• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    部分水解聚丙烯酰胺與蠕蟲狀膠束在微米級毛細(xì)管中的驅(qū)替粘度

    2016-11-18 07:29:23陸業(yè)昌李文宏張永強(qiáng)李學(xué)豐董金鳳
    物理化學(xué)學(xué)報(bào) 2016年1期
    關(guān)鍵詞:牛頓流體蠕蟲長慶油田

    陸業(yè)昌李文宏張永強(qiáng)李學(xué)豐董金鳳,*

    (1武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢 430072;2低滲透油氣田勘探開發(fā)國家工程實(shí)驗(yàn)室,西安 710021;3中國石油長慶油田分公司勘探開發(fā)研究院,西安 710021)

    部分水解聚丙烯酰胺與蠕蟲狀膠束在微米級毛細(xì)管中的驅(qū)替粘度

    陸業(yè)昌1李文宏2,3張永強(qiáng)2,3李學(xué)豐1董金鳳1,*

    (1武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢 430072;2低滲透油氣田勘探開發(fā)國家工程實(shí)驗(yàn)室,西安 710021;3中國石油長慶油田分公司勘探開發(fā)研究院,西安 710021)

    部分水解聚丙烯酰胺(HPAMs)被大量地用作三次采油中驅(qū)替液的增稠劑,表面活性劑在一定的條件下可以通過自組裝形成蠕蟲狀膠束,具有與高分子相似的增稠的作用。本文在半徑為1–10 μm的毛細(xì)管中,分別考察了HPAMs與蠕蟲狀膠束的微觀驅(qū)替行為,研究結(jié)果表示毛細(xì)管內(nèi)腔的尺寸限制了這些非牛頓流體的增稠作用。隨著毛細(xì)管半徑的減小,聚合物溶液的剪切變稀越劇烈,甚至從非牛頓流體轉(zhuǎn)變?yōu)榕nD流體的流體行為。結(jié)合驅(qū)替研究和超濾、電鏡的結(jié)果,證明了高分子的纏繞結(jié)構(gòu)在毛細(xì)管中已被破壞。通過對比驅(qū)替數(shù)據(jù),蠕蟲狀膠束在毛細(xì)管中能夠更大程度地保留宏觀的粘度,我們提出表面活性劑能夠通過自組裝修復(fù)被破壞的纏繞結(jié)構(gòu),比高分子聚合物在微觀有限空間中有更好的增稠能力。

    微米級毛細(xì)管;驅(qū)替粘度;部分水解聚丙烯酰胺;蠕蟲狀膠束;毛細(xì)管壓力

    1 Introduction

    Low or ultra-low permeability oil and gas resource is abundant and has a great potential of exploration and development. Oil production in low permeability reservoirs increases continuously and the proportion in production components is increasing yearly. Pore throats or channels typically range from about 0.1 to 1 μm in the low permeability reservoir. Water-oil displacement in these reservoirs was assumed as a piston-like shock and the viscous fingers was investigated widely both using numerical simulation and experimented techniques1,2. Enhanced oil recovery (EOR) was developed to be an economic technique in increasing production from the oil left in the ground. Based on the capillary number, Ca = ηV/γ, where η is the viscosity of the liquid, V is a characteristic velocity, and γ is the surface or interfacial tension between the two fluid phases, both increasing the viscosity of the liquid and decreasing the interfacial tension are effective ways to increase Ca above 10–5which is favorable to reduce the viscous fingers3. Hydrolyzed polyacrylamides (HPAMs) have been widely applied to enhance the viscosity of aqueous injectants in pores4,5. However, the in-situ viscosity is less than the bulk viscosity due to the existence of a depleted layer near the pore wall6,7. The effect of employing polymers has been a focus in research for the last two decades8–10. One of the challenge is developing feasible insitu experimental techniques to study the flow behavior and immiscible two-phases displacement. A number of experimented techniques were reported to investigate the cores over 100 μm reserviors11–13. And some numerical simulation methods were established to estimate the behavior of fluid displacing in the nanopores14,15. We developed a digital video technique to visualize the interface movement in microscale capillary. The radii of the capillary can be as small as 1 μm due to the availability. Based on the Washburn equation, two-phase or three-phase flows have been investigated and the size of capillary was found to play a critical role in the displacement velocity and capillary pressure16–23.

    The present work employs commercial samples of HPAMs with different molecular weights as the displacing phase in quartz capillaries with radii ranging from 1 to 10 μm. Immiscible two phase displacement such as liquid-gas and liquid-liquid flow are investigated. The shear-thinning behavior of HPAMs in bulk is characterized. The capillary size effect on the in-situ viscosity during the capillary displacement is established. Significant difference between bulk viscosity and in-situ viscosity was found. Filtration and transmission electron microscopy (TEM) were employed to explain the results. In comparison, worm-like micelles (WLMs) are known as the “l(fā)iving polymers” which can be constructed by the self-assembling of surfactant molecules, was employed to replace HPAMs in the displacing agent, and the in-situ viscosity was characterized.

    2 Materials and methods

    2.1 Materials

    Glycol (≥ 99.0%) and n-decane (≥ 99.0%) were obtained from Sinopharm Chemical Reagent Co., Ltd. Glycol was used as received and diluted by deionized water to required concentration. n-Decane was used as the oil phase after being purified following a text book process until the decane/water interfacial reaches 50 mN·m–124. Polyacrylamides with different molecular weights listed in Table 1 were supplied by SNF FLOERGER and used as received. The polymer solutions were prepared by introducing weighed amounts of HPAM in ultrapure deionized water (Milli-Q system) and stirred by 60 r·min–1at least 24 h to ensure complete dissolution, then left at 25 °C for 3 d before any measurement. The WLM samples were prepared following the previous report25, the concentration of sodium oleate (NaOA, > 99%, from STREM CHEMICALS) was 50 mmol·L–1, and 1-[2-(4-phenylazo-phenoxy)-ethyl]-3-methylimidazolium bromide (C0AZOC2IMB, synthesized by our group) was 17.5 mmol·L–1, the mole ratio [C0AZOC2IMB]/[NaOA] was 0.35. 99.99% nitrogen was used as the gas phase. Capillaries of high-purity quartz (> 99.99% of SiO2) were purchased from Polymicro Technologies (U.S.).

