聶培婷,湯 承,岳 華
(西南民族大學生命科學與技術學院,成都 610041)
?
冷誘導RNA結合蛋白通過激活NF-κB信號通路影響H1N1甲型流感病毒的復制
聶培婷,湯承,岳華*
(西南民族大學生命科學與技術學院,成都 610041)
冷誘導RNA結合蛋白(CIRP)是NF-κB和ERK信號通路的上游調控因子,而這兩條信號通路是甲型流感病毒復制和機體起始免疫所必需的,為探討CIRP對H1N1甲型流感病毒復制的影響及可能的分子機制,構建了CIRP過表達BHK-21細胞系(Cirp+BHK-21),用Western blot檢測NF-кB和ERK1/2的磷酸化水平,研究CIRP對NF-кB和ERK1/2的調節(jié)作用;用Real-time RT-PCR檢測H1N1甲型流感病毒感染后Cirp+BHK-21和對照細胞中病毒拷貝數(shù)的動態(tài)變化,以及在特異性阻斷劑PDTC阻斷NF-кB通路的Cirp+BHK-21細胞中病毒拷貝數(shù)的動態(tài)變化。Western blot檢測結果顯示:過表達CIRP顯著促進了BHK-21細胞中NF-κB的磷酸化水平(P<0.05),而對ERK1/2的磷酸化水平無顯著影響;病毒定量檢測結果顯示:過表達CIRP能顯著促進H1N1甲型流感病毒的增殖,感染后3、9、15、21 h 病毒在Cirp+BHK-21細胞中的拷貝數(shù)分別為對照組的111%、103%、167%和235% (P<0.05);阻斷NF-κB信號通路后病毒的拷貝數(shù)顯著下降,在感染后3、9、15、21 h分別為未阻斷組的98%、42%、19%(P<0.05)和7%(P<0.05)。從本研究結果可見,CIRP可通過活化NF-κB信號通路促進H1N1甲型流感病毒的復制。
冷誘導RNA結合蛋白;H1N1甲型流感病毒;病毒復制;NF-κB;BHK-21細胞
甲型流感病毒(influenza A virus)為正黏病毒科(orthomyxoviridae)成員,基因組為分節(jié)段的單股負鏈RNA[1]。甲型流感病毒感染后觸發(fā)了宿主細胞一系列的分子事件,一方面幫助病毒完成復制周期,同時也激活了機體的免疫應答以抵抗病毒感染[2-7]。最近,有三個研究團隊利用全基因組RNA干涉技術鑒定出一大批與流感病毒復制有關的宿主因子[4-5]。涉及病毒復制和轉錄、機體的免疫應答、機體與病毒vRNP相互作用和病毒RNA合成等相關的多種宿主因子[8-16],其中包括一些RNA結合蛋白(RNA-binding proteins,RanBP)家族成員,如RNA結合蛋白GFSF-1與流感病毒蛋白的合成有關[17-18],RNA結合蛋白PKR的胞內抑制劑P58IPK能促進流感病毒蛋白的合成[19]。RNA結合蛋白3(RanBP3)與甲型流感病毒的出核轉運有關[20],在流感病毒感染過程中還存在干擾素IFN-β合成的RNA結合蛋白調控網(wǎng)絡,激酶PKR、多重剪接RNA結合蛋白(RNA-binding protein with multiple splicing,RBPMS)、白介素增強子結合因子3(interleukin enhancer-binding factor 3,ILF3)、FMR1、DHX9、ZNF346和HNRPC參與其中[11]。
冷誘導RNA結合蛋白(CIRP)是一種在脊椎動物間高度保守的多功能蛋白,參與對溫和低溫[21]、H2O2[22]、缺氧[23]、滲透壓[24]等多種應激的轉錄應答,發(fā)揮細胞保護作用[25-26],同時參與胚胎發(fā)育、神經(jīng)調節(jié)[27]和生物鐘調節(jié)等生理過程,此外,CIRP還參與機體對新城疫病毒(NDV)[28]、細菌內毒素(LPS)[29]的轉錄應答,但未見CIRP對流感病毒感染應答的研究。業(yè)已證明,ERK通路和核因子κB通路(NF-κB)是流感病毒復制所必需的[30-34],而CIRP作為這兩條信號通路的上游調控因子,可能通過這兩條信號通路影響病毒復制。本研究旨在探討CIRP對流感病毒復制的影響及其分子機制,為深入解析流感病毒與宿主之間相互作用的分子機制提供參考。
1.1細胞株和毒株
過表達CIRP的BHK-21細胞系(Cirp+BHK-21)和對照細胞系(BHK-21 GFP)由作者實驗室構建[35];H1N1甲型流感病毒PR/8毒株(HA效價為28)由四川省疾病預防控制中心惠贈。
1.2主要試劑和儀器
高糖DMEM培養(yǎng)基(HyClone公司);胎牛血清(GIBCO公司);RNA提取試劑盒(Invitrogen公司);反轉錄試劑盒(TaKaRa公司);NF-κB特異性抑制劑PDTC、TPCK胰酶(Sigma 公司);BCA試劑盒、RIPA蛋白裂解液(碧云天公司);CIRP兔抗人多克隆抗體(Proteintech公司);一抗為鼠抗NF-κB P65、ERK1/2磷酸化抗體(p-ERK1/2)、ERK1/2抗體(碧云天公司);二抗為HRP標記的羊抗鼠IgG抗體(北京中杉金橋公司);ECL發(fā)光試劑盒(TransGen公司);電泳儀、轉膜儀(Bio-Rad公司);ABI 7300熒光定量PCR儀(美國ABI公司);Casy TT細胞計數(shù)儀(Roche公司)。
