• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Modeling and Prediction of the Effectof Cooling Drag on the Total Vehicle Drag

    2016-05-12 06:03:08RustemAslanKeremAnbarciBerkayAcikgozOmurIckeOzgurAslanCenkDinc
    空氣動力學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:冷卻系統(tǒng)散熱器風(fēng)扇

    A. Rustem Aslan, Kerem Anbarci, M. Berkay Acikgoz, Omur Icke, Ozgur Aslan, Cenk Dinc

    (1. Istanbul Technical University, Maslak, Istanbul 34469, Turkey; 2. AES-Aero Engineering Ltd., Turkey; 3. FORD Motor Company, Turkey)

    ?

    Numerical Modeling and Prediction of the Effectof Cooling Drag on the Total Vehicle Drag

    A. Rustem Aslan1,*, Kerem Anbarci2, M. Berkay Acikgoz2, Omur Icke3, Ozgur Aslan3, Cenk Dinc3

    (1. Istanbul Technical University, Maslak, Istanbul 34469, Turkey; 2. AES-Aero Engineering Ltd., Turkey; 3. FORD Motor Company, Turkey)

    The effect of the engine cooling on the total drag is evaluated by numerical analyses using CFD methods for a light commercial vehicle. The numerical mesh includes both exterior and interior (engine compartment, under hood components) parts of the vehicle. The effects of radiator and fan on the total drag were calculated separately. The initial and boundary conditions were supported by in house experiments (radiators pressure drop) and manufacturer data (mass-flow rate information of radiator fan) that are used as inputs for the RANS based CFD analyses. The effect of the wheels motion and cruise speed on the cooling drag and total drag is also investigated. Predicted cooling drag corresponds to 6.9% of the total drag which is consistent with the measurements.

    Numerical algorithms, Computational Fluid Dynamics, Turbulence modeling, Cooling drag, Radiator, Fan, Experimental measurements

    Nomenclature

    ACS=surface area of the cooling system

    AVS=frontal area of the vehicle

    CD=drag coefficient

    Cp=pressure coefficient

    FCS=net force acting on the cooling system

    FVS=net force acting on the vehicle surface

    kL=dimensionless loss factor

    q=dynamic pressure

    rn=polynomial coefficient

    v=normal velocity component

    y+=viscous sublayer length scale

    Δp=pressure drop

    ΔpCS=pressure drop of the cooling system

    ρ=density of the fluid

    0 Introduction

    In automotive industry, the drag coefficient is a significant design parameter. A large amount of power is spent to overcome the aerodynamic drag for a road car cruising in highway with a speed of about 120 km/h, hence the fuel consumption is an important

    issue. Consequently, even a little improvement inCDvalue may result in significant fuel economy, in a cumulative manner. Numerical prediction tools are now a viable supplement to the very costly experimental measurements [1]. However, the modeling should be handled with care to include all sources of drag both internal and external to the vehicle. The total drag of the vehicle can be increased by about 5%-10% due to its cooling system [2]. The aim is to catch low drag values by maintaining high cooling air flow. In the present study, the effect of the engine cooling on the total drag is evaluated using CFD methods for a light commercial road vehicle. Four different vehicle configurations, described in section 1, were considered for analyses. The detailed numerical mesh includes both exterior and interior (engine compartment, under hood components) parts of the vehicle. The effects of radiator and fan on the total drag were calculated, separately. The initial and boundary conditions were determined by in house experiments (radiators pressure drop) and manufacturer data (mass-flow rate information of radiator fan) that are used as inputs for the RANS based CFD analyses. The effect of the wheels motion and cruise speed on the cooling drag and total drag is also investigated. Predicted cooling drag corresponds to 6.9% of the total drag which is consistent with the test results and measurements by the manufacturer. Furthermore, increasing the cruising speed of the vehicle from 120 km/h to 140 km/h had a negligible effect on the value of cooling drag coefficient. Likewise, the cooling drag coefficient is not influenced by the road and wheel motion. However, modeling the road and wheel motion result in lower calculated total drag coefficient, consistent with the real vehicle situation.

    1 Cooling Drag Analyses of FORD’s Light Commercial Vehicle

    1.1 Problem Statement

    As shown in Table 1, a total of four separate analyzes were executed to determine the difference resulting from the cooling drag (Case#1 vs. Case#2), the effect of cruising speed on cooling drag (Case#2 vs. Case#3) and the effect of moving road and wheel simulation on the total drag coefficient (Case#3 vs. Case#4).