    2.2 Surface or interfacial tension

    The surface tension γ and the interfacial tension between aqueous phase and decane γ12were measured via Pendant Drop method (DSA100 droplet shape analysis, Krüss, Germany) at 25 °C. Corresponding experimental results were given in Table S1 in the Supporting Information.

    2.3 Rheological measurements

    Measurements were performed on a RS 600 stress-controlled rheometer (HAKKE RS600, Thermo Fisher Scientific, Germany) using a couvette geometry Z20 according to the fluid viscosities. A Peltier-based temperature controller maintained the sample at 25 oC. The samples were equilibrated for at least 30 min before measurements. A solvent trap was used to minimize sample evaporation.

    2.4 Capillary tubes

    The radii of the capillary were measured by the method referred to the previous literature26–28. Dry capillaries were first saturated with water for an hour, and then, liquid in capillaries was expelled by blowing nitrogen gas before experiments. The determined results of the capillaries used in this study were 1.13, 2.88, 5.38, 9.18 μm, respectively.

    Table 1 Molecular weight of HPAMs

    2.5 Displacement

    The experiment setup was designed according to the reported apparatus28. In all of the experiments, the capillary was cut into a length L ≈ 180 mm. In the liquid-gas displacement, the experiments were setup by the same way as the method of determination of capillary radii. In the liquid-liquid displacement, the capillary was first placed in one end into the oil reservoir, and then the capillary would be saturated with oil spontaneously until it was completely saturated. Subsequently, the oth-er end of capillary was placed into the water solution reservoir and the solution could displace the oil phase spontaneously. After that, the capillary was placed horizontally, attached each end with a reservoir containing the displacing and displaced phases, respectively. Following the procedure reported earlier26–28, the displacement rate v was measured from the time required for the interface of liquid-gas or liquid-liquid system to travel a very small distance ΔL = 500 μm (ΔL << L) at a specific point.

    2.6 Filtration

    Microporous filters with pore diameters 2, 5, 10, 20 μm were purchased from Xingya purification materials plant (Shanghai). The viscous polymer fluids were forced to pass the microporous filters under external pressure of 100 kPa.

    2.7 Transmission electron microscopy

    The configuration of HPAMs molecules were observed on a JEM-2100 TEM operated at an acceleration voltage of 200 kV. Samples for TEM observation were prepared as follows. One drop of sample with a concentration of 1000 mg·mL–1was placed on a carbon-coated copper grid and the excess fluid was drained off with a filter paper. Then, a drop of 2% (w, mass fraction) aqueous phosphotungstic acid solution was added and the residue of the aqueous solution was removed with a filter paper after several minutes. The samples were finally dried at room temperature prior to measurement.

    3 Results and discussion

    Washburn equation describes Newtonian fluids displacement in the capillary assuming that the viscosity of the fluid is constant. The relationship between the displacement rate and external pressure is linear. The polymer solution investigated here is a shear-thinning fluid. Its viscosity of polymer solution decreases with the increase of shear rate, corresponding to the displacement rate in the capillary. The displacement rate of polymer solution is predicted to be a power-law function of the external pressure by the theory and previous experiments in which the flows are displacing in capillary over 100 μm11–13. Fig.1 shows the shear viscosity of polymer solutions and wormlike micelle solution. Polymer and worm-like micelle solution is a shear-thinning fluid, and the viscosity curves show a Newtonian plateau at low shear rate and drop at high shear rate for the breakage of entanglement of the long chains. The viscosity drop can be seen as a power-law function of shear rate.

    Fig.1 Shear viscosity vs shear rate for the non-Newtonian systems

    In the classic Washburn equation16, for the liquid-gas flow, the relationship between displacing rate v (the rate of meniscus displacement) and external pressure ΔP is

    where r is the capillary radius, η is the viscosity of the fluid, Pcis the capillary pressure, and L is the length of the fluid. And for the liquid-liquid flow,

    where ηiand Liare the viscosity and length of each phase, respectively.

    The capillary pressure at each interface caused by interfacial tension could be written as Young-Laplace equation

    where γ is the tension of the surface or interface, θ is the wetting contact angle. Measured fluids firstly saturate the capillary and are expelled by blowing nitrogen gas before experiments, so the capillary is pre-wetted by the fluid and the contact angle θ can be treated as 0°.

    Equations (1)–(3) are used to describe the kinetics of mutual displacement of the Newtonian fluid whose viscosity is taken as a constant value η. In a cylindrical capillary with radius r, the displacing rate v and external pressure ΔP show a linear relationship in which the length of each phase Lican easily be identified, with slope k = r2/8ΣηiLi. So the in-situ viscosities of fluid can be calculated from this slope of the v–ΔP line.

    The in-situ viscosities of some known Newtonian fluid, including decane and 65% glycol aqueous solution, measured by this displacement method are shown in Table 2. Clearly, the viscosity measured by displacement method fits well with that by rheometer. The Newtonian fluid′s viscosity keeps the same in different sizes of capillaries, which assures that the displacement method is feasible.

    Table 2 Viscosity of known fluids at 25 oC

    For shear-thinning fluid, the in-situ viscosity is a function of the shear rate. The power law is the simplest one of the models which is given by the relation

    where C is the consistency factor,is the shear rate, and n is the flow behavior index. The power-law is usually used to model shear-thinning behavior when n = 1, the value of C is equal to the viscosity of Newtonian fluids.

    If the fluid is treated as a power-law model, the Washburn equation of liquid-gas flow could be extended as29

    The relationship between displacing rate v and total pressure drop (ΣP = ΔP + Pc) could be a power-law function with flow index 1/n when the length of liquid L is identified in specified capillary, where Pccan be calculated by equation (3).