1.3NF-κB和ERK1/2的磷酸化水平的測定
NF-кB和ERK1/2的磷酸化水平(p-ERK1/2)是判斷這兩條信號通路是否被激活的重要指標,檢測ERK磷酸化水平時需要同時檢測ERK1/2的表達水平以確保試驗結果的準確性。根據(jù)RIPA裂解液說明書提取Cirp+BHK-21和BHK-21 GFP細胞總蛋白質,BCA法蛋白質定量,并制備蛋白質含量10 μg·μL-1的電泳樣品,取8 μL(80 μg總蛋白質)蛋白質經(jīng)SDS-PAGE后轉印到PVDF膜上,5%的脫脂奶粉4 ℃封閉過夜。分別加入3 mL 1∶300稀釋一抗(NF-κB P65、p-ERK1/2和ERK1/2),4 ℃封閉過夜,隨后加入3 mL 1∶5 000稀釋的二抗,37 ℃孵育1 h,按照ECL試劑盒說明書顯色,最后用X-膠片曝光。以β-actin作為內參,quantity one分析軟件檢測蛋白質灰度值,應用SPSS軟件進行數(shù)據(jù)處理,分析過表達CIRP對BHK-21細胞中NF-κB和ERK1/2磷酸化水平的影響。
1.4CIRP對H1N1甲型流感病毒復制的影響
1.4.1PR-8感染Cirp+BHK-21和BHK-21 GFP細胞將Cirp+BHK-21和BHK-21 GFP分別培養(yǎng)于6孔細胞培養(yǎng)板,待細胞形成致密單層時,接種1MOI (1拷貝·cell-1)PR/8,置于37 ℃、5% CO2培養(yǎng)箱中孵育1 h后棄去接種物,加入2.5 mL·孔-1維持液(4%胎牛血清、5 μg·mL-1TPCK胰酶)置于37 ℃、5% CO2的培養(yǎng)箱中培養(yǎng)。
1.4.2病毒拷貝數(shù)的測定在感染后3、9、15和21 h分別收集Cirp+BHK-21和BHK-21 GFP上清各3孔,用RNA試劑盒提取總RNA,并用反轉錄試劑盒合成cDNA,用Real-time RT-PCR方法[36]檢測病毒在Cirp+BHK-21和BHK-21 GFP中的拷貝數(shù),用Ppia作為內參基因[37],用甲型H1N1流感病毒M基因Real-time RT-PCR方法的標準曲線公式(y=30.62-3.53x)計算病毒拷貝數(shù)。
1.5阻斷NF-κB信號通路對流感病毒復制的影響1.5.1PDTC對NF-κB信號通路阻斷效果測定將Cirp+BHK-21細胞培養(yǎng)在75 cm2培養(yǎng)瓶中,待形成致密單層后,加入DMSO溶解的25 μmol·L-1PDTC按照文獻[38]進行處理,另取3瓶加入等體積的DMSO作為對照組,37 ℃、5% CO2培養(yǎng)3 h,按“1.3”方法提取總蛋白質并檢測NF-κB的磷酸化水平,以β-actin作為內參基因,評價PDTC的阻斷效果。1.5.2阻斷NF-κB信號通路對流感病毒復制的影響待Cirp+BHK-21細胞在6孔培養(yǎng)板中長成致密單層后,按“1.5.1”方法加入PDTC,15 min后棄去上清,以阻斷劑稀釋液代替PDTC處理Cirp+BHK-21作為對照組;兩組細胞按“1.4.1”方法感染PR/8,分別于感染后3、9、15和21 h收集兩組病毒各3孔,按“1.4.2”的方法檢測病毒拷貝數(shù)。
1.6數(shù)據(jù)分析
所有待檢樣本均進行3次平行重復試驗,并用SPSS18.0軟件進行分析。
2.1過表達CIRP 顯著提高了NF-κB的磷酸化水平
對Cirp+BHK-21中和BHK-21 GFP細胞中NF-κB P65、ERK1/2和p-ERK1/2的表達磷酸化水平的檢測結果顯示,Cirp+BHK-21中ERK1/2(圖1A、1B)和p-ERK1/2(圖1C)的磷酸化水平略升高,但與對照組無顯著差異(P>0.05);而NF-κB P65(圖1D)的表達水平顯著提高(P<0.05),說明過表達CIRP能顯著提高BHK-21細胞中NF-κB的磷酸化水平,激活NF-κB信號通路,但其對ERK信號通路無明顯影響。
A.Western blot 檢測結果;B.ERK1/2半定量測定結果;C.p-ERK1/2半定量測定結果;D.NF-κB p65半定量測定結果;*.差異顯著(P<0.05) A.The result of Western blot;B.The semi-quantitative result of ERK1/2;C.The semi-quantitative result of p-ERK1/2;D.The semi-quantitative result of NF-κB p65;*.Significant difference (P<0.05)圖1 Crip+BHK-21和BHK-21 GFP細胞中ERK1/2、P-ERK1/2和 NF-κB P65的表達水平Fig.1 Expression of NF-κB P65,P-ERK1/2,ERK1/2 in Crip+BHK-21 whole-cells and control whole-cells