    1.2 Numerical Method

    The CFD analyses are carried out using a commercially available solver [3]. The flow is modeled by assuming three-dimensional, steady, incompressible, viscous flow. The second-order upwind scheme is used for the spatial discretization. The Realizablek-εturbulence model is employed to model the turbulent nature of the flow. The enhanced wall treatment is applied for the near-wall region to resolve the boundary layer and turbulence quantities more accurately.

    Table 1 Vehicle simulation cases

    1.3 Computational Mesh

    The computational domain boundaries are 5 vehicle lengths to the upstream and 10 vehicle lengths to the downstream direction. As shown in Figs.1 and 2, the surface elements on the vehicle are colored according to their sizes. The grid is created in millimeters.

    Fig. 1 Surface element lengths on the vehicle (mm).

    Fig.2 Surface element lengths at underbody components (mm).

    Smaller element sizes were used on the surface of the vehicle at possible flow separation areas, stagnation regions and areas where a proper representation of geometry is needed. The mesh refinement is not performed only at the boundary layer development regions, but also in the wake regions. This grid structure is especially focused on the critical zones where sudden and significant changes occur in the flow properties. This ensures reliable results with lower computational time since the mesh refinement is only carried out at necessary locations. The local resolution of the surface and volume mesh elements can be increased by using the “size-box” property of ANSA grid generation software.ANSA size-boxes help to refine certain areas of surface and volume meshes without creating geometrical constructions for closed inner volumes [4].

    Table 2 Mesh specifications of the cooling drag analyses (open grill condition, Mcells: million cells)

    The domain consists of approximately 51.7 million volume elements where almost one third of it comes from boundary layer region. Viscous sublayer length scale at the wall-adjacent cell should be on the order ofy+=1 when the enhanced wall treatment is employed with the intention of resolving the laminar sublayer [3]. The generated boundary layer and volume mesh specifications are given in Table 2 and shown in Fig. 3.

    Fig.3 Boundary layer and volume mesh details.

    1.4 Radiator and Fan Modeling

    In CFD analyses, the radiator is generally treated as a porous medium or a heat exchanger that generates pressure drop. The pressure drop and heat transfer coefficient can be defined as a function of the perpendicular velocity component of the flow that passes through the radiator. It is assumed that the radiator element has a thickness which is infinitely thin and the pressure loss across the radiator is proportional to the dynamic pressure of the fluid. Experimentally determined dimensionless loss factors (kL) can be specified as constants or defined by polynomials and used as inputs for CFD analyses. The relation between dimensionless loss factor and pressure drop can be written as,

    (1)

    (2)

    InEquations(1)and(2),ρis the density of the fluid (air),rnis the coefficients of the polynomial andvis the perpendicular velocity component of the flow passing through the radiator. In the present study, the heat exchanger model was assumed to have a pressure drop caused by radiator. The temperature change in cooling fluid was not taken into account. In experiments, the tunnel speeds ranging from 1.5 to 7.5 m/s were used deriving by the manufacturer data (e.g. mass-flow rate information of radiator fan). These speeds are also consistent with the reference studies found in literature [5,6]. The curve fitting is made to the measurements and given in Fig.4.

    Fig.4 Fitted curves to loss measurements for the cooling system elements.

    Numerical analyses is carried out to determine the cooling drag by implementing radiator definitions at relevant regions, Fig.5. Radiator definitions depend on polynomial expressions which were extracted from experiments.

    The velocity distributions on the cooling components which are defined as radiator are presented in Figs. 6-8. The flow structures on the sections can be understood by examining the velocity component distributions. The CFD analyses show that the flow through the grills cannot form a homogeneous velocity distribution on the cooling sections. Moreover, remarkable change in velocity is observed especially in the directions which are tangent and perpendicular to the freestream direction.

    Fig.5 Surfaces defined as radiators.

    (Ⅰ) The streamlines and contours coloured by global velocity magnitudes (Ⅱ) The global velocity magnitudes at radiator surfaces Fig.6 Flow patterns and velocity field of the cooling components.

    Fig.7 Local velocity distributions of the cooling components (Case#2).

    Fig.8 Local velocity distributions of the cooling components (Case#3).

    In order to determine the cooling drag, additional cross-sections were constructed at the front and rear sides of the cooling components. As shown in Fig.9, the locations of these sections are at a distance of about 1 cm to the relevant surfaces.

    The static pressure distributions at these surfaces are given in Figs.10-13. The area-weighted average of the static pressure values on the auxiliary sections were calculated to obtain the pressure drops.

    The predicted pressure drop values are in a good agreement with experiments. The drag force due to the cooling system is calculated by multiplying the predicted pressure drops with the corresponding surface area. The total drag force is then obtained by summing the drag forces acting on the vehicle surface and the cooling components. The calculation is done by the following formulation:

    Fig.9 Cooling components (black) and the auxiliary surfaces (grey).

