張 悅,張遵城,焦 妍,董 萍,董 華
天津醫(yī)科大學(xué)第二醫(yī)院核醫(yī)學(xué)科,天津 300211
雙時相18F-FDG符合線路SPECT/CT顯像在肺占位性病變鑒別診斷中的應(yīng)用
張 悅,張遵城,焦 妍,董 萍,董 華
天津醫(yī)科大學(xué)第二醫(yī)院核醫(yī)學(xué)科,天津 300211
背景與目的:葡萄糖腫瘤代謝顯像已廣泛應(yīng)用于臨床,而雙時相顯像技術(shù)能夠更真實地反映腫瘤的葡萄糖代謝情況,更有助于良惡性的鑒別。探討雙時相18F-FDG符合線路SPECT/CT顯像在肺占位性病變鑒別診斷中的應(yīng)用價值。方法:胸部CT檢查發(fā)現(xiàn)肺占位性病變患者28例。被檢查者注射顯像劑40~60 min后行胸部早期符合線路SPECT/CT顯像,延遲顯像于靜脈注射顯像劑后2~3 h進行。計算早期及延時兩次顯像病灶部位(T)與正常部位(N)的放射性計數(shù)比值T1/N1及T2/N2,并計算T/N的變化率ΔT/N。利用受試者工作特征曲線(receiver operating characteristic curve,ROC)確定T1/N1、T2/N2及ΔT/N的診斷閾值,應(yīng)用曲線下面積(area under the curve,AUC)分別評價早期顯像和雙時相顯像的診斷效能。結(jié)果:早期顯像T1/N1的診斷閾值為2.650,AUC為0.767,診斷肺癌的靈敏度為83.3%,特異度為30.0%,準(zhǔn)確度為64.3%。延時顯像T2/N2的診斷閾值為3.140,AUC為0.847,診斷肺癌的靈敏度為94.4%,特異度為60.0%,準(zhǔn)確度為82.1%。ΔT/N的診斷閾值為16.9%,AUC為0.950,診斷肺癌的靈敏度為88.5%,特異度為71.4%,準(zhǔn)確度為86.2%。結(jié)論:雙時相18F-FDG符合線路SPECT/CT顯像對肺占位性病變的鑒別診斷與常規(guī)一次顯像相比有較高的準(zhǔn)確度和特異度,但仍存在假陽性,應(yīng)結(jié)合患者CT圖像特征及臨床病史綜合分析。
雙時相;18F-FDG;符合線路;SPECT/CT;肺癌;鑒別診斷
18F-FDG腫瘤代謝顯像已經(jīng)廣泛應(yīng)用于臨床,尤其對良、惡性病變的鑒別診斷頗具優(yōu)勢,但是FDG不是腫瘤特異性顯像劑診斷,且并非所有惡性腫瘤都表現(xiàn)為FDG的高攝取,因此,在實際應(yīng)用中仍有假陽性及假陰性診斷[1]。有研究建議,進行雙時相FDG顯像,可更全面動態(tài)地觀察病變FDG的攝取情況,減少誤診[2-3]。
1.1 患者資料
2014年4月—2014年10月胸部CT檢查發(fā)現(xiàn)肺占位性病變的患者28例,雙時相顯像檢查要求患者較長時間空腹,不能耐受者和糖尿病患者除外。SPECT/CT檢查前2周內(nèi)未進行手術(shù)及放化療。全部患者均簽署書面知情同意書。男性17例,女性11例;平均年齡(57.3±8.2)歲。CT檢查發(fā)現(xiàn),在28例患者中,單個病灶患者23例,多個病灶患者5例(2例患者分別有2個病灶,3例患者病灶數(shù)目均大于等于3個),病灶的直徑在0.5~4.2 cm。
1.2 顯像方法
顯像儀器采用美國GE infinia Hawkeye4雙探頭SPECT/CT。顯像劑為18F-FDG,由原子高科股份有限公司提供,放化純大于95%。被檢查者禁食6 h以上,檢查前血糖控制在7.8 mmol/ L以下,靜脈注射18F-FDG 185~222 MBq,安靜休息40~60 min后行胸部早期符合線路SPECT/ CT顯像。被檢查者取仰臥位,雙手上舉抱頭,掃描范圍自頸根部至雙肺底。先進行螺旋CT掃描,采集條件:電壓140 kV,電流2.5 mA,螺距1.9,矩陣512×512,層厚5 mm。SPECT掃描,采集時間10 min,矩陣128×128,能窗511 keV±10%。應(yīng)用迭代法對SPECT圖像進行重建,并用CT數(shù)據(jù)對SPECT圖像進行衰減矯正,將CT圖像和矯正后的SPECT圖像進行融合,分別得到橫斷、冠狀和矢狀的CT,SPECT和SPECT/CT融合圖像。延時顯像于靜脈注射顯像劑后2~3 h進行,采集條件同早期顯像。
