电影网av| 久久国产乱子伦精品免费另类| 禁无遮挡网站| av电影中文网址| 日韩精品免费视频一区二区三区| 一级作爱视频免费观看| 一区二区三区激情视频| 国产精品久久视频播放| 激情在线观看视频在线高清| 国产黄色小视频在线观看| 在线观看免费日韩欧美大片| 一级毛片高清免费大全| 91麻豆精品激情在线观看国产| 久久久久国产一级毛片高清牌| 神马国产精品三级电影在线观看 | 成人国语在线视频| 国内揄拍国产精品人妻在线 | 美国免费a级毛片| 日韩视频一区二区在线观看| 亚洲av中文字字幕乱码综合 | 人人澡人人妻人| 久久婷婷人人爽人人干人人爱| 欧美成人免费av一区二区三区| 国产av在哪里看| 黄色片一级片一级黄色片| 老司机靠b影院| 久久午夜亚洲精品久久| 亚洲国产高清在线一区二区三 | xxx96com| 丰满的人妻完整版| 99久久综合精品五月天人人| 亚洲真实伦在线观看| 国产麻豆成人av免费视频| 欧美日韩黄片免| 亚洲五月婷婷丁香| 精品不卡国产一区二区三区| 精品免费久久久久久久清纯| 中文资源天堂在线| 一个人免费在线观看的高清视频| 50天的宝宝边吃奶边哭怎么回事| 欧美午夜高清在线| √禁漫天堂资源中文www| 搡老岳熟女国产| 中出人妻视频一区二区| 久久人人精品亚洲av| 在线看三级毛片| 国产高清视频在线播放一区| tocl精华| 黄色 视频免费看| 久9热在线精品视频| 国产99白浆流出| 大香蕉久久成人网| 午夜两性在线视频| 亚洲五月婷婷丁香| 国产午夜福利久久久久久| 在线观看免费日韩欧美大片| 一区二区三区激情视频| 一边摸一边抽搐一进一小说| 国语自产精品视频在线第100页| 一个人观看的视频www高清免费观看 | 国产亚洲av高清不卡| 国产精品久久视频播放| www日本在线高清视频| 亚洲狠狠婷婷综合久久图片| 9191精品国产免费久久| 午夜福利免费观看在线| 午夜日韩欧美国产| 亚洲av电影在线进入| 看黄色毛片网站| 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看毛片的网站| av有码第一页| 成人精品一区二区免费| 90打野战视频偷拍视频| netflix在线观看网站| a级毛片a级免费在线| 亚洲av成人一区二区三| 国产精品精品国产色婷婷| 国产激情偷乱视频一区二区| 亚洲中文av在线| 丁香六月欧美| 色综合站精品国产| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 国产激情偷乱视频一区二区| 亚洲中文av在线| 一级毛片高清免费大全| 精品久久久久久久毛片微露脸| 国产成人精品久久二区二区免费| 久久久久久大精品| 人人妻人人看人人澡| 国产精品av久久久久免费| 老司机深夜福利视频在线观看| 欧美zozozo另类| 手机成人av网站| 老鸭窝网址在线观看| 美国免费a级毛片| 好男人电影高清在线观看| 这个男人来自地球电影免费观看| 在线十欧美十亚洲十日本专区| 听说在线观看完整版免费高清| 成人精品一区二区免费| 欧美激情极品国产一区二区三区| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 成人精品一区二区免费| 欧美黄色片欧美黄色片| 嫩草影院精品99| 看片在线看免费视频| 亚洲九九香蕉| 天天一区二区日本电影三级| a级毛片在线看网站| 国产乱人伦免费视频| 欧美黑人巨大hd| 日本黄色视频三级网站网址| tocl精华| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 无遮挡黄片免费观看| 成人三级做爰电影| 国产欧美日韩一区二区三| 成人18禁高潮啪啪吃奶动态图| 久久中文看片网| 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 中文资源天堂在线| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av| 18美女黄网站色大片免费观看| 亚洲 欧美 日韩 在线 免费| 精品熟女少妇八av免费久了| 国产精品久久久久久亚洲av鲁大| 性欧美人与动物交配| 日韩欧美一区视频在线观看| 高清在线国产一区| 亚洲精品美女久久久久99蜜臀| 国产激情偷乱视频一区二区| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 麻豆av在线久日| 亚洲国产高清在线一区二区三 | 91麻豆av在线| 久久天堂一区二区三区四区| 黄色a级毛片大全视频| 淫秽高清视频在线观看| 不卡av一区二区三区| 麻豆av在线久日| 欧美日韩黄片免| 国内精品久久久久久久电影| 波多野结衣av一区二区av| 国产精品久久电影中文字幕| 久久中文看片网| 真人做人爱边吃奶动态| 欧美激情高清一区二区三区| 白带黄色成豆腐渣| 一级片免费观看大全| 日本黄色视频三级网站网址| 国产麻豆成人av免费视频| 国产成人系列免费观看| 黄色丝袜av网址大全| 欧美激情极品国产一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲黑人精品在线| 老司机靠b影院| 国产成人欧美在线观看| 久久99热这里只有精品18| 国产激情欧美一区二区| a级毛片a级免费在线| 欧美激情久久久久久爽电影| 国产亚洲av嫩草精品影院| 一进一出抽搐gif免费好疼| 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 看免费av毛片| 搡老妇女老女人老熟妇| 亚洲熟女毛片儿|