    Fig.10 Static pressure distributions at auxiliary surfaces of CAC (Pa).

    Fig.11 Static pressure distributions at auxiliary surfaces of condenser (Pa).

    Fig.12 Static pressure distributions at auxiliary surfaces of radiator (Pa).

    Fig.13 Static pressure distributions at auxiliary surfaces of fan (Pa).

    FCS,i=ΔPCS,iACS,i

    (3)

    (4)

    Inaboveequations,FVSis the net force acting on the vehicle surface andAVSis the frontal area of the vehicle.FCSis the net force acting on the cooling components obtained by the pressure drop values. Here,iis the index used for presenting each component of the cooling system. Therefore,ACS,iis the surface area of the relevant cooling component,qis the dynamic pressure and equals to 1/2ρU2for incompressible flows;ρis the mass density of the fluid (air) andUis the freestream velocity.

    1.5 Results and Discussion

    Case#1 and Case#2 were used to determine the drag caused by the cooling system. Results show that, the drag coefficient is increased by the implementation of cooling systems in the numerical model.

    The effect of cruise speed on the prediction of drag coefficient was investigated via comparison of Case#2 and Case#3. The drag coefficient,CD, can often be treated as a constant for high Reynolds number flow regimes such as cars at highway speed or aircrafts at cruising speed. As shown in Fig. 10 to Fig.13, the predicted pressure distributions on the cooling components were qualitatively similar (almost identical) for the two cases but a quantitative examinaation shows that there exist differences in terms of pressure drops. In fact, it is observed that the drag force acting on the vehicle and cooling components become larger with the increased cruising speed, but the drag coefficient remained unchanged since the force is being made dimensionless with the square of the speed.

    The effect of moving road and rotating wheels is also examined via comparison of Case#3 and Case#4. The resulting velocity contours for the flow field is presented in Fig. 14.

    The flow velocity behind the wheels that are modeled as rotating walls is faster compared to the non-rotating ones. The rotating wheel model has also smaller wake compared to stationary one which yielded a lowerCDprediction. The predicted total drag coefficients of the aforementioned cases were tabulated with detailed descriptions in Table 3.

    Table 3 Comparison of the total drag coefficients

    The convergence histories of the different cases based on drag coefficient are given in Figs.15-17. The pressure coefficient distributions and the flow characteristics around the vehicle are shown in Fig.18 and Fig.19, respectively.

    The geometric specifications of the vehicle and the drag coefficient values are not explicitly given due to commercial confidentiality.

    Fig.14 Effect of wheel motions on the velocity field predictions.

    Fig.15 Effect of cooling drag on total CD.

    Fig.16 Effect of cruising speed on total CD.

    Fig. 17 Effect of moving road and wheel simulation on total CD.

    Fig.18 Cp distributions on the vehicle (Case#2).

    Fig.19 Flow characteristics for the cooling drag analyses (Case#2).

    All calculations are carried out on a 12 core parallel machine with 2×2.30 GHz Intel Xeon E5-2630 pro-cessors. The platform uses a 64-bit Win-7 operating system and a total of 64 GB of RAM. The mesh partitioning is done using the “Metis” method of the FLUENT software. The wall clock computation time was approximately 114.5 h for a solution of 6000 iterations. It is observed that the radiator/fan modeling and the moving wall approach do not have a noticeable effect on the computation time.

    2 Conclusions and Future Work

    CFD analyses have been performed to obtain total drag coefficient including cooling drag part for the light commercial vehicle. The pressure drop characteristics of the cooling system components are determined by wind tunnel tests utilizing the facilities of ITU Trisonic Laboratory and manufacturer's data provided by FORD. ITU wind tunnel tests have been carried out by additional studies to validate the manufacturer’s data and examine the various working-conditions (free and force-fed) of fan.

    CFD analysis results are consistent with the clay model test results. A satisfactory result gathered from CFD analysis (Case#2) with a 0.1% approxi-mation to the clay model test results.

    The CFD analysis for the closed grill condition represented by Case#1 have been made to isolate the effect of cooling drag on the total drag. Predicted cooling drag corresponds to 6.9% of the total drag which is consistent with the test results

    and measurements by the manufacturer. Furthermore, additional analysis for different cruising speeds such as 120 km/h and 140 km/h demonstrated that the cruise speed, particularly for these flow regimes, do not have a remarkable effect on the prediction of cooling drag coefficient. Likewise, the prediction of cooling drag coefficient does not change whether the CFD model includes the road and wheel motion. However, modeling the road and wheel motion reduces the total drag coefficient.