2.2過表達CIRP促進流感病毒的增殖
病毒定量檢測結果顯示,在感染后3、9、15和21 h,Crip+BHK-21中病毒的拷貝數(shù)分別為對照組的111%、103%、167%和235%(P<0.05)(表1),說明過表達CIRP促進了H1N1甲型流感病毒在BHK-21細胞中的增殖。
細胞系Cellline時間/hTimespostinfection(h)391521Cirp+BHK-211.29±0.103.46±1.589.76±2.2421.8±3.30*BHK-21GFP1.16±0.433.35±2.145.97±2.949.64±1.76
*.P<0.05
2.3PDTC對NF-κB信號通路的阻斷效果
阻斷試驗結果表明,PDTC顯著抑制了NF-κB的磷酸化作用,阻斷了NF-κB信號通路(圖2)。
2.4阻斷NF-κB信號通路抑制了流感病毒的復制
阻斷NF-κB信號通路,導致H1N1甲型流感病毒在Cirp+BHK-21細胞中的拷貝數(shù)明顯降低,在感染后3、9、15和21 h分別為對照組的98%、42%、19%(P<0.05)和7%(P<0.05)(圖3)??梢?,CIRP通過激活NF-κB信號通路促進H1N1甲型流感病毒在BHK-21細胞中的復制。
圖2 PDTC對NF-κB信號通路的阻斷效果Fig.2 The blocking effect of PDTC
圖3 阻斷NF-κB抑制了CIRP過表達引起的H1N1甲型流感病毒滴度增加Fig.3 Inhibition of NF-κB p65 expression blocked the increase of virus titers caused by CIRP overexpression
3.1過表達的CIRP能顯著促進流感病毒在BHK-21細胞中的增殖
本研究中,在感染后21 h病毒拷貝數(shù)在過表達的BHK-21細胞中極顯著升高,病毒滴度提高1倍以上,說明CIRP可能是通過激活細胞中一系列分子事件最終促進流感病毒增殖。BHK-21對多種動物病毒敏感,是包括流感病毒在內的多種動物病毒疫苗生產(chǎn)常用的培養(yǎng)系統(tǒng),篩選和培育病毒高產(chǎn)細胞系一直是疫苗生產(chǎn)最迫切追求的目標,本研究證實穩(wěn)定過表達CIRP能大大提高流感病毒在BHK-21中的滴度,為培育病毒高產(chǎn)細胞系提供了新思路。
3.2CIRP通過激活NF-κB信號通路促進流感病毒復制
研究證明,過表達的CIRP能引起NF-κB磷酸化水平的上調[30],CIRP是NF-κB信號通路的上游調控因子,而這條信號通路是流感病毒復制所必需的[31,34]。NF-κB是一個具有抗凋亡活性的轉錄因子,參與免疫應答和轉錄調控,廣泛地影響參與細胞存活、分化和增殖的基因的表達[5],并在流感病毒復制中發(fā)揮重要作用,阻斷人肺上皮細胞A549和U1752中NF-κB信號通路的激活可以抑制流感病毒的感染和增殖[30,39]。在本研究中,阻斷NF-κB信號通路也同時阻斷了由CIRP過表達引起的病毒滴度的增加,說明CIRP通過激活NF-κB信號通路促進流感病毒復制。業(yè)已證明NF-κB信號通路促進流感病毒復制的分子機制主要有以下三種:第一,NF-κB通過調控凋亡因子如腫瘤壞死因子相關凋亡誘導配體(TRAIL)或FasL[40],隨后激活caspases途徑,從而促進病毒核糖核蛋白復合體(RNPs)的輸出[41-42];第二,涉及NF-κB的依賴性反作用類型的干擾素誘導基因(ISG)的表達,可能會通過上調細胞因子信號轉導抑制因子3(SOCS-3)和/或通過直接抑制ISG啟動子區(qū)域[43-44];第三,在流感病毒感染的細胞中,NF-κB抑制劑能特異性地降低病毒RNA(vRNA)水平及RNA的轉錄水平,P65亞基似乎與vRNA合成調節(jié)有關,提示NF-κB可能調節(jié)流感病毒RNA的合成[45]。但CIRP激活NF-κB通路的分子機制還不十分清楚,有待進一步研究。
[1]殷震,劉景華.動物病毒學[M].2版.北京:科學出版社,1997:704-712.
YIN Z,LIU J H.Animal virology[M].Beijing:Science Press,1997:704-712.(in Chinese)
[2]EMARA M M,BRINTON M A.Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly[J].ProcNatlAcadSciUSA,2007,104(21):9041-9046.
[3]COOMBS K M,BERARD A,XU W,et al.Quantitative proteomic analyses of influenza virus-infected cultured human lung cells[J].JVirol,2010,84(20):10888-10906.