1.3 圖像分析及數(shù)據(jù)處理
由兩位以上有SPECT/CT診斷經(jīng)驗的醫(yī)師獨立閱片。首先采取目測法,在排除生理性攝取情況下觀察有無異常的顯像劑濃集灶。在濃集灶的最大截面劃定感興趣區(qū)(region of interest,ROI),若CT所示病灶未見顯像劑濃集則根據(jù)CT圖像劃定ROI,并測定其平均放射性計數(shù)T,然后在鏡像部位劃定同樣大小的ROI,測定正常部位的平均放射性計數(shù)N。計算早期及延時兩次顯像病灶部位(T)與正常部位(N)的放射性計數(shù)比值T1/N1及T2/N2,并計算T/N的變化率ΔT/N。ΔT/ N=(T2/N2-T1/N1)/T1/N1*100%。
1.4 統(tǒng)計學(xué)處理
采用SPASS 13.1軟件進行統(tǒng)計分析。利用受試者工作特征曲線(receiver operating characteristic curve,ROC)確定T1/N1、T2/N2及ΔT/N的診斷閾值,應(yīng)用曲線下面積(area under the curve,AUC)分別評價常規(guī)早期顯像和雙時相顯像的診斷效能。
2.1 最終診斷
28例患者中,19例通過手術(shù)獲得病理診斷,其中肺癌15例,炎性假瘤2例,結(jié)核球2例;3例肺單個病灶未手術(shù),但CT隨訪發(fā)現(xiàn)病灶變大且出現(xiàn)縱隔、肺門淋巴結(jié)轉(zhuǎn)移和(或)骨轉(zhuǎn)移,最終診斷為肺癌;2例肺多個病灶患者抗炎治療后隨訪CT檢查發(fā)現(xiàn)病灶縮小消失,最終診斷為肺炎;1例肺多個病灶患者結(jié)核菌素實驗陽性且抗結(jié)核藥物治療有效,診斷為肺結(jié)核;1例肺多個病灶患者實驗室檢查考慮曲霉菌?。?例肺單個病灶及1例肺多個病灶患者未經(jīng)治療,6~9個月后隨訪CT檢查發(fā)現(xiàn)病灶未發(fā)生任何改變,診斷為肺良性病變。
2.2 早期顯像和延時顯像診斷結(jié)果
T1/N1的診斷閾值為2.650,AUC為0.767,診斷肺癌的靈敏度為83.3%,特異度為30.0%,準(zhǔn)確度為64.3%。T2/N2的診斷閾值為3.140, AUC為0.847,診斷肺癌的靈敏度為94.4%,特異度為60.0%,準(zhǔn)確度為82.1%。ΔT/N的診斷閾值為16.9%,AUC為0.950,診斷肺癌的靈敏度為88.5%,特異度為71.4%,準(zhǔn)確度為86.2%(表1,圖1)。
表 1 早期顯像、延時顯像結(jié)果與最終診斷對照Tab. 1 Comparison of early imaging, delayed imaging and diagnosis result
圖 1 T1/N1、T2/N2及ΔT/N的ROC曲線Fig. 1 The ROC of T1/N1, T2/N2and ΔT/N
惡性腫瘤細胞由于細胞膜葡萄糖轉(zhuǎn)運蛋白的過度表達及細胞內(nèi)己糖激酶的明顯增高幫助其攝取大量的葡萄糖類似物即顯像劑FDG,但是葡萄糖代謝增高并非惡性腫瘤所特有,許多真菌或細菌感染及肉芽腫性病變可能與腫瘤有一些相似的病理基礎(chǔ),也可以聚集FDG,表現(xiàn)為FDG攝取程度輕度增高,或與惡性腫瘤攝取程度相近,甚至攝取程度高于惡性腫瘤,是假陽性和診斷特異度較差的重要原因[4]。此外,一些分化好的惡性腫瘤(比較典型的有支氣管肺泡癌、高分化腺癌和類癌等)攝取FDG少,易產(chǎn)生假陰性[4]。
理論上惡性腫瘤對FDG的攝取隨著時間延長達平臺后保持不變或持續(xù)增加,而良性病變對FDG的攝取可能較惡性腫瘤更快地達平臺,然后隨時間下降[5]。雙時相FDG顯像在常規(guī)顯像基礎(chǔ)上增加1次延時顯像,能夠提供病變對FDG攝取的動態(tài)信息,而且隨著時間延長,血液及泌尿系統(tǒng)對FDG的清除越明顯,降低了本底,增強了圖像對比度及病變與本底比,提高了圖像質(zhì)量。有文獻指出,絕大部分攝取FDG的惡性腫瘤(80%~90%)在延時顯像中標(biāo)準(zhǔn)攝取值(standardized uptake value,SUV)均有所升高[6]。