• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of Aerial Refueling System withMultibody Dynamics and CFD

    2016-05-12 06:03:08FanLiuGangLiuXiongJiang
    關(guān)鍵詞:空中加油軟式剛體

    Fan Liu , Gang Liu, Xiong Jiang

    (China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China)

    ?

    Simulation of Aerial Refueling System withMultibody Dynamics and CFD

    Fan Liu*, Gang Liu, Xiong Jiang

    (China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China)

    A coupled simulation of multibody dynamics and Computational Fluid Dynamics (CFD) is implemented to investigate the motion of an aerial refueling hose-drogue with a receiver aircraft approaching. The hose is modeled by a chain of one-dimensional absolute nodal coordinate cable elements, with the cable elasticity and bending effects considered. Structured overlapped grids are applied around the receiver aircraft and the rigid drogue attached to the end of the hose. A multibody simulation code is embedded in the RANS solver to analyze the structure dynamics and the fluid dynamics for each coupled iteration loop. Various approaching velocity profiles are tested and the “push-out” effect is observed. Approaching simulations with the receiver aircraft in different initial offsets are performed and analyzed. It is concluded that with certain approaching parameters, a good coupling between the receiver’s probe and the drogue is expected.

    Aerial refueling, Multibody dynamics, Fluid-structure interaction, Overset grid

    0 Introduction

    The in-flight refueling technology has been widely used in long-range air strike/transportation and long-hour reconnaissance operation. The hose-drogue system will remain as an important technique approach in the future aerial refueling engineering. However, some challenges in designing and analyzing this aerial towed system still exist nowadays.

    The hose-drogue assembly, when it has been released, is towed at the centerline of the afterbody or the wing-mount pod of the tanker. It mainly consists of a long flexible hose with circular section and a drogue attached to the free end of the hose. This structure is designed to maintain a steady configuration for coupling under the gravity, aerodynamic drag/lift force and the constraint force. However, the hose-drogue could orbit around the stable state because of the wake field turbulence or other unsteady flows. It may also move away from the original position when a receiver aircraft is approaching. The dynamic behavior of the hose-drogue system in unsteady flow field needs to be investigated effectively for detailed engineering application.

    This paper aims to present a more accurate time-variant method combining the multiple body dynamics (MBD) and the Computational Fluid Dynamics (CFD) to solve the aerial towed problems. Multi-rigidbody theory and the finite element method are used in used in modeling the constrained hose and drogue structure. Overset structured composite grids are applied to adapt the moving body geometries. Component grids are meshed around the drogue and the receiver aircraft. A 3-D parallel RANS solver PMB3D is used to solve each CFD time step on the updated grids.

    Fig.1 F-35 fighters refueled from KC-130.

    The theory, algorithm and modules of the multibody solver are presented. The cable elements based on the absolute nodal coordinate formula for the hose modeling is introduced. The dynamic response of a hose-drogue refueling assembly with a receiver aircraft approaching is obtained. The influence of approaching parameters (velocity profiles/initial offset of the receiver) on the drogue’s motion are investigated to optimize the probe-drogue coupling.

    1 Numerical Method

    1.1 Structure Modeling

    1.1.1 Hose Modeling

    The study of the dynamics of an aerial cable towed system has a long history. Early work by Glauert [1] in the 1930s mainly concentrated on the stability of the towed body and neglected the cable’s physical properties. For the next several decades, people began to use rigorous analytic equations to examine the cables in the towing system [2-5] and obtained a series of design principles and conclusions based on the classic cable theory. However, these partial differential equations are usually problem specified and need certain mathematic skills to solve. Furthermore, the cable theory is developed for high-tension strings and can not deal with the cable with compression, bending and torsion properly. The aerial refueling hose has a typical low tension as the towing cables and needs a different modeling approach.

    Zhu & Meguid [6] gave a nice review about the aerial towed cable modeling technique, they concluded that the approaches based on the beam theory are most appealing. Meanwhile, the classic beam theory uses the nodal incremental displacements on the curvilinear coordinates as the unknown variables, which leads to complicated nonlinear parts in inertia terms of the equations of motion.

    The Absolute Nodal Coordinate Formulation (ANCF) is first proposed by Shabana [7] and is designed to solve the flexible multibody problems with large displacement and large deformation. The ANCF uses the global coordinates and the finite slopes of the element nodes as the generalized variables, which can neglect the infinitesimal slope restriction in the ordinary FEM. The ANCF has been intensively studied and developed by the researchers in the recent years to apply it for varies kinds of engineer structures as beams, plates, membranes and solids, and its efficiency and accuracy has been proven [8]. In this paper, a certain kind of cable/beam element is needed to discrete the long refueling hose, which has the characteristics listed below:

    1) The hose has a large length-diameter ratio and a circular section, and is made up of isotropic material;

    2) The section plane of the hose is rigid, which means it stays perpendicular to the axis before and after the hose’s deformation according to the Euler-Bernoulli beam assumption;

    3) The kinetic energy and the elastic energy of the torsion of the hose section are neglectable considering the large length-diameter ratio and engineering experience.