    3.1 Liquid-gas displacement

    Fig.2 shows the displacement rate as a function of the external pressure when the HPAM solution with molecular weight 2 × 106Da flowed into the microscale capillaries. Apparently, the linear relationship only holds for certain curves, meaning that the fluid is non-Newtonian type, and the viscosity is not constant. The experimental data can be fitted with power-law function (equation (6) and all the fittings have a correlation coefficient of r2≥ 0.99. From this fitting, the consistency factor C and the flow behavior index n can be calculated which are presented in Table 3. It can be seen clearly that C decreases and n increases with the decrease in the capillary radius, indicating that the smaller the size of capillary is, the fluid behavior is more approaching the Newtonian fluid. For example, in the capillary with radius of 1.13 μm (see Fig.2a), the displacement rate is completely a linear function of the external pressure (also can be considered as that the power-law index increased to 1), the viscosity does not change with the change of displacement rate, which can be represented by the classic Washburn equation(equation (1). Furthermore, the HPAMs with different molecular weights show similar result (See Figs.S1, S2 in the Supporting Information). The results suggest that when the HPAM solution flows into the capillary with radii below 10 μm, the viscosity of fluids decreases and turns to the Newtonian type in the capillary with a radius of 1.13 μm.

    Fig.2 Displacement rate of FP3130S solution (1000 mg·L-1) with a range of length under different external pressures in capillaries with radii of (a) 1.13, (b) 2.88, (c) 5.38, (d) 9.18 μm

    3.2 Liquid-liquid displacement

    When the gas phase is replaced by an oil phase such as decane, the displacement is similar although the oil-water interfacial tension is reduced. Fig.3 presents the displacement rate of HPAM solution displacing the decane phase under different external pressures on different saturation of water phase (local volume fraction of total length of capillary) in the capillary with radius of 1.13 μm.

    Table 3 Consistency factor (C) and power-law index (n) of in-situ polymer flow

    The linear relationship between the displacement rate and external pressure suggests that the in-situ viscosity of the fluid is a constant value ηd, which can be calculated through the slope k by employing Washburn equation (equation (4)). The results are shown in Table 4, together shown are the zero-shear viscosity of the bulk η0which is obtained from the extending of Newtonian plateau in Fig.1. Clearly, the viscosities of the displacing fluid in-situ were much smaller than η0of the bulk and just about five times to that of water. Moreover, the η0of HPAM fluids increases with the increase of molecular weight at the same concentration, whereas it changes little with different molecular weights of HPAMs in both liquid-liquid and liquid-gas displacement in 1.13 μm capillary. This suggests that the size of the capillary has a decisive effect on the displacement in-situ viscosity of HPAM fluids in the micro-scale capillaries. The smaller the molecular weight is, the more pronounced deviation is.

    Fig.3 Displacement rate of HPAM solutions displacing decane with a range of saturation under different external pressure drop in capillaries with radius of 1.13 μm with molecular weight of(a) 2 × 106, (b) 8 × 106, (c) 18 × 106-20 × 106Da

    ηd1: the in-situ viscosity of displacing phase in liquid-gas flow;ηd2: the in-situ viscosity of displacing phase in liquid-liquid flow

    It is well known that the bulk viscosity enhancement of a polymer solution is due to the formation of network configuration. This network can be broken down by shearing and the bulk viscosity decreases as a function of shear rate, which is known as shear-thinning behavior. The apparent disagreement in micro-scale capillary displacement may be explained in two ways. One of them is that the volume of polymer molecules with ultra-high molecular weight is too large to enter into the pore. In this case, the displacing phase is only pure water, so the flow behaves as a Newtonian fluid. The other possibility is that the polymer molecules can enter into the pore, but the original entangled network and the fragments cannot recover their configuration in-situ, resulting in the loss of viscosity and Newtonian fluid behavior.

    Microporous filters with pores of Ф 2–20 μm were employed to exam whether the polymer can pass through the micropores or not. The polymer concentration and viscosity of the filtrate were measured by UV-Vis spectrophotometer and rheometer respectively. The results (Fig.4) show that only FP3130S, molecular weight 2 × 106Da, could pass through the filter. The others could only pass certain fractions of the sample, the lager the molecular weight was, the less the polymer could pass through the microporous filters. TEM images of polymers samples in the concentration of 1000 mg·L–1are shown in Fig.5. Clearly, long and entangled polymer network are formed in the solutions, and the size of the coils is over microns. Furthermore, it was noticed that a certain amount of polymer molecules could still pass through the smallest size of filters with pores of Ф 2 μm. This can be appreciated from the polydispersity of HPAMs provided. However, it is hard to quantify the filtrate due to the lack of standard samples. Nevertheless, it suggests that the fluid flooding into the micro-scale capillaries is not pure water, but a solution of polymer with lower molecular weight and concentration than the bulk.

    In comparison with HPAMs, the so-called “l(fā)iving polymers”, worm-like micelles (WLMs) are self-assembled by small molecular weight surfactant molecules. It is interesting to examine the displacement of a worm-like micelle solution in the microscale capillaries. An anionic surfactant (sodium oleate) wormlike micelle solution was employed as the displacing phase whose viscosity is shown in Fig.1. The WLM solution could not flow smoothly in the capillary with a radius of 1.13 μm and stopped in the halfway even under high pressure drop (~1000kPa). The capillaries with a radius of 5.38 μm was employed to perform the displacement. The results are shown in Fig.6. Clearly, when the external pressure drop is small, the displacement rate and external pressure drop is a linear relationship(solid line, r2≥ 0.99); when the external pressure drop is above a threshold value, the displacement rate and the external pressure drop is a non-linear relationship (dashed line). This behavior is a correspondent to the shear rheology which has a long plateau and drop sharply in high shear area. The in-situ viscosity of the WLM system in the linear area can be calculated byusing Washburn equation (equation (4). For comparison of insitu viscosity between WLMs and HPAMs, in-situ viscosity of HPAMs in the 5.38 μm capillary is not constant but can be calculated by the equation (5) with= (3n + 1/4n)n(4v/r)29. The results and the ratio between in-situ viscosity and zero shear viscosity of bulk ηi/η0are listed in Table 5. The viscosity ratio of WLM system was approximately 60% of bulk viscosity recovered in the capillary displacement and higher than the HPAM solution. Although, the bulk viscosity of WLM system is much lower than that of HPAM solution, its in-situ viscosity is much higher than that of HPAMs. A full comparison running of liquid-gas displacement with FP3130S (1000 mg·L–1) is shown in Fig.7. A very similar velocity at the same external pressure can be observed regardless of the significant difference in bulk viscosity of the two fluids. This demonstration shows that when the WLM system flows into the capillary with a limited size, the assembled structure could be recovered insitu quickly, therefore, the fluid can maintain its bulk viscosity to a higher degree than that of HPAMs.