[4]K?NIG R,STERTZ S,ZHOU Y,et al.Human host factors required for influenza virus replication[J].Nature,2010,463(7282):813-817.
[5]YANG X X,DU N,ZHOU J F,et al.Gene expression profiles comparison between 2009 pandemic and seasonal H1N1 influenza viruses in A549 cells[J].BiomedEnvironSci,2010,23(4):259-266.
[6]CHAKRABARTI A K,VIPAT V C,MUKHERJEE S,et al.Host gene expression profiling in influenza A virus-infected lung epithelial (A594)cells:a comparative analysis between highly pathogenic and modified H5N1 viruses[J].VirolJ,2010,7:219.
[7]LEE S M,GARDY J L,CHEUNG C Y,et al.Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages[J].PLoSOne,2009,4(12):e8072.
[8]BRASS A L,DYKXHOORN D M,BENITA Y,et al.Identification of host proteins required for HIV infection through a functional genomic screen[J].Science,2008,319(5865):921-926.
[9]KARLAS A,MACHUY N,SHIN Y,et al.Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication[J].Nature,2010,463(7282):818-822.
[10]SHAPIRA S D,GAT-VIKS I,SHUM BO,et al.A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection[J].Cell,2009,139(7):1255-1267.
[11]DENG T,ENGELHARDT O G,THOMAS B,et al.Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex[J].JVirol, 2006,80(24):11911-11919.
[12]ENGELHARDT O G,SMITH M,F(xiàn)ODOR E.Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II[J].JVirol,2005,79(9):5812-5818.
[13]HUARTE M,SANZ-EZQUERRO J J,RONCAL F,et al.PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators[J].JVirol,2001,75(18):8597-8604.
[14]JORBA N,JUAREZ S,TORREIRA E,et al.Analysis of the interaction of influenza virus polymerase complex with human cell factors[J].Proteomics,2008,8(10):2077-2088.
[15]KAWAGUCHI A,NAGATA K.De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase,MCM[J].EMBOJ,2007,26(21):4566-4575.
[16]WATANABE T,WATANABE S,KAWAOKA Y.Cellular networks involved in the influenza virus life cycle[J].CellHostMicrobe,2010,7(6):427-439.
[17]PARK YW,WILUSZ J,KATZE MG.Regulation of eukaryotic protein synthesis:selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1[J].ProcNatlAcadSciUSA,1999,96(12):6694-6699.