    Fig.2 2-node ANCF cable/thin beam element.

    ThedynamicequationsofthethinbeamelementisobtainedusingtheSecondLagrangeEquations,whichhasastandardform:

    (1)

    wherethekineticenergyT,strainenergyUandthevirtualworkofexternalforcesδWaredefinedas:

    (2)

    (3)

    (4)

    BysubstitutingEqs.(2)-(4)intoEq. (1),thestructuredynamics(SD)equationsoftheithelementisobtained.

    Themassmatrix,elasticforceandexternalforceoftheelasticsystemareassembledbyNelementaryonesdirectlybasedontheFEMframework.Themassmatrixcanbewrittenwithachainofelementsforthecable.

    WehavethedynamicsequationsoftheflexiblemultibodybasedontheANCFregardlessofconstraints,whereeis the generalized coordinate vector of the flexible parts of the system.

    (5)

    1.1.2 Constraints and System Solving Equations

    In the modeling of the multibody system, the configuration of the system is identified by a set of Cartesian-based generalized coordinatesq[9], which describe the locations and orientations of the bodies. The ideal constraints between rigid or elastic parts can always be written in a series of algebraic constraint equations as:

    C(q,t)=0

    (6)

    Inrefuelingdrogue-hosemodeling,twotypesofconstraintsaremainlyconsidered.Oneisthejointbetweenafixedpointandthecable’srootnode,theotheristhejointbetweenthecable’stipnodeandtherigiddrogue.

    Writteninageneralmatrixform,thedynamicsystemequationswhichcombinesthemultiplerigidbodydynamicsandtheFEMbasedonANCFare

    (7)

    whereqraretherigidbodygeneralizedcoordinatevector.Qrincludestheinertiaforceandexternalforceoftherigidbody.Qeincludestheelasticforcesandexternalforcesoftheflexibleparts.Eq.(6)andEq. (7)arecomposedoftheDifferentialAlgebraicEquations(DAEs)ofthedynamicsystem,withthegeneralizedcoordinatesandtheLagrangemultiplierastheunknownvariables.

    TheBackwardDifferentiationFormulation(BDF)integrationtechniqueisusedtotransformtheDAEsintothenonlinearalgebraicequations,thelattercanbesolvedbytheNewton-Raphsoniterationmethod.

    1.2 MBS /CFD Solver: Algorithm & Validation

    A coupled solver combining the multi-body system (MBS) dynamics and the CFD method has been developed.

    The first step of the analysis is to initialize the multibody system and the flow field computation. The former gives the control parameters and the structure information of the dynamic system, while the latter needs three parts for CFD:

    1) Mesh files and boundary information files.

    2)Control parameters on overlapped grid and CFD echnique.t

    3) Steady flow field files for initializing the unsteady calculation.

    Three major steps are listed in the coupling strategy flowchart shown in Figure 3. The unsteady flow field is solved with the in house code PMB3D with URANS based onk-ωSST model.

    Fig.3 MBD/CFD coupling algorithm.

    2 Coupling Simulation

    The approaching and coupling process between the receiver aircraft and the tanker’s hose-drogue assembly is the crucial step in aerial refueling dynamics. The drogue will swing outward away from the forebody of the receiver when it moves along the route from the probe’s tip to the center of drogue straight forwardly. A numerical simulation of the approaching process is needed to investigate the aerodynamic interaction phenomenon.

    2.1 Model & Parameters

    The refueling coupling system, which is shown in Figure 4, includes a receiver aircraft and a hose-drogue assembly. The tanker is temporarily absent because this article focuses on the two-body interaction between the receiver and drogue, the effect of the tanker’s wake field shall be considered for the future work.

    The parameters of the refueling system, which are based on the hose-drogue structure of KC-10 tanker [11] , are listed in Table 1. The refueling hose is modeled with a chain of one dimensional ANCF beam elements described in section 1.1. The tip node is constraint to a fixed point in space with the SGN joint (sphere joint between ground and cable node), while the end node is constraint to the drogue with the CBN joint (clamped joint between ground and cable node).

    Fig.4 Refueling coupling system: receiver aircraft and hose-drogue.

    HoseTotalLength(Initial)/mInnerDiameter/cmOuterDiameter/cmYoung’sModularE/GPaMassperLength/(kg·m-1)22.865.085.3050.02.381(Dry)4.093(Wet)DrogueMass/kgBottomRadius/mMassMomentofInertia/(kg·m2)IxxIyyIyy29.4840.4082.3932.1492.149

    The receiver aircraft is an advanced fighter with an refueling probe attached to the right side of the body. Deflexed slats are deployed to maintain a larger lift coefficient in a comparatively low speed while coupling. The tip of the refueling probe has a offset distanceZ0=1.62m andY0=1.51m from the center line of the plane.