    Fig.4 Rheology and UV-Vis spectra of the HPAMs filtrate through the microporous filters

    Fig.5 TEM images of polyacrylamides in concentration of 1000 mg·L-1

    Fig.6 Displacement rate of 50 mmol·L-1WLM system displacing gas under different external pressure drop in capillaries with radius of 5.38 μm

    Table 5 In-situ shear viscosity of flow in the capillary with a radius of 5.38 μm at external pressure drop from 0 to 50 kPa

    Fig.7 Comparison of FP3130S (1000 mg·L-1) and WLM (50 mmol·L-1)displacement in 5.38 μm capillary

    4 Conclusions

    In summary, the in-situ viscosity and capillary size dependency of the HPAM fluids in capillaries with radii below 10 μm were demonstrated. Although the polymer molecules were able to enter into the micro-scale pores, the polymer cannot be reestablished in-situ, therefore, the ‘loss’ of bulk viscosity of polymers is very high. On the contrary, WLM composed by surfactant molecules exhibits higher maintainability of its bulk viscosity. It is well known that surfactant is the main component in displacing agents to achieve the ultra-low oil-water interfacial tension. The WLM system with much lower viscosity displays more effective thickening power by the self-assembly of surfactant molecules compared to large polymers. But in the real oil reservoirs, the low-permeability channels are much more complicated, and the temperature of the reservoirs is generally higher than 25 °C adopted in this work, we have a plan to study the in-situ viscosity difference between polymers and WLMs in the core in the later work.

    Supporting Information: The tensions of HPAMs solution, and displacement rate of FP3330S and ST5030 solution(1000 mg·L–1) with a range of length under different external pressures in capillaries with different radii have been included. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Lake, L. Enhanced Oil Recovery; Prentice Hall: New Jersey, 1989; pp 2–16, 43–92, 317–353.

    (2)Buchgraber, M.; Clemens, T.; Castanier, L. M.; Kovscek, A. R. SPE Reservoir Eval. Eng. 2011, 14, 269. doi: 10.2118/122400-PA

    (3)Vizika, O.; Avraam, D. G.; Payatakes, A. C. J. Colloid Interface Sci. 1994, 165, 386. doi: 10.1006/jcis.1994.1243

    (4)Jackson, G. T.; Balhoff, M. T.; Huh, C.; Delshad, M. J. Pet. Sci. Eng. 2011, 78, 86. doi: 10.1016/j.petrol.2011.05.007

    (5)Zhang, J.; Wang, S.; Lu, X.; He, X. Pet. Sci. 2011, 8, 79. doi: 10.1007/s12182-011-0118-0

    (6)Chauveteau, G. J. Rheol. 1982, 26, 111. doi: 10.1122/1.549660

    (7)Gramain, P.; Myard, P. Macromolecules 1980, 14, 180.

    (8)Darwish, M. I. M.; McCray, J. E.; Currie, P. K.; Zitha, P. L. J. Groud Water Monitoring & Remediation 2003, 23, 92.

    (9)Wang, W.; Yue, X.; Chen, Y. J. Dispersion Sci. Technol. 2013,34, 639. doi: 10.1080/01932691.2012.686246

    (10)Gao, H. W.; Burchfield, T. E. SPE Reservoir Eng. 1995, 10, 129. doi: 10.2118/25453-PA

    (11)de Souza Mendes, P. R.; Dutra, E. S. S.; Siffert, J. R. R.;Naccache, M. F.J. Non-Newtonian Fluid Mech. 2007, 145, 30.

    (12)Srivastava, N.; Burns, M. A. Anal. Chem. 2006, 78, 1690. doi: 10.1021/ac0518046

    (13)Quintella, E. F.; Souza Mendes, P. R.; Carvalho, M. S. J. Non-Newtonian Fluid Mech. 2007, 147, 117. doi: 10.1016/j.jnnfm.2007.06.009

    (14)Chen, C.; Gao, C.; Zhuang, L.; Li, X.; Wu, P.; Dong, J.; Lu, J. Langmuir 2010, 26, 9533. doi: 10.1021/la100105f

    (15)Chen, C.; Zhuang, L.; Li, X.; Dong, J.; Lu, J. Langmuir 2012, 28, 1330. doi: 10.1021/la204207s

    (16)Washburn, E. W. Phys. Rev. 1921, 17, 273. doi: 10.1103/PhysRev.17.273

    (17)Zorin, Z. M.; Churaev, N. V. Adv. Colloid Interface Sci. 1992,40, 85. doi: 10.1016/0001-8686(92)80072-6

    (18)Zhmud, B. V.; Tiberg, F.; Hallstensson, K. J. Colloid Interface Sci. 2000, 228, 263. doi: 10.1006/jcis.2000.6951

    (19)Martic, G.; Gentner, F.; Seveno, D.; Coulon, D.; Coninck, J. D.;Blake, T. D. Langmuir 2002, 18, 7971. doi: 10.1021/la020068n

    (20)Blake, T. D.; Coninck, J. D. Colloids Surf. A 2004, 250, 395. doi: 10.1016/j.colsurfa.2004.05.024

    (21)Digilov, R. M. Langmuir 2008, 24, 13663. doi: 10.1021/la801807j

    (22)Zhou, W.; Gao, C.; Lu, Y.; Wang, Z.; Wu, P.; Li, X.; Dong, J. Energy Sources, Part A, 2011. doi: 10.1080/15567036.2011.585381

    (23)Zhou, W.; Lu, Y.; Gao, C.; Li, W.; Zhang, Y.; Li, X.; Chen, C.;Dong, J. Energy Fuels 2013, 27, 717.