    The cooling drag characteristics of different vehicles can be determined by using the modeling methodology developed in the present work. The cooling flow may be obtained with lower pressure loss by the optimization studies to be performed on the vehicle.

    [1] Anbarci K, Acikgoz M B, Aslan A R, et al. Development of an aerodynamic analysis methodology for tractor-trailer class heavy commercial vehicles[J]. SAE Int. J. Commer. Veh. , 2013, 6(2):441-452.

    [2] D’Hondt M, Gilliéron P, Devinant P. Flow in the engine compartment: analysis and optimization[J]. International Journal of Aerodynamics, 2011, 1, 3/4, 384- 403.

    [3] FLUENT Inc, 2013.

    [4] BETA CAE Systems ANSA Version 13 User Manual[M/OL]. www.beta-cae.gr.

    [5] Ngy Srun Ap, Pascal Guerrero, Philippe Jouanny. Influence of front end vehicle, fan and shroud on the heat performance of A/C condenser and cooling radiator[R]. SAE Technical Paper Series, 2002-01-1206, 2002.

    [6] Berg T, Wikstrom A. Fan modelling for front end cooling with CFD[D]. Sweden: Volvo Cars and Lulea University of Technology, Masters Thesis.2007.

    0258-1825(2016)02-0232-07

    冷卻系統(tǒng)阻力對汽車總阻力影響的數(shù)值預(yù)測模型研究

    A. Rustem Aslan1,*, Kerem Anbarci2, M. Berkay Acikgoz2, Omur Icke3, Ozgur Aslan3, Cenk Dinc3

    (1. Istanbul Technical University, Maslak, Istanbul 34469, Turkey; 2. AES-Aero Engineering Ltd., Turkey; 3. FORD Motor Company, Turkey)

    采用CFD方法數(shù)值模擬了小型汽車發(fā)動機冷卻系統(tǒng)對全車阻力的影響特性。汽車的內(nèi)部及外部(發(fā)動機艙及艙內(nèi))均設(shè)置了數(shù)值模擬網(wǎng)格。分別計算了散熱器及風(fēng)扇對阻力的影響,采用本校實驗結(jié)果(散熱器壓力損失)及制造商提供的數(shù)據(jù)(散熱器及風(fēng)扇的質(zhì)量流率)確定初始及邊界條件,為基于RNS的CFD提供輸入。對汽車輪胎運動模式及行駛速度對散熱系統(tǒng)阻力及汽車總阻的影響特性也進行了計算分析。預(yù)測結(jié)果表明,冷卻系統(tǒng)阻力占汽車總阻的6.9%,與實測值吻合。

    數(shù)值方法;計算流體力學(xué);湍流模型;冷卻系統(tǒng)阻力;散熱器;風(fēng)扇;實驗測量

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0012

    *Professor, Department of Aerospace Engineering; aslanr@itu.edu.tr

    format: Aslan A R, Anbarci K, Acikgoz M B, et al. Numerical Modeling and Prediction of the effect of cooling drag on the total vehicle drag[J]. Acta Aerodynamica Sinica, 2016, 34(2): 232-238.

    10.7638/kqdlxxb-2016.0012. Aslan A R, Anbarci K, Acikgoz M B, 等. 冷卻系統(tǒng)阻力對汽車總阻力影響的數(shù)值預(yù)測模型研究(英文)[J]. 空氣動力學(xué)學(xué)報, 2016, 34(2): 232-238.