    The PMB3D solver provides a powerful multi-zonal overlapped grid approach to handle the complex geometries and multibody system.

    The aerial refueling approaching simulation is divided into three steps:

    1)Steady flow field. Calculate the steady flow field of the system in its initial configuration.

    2)Equilibrium state. Obtain the static configuration of the hose and drogue with the presence of the receiver at the starting position by running a time-accurate simulation.

    3)Approaching process. A continuation of the Equilibrium state step simulation is conducted as the receiver moves towards the hose-drogue assembly and the dynamic corresponding of refueling system is obtained.

    2.2 Approaching Parameters: Velocities

    From the starting position to the prescribed coupling point, the receiver aircraft shall move forward by a distance ofL0=6.0m. The time-velocity profile for the approaching process, which is generally controlled by the pilot, may have effect on the dynamic response of the drogue-hose assembly.

    The parameters for the steady flow solution are listed in Table 2. The angle of attack and yawing are 0°. The grid has a total mesh amount of 11.8 million . The parallel calculation is performed by 32 processes with the High Performance Computer (HPC) owned by Computational Aerodynamics Institute (CAI) of CARDC. A multigrid method has been applied to accelerate the converging process.

    Table 2 Flow environment parameters

    The receiver aircraft is driven directly to the drogue with a given closure velocity profile. Each of the velocity profile first performs as a linear increase of approaching speed and then stays at the maximum value of 0.5, 1.0, 2.0, 3.0m/s. The overall distanceL0keeps a constant value for all four velocity profile.

    As the receiver approaches, the drogue gradually swings outward from its original position for all the closure profiles given above. The wall compression effect of the aircraft’s forebody keeps pushing the drogue away from its original steady state. This phenomenon is consistent with the results from Vassberg [11].

    2.3 Approaching Parameters: Initial Offsets

    As stated above, the approaching receiver creates a induced motion for the drogue, which drives it both upward and outward from its starting position and misses the coupling with the refueling probe. An apparent thought is to adjust the initial position of the receiver in they-zplane to compensate for the drogue’s induced motion. The drogue is moved in the opposite direction of the induced offsets (-yand +zdirection).

    A computation table including 3×3 points is listed in Table 3, where 3 offset distances on theydirection and 3 offset distances on thezdirection for the drogue-hose are set. The overall nine cases shall be simulated for the approaching process to investigate the induced motion. The relative position between the probe tip and the mass center of the drogue is checked for the nearest case as the best coupling offset.

    The closure profiles for all cases of this section is based on theVmax=0.5m/s velocity profile in section 2.2. The steady flow field solving, equilibrium state computation and approaching simulation are performed successively for all nine cases.

    After the receiver finishes its closure route, they-zpositions of the refueling probe tip and the mass center of the drogue for each offset case are demonstrated in Fig.5. The “P” point represents probe while “D” stands for drogue. The suffix “-01”, for example, means they0-z1 case. It can be seen that for the refueling system here, they1-z2 offset case results in a minimum coupling distance between drogue center and probe tip, for whichr=0.192m.

    Table 3 Offset distances table in y and z direction

    Fig.5 Positions for the probe tip (P-xy) and drogue mass center (D-xy) at the end of the approach (Vmax=0.5m/s).

    3 Conclusion and Future Work

    A MBD/CFD coupling method for the numerical simulation of the aerial towed system is developed. By simulating the aerial refueling approaching process of an advanced fighter, the system structure dynamics and aerodynamic characteristics are obtained. Approach parameters including various speeds and offset distances, are considered. Future work may include the tanker wake field effect and the study of hose tension control by a reel-drum during coupling process. Pre-contact motion of the hose-drogue shall be analyzed and the risk of the oscillation in coupling process needs to be evaluated.

    [1]Glauert M. The stability of a body towed by a light wire[R]. London: Aeronautical Research Council, T R 1312, 1930.

    [2]Schram J, Reyle S. A three-dimensional dynamic analysis of a towed system[J]. Journal of Hydronautics, 1968, 2(4): 213-220.

    [3]Simonenko, Alexander. Influence of extensibility on tension in a towed cable[J]. Journal of Hydronautics, 1975, 10(1): 26-28.

    [4]Mattis G De. Longitudinal dynamics of a towed sailplane[J]. Journal of Guidance, Control and Dynamics, 1993, 16(5): 822-829.

    [5]Nakagawa N, Obataf A. Longitudinal stability analysis of aerial-towed systems[J]. Journal of Aircraft, 1992, 29(6): 978-985.