    (24)Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; Elsevier Science: Burlington, 2003; p 185.

    (25)Lu, Y.; Zhou, T.; Fan, Q.; Dong, J.; Li, X. J. Colloid Interface Sci. 2013, 412, 107. doi: 10.1016/j.jcis.2013.09.014

    (26)Churaev, N. V.; Ershov, A. P.; Zorin, Z. M. J. Colloid Interface Sci. 1996, 177, 589. doi: 10.1006/jcis.1996.0073

    (27)Churaev, N. V.; Ershov, A. P.; Esipova, N. E.; Hill, R. M.;Sobolev, V. D.; Zorin, Z. M. Langmuir 2001, 17, 1349. doi: 10.1021/la000864y

    (28)Ershov, A. P.; Zorin, Z. M.; Sobolev, V. D.; Churaev, N. V. Colloid J. 2001, 63, 290. doi: 10.1023/A:1016687925562

    (29)Bird, R. B.; Armstrong, R. C.; Hassager, O. Fluid Mechanics. In Dynamics of Polymeric Liquids, Vol. 1; Wiley: New York, 1987;pp 169–179.

    In-situ Viscosity of Hydrolyzed Polyacrylamides and Surfactant Worm-Like Micelle Solutions in Microscale Capillaries

    LU Ye-Chang1LI Wen-Hong2,3ZHANG Yong-Qiang2,3LI Xue-Feng1DONG Jin-Feng1,*
    (1College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China;2National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710021, P. R. China;3Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710021, P. R. China)

    Hydrolyzed polyacrylamides (HPAMs) are shear-thinning polymers and haνe wide application in enhanced oil recoνery (EOR), whereas worm-like micelles (WLMs) are known as “l(fā)iνing polymers”, which can be constructed by the self-assembly of surfactant molecules. Here, a series of experiments were conducted on the fluid behaνior of HPAMs and worm-like micelles in microscale capillaries with radii from 1 to 10 μm. The results show that the size of capillary has a decisiνe effect on the in-situ νiscosity of the polymer aqueous phase. It was obserνed that the shear thinning effect of HPAMs is more pronounced in smaller size of capillaries, where the non-Newtonian polymer flow turns into the Newtonian flow. Eνidences from filtration with a microporous filter and transmission electron microscopy (TEM) reνeal that the polymer network was broken down when entering into the capillary. Conνersely, WLMs can maintain their bulk νiscosity to a wide extent. We assume that surfactant molecules may reassemble their aggregates and recoνer their network in-situ. The results suggest that WLMs haνe a much lower νiscosity, but display similar thickening power compared with large polymers in the low or ultra-low permeability reserνoirs.

    Micro-scale capillary flows; In-situ νiscosity; HPAMs; Worm-like micelles; Capillary pressure


    The project was supported by the National Natural Science Foundation of China (21573164, 21273165) and PetroChina Changqing Oilfield Co.
    國家自然科學(xué)基金(21573164, 21273165)和中國石油長慶油田分公司資助項(xiàng)目
    ?Editorial office of Acta Physico-Chimica Sinica

    O647

    10.3866/PKU.WHXB201511102

    Received: September 30, 2015; Revised: November 10, 2015; Published on Web: November 10, 2015.
    *