    Received date: 2016-02-04; Revised date: 2016-03-18

    猜你喜歡
    冷卻系統(tǒng)散熱器風(fēng)扇
    ◆ 散熱器
    散熱器
    新型中厚板快速冷卻系統(tǒng)研發(fā)
    ◆ 散熱器
    散熱器
    電風(fēng)扇
    故事大王(2017年4期)2017-05-08 07:53:40
    DX-600發(fā)射機冷卻系統(tǒng)維護
    基于智能手機控制風(fēng)扇運行的實現(xiàn)
    新蒙迪歐車?yán)鋮s風(fēng)扇常高速運轉(zhuǎn)
    澆鑄循環(huán)水冷卻系統(tǒng)的應(yīng)用
    久久久午夜欧美精品| 久久精品夜夜夜夜夜久久蜜豆| www.av在线官网国产| 中文字幕亚洲精品专区| 亚洲va在线va天堂va国产| 国产成人91sexporn| 免费观看av网站的网址| 秋霞伦理黄片| 毛片女人毛片| 国精品久久久久久国模美| 丰满人妻一区二区三区视频av| 日韩欧美精品v在线| 免费观看av网站的网址| 国产精品99久久久久久久久| 熟妇人妻不卡中文字幕| 欧美成人a在线观看| 精品一区在线观看国产| 亚州av有码| 五月伊人婷婷丁香| 天天躁夜夜躁狠狠久久av| 三级男女做爰猛烈吃奶摸视频| 成人欧美大片| 高清在线视频一区二区三区| 日韩 亚洲 欧美在线| 欧美一区二区亚洲| 国产亚洲91精品色在线| 亚洲电影在线观看av| 亚洲精华国产精华液的使用体验| 亚洲国产成人一精品久久久| 好男人在线观看高清免费视频| 国产精品久久久久久av不卡| 午夜激情久久久久久久| 久久久久精品久久久久真实原创| 国产av码专区亚洲av| 亚洲成人av在线免费| 18+在线观看网站| 夜夜爽夜夜爽视频| 欧美丝袜亚洲另类| 日韩强制内射视频| 国产精品人妻久久久影院| 亚洲自拍偷在线| 我的老师免费观看完整版| 特级一级黄色大片| 精品久久久久久久人妻蜜臀av| 国产色爽女视频免费观看| 久久草成人影院| 男人和女人高潮做爰伦理| 国产亚洲精品久久久com| 日韩成人av中文字幕在线观看| 一级毛片 在线播放| 日本午夜av视频| 22中文网久久字幕| 欧美精品一区二区大全| 国内少妇人妻偷人精品xxx网站| 三级男女做爰猛烈吃奶摸视频| 少妇的逼水好多| 国产一区有黄有色的免费视频 | 天天躁日日操中文字幕| 一夜夜www| 激情 狠狠 欧美| 九色成人免费人妻av| 欧美精品国产亚洲| 国产三级在线视频| 亚洲欧美精品专区久久| av在线蜜桃| 国产精品.久久久| 赤兔流量卡办理| 男人舔女人下体高潮全视频| 国产精品一区二区在线观看99 | 99久久九九国产精品国产免费| 国产在线男女| 免费人成在线观看视频色| 中文字幕免费在线视频6| 亚洲精品成人av观看孕妇| 亚洲最大成人手机在线| 欧美激情在线99| 18禁在线播放成人免费| 丰满乱子伦码专区| 久久久久久久久大av| 看非洲黑人一级黄片| 汤姆久久久久久久影院中文字幕 | 你懂的网址亚洲精品在线观看| 中文字幕免费在线视频6| 啦啦啦啦在线视频资源| 精品一区二区三区视频在线| 禁无遮挡网站| 亚洲国产精品成人综合色| 美女xxoo啪啪120秒动态图| 国产精品精品国产色婷婷| 国产高清国产精品国产三级 | 黄色欧美视频在线观看| 久久久久久久亚洲中文字幕| 成人鲁丝片一二三区免费| 麻豆乱淫一区二区| 午夜爱爱视频在线播放| 精品人妻熟女av久视频| 亚洲欧美清纯卡通| 亚洲精品影视一区二区三区av| av在线播放精品| 亚洲av电影在线观看一区二区三区 | 男人爽女人下面视频在线观看| 欧美zozozo另类| 69av精品久久久久久| 亚洲av一区综合| av在线播放精品| 日日干狠狠操夜夜爽| 视频中文字幕在线观看| 一区二区三区四区激情视频| or卡值多少钱| 日韩av免费高清视频| 在线免费观看的www视频| 成人国产麻豆网| 美女黄网站色视频| 久久久久久国产a免费观看| 精品久久久久久久久av| 寂寞人妻少妇视频99o| 午夜日本视频在线| 街头女战士在线观看网站| 97人妻精品一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 欧美区成人在线视频| 永久网站在线| 国产女主播在线喷水免费视频网站 | 午夜日本视频在线| freevideosex欧美| 午夜日本视频在线| 国产不卡一卡二| 婷婷六月久久综合丁香| 亚洲国产精品专区欧美| 日韩伦理黄色片| 99热网站在线观看| 一边亲一边摸免费视频| 青青草视频在线视频观看| av国产久精品久网站免费入址| 国产精品熟女久久久久浪| 国产精品一区www在线观看| 日日干狠狠操夜夜爽| 久久久久网色| 国产69精品久久久久777片| 色视频www国产| 99久国产av精品| 精品久久久噜噜| 国产毛片a区久久久久| 亚洲欧美精品自产自拍| 亚洲av中文av极速乱| 男人爽女人下面视频在线观看| 爱豆传媒免费全集在线观看| 欧美另类一区| 在线观看免费高清a一片| 成人午夜高清在线视频| 日韩av在线大香蕉| 亚洲av免费在线观看| 久久久久久久久久黄片| www.