    [6]Zhu Z H, Meguid S A. Elastodynamic analysis of aerial refueling hose using curved beam element[J]. AIAA Journal, 2006, 44(6): 1317-1324.

    [7]Shabana, Ahmed A. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies[R]. MBS96-1-UIC, Department of Mech. Eng., University of Illinois at Chicago, 1996.

    [8]Yoo W S, Dmitrochenko O, Pogorelov D Y. Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments[C]//The ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, California USA, 2005.

    [9]Shabana A A. Dynamics of multibody systems[M]. UK: Cambridge University Press, 2005.

    [10]Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulations of KC-10 wing-mount aerial refueling hose-drogue dynamics with a reel take-up system[C]//The 21st Applied Aero-dynamics Conference. Orlando, Florida, 2003.

    [11]Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulations of KC-10 in-flight refueling hose-drogue dynamics with an approaching F/A-18D receiver aircraft[C]//The 23rd AIAA Applied Aerodynamics Conference. Toronto, Ontario Canada, 2005.

    0258-1825(2016)02-0276-05

    空中加油系統(tǒng)的多體動(dòng)力學(xué)和CFD仿真

    劉 釩*, 劉 剛, 江 雄

    (中國空氣動(dòng)力研究與發(fā)展中心, 四川 綿陽 621000)

    介紹了作者基于Fortran程序開發(fā)的一個(gè)多體動(dòng)力學(xué)求解器。依托多剛體系統(tǒng)理論、基于絕對節(jié)點(diǎn)坐標(biāo)(ANCF)法描述的常質(zhì)量/變質(zhì)量索梁單元和計(jì)算多體動(dòng)力學(xué)方程組求解技術(shù),該求解器可用于分析飛行器拖曳結(jié)構(gòu)中的索-剛體約束系統(tǒng)的動(dòng)力學(xué)問題。本文基于并行CFD求解器PMB3D的動(dòng)態(tài)重疊網(wǎng)格功能,構(gòu)建了多體動(dòng)力學(xué)和計(jì)算流體力學(xué)的非定常耦合計(jì)算程序。以軟式空中加油系統(tǒng)為例,對真實(shí)外形飛行器拖曳系統(tǒng)的氣動(dòng)-動(dòng)力學(xué)特性進(jìn)行了仿真研究。探討了戰(zhàn)斗機(jī)構(gòu)型進(jìn)行軟式加油對接時(shí)產(chǎn)生的氣動(dòng)干擾問題,研究了受油機(jī)的接近速度和初始偏移量對對接效果的影響。

    空中加油;多體動(dòng)力學(xué);流固耦合;重疊網(wǎng)格

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0003

    *Research Assistant , Computational Aerodynamics Institute; cai@cardc.edu

    format: Liu F, Liu G, Jiang X. Simulation of aerial refueling system with Multibody dynamics and CFD[J]. Acta Aerodynamica Sinica, 2016, 34(2): 276-280.

    10.7638/kqdlxxb-2016.0003. 劉釩,劉剛,江雄. 空中加油系統(tǒng)的多體動(dòng)力學(xué)和CFD仿真(英文)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2016, 34(2): 276-280.