    猜你喜歡
    牛頓流體蠕蟲長慶油田
    蠕蟲狀MoS2/C的制備及其在鋰離子電池負(fù)極材料中的應(yīng)用
    長慶油田節(jié)能技術(shù)研究
    非牛頓流體
    秋季謹(jǐn)防家禽蠕蟲病
    什么是非牛頓流體
    少兒科技(2019年3期)2019-09-10 07:22:44
    區(qū)別牛頓流體和非牛頓流體
    長慶油田設(shè)備再制造又創(chuàng)三個(gè)國內(nèi)第一
    首款XGEL非牛頓流體“高樂高”系列水溶肥問世
    青海海晏縣牛羊寄生蠕蟲種調(diào)查與防治
    長慶油田的環(huán)保之爭
    能源(2015年8期)2015-05-26 09:15:45
    91成人精品电影| 蜜桃在线观看..| 欧美激情高清一区二区三区 | 国产精品久久久久久精品古装| 精品国产一区二区三区四区第35| 国产免费现黄频在线看| 大香蕉久久成人网| 大片电影免费在线观看免费| 久久精品亚洲熟妇少妇任你| 精品亚洲成国产av| 久久女婷五月综合色啪小说| 亚洲美女黄色视频免费看| www.精华液| 人妻人人澡人人爽人人| 伊人久久国产一区二区| 欧美日韩综合久久久久久| 中文字幕人妻熟女乱码| 青青草视频在线视频观看| 日韩 亚洲 欧美在线| 美女午夜性视频免费| 精品国产露脸久久av麻豆| 国产精品偷伦视频观看了| 欧美中文综合在线视频| 国产精品一区二区精品视频观看| 秋霞伦理黄片| 母亲3免费完整高清在线观看| 成人国产av品久久久| 午夜免费男女啪啪视频观看| 国产精品 国内视频| 精品久久蜜臀av无| 人妻人人澡人人爽人人| 天天躁狠狠躁夜夜躁狠狠躁| 香蕉丝袜av| bbb黄色大片| 91老司机精品| 国产精品久久久久久精品古装| 久久久欧美国产精品| 亚洲国产精品一区二区三区在线| 色吧在线观看| 午夜91福利影院| 亚洲国产成人一精品久久久| www.av在线官网国产| 久久精品亚洲av国产电影网| 男女高潮啪啪啪动态图| 欧美日韩av久久| 欧美av亚洲av综合av国产av | 一边摸一边抽搐一进一出视频| 亚洲伊人色综图| 九草在线视频观看| 99香蕉大伊视频| 久久影院123| 国产精品免费视频内射| 熟女av电影| 一级,二级,三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| 亚洲图色成人| 色网站视频免费| 国产欧美日韩综合在线一区二区| 亚洲成人手机| 97在线人人人人妻| 免费观看人在逋| av片东京热男人的天堂| 午夜福利影视在线免费观看| 国产又爽黄色视频| 在线天堂最新版资源| 日韩制服骚丝袜av| 亚洲婷婷狠狠爱综合网| av在线老鸭窝| 永久免费av网站大全| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说| 日韩 欧美 亚洲 中文字幕| 亚洲成人av在线免费| 日韩精品有码人妻一区| av卡一久久| 久久久久久人人人人人| 女性生殖器流出的白浆| 午夜老司机福利片| 免费在线观看视频国产中文字幕亚洲 | 日本色播在线视频| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 男女高潮啪啪啪动态图| 妹子高潮喷水视频| 黄色一级大片看看| 街头女战士在线观看网站| av天堂久久9| 黄色视频在线播放观看不卡| 久久婷婷青草| 男的添女的下面高潮视频| 久久久国产一区二区| 美国免费a级毛片| 新久久久久国产一级毛片| 91精品三级在线观看| 久久天躁狠狠躁夜夜2o2o | 久久精品国产综合久久久| 18禁观看日本| 亚洲人成电影观看| 国产精品 欧美亚洲| 侵犯人妻中文字幕一二三四区| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 国精品久久久久久国模美| 中文字幕亚洲精品专区| 欧美最新免费一区二区三区| 一本—道久久a久久精品蜜桃钙片| 9191精品国产免费久久| 国产免费又黄又爽又色| 国产av码专区亚洲av| 亚洲av成人精品一二三区| 看免费av毛片| 在线亚洲精品国产二区图片欧美| 另类亚洲欧美激情| 成年美女黄网站色视频大全免费| 精品一区二区三区四区五区乱码 | 一本色道久久久久久精品综合| 一级毛片我不卡| 精品人妻一区二区三区麻豆| 大话2 男鬼变身卡| 久久热在线av| 九九爱精品视频在线观看| 久久精品人人爽人人爽视色| 爱豆传媒免费全集在线观看| 一边摸一边抽搐一进一出视频| 亚洲人成网站在线观看播放| 亚洲色图 男人天堂 中文字幕| 久久99热这里只频精品6学生| 熟妇人妻不卡中文字幕| 国产成人精品在线电影| 成人国产av品久久久| 高清黄色对白视频在线免费看| 美女扒开内裤让男人捅视频| 最近2019中文字幕mv第一页| 亚洲精品美女久久av网站| 精品国产一区二区久久| 午夜91福利影院| 久久国产精品男人的天堂亚洲| 天天躁夜夜躁狠狠久久av| 伦理电影免费视频| 中文字幕亚洲精品专区| 99精国产麻豆久久婷婷| 国产精品免费大片| 三上悠亚av全集在线观看| 波野结衣二区三区在线| 各种免费的搞黄视频| a级毛片黄视频| 热99久久久久精品小说推荐| 又大又黄又爽视频免费| 水蜜桃什么品种好| av有码第一页| 亚洲综合色网址| 一级a爱视频在线免费观看| 亚洲精品一二三| 欧美日韩视频精品一区| av国产久精品久网站免费入址| 久久久国产欧美日韩av| 亚洲人成电影观看| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 亚洲人成电影观看| 欧美乱码精品一区二区三区| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 老司机亚洲免费影院| 精品国产一区二区三区四区第35| 亚洲熟女精品中文字幕| 亚洲国产最新在线播放| 亚洲成人免费av在线播放| 制服丝袜香蕉在线| 国产人伦9x9x在线观看| 久久久久久久国产电影| 久久精品国产亚洲av高清一级| www.