色视频.com| 老司机影院成人| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久v下载方式| 国产在视频线在精品| 欧美日本视频| .国产精品久久| 少妇人妻一区二区三区视频| 亚洲自偷自拍三级| 日韩成人av中文字幕在线观看| 日韩欧美精品免费久久| 少妇熟女欧美另类| 中文字幕亚洲精品专区| 日韩电影二区| 18+在线观看网站| 一个人看的www免费观看视频| av网站免费在线观看视频 | 亚洲精品国产成人久久av| videossex国产| 亚洲成人久久爱视频| av线在线观看网站| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜 | 免费观看a级毛片全部| 日韩伦理黄色片| or卡值多少钱| 午夜老司机福利剧场| 一级av片app| 18+在线观看网站| 免费观看av网站的网址| av在线观看视频网站免费| 日日撸夜夜添| 一边亲一边摸免费视频| 亚洲av一区综合| 亚洲精品影视一区二区三区av| 国产精品一二三区在线看| 国产大屁股一区二区在线视频| 80岁老熟妇乱子伦牲交| 国产一级毛片七仙女欲春2| 搡女人真爽免费视频火全软件| 中文精品一卡2卡3卡4更新| 免费看美女性在线毛片视频| 日本欧美国产在线视频| 免费看日本二区| 大又大粗又爽又黄少妇毛片口| 免费大片黄手机在线观看| 亚洲精品久久久久久婷婷小说| 日韩大片免费观看网站| 舔av片在线| 午夜老司机福利剧场| 超碰97精品在线观看| 日韩电影二区| 欧美区成人在线视频| 久久国产乱子免费精品| 国产黄a三级三级三级人| 亚洲精品久久午夜乱码| 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| 精品少妇黑人巨大在线播放| 中文字幕av成人在线电影| 国产成年人精品一区二区| 91精品伊人久久大香线蕉| 久久久久性生活片| 一级爰片在线观看| 黄色日韩在线| 国产极品天堂在线| 国产高清国产精品国产三级 | 国产老妇女一区| 夫妻性生交免费视频一级片| 99re6热这里在线精品视频| 男女边摸边吃奶| 一级片'在线观看视频| 成人无遮挡网站| 亚洲不卡免费看| 免费人成在线观看视频色| 国产男女超爽视频在线观看| 亚洲熟女精品中文字幕| 亚洲18禁久久av| 一区二区三区免费毛片| 91精品国产九色| 看黄色毛片网站| 人妻夜夜爽99麻豆av| 亚洲欧洲国产日韩| 久久综合国产亚洲精品| 精品人妻熟女av久视频| 日日啪夜夜爽| 免费大片黄手机在线观看| 街头女战士在线观看网站| 国产av不卡久久| 欧美成人一区二区免费高清观看| 国产69精品久久久久777片| av专区在线播放| 亚洲第一区二区三区不卡| 久久这里只有精品中国| 少妇裸体淫交视频免费看高清| 午夜激情欧美在线| 可以在线观看毛片的网站| av在线蜜桃| 亚洲av男天堂| 97热精品久久久久久| 青春草国产在线视频| 91精品一卡2卡3卡4卡| 国产女主播在线喷水免费视频网站 | 高清午夜精品一区二区三区| a级毛色黄片| 亚洲精品乱久久久久久| 国产午夜精品一二区理论片| 国产高清有码在线观看视频| 少妇的逼水好多| 亚洲精品一二三| 国内精品美女久久久久久| 日韩欧美三级三区| 婷婷色综合www| 最近最新中文字幕大全电影3| 久久久久久久久久人人人人人人| 亚洲精品,欧美精品| 噜噜噜噜噜久久久久久91| 能在线免费观看的黄片| 亚洲av成人精品一区久久| 午夜福利在线观看免费完整高清在| 亚洲怡红院男人天堂| 午夜老司机福利剧场| 久久久久久久久久久丰满| 亚洲最大成人中文| 日本与韩国留学比较| 91久久精品国产一区二区三区| 日本黄色片子视频| 亚洲经典国产精华液单| 国产精品一及| 五月天丁香电影| 国产 一区 欧美 日韩| 免费高清在线观看视频在线观看| 丰满乱子伦码专区| 午夜精品国产一区二区电影 | 爱豆传媒免费全集在线观看| 国产精品精品国产色婷婷| 午夜久久久久精精品| 男人舔奶头视频| 一本久久精品| 久久久久久久久久成人| 亚洲自偷自拍三级| 欧美丝袜亚洲另类| 精品少妇黑人巨大在线播放| 精品一区二区免费观看| 午夜福利视频1000在线观看| 日韩电影二区| 精品人妻视频免费看| 最后的刺客免费高清国语| 成年女人在线观看亚洲视频 | 婷婷色综合大香蕉| 99久久精品国产国产毛片| 久久精品熟女亚洲av麻豆精品 | 两个人视频免费观看高清| 别揉我奶头 嗯啊视频| 