    Received: 2015-12-21; Revised:2016-02-20

    猜你喜歡
    空中加油軟式剛體
    差值法巧求剛體轉(zhuǎn)動(dòng)慣量
    運(yùn)動(dòng)飛揚(yáng),逐夢童年
    ——石家莊市保利啟新小學(xué)軟式棒壘球側(cè)記
    車載冷發(fā)射系統(tǒng)多剛體動(dòng)力學(xué)快速仿真研究
    剛體定點(diǎn)轉(zhuǎn)動(dòng)的瞬軸、極面動(dòng)態(tài)演示教具
    甘肅省西北師范大學(xué)第二附中軟式排球的開展現(xiàn)狀與調(diào)查研究
    科技視界(2015年16期)2015-02-27 10:18:12
    軍人畫軍機(jī)(六)
    航空世界(2014年7期)2014-09-24 19:29:08
    無人機(jī)空中加油自主會(huì)合導(dǎo)引律研究
    無人機(jī)空中加油過程中編隊(duì)飛行控制
    地震作用下承臺(tái)剛體假定的適用性分析
    地震研究(2014年1期)2014-02-27 09:29:47
    軟式排球運(yùn)動(dòng)在天津部分中學(xué)開展現(xiàn)狀的調(diào)查與分析
    舔av片在线| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 一级黄片播放器| 我要看日韩黄色一级片| 久久国产乱子免费精品| 老师上课跳d突然被开到最大视频| 91精品国产九色| 国产精品精品国产色婷婷| 黑人高潮一二区| 久久久久久久久大av| 亚洲av.av天堂| 天堂中文最新版在线下载| 91精品一卡2卡3卡4卡| 国产在线一区二区三区精| 国产精品伦人一区二区| 妹子高潮喷水视频| 国产精品蜜桃在线观看| 国产在线一区二区三区精| 大又大粗又爽又黄少妇毛片口| 久久毛片免费看一区二区三区| 亚洲图色成人| 一级毛片aaaaaa免费看小| 久久这里有精品视频免费| 一级毛片aaaaaa免费看小| 国产精品99久久久久久久久| 国产精品不卡视频一区二区| 欧美日本视频| 成人亚洲精品一区在线观看 | 如何舔出高潮| 亚洲欧美中文字幕日韩二区| 国精品久久久久久国模美| 午夜福利在线在线| 国产男女超爽视频在线观看| 国产伦理片在线播放av一区| 妹子高潮喷水视频| 日韩中字成人| 网址你懂的国产日韩在线| 韩国av在线不卡| 三级国产精品片| a级毛色黄片| 女性被躁到高潮视频| 成人二区视频| 99热这里只有是精品50| 国产成人一区二区在线| 亚洲电影在线观看av| 久久99蜜桃精品久久| 亚洲精品视频女| 精品一品国产午夜福利视频| 久久久久久人妻| 一个人免费看片子| 国产免费又黄又爽又色| 97超碰精品成人国产| 久久女婷五月综合色啪小说| 亚洲欧美精品自产自拍| 国产精品久久久久久久电影| 亚洲精品自拍成人| 哪个播放器可以免费观看大片| 22中文网久久字幕| 色综合色国产| 一级毛片黄色毛片免费观看视频| h日本视频在线播放| 日本黄大片高清| 观看av在线不卡| 能在线免费看毛片的网站| 国产精品无大码| 在线观看av片永久免费下载| 国产日韩欧美亚洲二区| 91精品国产九色| 国产av国产精品国产| 亚洲伊人久久精品综合| 欧美人与善性xxx| 亚洲三级黄色毛片| 99久久人妻综合| 国产亚洲一区二区精品| 黄色视频在线播放观看不卡| 大片免费播放器 马上看| 18禁在线播放成人免费| 在线观看免费日韩欧美大片 | 久久韩国三级中文字幕| 五月开心婷婷网| 亚洲第一av免费看| 精品一区二区三卡| 国产伦在线观看视频一区| 少妇熟女欧美另类| 麻豆国产97在线/欧美| 亚洲精品aⅴ在线观看| tube8黄色片| 夜夜骑夜夜射夜夜干| 日韩强制内射视频| 少妇人妻 视频| 一区二区三区精品91| 最近中文字幕2019免费版| 亚洲精品中文字幕在线视频 | av.在线天堂| 女人久久www免费人成看片| 国产一级毛片在线| 少妇的逼好多水| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看| 国产中年淑女户外野战色| 一二三四中文在线观看免费高清| 激情五月婷婷亚洲| 国产精品人妻久久久影院| 男的添女的下面高潮视频| 国产色婷婷99| 狂野欧美激情性bbbbbb| 日韩强制内射视频| 精品人妻偷拍中文字幕| 国产黄色视频一区二区在线观看| 成人特级av手机在线观看| 色网站视频免费| 国产精品麻豆人妻色哟哟久久| 99九九线精品视频在线观看视频| 亚洲欧美精品自产自拍| 少妇高潮的动态图| 最近的中文字幕免费完整| 97在线视频观看| 人妻夜夜爽99麻豆av| 久久国产精品男人的天堂亚洲 | 亚洲精品乱久久久久久| 亚洲无线观看免费| 国产精品一二三区在线看| 偷拍熟女少妇极品色| 久久久久久久久久人人人人人人| 