精华液| 亚洲成人一二三区av| 女性生殖器流出的白浆| 亚洲国产中文字幕在线视频| 欧美亚洲日本最大视频资源| 男女之事视频高清在线观看 | 在线观看国产h片| 悠悠久久av| 国产成人精品在线电影| 成人三级做爰电影| 欧美 日韩 精品 国产| 你懂的网址亚洲精品在线观看| av网站在线播放免费| 国产精品99久久99久久久不卡 | 亚洲国产欧美网| 国产成人系列免费观看| 国产精品成人在线| 99久国产av精品国产电影| 精品人妻在线不人妻| 中文欧美无线码| 最近中文字幕高清免费大全6| 日日啪夜夜爽| av免费观看日本| 99九九在线精品视频| 日本91视频免费播放| 国产精品 国内视频| 啦啦啦中文免费视频观看日本| 丝袜喷水一区| 久久精品亚洲av国产电影网| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 777米奇影视久久| 久久精品久久久久久久性| 国产欧美亚洲国产| 国产亚洲午夜精品一区二区久久| 晚上一个人看的免费电影| 精品酒店卫生间| 日韩中文字幕视频在线看片| 丰满饥渴人妻一区二区三| av有码第一页| 九草在线视频观看| 女人精品久久久久毛片| 黄色 视频免费看| 成人亚洲欧美一区二区av| 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 久久国产精品大桥未久av| 国产成人啪精品午夜网站| 欧美成人精品欧美一级黄| 国产麻豆69| 女性被躁到高潮视频| 久久av网站| 99热网站在线观看| 韩国av在线不卡| 午夜福利免费观看在线| 伦理电影免费视频| 国产又爽黄色视频| 波多野结衣一区麻豆| 日日摸夜夜添夜夜爱| 天天影视国产精品| 精品国产一区二区久久| 在线免费观看不下载黄p国产| 性高湖久久久久久久久免费观看| 久久ye,这里只有精品| 在线观看人妻少妇| 婷婷色综合大香蕉| 国产乱来视频区| 夫妻性生交免费视频一级片| 国产成人啪精品午夜网站| 欧美 日韩 精品 国产| 最近最新中文字幕大全免费视频 | 亚洲精品在线美女| 日韩人妻精品一区2区三区| 少妇猛男粗大的猛烈进出视频| 久久精品熟女亚洲av麻豆精品| 最黄视频免费看| 成年人午夜在线观看视频| 在线精品无人区一区二区三| 啦啦啦在线观看免费高清www| 亚洲熟女毛片儿| 成人亚洲欧美一区二区av| 亚洲av电影在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| 国产 精品1| 成人亚洲精品一区在线观看| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 大香蕉久久成人网| 国产精品99久久99久久久不卡 | 最近2019中文字幕mv第一页| 免费观看av网站的网址| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 2018国产大陆天天弄谢| 国产乱人偷精品视频| 只有这里有精品99| 中文乱码字字幕精品一区二区三区| 在线天堂中文资源库| www.精华液| 女人高潮潮喷娇喘18禁视频| 制服诱惑二区| 久久久久精品性色| 欧美激情高清一区二区三区 | 夫妻性生交免费视频一级片| 国产亚洲最大av| 新久久久久国产一级毛片| 如日韩欧美国产精品一区二区三区| 超碰成人久久| 欧美日韩综合久久久久久| 天堂8中文在线网| 亚洲第一av免费看| 精品久久久久久电影网| 晚上一个人看的免费电影| 欧美精品一区二区大全| 日韩欧美精品免费久久| 亚洲精品美女久久久久99蜜臀 | 久久久久精品性色| 90打野战视频偷拍视频| 人人澡人人妻人| 少妇精品久久久久久久| 日韩一卡2卡3卡4卡2021年| 久久精品久久久久久久性| 51午夜福利影视在线观看| 国产日韩一区二区三区精品不卡| 秋霞伦理黄片| 国产精品免费大片| 欧美av亚洲av综合av国产av | 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 丝袜在线中文字幕| 中文欧美无线码| 欧美日韩av久久| 色网站视频免费| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 国产男人的电影天堂91| 天天躁狠狠躁夜夜躁狠狠躁| 七月丁香在线播放| 亚洲精品在线美女| 超色免费av| 99久国产av精品国产电影| 亚洲成色77777| 黄片播放在线免费| 国产一卡二卡三卡精品 | 女人高潮潮喷娇喘18禁视频| 日韩精品有码人妻一区| 欧美日韩亚洲高清精品| 亚洲天堂av无毛| 欧美日韩av久久| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 18禁国产床啪视频网站| 男女国产视频网站| 国产亚洲av片在线观看秒播厂| 在线观看免费午夜福利视频| 18禁动态无遮挡网站| 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 亚洲七黄色美女视频| 久久 成人 亚洲| 中文字幕人妻丝袜一区二区 | 亚洲人成网站在线观看播放| 黑人猛操日本美女一级片| 青春草视频在线免费观看| 七月丁香在线播放| 亚洲精品一区蜜桃| 99久久精品国产亚洲精品| 国产欧美日韩一区二区三区在线| 国产 一区精品| 国产 精品1| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 亚洲中文av在线| 精品一区在线观看国产| 久热这里只有精品99| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 成人国产麻豆网| 亚洲精品国产区一区二| 免费观看a级毛片全部| 亚洲熟女毛片儿| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 男女下面插进去视频免费观看| 一区二区三区乱码不卡18| 亚洲av电影在线进入| 亚洲 欧美一区二区三区| 深夜精品福利| 精品一区二区三区av网在线观看 | 成人国语在线视频| 亚洲欧美色中文字幕在线| 七月丁香在线播放| 欧美av亚洲av综合av国产av | 欧美变态另类bdsm刘玥| 欧美国产精品一级二级三级| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 国产成人午夜福利电影在线观看| www.