[18]KASH J C,CUNNINGHAM D M,SMIT M W,et al.Selective translation of eukaryotic mRNAs:functional molecular analysis of GRSF-1,a positive regulator of influenza virus protein synthesis[J].JVirol,2002,76(20):10417-10426.
[19]GOODMAN A G,SMITH J A,BALACHANDRAN S,et al.The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism[J].JVirol,2007,81(5):2221-2230.
[20]PREDICALA R,ZHOU Y.The role of ran-binding protein 3 during influenza A virus replication[J].JGenVirol,2013,94(Pt 5):977-984.
[21]NISHIYAMA H,ITOH K,KANEKO Y,et al.A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth[J].JCellBiol,1997,137(4):899-908.
[22]XUE J H,NONOGUCHI K,F(xiàn)UKUMOTO M,et al.Effects of ischemia and H2O2on the cold stress protein CIRP expression in rat neuronal cells[J].FreeRadieBiolMed,1999,27(11-12):1238-1244.
[23]WELLMANN S,BüHRER C,MODEREGGER E,et al.Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism[J].JCellSci,2004,117(Pt 9):1785-1794.
[24]PAN F,ZARATE J,CHOUDHURY A,et al.Osmotic stress of salmon stimulates upregulation of a cold inducible RNA binding protein (CIRP) similar to that mammals and amphibians[J].Biochimine,2004,86(7):451-461.
[25]YANG C,CARRIER F.The UV-inducible RNA-binding protein A18(A18 hnRNP)plays a protective role in the genotoxic stress response[J].JBiolChem,2001,276(50):47277-47284.
[26]DE LEEUW F,ZHANG T,WAUQUIER C,et al.The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor[J].ExpCellRes,2007,313(20):4130-4144.
[27]SAITO K,F(xiàn)UKUDA N,MATSUMOTO T,et a1.Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein[J].BrainRes,2010,1358:20-29.
[28]LAN D,TANG C,LI M,et al.Screening and identification of differentially expressed genes from chickens infected with Newcastle disease virus by suppression subtractive hybridization[J].AvianPathol,2010,39(3):151-159.
[29]周鴻淼,湯承,岳華,等.冷誘導RNA結合蛋白參與小鼠對LPS的應答[J].畜牧獸醫(yī)學報,2014,45(8):1348-1354.
ZHOU H M,TANG C,YUE H,et al.Cold-inducible RNA binding protein involves in response to LPS in mice[J].ActaVeterinariaetZootechnicaSinica,2014,45(8):1348-1354.(in Chinese)
[30]ARTERO-CASTRO A,CALLEJAS F B,CASTELLVI J,et al.Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation[J].MolCellBiol,2009,29(7):1855-1868.
[31]PLESCHKA S,WOLFF T,EHRHARDT C,et al.Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade[J].NatCellBiol,2001,3(3):301-305
[32]LUDWIG S,PLANZ O.Influenza viruses and the NF-κB signaling pathway-towards a novel concept of antiviral therapy[J].BiolChem,2008,389(10):1307-1312.
[33]SCHMOLKE M,VIEMANN D,ROTH J,et al.Essential impact of NF-kappaB signaling on the H5N1 influenza A virus-induced transcriptome[J].JImmunol,2009,183(8):5180-5189.
[34]NIMMERJAHN F,DUDZIAK D,DIRMEIER U, et al.Active NF-кB signalling is a prerequisite for influenza virus infection[J].JGenVirol,2004,85(Pt 8):2347-2356.
[35]TANG C,WANG Y,LAN D,et al.Analysis of gene expression profiles reveals the regulatory network of cold-inducible RNA-binding protein mediating the growth of BHK-21 cells[J].CellBiolInt,2015,39(6):678-689.
[36]聶培婷,湯承,岳華.H1N1甲型流感病毒在BHK21中的增殖規(guī)律[J].西南民族大學學報,2012,38(5):764-769.
NIE P T,TANG C,YUE H.Study on the proliferation profile of influenza A virus in BHK21 cells[J].JournalofSouthwestUniversityforNationalities,2012,38(5):764-769.(in Chinese)
[37]吳巧,張斌,湯承,等.H5N1禽流感病毒感染小鼠后內參基因的篩選[J].中國畜牧獸醫(yī),2013,40(9):55-60.