晚上一个人看的免费电影| videossex国产| 欧美日韩视频高清一区二区三区二| 99久久中文字幕三级久久日本| 日韩av在线免费看完整版不卡| 91精品一卡2卡3卡4卡| 国产91av在线免费观看| 国产亚洲最大av| av免费观看日本| 久久久欧美国产精品| 极品教师在线视频| 一二三四中文在线观看免费高清| 草草在线视频免费看| 亚洲美女搞黄在线观看| 免费观看的影片在线观看| 18禁在线播放成人免费| av女优亚洲男人天堂| 超碰97精品在线观看| 嘟嘟电影网在线观看| 人妻 亚洲 视频| 久久久久国产网址| 九九在线视频观看精品| 汤姆久久久久久久影院中文字幕| 久久热精品热| 午夜日本视频在线| 亚洲真实伦在线观看| 自拍偷自拍亚洲精品老妇| 免费观看av网站的网址| 天天躁夜夜躁狠狠久久av| 大话2 男鬼变身卡| 永久免费av网站大全| av网站免费在线观看视频| 1000部很黄的大片| 天堂中文最新版在线下载| 国产女主播在线喷水免费视频网站| 你懂的网址亚洲精品在线观看| 人妻制服诱惑在线中文字幕| 国产黄片美女视频| 大话2 男鬼变身卡| 中文欧美无线码| 国产成人精品婷婷| 欧美成人一区二区免费高清观看| 国产精品国产三级国产专区5o| 亚洲精品中文字幕在线视频 | 亚洲国产欧美在线一区| 一级a做视频免费观看| 久久人人爽av亚洲精品天堂 | 精品熟女少妇av免费看| 国产精品偷伦视频观看了| 七月丁香在线播放| 国产精品久久久久久av不卡| 18禁裸乳无遮挡免费网站照片| 国产精品99久久99久久久不卡 | 国产人妻一区二区三区在| 日本黄色片子视频| 午夜视频国产福利| 性高湖久久久久久久久免费观看| 国产黄频视频在线观看| 美女主播在线视频| 亚洲精品国产成人久久av| 国产免费一区二区三区四区乱码| 亚洲av综合色区一区| 欧美97在线视频| 三级经典国产精品| 免费人妻精品一区二区三区视频| 亚洲精品色激情综合| 中国国产av一级| 亚洲国产最新在线播放| 免费看av在线观看网站| 尤物成人国产欧美一区二区三区| 精品少妇黑人巨大在线播放| 国内少妇人妻偷人精品xxx网站| 精品人妻视频免费看| 久久99热这里只有精品18| 国产精品女同一区二区软件| 久久6这里有精品| 国产成人aa在线观看| 免费看日本二区| 熟女av电影| 久久热精品热| 日本wwww免费看| 色综合色国产| 亚洲,欧美,日韩| 男人舔奶头视频| 亚洲av男天堂| 搡女人真爽免费视频火全软件| 日本午夜av视频| 精品久久国产蜜桃| 最近中文字幕高清免费大全6| 水蜜桃什么品种好| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 亚洲av日韩在线播放| 国产黄色免费在线视频| 国产精品偷伦视频观看了| 免费播放大片免费观看视频在线观看| 国产亚洲91精品色在线| 大码成人一级视频| 欧美一区二区亚洲| 国产精品久久久久久av不卡| 免费看av在线观看网站| 国产免费又黄又爽又色| 久久久久久久久久人人人人人人| 亚洲天堂av无毛| 久久久精品94久久精品| 国产免费一区二区三区四区乱码| 国产亚洲一区二区精品| 免费少妇av软件| 久久精品国产亚洲av涩爱| 国产男女超爽视频在线观看| 国产午夜精品久久久久久一区二区三区| 日韩伦理黄色片| 午夜免费鲁丝| 久久久久精品性色| 国产91av在线免费观看| 另类亚洲欧美激情| 人妻制服诱惑在线中文字幕| 日本黄大片高清| av播播在线观看一区| 国产精品三级大全| 国产成人免费无遮挡视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品成人av观看孕妇| 高清毛片免费看| 国产欧美亚洲国产| 午夜福利在线在线| 菩萨蛮人人尽说江南好唐韦庄| 在线观看国产h片| 国产美女午夜福利| 一个人免费看片子| 国产熟女欧美一区二区| 日韩人妻高清精品专区| 少妇人妻久久综合中文| 精品久久久久久久久av| 久久午夜福利片| 少妇熟女欧美另类| 在线观看人妻少妇| 在线播放无遮挡| 国产熟女欧美一区二区| 街头女战士在线观看网站| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产| 久久精品国产亚洲av涩爱| www.色视频.com| 夜夜骑夜夜射夜夜干| 亚洲丝袜综合中文字幕| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| 水蜜桃什么品种好| 国产爽快片一区二区三区| 尾随美女入室| 日韩欧美 国产精品| 男女国产视频网站| 韩国高清视频一区二区三区| 小蜜桃在线观看免费完整版高清| 永久免费av网站大全| 大码成人一级视频| 日韩免费高清中文字幕av| 日韩一区二区三区影片| 免费黄频网站在线观看国产| 全区人妻精品视频| 十分钟在线观看高清视频www | 91狼人影院| 身体一侧抽搐| 自拍欧美九色日韩亚洲蝌蚪91 | 狂野欧美白嫩少妇大欣赏| 国产日韩欧美亚洲二区| 女人久久www免费人成看片| 久久久久久久久大av| 国产精品嫩草影院av在线观看| 国产深夜福利视频在线观看| 十八禁网站网址无遮挡 | 国产免费福利视频在线观看| 国产伦精品一区二区三区视频9| 黄色怎么调成土黄色| 51国产日韩欧美| 亚洲三级黄色毛片| 美女脱内裤让男人舔精品视频| 精华霜和精华液先用哪个| 日韩强制内射视频| 亚洲精品第二区| 一级爰片在线观看| .