精华液| 青春草视频在线免费观看| 少妇人妻久久综合中文| 午夜福利视频在线观看免费| 少妇人妻久久综合中文| 国产野战对白在线观看| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 国产成人91sexporn| 亚洲伊人色综图| 亚洲美女视频黄频| 新久久久久国产一级毛片| 亚洲精品,欧美精品| 少妇 在线观看| a级毛片在线看网站| 桃花免费在线播放| 亚洲国产毛片av蜜桃av| 欧美中文综合在线视频| 亚洲第一青青草原| 91老司机精品| 久久精品人人爽人人爽视色| 亚洲国产欧美网| 性高湖久久久久久久久免费观看| netflix在线观看网站| 久久久久久久久久久免费av| 咕卡用的链子| 男女免费视频国产| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 在线观看www视频免费| 亚洲精品日韩在线中文字幕| 激情视频va一区二区三区| 婷婷色麻豆天堂久久| 国产亚洲av高清不卡| 欧美xxⅹ黑人| 九色亚洲精品在线播放| 亚洲av中文av极速乱| 亚洲欧美精品综合一区二区三区| av在线观看视频网站免费| 韩国av在线不卡| 一区二区三区精品91| 国产精品免费视频内射| 黄片无遮挡物在线观看| 国产一级毛片在线| 久久这里只有精品19| 嫩草影视91久久| 国产国语露脸激情在线看| 久久久久久人妻| 国产极品粉嫩免费观看在线| 涩涩av久久男人的天堂| 爱豆传媒免费全集在线观看| 欧美黑人精品巨大| 伦理电影免费视频| 男女床上黄色一级片免费看| 最近中文字幕高清免费大全6| 国产成人精品福利久久| 男男h啪啪无遮挡| 亚洲av电影在线进入| 天天躁日日躁夜夜躁夜夜| 亚洲第一区二区三区不卡| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 777久久人妻少妇嫩草av网站| 国产精品久久久久久人妻精品电影 | 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 中文字幕另类日韩欧美亚洲嫩草| 老司机亚洲免费影院| 一级片免费观看大全| 激情视频va一区二区三区| 美女主播在线视频| 女人高潮潮喷娇喘18禁视频| 青春草国产在线视频| 精品国产乱码久久久久久男人| 老司机影院成人| 男女边摸边吃奶| 麻豆精品久久久久久蜜桃| 日本色播在线视频| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 亚洲成人免费av在线播放| 精品午夜福利在线看| 80岁老熟妇乱子伦牲交| 久久久久久久精品精品| 女人久久www免费人成看片| 女人爽到高潮嗷嗷叫在线视频| 狠狠婷婷综合久久久久久88av| 亚洲国产精品成人久久小说| 久久99精品国语久久久| 18禁动态无遮挡网站| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 熟女少妇亚洲综合色aaa.| 18禁国产床啪视频网站| 高清不卡的av网站| 男女之事视频高清在线观看 | 国产无遮挡羞羞视频在线观看| 国产欧美日韩综合在线一区二区| tube8黄色片| 日韩av免费高清视频| 亚洲精品一二三| 在线观看免费高清a一片| 国产有黄有色有爽视频| 国产亚洲av高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕制服av| 99热网站在线观看| 在线观看免费视频网站a站| 黑人欧美特级aaaaaa片| 成人亚洲欧美一区二区av| 中文乱码字字幕精品一区二区三区| 麻豆av在线久日| 国产无遮挡羞羞视频在线观看| 最黄视频免费看| 免费黄频网站在线观看国产| 久久久国产一区二区| 国产不卡av网站在线观看| 最近中文字幕高清免费大全6| 国产精品一区二区在线观看99| 99久久99久久久精品蜜桃| 久久精品国产亚洲av高清一级| 国产精品一区二区精品视频观看| 成人手机av| 亚洲精品一区蜜桃| 大片电影免费在线观看免费| a级片在线免费高清观看视频| 精品少妇久久久久久888优播| 午夜福利免费观看在线| 老司机深夜福利视频在线观看 | 最近中文字幕2019免费版| 夜夜骑夜夜射夜夜干| 交换朋友夫妻互换小说| 飞空精品影院首页| 可以免费在线观看a视频的电影网站 | 桃花免费在线播放| 考比视频在线观看| 久久国产亚洲av麻豆专区| 国产女主播在线喷水免费视频网站| 国产日韩欧美视频二区| 日本wwww免费看| 久久狼人影院| 成人漫画全彩无遮挡| 国产免费现黄频在线看| 9热在线视频观看99| 哪个播放器可以免费观看大片| 91成人精品电影| 一级毛片电影观看| 女性生殖器流出的白浆| a 毛片基地| 哪个播放器可以免费观看大片| 亚洲少妇的诱惑av| 亚洲欧洲日产国产| 国产成人精品福利久久| 下体分泌物呈黄色| 中文欧美无线码| 精品亚洲成a人片在线观看| 久久久久精品国产欧美久久久 | 超碰97精品在线观看| 精品久久久久久电影网| 另类亚洲欧美激情| 男男h啪啪无遮挡| 日韩一本色道免费dvd| 悠悠久久av| 国产精品亚洲av一区麻豆 | 人妻人人澡人人爽人人| 丝袜人妻中文字幕| 亚洲少妇的诱惑av| 搡老乐熟女国产| videosex国产| 亚洲欧美一区二区三区国产| 成人国产麻豆网| 欧美变态另类bdsm刘玥| 99久久综合免费| 日韩大码丰满熟妇| 伊人久久国产一区二区| 成人影院久久| 99国产综合亚洲精品| 韩国av在线不卡| 日本vs欧美在线观看视频| 亚洲人成网站在线观看播放| 王馨瑶露胸无遮挡在线观看| 又大又爽又粗| 亚洲精品一区蜜桃| 在线观看国产h片| 午夜福利在线免费观看网站| 亚洲精品成人av观看孕妇| 少妇人妻 视频| 久久狼人影院| 国产免费视频播放在线视频| av网站免费在线观看视频| 欧美日韩亚洲高清精品| av又黄又爽大尺度在线免费看| 亚洲人成网站在线观看播放| 精品卡一卡二卡四卡免费| 亚洲精品自拍成人| 老司机靠b影院| 成人国产av品久久久| 亚洲欧洲精品一区二区精品久久久 | 操出白浆在线播放| 日韩视频在线欧美| 青青草视频在线视频观看| 国产成人精品久久二区二区91 | 日韩av不卡免费在线播放| 老熟女久久久| 国产人伦9x9x在线观看| 国产av码专区亚洲av| 精品亚洲乱码少妇综合久久| 中文字幕最新亚洲高清| 精品免费久久久久久久清纯 | 午夜福利一区二区在线看| 亚洲 欧美一区二区三区| 国产精品久久久久久人妻精品电影 | 久久免费观看电影| 伊人久久大香线蕉亚洲五| 久久久久人妻精品一区果冻| 欧美日韩一区二区视频在线观看视频在线| 日韩一区二区三区影片| 女人精品久久久久毛片| 欧美人与善性xxx| 热99国产精品久久久久久7| 69精品国产乱码久久久| 午夜影院在线不卡| 日日摸夜夜添夜夜爱| 色精品久久人妻99蜜桃| 亚洲av在线观看美女高潮| 精品第一国产精品| 51午夜福利影视在线观看| 亚洲精品国产区一区二| 国产精品欧美亚洲77777| 人人妻人人澡人人爽人人夜夜| 国产亚洲一区二区精品| 桃花免费在线播放| 99re6热这里在线精品视频| 一边摸一边抽搐一进一出视频| 免费在线观看黄色视频的| 亚洲人成网站在线观看播放| 亚洲国产最新在线播放| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频网站a站|