我們采用雙時相FDG符合線路SPECT/ CT顯像通過劃定病灶ROI,計算T/N比值半定量分析病變FDG的攝取情況,在最后確診為肺癌的18例患者中,17例患者延時顯像T/N增加,其ΔT/N為17.9%~31.8%,其中2例早期顯像誤診的患者因延時顯像T/N升高且ΔT/N超過診斷閾值而被延時顯像正確診斷為肺癌;在10例肺良性病變中,3例在早期顯像誤診為肺癌的患者因延時顯像T/N及ΔT/N均未達到診斷閾值而被延時顯像正確診斷。Lee等[7]對20例卵巢占位患者進行雙時相18F-FDG PET/CT檢查,ROC分析顯示,病變早期SUV的AUC為0.753,當(dāng)早期SUV閾值為3.2時,其診斷靈敏度為100%,特異度為57.1%;病變延時期SUV的AUC為0.835,當(dāng)延時期SUV閾值為3.9時,其診斷靈敏度為100%,特異度為57.1%;病變滯留指數(shù)(retention index,RI)的AUC為0.901,當(dāng)RI閾值為16.67%時,其診斷靈敏度和特異度分別為92.3%和71.4%。這些數(shù)據(jù)說明延時期SUV的AUC明顯高于早期SUV,RI的AUC明顯高于早期SUV和延時SUV,RI的診斷效能最高。雖然研究對象不同,但是本研究結(jié)果與之相近,延時期T2/N2的AUC(0.847)高于早期T1/N1的AUC(0.767),ΔT/N的AUC為0.950,是三者中最高的,與本研究結(jié)果一致。
感染和炎性反應(yīng)是FDG腫瘤代謝顯像中產(chǎn)生假陽性的最常見原因,也是鑒別診斷的重點。盡管大部分良性病變在延時顯像中表現(xiàn)為FDG攝取下降,SUV或T/N下降,但是仍有一些感染性或非感染性的炎性反應(yīng)病變可能像惡性腫瘤一樣在延時顯像中表現(xiàn)為FDG攝取的持續(xù)增高,兩者的攝取、滯留及清除模式存在一定的重疊,延時顯像并不能將兩者鑒別[8]。在Chen等[9]的研究中,16例為肺癌,15例為肺良性病變。在良性病變中,有12例為肉芽腫性病變(10例肺結(jié)核,2例肺胞漿菌?。?,60%的良性病變在延時顯像中RI>10%,62%的肺癌RI>10%。其研究結(jié)果表明,肺結(jié)核和肺癌的鑒別診斷仍是延時顯像的難點。在本研究中有3例肺結(jié)核患者,2例結(jié)核球在早期及延時顯像中均被誤診,其ΔT/N分別為21.8%和28.5%。因此在肉芽腫性病變發(fā)病率較高的地區(qū)和人群中并不推薦雙時相顯像,這正是其臨床應(yīng)用受限的主要原因。但是并不能因此否定雙時相顯像存在的價值,應(yīng)從實際角度出發(fā)根據(jù)臨床需要和具體情況綜合分析后做決定。Laffon等[10]發(fā)現(xiàn)在肺內(nèi)占位直徑大于等于1 cm且常規(guī)顯像(早期顯像)SUV均大于等于2.5時,良、惡性病變SUV的變化模式存在很大重疊,利用延時顯像SUV的變化及RI并不能很好進行準(zhǔn)確的鑒別診斷。而Yang等[11]及Macdonald等[12]的研究結(jié)果表明,在非結(jié)核等肉芽腫性疾病流行的地區(qū),對于單發(fā)肺結(jié)節(jié)且早期顯像中SUV小于2.5的患者推薦延時顯像以提高診斷準(zhǔn)確性和特異性。由于本研究對象數(shù)量有限,并未做分組討論,希望在以后的工作中能夠?qū)崿F(xiàn)。
雙時相顯像技術(shù)能夠提供病變攝取FDG的動態(tài)信息,在一定程度上減少了誤診,在肺占位性病變的鑒別診斷中有一定的臨床應(yīng)用價值,但是假陽性仍是診斷難題,需要密切結(jié)合臨床綜合分析。
[1] 韓 雪, 李亞明, 李雪娜. 18F-FDG PET-CT 在肺結(jié)核診斷中的研究進展 [J]. 首都醫(yī)科大學(xué)學(xué)報, 2013, 34(1): 49-52.
[2] SAITO M, ISHIHARA T, TADA M, et al. Use of F-18 fluorodeoxyglucose positron emission tomography with dualphase imaging to identify intraductal papillary mucinous neoplasm [J]. Clin Gastroenterol Hepatol, 2013, 11(2): 181-186.