国产精品久久| 少妇人妻 视频| 亚洲,一卡二卡三卡| 99热这里只有是精品在线观看| 精品久久久噜噜| 黄色日韩在线| 精华霜和精华液先用哪个| 成人漫画全彩无遮挡| 国产精品99久久99久久久不卡 | 免费黄网站久久成人精品| 欧美+日韩+精品| 国产极品天堂在线| 精品久久国产蜜桃| 日韩亚洲欧美综合| 国产片特级美女逼逼视频| 国产久久久一区二区三区| av线在线观看网站| 大香蕉久久网| 欧美少妇被猛烈插入视频| 亚洲va在线va天堂va国产| 亚洲av在线观看美女高潮| 免费观看在线日韩| 我要看日韩黄色一级片| 三级国产精品片| 欧美人与善性xxx| 亚洲国产精品专区欧美| 91精品国产国语对白视频| 欧美高清性xxxxhd video| 熟女电影av网| 欧美精品国产亚洲| 亚洲国产色片| 另类亚洲欧美激情| 五月伊人婷婷丁香| 免费观看无遮挡的男女| 在线亚洲精品国产二区图片欧美 | 丰满乱子伦码专区| 99热全是精品| 精品少妇黑人巨大在线播放| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频| 中文字幕制服av| 国产精品一区二区在线观看99| 免费不卡的大黄色大毛片视频在线观看| 男人和女人高潮做爰伦理| 日韩欧美一区视频在线观看 | 欧美最新免费一区二区三区| 色婷婷av一区二区三区视频| 国产精品久久久久久av不卡| 免费黄网站久久成人精品| 肉色欧美久久久久久久蜜桃| 一级a做视频免费观看| 少妇熟女欧美另类| 免费av不卡在线播放| av免费在线看不卡| 国产美女午夜福利| 国产精品不卡视频一区二区| 亚洲成人中文字幕在线播放| 少妇猛男粗大的猛烈进出视频| 精品亚洲成国产av| 人妻夜夜爽99麻豆av| 国产精品三级大全| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 国产成人91sexporn| 久久国内精品自在自线图片| 一级毛片aaaaaa免费看小| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 欧美高清性xxxxhd video| 免费观看av网站的网址| 一边亲一边摸免费视频| 久久人人爽人人片av| 看十八女毛片水多多多| 亚洲内射少妇av| 日韩一区二区三区影片| 一个人看视频在线观看www免费| 亚洲欧美成人综合另类久久久| 国内精品宾馆在线| av视频免费观看在线观看| 2022亚洲国产成人精品| 人人妻人人添人人爽欧美一区卜 | 小蜜桃在线观看免费完整版高清| 国产亚洲5aaaaa淫片| 中文字幕精品免费在线观看视频 | kizo精华| 少妇人妻一区二区三区视频| 午夜福利视频精品| 午夜视频国产福利| 国产午夜精品久久久久久一区二区三区| 亚洲精品久久午夜乱码| 高清毛片免费看| 国产免费一级a男人的天堂| 欧美性感艳星| 中文在线观看免费www的网站| 这个男人来自地球电影免费观看 | 婷婷色综合www| 赤兔流量卡办理| 欧美bdsm另类| 亚洲av免费高清在线观看| 国产又色又爽无遮挡免| 草草在线视频免费看| 久久久久网色| 久久毛片免费看一区二区三区| 亚洲美女黄色视频免费看| 高清不卡的av网站| 亚洲人成网站在线播| 黄色日韩在线| 五月玫瑰六月丁香| 亚洲精品第二区| 人人妻人人爽人人添夜夜欢视频 | 国产深夜福利视频在线观看| 少妇高潮的动态图| 午夜激情久久久久久久| 91精品国产九色| 欧美区成人在线视频| 夫妻午夜视频| 欧美极品一区二区三区四区| 国产av精品麻豆| 青春草亚洲视频在线观看| 国产日韩欧美亚洲二区| 成人毛片a级毛片在线播放| 午夜免费鲁丝| 新久久久久国产一级毛片| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 国产v大片淫在线免费观看| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 蜜桃久久精品国产亚洲av| 国产爱豆传媒在线观看| 男男h啪啪无遮挡| 国产淫语在线视频| 视频区图区小说| 国产中年淑女户外野战色| 最近中文字幕2019免费版| 国产高清国产精品国产三级 | 纵有疾风起免费观看全集完整版| 欧美成人一区二区免费高清观看| 色5月婷婷丁香| 亚州av有码| 欧美极品一区二区三区四区| 国产亚洲5aaaaa淫片| 国产成人aa在线观看| 大话2 男鬼变身卡| 日本爱情动作片www.