国产免费一级a男人的天堂| 一级二级三级毛片免费看| 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频| 麻豆国产97在线/欧美| 91精品国产九色| 亚洲电影在线观看av| 深爱激情五月婷婷| 亚洲国产成人一精品久久久| 国产爱豆传媒在线观看| 99九九线精品视频在线观看视频| 亚洲国产精品成人久久小说| 大香蕉久久网| 麻豆国产97在线/欧美| 精品久久久久久成人av| 国产有黄有色有爽视频| 18禁在线播放成人免费| 免费观看精品视频网站| 91aial.com中文字幕在线观看| 一本久久精品| 免费av观看视频| 天堂中文最新版在线下载 | 亚洲最大成人手机在线| 狂野欧美白嫩少妇大欣赏| 欧美日本视频| 久久精品国产自在天天线| 国产成人a∨麻豆精品| 亚洲美女搞黄在线观看| 国产老妇女一区| 欧美精品国产亚洲| 少妇熟女欧美另类| 国内精品一区二区在线观看| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| 久久久久久久久久久丰满| 精品不卡国产一区二区三区| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 特级一级黄色大片| 草草在线视频免费看| 婷婷色综合www| 美女被艹到高潮喷水动态| 深夜a级毛片| 亚洲婷婷狠狠爱综合网| 久久久久久久亚洲中文字幕| 日韩一本色道免费dvd| 18禁在线播放成人免费| 高清在线视频一区二区三区| 男女边摸边吃奶| 国产精品女同一区二区软件| 亚洲美女搞黄在线观看| ponron亚洲| 青青草视频在线视频观看| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 日本av手机在线免费观看| 伊人久久国产一区二区| av网站免费在线观看视频 | 亚洲精品456在线播放app| 一个人看视频在线观看www免费| 欧美日韩在线观看h| 成人无遮挡网站| 久久精品熟女亚洲av麻豆精品 | 乱人视频在线观看| 成人二区视频| 免费看光身美女| 亚洲自偷自拍三级| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 成人特级av手机在线观看| 欧美成人午夜免费资源| 亚洲av日韩在线播放| 一级二级三级毛片免费看| 国产久久久一区二区三区| 大话2 男鬼变身卡| 久久综合国产亚洲精品| 日本一本二区三区精品| 2021天堂中文幕一二区在线观| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 欧美bdsm另类| 在线 av 中文字幕| 国产亚洲精品av在线| 国产精品久久久久久精品电影| 国产黄色视频一区二区在线观看| 亚洲最大成人中文| 一边亲一边摸免费视频| 欧美成人精品欧美一级黄| 亚洲av二区三区四区| 亚洲av成人av| 好男人在线观看高清免费视频| 又爽又黄a免费视频| 久久久午夜欧美精品| 一本久久精品| 日日摸夜夜添夜夜添av毛片| 久久久久久久久大av| 国产乱来视频区| 欧美区成人在线视频| 深夜a级毛片| 91久久精品国产一区二区成人| 精品一区二区三卡| 国产真实伦视频高清在线观看| 六月丁香七月| 99re6热这里在线精品视频| av免费在线看不卡| 能在线免费观看的黄片| 人人妻人人澡人人爽人人夜夜 | 国产精品国产三级国产专区5o| 特级一级黄色大片| 国产成人精品婷婷| 成年免费大片在线观看| 国产精品久久久久久久电影| 亚洲av一区综合| 夜夜爽夜夜爽视频| 少妇被粗大猛烈的视频| 免费黄色在线免费观看| 亚洲av二区三区四区| 亚洲精品国产成人久久av| 狠狠精品人妻久久久久久综合| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 99re6热这里在线精品视频| 777米奇影视久久| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 久久韩国三级中文字幕| 国产成人午夜福利电影在线观看| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| av在线老鸭窝| 亚洲精品成人久久久久久| 最近2019中文字幕mv第一页| 国产黄片美女视频| 我要看日韩黄色一级片| 国产成人精品一,二区| 深夜a级毛片| 亚洲成人久久爱视频| 九草在线视频观看| 黑人高潮一二区| 成人亚洲精品av一区二区| 男人舔奶头视频| 在线 av 中文字幕| 亚洲最大成人中文| 综合色av麻豆| 夜夜爽夜夜爽视频| 亚洲美女视频黄频| 成年免费大片在线观看| 日韩精品青青久久久久久| 日韩亚洲欧美综合| www.av在线官网国产| 国产亚洲91精品色在线| 