[3] CHENG M F, WU Y W, LIU K L, et al. Diagnostic value of18F-FDG-PET/CT in indeterminate infiltrative hepatic lesions in an endemic area of viral hepatitis [J]. Nucl Med Commun, 2011, 32(4): 252-259.
[4] KHAN A N, AL-JAHDALI H. Value of delayed18F-FDG PET in the diagnosis of solitary pulmonary nodule [J]. J Thorac Dis, 2013, 5(3): 373-374.
[5] MATTHIESSEN L W, JOHANNESEN H H, SKOUGAARD K,et al. Dual time point imaging fluorine-18 flourodeoxyglucose positron emission tomography for evaluation of large loco-regional recurrences of breast cancer treated with electrochemotherapy [J]. Radiol Oncol, 2013, 47(4): 358-365.
[6] ZYTOON A A, MURAKAMI K, EI-KHOLY M R, et al. Dual time point FDG-PET/CT imaging potential tool for diagnosis of breast cancer [J]. Clin Radiol, 2008, 63(11): 1213-1227.
[7] LEE J K, MIN K J, SO K A, et al. The effectiveness of dualphase18F-FDG PET/CT in the detection of epithelial ovarian carcinoma: a pilot study [J]. J Ovarian Res, 2014, 5(7): 15.
[8] SHEN G, DENG H, HU S, et al. Potential performance of dual-time-point18F-FDG PET/CT compared with singletime-point imaging for differential diagnosis of metastatic lymph nodes: a meta-analysis [J]. Nucl Med Commun,2014, 35(10): 1003-1010.
[9] CHEN C J, LEE B F, YAO W J, et al. Dual phase18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5 [J]. AJR Am J Roentgenol, 2008, 191(2): 475-479.
[10] LAFFON E, DE-CLERMONT H, BEGUERET H, et al. Assessment of dual-time-point18F-FDG-PET imaging for pulmonary lesions [J]. Nucl Med Commun, 2009, 30(6): 455-461.
[11] YANG P, XU X Y, LIU X J, et al. The value of delayed (18)F FDG-PET imaging in diagnosis of solitary pulmonary nodules: A preliminary study on 28 patients [J]. Quant Imaging Med Surg, 2011, 1(1): 31-34.
[12] MACDONALD K, SEARLE J, LYBURN I. The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5 [J]. Clin Radiol, 2011, 66(3): 244-250.
Dual-phase18F-FDG coincidence detection SPECT/CT imaging for differential diagnosis of
pulmonary lesions
ZHANG Yue, ZHANG Zuncheng, JIAO Yan, DONG Ping, DONG Hua (Department of Nuclear Medicine, the Second Hospital of Tianjin Medical University, Tianjin 300211, China)
Correspondence to: ZHANG Zuncheng E-mail: zhangzuncheng@sina.com
Background and purpose: Although FDG tumor imaging has been applied in clinic widely,dual-phase imaging can provide much more information about the FDG uptaking of pulmonary lesions. The purpose of the study was to evaluate the usefulness of dual-phase18F-FDG coincidence detection SPECT/CT imaging in the differential diagnosis of the pulmonary lesions. Methods: There were 28 patients with pulmonary lesions which were detected by CT. All the patients undertook the SPECT/CT imaging at 2 time-phases respectively: early imaging at 40-60 min and delayed imaging at 2-3 h after the intravenous injection of FDG. Data processing: calculating the radio of T and N in early and delayed imaging respectively; T: The radioactive count of the lesions; N: The radioactive count of the normal tissue; and the change rate: ΔT/N. ROC was used to find out the threshold of T1/N1, T2/N2及ΔT/N in the differential diagnosis between benign and malignant lesions. AUC was used to evaluate the diagnosis value of the dual-phase and single-phase imaging. Results: The threshold of T1/N1in early imaging was 2.65, whereas AUC was 0.767. The sensitivity, specificity and accuracy were 83.3%, 30% and 64.3%, respectively. The threshold of T2/N2in delayed imaging was 3.14, whereas AUC was 0.847. The sensitivity, specificity and accuracy were 94.4%, 60.0% and 82.1%, respectively. The threshold of ΔT/N in delayed imaging was 16.9%, whereas AUC is 0.950. The sensitivity,specificity and accuracy were 88.5%, 71.4% and 86.2%, respectively. Conclusion: Dual-phase18F-FDG coincidence detection SPECT/CT imaging has much higher accuracy and specificity. However it still has false positivity, and should be analyzed with CT and clinical history.
Dual phase;18F-FDG; Coincidence Detection; SPECT/CT; Lung cancer; Differential diagnosis
10.19401/j.cnki.1007-3639.2016.10.010
R734.2
A
1007-3639(2016)10-0866-04
張遵城 E-mail: zhangzuncheng@sina.com
(2015-09-22
2015-12-30)