在线观看| 成人综合一区亚洲| 日本av免费视频播放| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 久久久成人免费电影| 在线 av 中文字幕| 日产精品乱码卡一卡2卡三| 哪个播放器可以免费观看大片| 精品久久久精品久久久| av视频免费观看在线观看| 少妇被粗大猛烈的视频| 麻豆成人午夜福利视频| 国产一区二区三区综合在线观看 | 亚洲一区二区三区欧美精品| 精品久久久精品久久久| 一个人看视频在线观看www免费| 国产精品免费大片| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 日韩欧美精品免费久久| 尾随美女入室| 97在线视频观看| 免费黄频网站在线观看国产| 久久99精品国语久久久| 欧美成人一区二区免费高清观看| 青春草视频在线免费观看| 少妇人妻一区二区三区视频| 春色校园在线视频观看| 亚洲国产精品999| 日日撸夜夜添| 人妻系列 视频| 黑丝袜美女国产一区| 免费大片18禁| 赤兔流量卡办理| 国产精品国产三级国产av玫瑰| 亚洲成人一二三区av| 中文天堂在线官网| av卡一久久| 国产午夜精品一二区理论片| 国产精品av视频在线免费观看| 国产中年淑女户外野战色| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| h视频一区二区三区| 亚洲伊人久久精品综合| 超碰97精品在线观看| 91久久精品电影网| 国模一区二区三区四区视频| 91精品一卡2卡3卡4卡| 精品午夜福利在线看| 国产精品久久久久久久久免| 久久久久久九九精品二区国产| 免费观看的影片在线观看| 精品酒店卫生间| 舔av片在线| 亚洲人成网站在线播| 欧美亚洲 丝袜 人妻 在线| 国产精品一区www在线观看| 午夜福利在线观看免费完整高清在| 国产免费视频播放在线视频| 欧美+日韩+精品| 亚洲国产精品一区三区| 赤兔流量卡办理| 国产精品一及| 国产精品久久久久久精品古装| 国产免费福利视频在线观看| 久久午夜福利片| .国产精品久久| 欧美成人一区二区免费高清观看| 免费av不卡在线播放| 啦啦啦视频在线资源免费观看| 一级毛片aaaaaa免费看小| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 久热这里只有精品99| 久久久久久伊人网av| 热re99久久精品国产66热6| 午夜福利在线在线| 中文乱码字字幕精品一区二区三区| 最近中文字幕2019免费版| videossex国产| 亚洲电影在线观看av| 男人和女人高潮做爰伦理| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品电影小说 | 99热这里只有精品一区| 一区二区av电影网| videos熟女内射| 乱码一卡2卡4卡精品| 高清日韩中文字幕在线| 丝袜喷水一区| 亚洲av男天堂| 新久久久久国产一级毛片| 日韩不卡一区二区三区视频在线| 直男gayav资源| 精华霜和精华液先用哪个| 国产精品一二三区在线看| 在线观看免费日韩欧美大片 | 欧美三级亚洲精品| 婷婷色综合www| 亚洲国产高清在线一区二区三| 亚洲国产最新在线播放| 18+在线观看网站| 久久久精品94久久精品| 久久久精品免费免费高清| 中国国产av一级| 国产一区二区三区综合在线观看 | 2021少妇久久久久久久久久久| 国产av精品麻豆| 午夜老司机福利剧场| 亚洲电影在线观看av| 亚洲国产色片| 蜜臀久久99精品久久宅男| 成人二区视频| 久久99热这里只有精品18| 99热这里只有是精品50| 精品久久久久久久久av| 国产伦理片在线播放av一区| 国产av国产精品国产| 国产精品一区二区在线观看99| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 妹子高潮喷水视频| 亚洲美女视频黄频| 精品久久久噜噜| 丰满乱子伦码专区| 色5月婷婷丁香| 天堂8中文在线网| 免费大片黄手机在线观看| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av涩爱| 欧美成人一区二区免费高清观看| 我的老师免费观看完整版| 成年人午夜在线观看视频| 久久热精品热| 青春草国产在线视频| 亚洲欧美日韩无卡精品| 国产无遮挡羞羞视频在线观看| 亚洲欧洲国产日韩| 欧美精品国产亚洲| 大又大粗又爽又黄少妇毛片口| 国产男女内射视频| 亚洲三级黄色毛片| 亚洲精品国产色婷婷电影| 亚洲精华国产精华液的使用体验| 国产视频首页在线观看| 亚洲国产精品999| 人人妻人人添人人爽欧美一区卜 | 亚洲经典国产精华液单| 午夜福利影视在线免费观看| 寂寞人妻少妇视频99o| 简卡轻食公司| 久久久午夜欧美精品| 美女视频免费永久观看网站| 最黄视频免费看| 亚洲精品国产av成人精品| 国产欧美亚洲国产| 精品久久久久久久末码| 国产熟女欧美一区二区| 国产精品熟女久久久久浪|