WU Q,ZHANG B,TANG C,et al.Selection of reference gene in mice infected with H5N1 avian influenza virus[J].ChinaAnimalHusbandry&VeterinaryMedicine,2013,40(9):55-60.(in Chinese)
[38]MOGENSEN T H,MELCHJORSEN J,H?LLSBERG P,et al.Activation of NF-κB in virus-infected macrophages is dependent on mitochondrial oxidative stress and intracellular calcium:downstream involvement of the kinases TGF-beta-activated kinase 1,mitogen-activated kinase/extracellular signal-regulated kinase kinase 1,and l kappa B kinase[J].JImmunol,2003,170(12):6224-6233.
[39]WURZER W J,EHRHARDT C,PLESCHKA S,et al.NF-кB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation[J].JBiolChem,2004,279(30):30931- 30937.
[40]WURZER W J,PLANZ O,EHRHARDT C,et al.Caspase 3 activation is essential for efficient influenza virus propagation[J].EMBOJ,2003,22(11):2717-2728
[41]FALEIRO L,LAZEBNIK Y.Caspases disrupt the nuclear-cytoplasmic barrier[J].JCellBiol,2000,151(5):951-959.
[42]KRAMER A,LIASHKOVICH I,OBERLEITHNER H,et al.Apoptosis leads to a degradation of vital components of active nuclear transport and a dissociation of the nuclear lamina[J].ProcNatlAcadSciUSA,2008,105(32):11236-11241.
[43]PAULI E K,SCHMOLKE M,WOLFF T,et al.Influenza A virus inhibits type I IFN signaling via NF-κB-dependent induction of SOCS-3 expression[J].PLoSPathog,2008,4(11):e1000196.
[44]WEI L,SANDBULTE M R,THOMAS P G,et al.NF-кB negatively regulates interferon-induced gene expression and anti-influenza activity[J].JBiolChem,2006,281(17):11678- 11684.
[45]KUMAR N,XIN Z T,LIANG Y,et al.NF-κB signaling differentially regulates influenza virus RNA synthesis[J].JVirol,2008,82(20):9880- 9889.
(編輯白永平)
Activation of Cold-inducible RNA-binding Protein by H1N1 Influenza Virus Contributes to Viral Replication Via Activating NF-κB Pathway
NIE Pei-ting,TANG Cheng,YUE Hua*
(CollegeofLifeScienceandTechnology,SouthwestUniversityforNationalities,Chengdu610041,China)
The cold-inducible RNA-binding protein (CIRP) is an upstream regulator of the NF-κB and ERK pathways,which are essential for the replication of the influenza virus and the initial immune response.In order to investigate the effect of CIRP on the replication of H1N1 influenza A virus and its possible molecular mechanism,in this study,CIRP overexpression BHK-21 (Cirp+BHK-21) cells were constructed,and the phosphorylation levels of NF-κB and ERK in Cirp+BHK-21 cells were detected by Western blot to confirm the effect of CIRP on regulation of NF-κB and ERK1/2;Real-time RT-PCR was used to detect the dynamic changes of virus load in Cirp+BHK-21 and control cells after infected with influenza A virus,the method was also used to detect the dynamic changes of virus load in Cirp+BHK-21 cells which were blocked by the NF-κB inhibitor PDTC.The results of Western blot exhibited that overexpressed CIRP could significantly increase the expression of phosphorylation level of NF-κB (P<0.05),but had no significant effect on the phosphorylation level of ERK.The results of quantitative detection of virus showed that overexpressed CIRP could significantly enhance the proliferation of influenza A virus,the virus load in the Cirp+BHK-21 cells were 111%,103%,167% and 235% (P<0.05) at 3,9,15 and 21 h PI,respectively,compared to the control group;Blocking the NF-κB was significantly decreased the virus load in the Cirp+BHK-21,and the virus load in treatment group were 98%,42%,19% (P<0.05),7% (P<0.05) at 3,9,15 and 21 h PI,respectively,compared to the unblock group.Therefore,this study confirmed that overexpressed CIRP could enhance the proliferation of influenza A virus via activation of NF-κB pathway.
cold-inducible RNA binding protein;influenza A virus;replication;NF-κB;BHK-21 cells
10.11843/j.issn.0366-6964.2016.10.020
2016-05-06
國家自然科學基金項目(31172307);四川省教育廳創(chuàng)新團隊項目(13TD0057)
聶培婷(1989-),女,新疆霍城人,碩士,主要從事感染與免疫相關研究,E-mail:540016852@qq.com
岳華,Tel:028-85528276,E-mail:yhua900@163.com
S852.23
A
0366-6964(2016)10-2108-07