精品久久久久久成人av| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 3wmmmm亚洲av在线观看| 国产亚洲av嫩草精品影院| 亚洲丝袜综合中文字幕| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 欧美一级a爱片免费观看看| 九九在线视频观看精品| 久久久精品94久久精品| 九九爱精品视频在线观看| 欧美精品一区二区大全| 午夜福利视频精品| 熟妇人妻不卡中文字幕| 汤姆久久久久久久影院中文字幕 | 晚上一个人看的免费电影| 我的老师免费观看完整版| 大片免费播放器 马上看| 亚洲精品一二三| 色吧在线观看| 国产精品蜜桃在线观看| 亚洲精品乱码久久久久久按摩| 五月天丁香电影| 欧美日韩综合久久久久久| 成人午夜高清在线视频| 中国美白少妇内射xxxbb| 九色成人免费人妻av| 丝袜喷水一区| 亚洲综合色惰| 午夜福利成人在线免费观看| 国产精品福利在线免费观看| 熟女人妻精品中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产鲁丝片午夜精品| 免费看a级黄色片| 国产精品美女特级片免费视频播放器| 伦理电影大哥的女人| 国产视频首页在线观看| 夜夜爽夜夜爽视频| 国产成人91sexporn| 欧美极品一区二区三区四区| 免费观看av网站的网址| videossex国产| 国产成人freesex在线| 青春草亚洲视频在线观看| 黄色欧美视频在线观看| 美女黄网站色视频| 伊人久久国产一区二区| 亚洲av成人精品一二三区| 亚洲一区高清亚洲精品| 22中文网久久字幕| 亚洲av免费高清在线观看| 全区人妻精品视频| 亚洲精品国产av成人精品| 老司机影院毛片| 91精品伊人久久大香线蕉| 日韩,欧美,国产一区二区三区| 国产亚洲最大av| 欧美一级a爱片免费观看看| 亚州av有码| 国产成人a区在线观看| 国产 亚洲一区二区三区 | 如何舔出高潮| 免费高清在线观看视频在线观看| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 精品久久久久久久末码| 99久久九九国产精品国产免费| 校园人妻丝袜中文字幕| 亚洲国产日韩欧美精品在线观看| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频 | 亚洲婷婷狠狠爱综合网| 特级一级黄色大片| 日韩强制内射视频| a级一级毛片免费在线观看| 日韩av免费高清视频| 中文字幕久久专区| 亚洲av福利一区| 久久久久久久亚洲中文字幕| 久久99热这里只有精品18| 内地一区二区视频在线| 热99在线观看视频| 国产91av在线免费观看| 男人舔女人下体高潮全视频| 中文字幕亚洲精品专区| 久久久久精品久久久久真实原创| 成人亚洲精品av一区二区| 美女主播在线视频| 高清毛片免费看| 成人国产麻豆网| 99热这里只有精品一区| 日韩不卡一区二区三区视频在线| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久| 极品教师在线视频| 日韩伦理黄色片| 亚洲国产精品国产精品| 最近最新中文字幕免费大全7| 日韩一区二区三区影片| 午夜福利在线在线| 国产黄色视频一区二区在线观看| 蜜臀久久99精品久久宅男| 国产亚洲一区二区精品| 国产精品久久视频播放| 国产激情偷乱视频一区二区| 亚洲av成人av| 成人欧美大片| 亚洲精品国产成人久久av| 国产又色又爽无遮挡免| 嫩草影院精品99| 国产成人午夜福利电影在线观看| 久久久精品欧美日韩精品| 人妻一区二区av| 欧美zozozo另类| 老司机影院毛片| 免费观看的影片在线观看| 免费观看在线日韩| 毛片女人毛片| 两个人的视频大全免费| 国产淫片久久久久久久久| 天天躁夜夜躁狠狠久久av| 三级国产精品片| 亚洲欧美日韩无卡精品| 熟妇人妻不卡中文字幕| www.色视频.com| 天堂影院成人在线观看| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 人妻一区二区av| 女人十人毛片免费观看3o分钟| 国产黄片美女视频| 春色校园在线视频观看| 中文天堂在线官网| 少妇熟女欧美另类| 美女大奶头视频| 亚洲图色成人| 亚洲美女视频黄频| 男女那种视频在线观看| xxx大片免费视频| 久久久欧美国产精品| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 人妻夜夜爽99麻豆av| 少妇熟女欧美另类| 国产黄频视频在线观看| 日韩亚洲欧美综合| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区| 3wmmmm亚洲av在线观看| 免费黄频网站在线观看国产|