• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of HyperFLOW inSubsonic and Transonic Flow

    2016-05-12 06:03:08XinHeZhongZhaoRongMaNianhuaWangLaipingZhang
    空氣動力學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:高升組合體綿陽

    Xin He, Zhong Zhao, Rong Ma, Nianhua Wang, Laiping Zhang

    (1. China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China 2. State Key Laboratory of Aerodynamics, Mianyang Sichuan 621000, China)

    ?

    Validation of HyperFLOW inSubsonic and Transonic Flow

    Xin He1,2, Zhong Zhao1,*, Rong Ma1, Nianhua Wang1, Laiping Zhang1,2

    (1. China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China 2. State Key Laboratory of Aerodynamics, Mianyang Sichuan 621000, China)

    HyperFLOW,a structured/unstructured hybrid CFD software, is introduced in this paper. For HyperFLOW, the structured solver runs on structured grids, while the unstructured solver runs on unstructured grids, in order to fully take advantages of both grids and solvers. The architecture of HyperFLOW is briefly introduced firstly. Then, some typical cases are tested to validate both the structured and unstructured solver, including the Trap-Wing configuration from HiLiftPW-I and the DLR-F6 wing-body configuration from DPW-II. The performance of grid convergence is studied for both solvers. The numerical results demonstrate that HyperFLOW has good grid convergence property on both structured and unstructured grids. The computational results match well with the reference and experimental data, indicating acceptable credibility.

    HyperFLOW, CFD Software, NASA Trap-Wing high-lift model, DLR-F6 wing-body

    0 Introduction

    Computational Fluid Dynamics (CFD) has been playing more and more important role in aeronautical/astronautical vehicle design and flow mechanism study. Many CFD codes, as well as some commercial CFD software, have been developed during the past two decades. Generally speaking, these flow solvers can be classified into two types: structured solver and unstructured solver respectively, according to the type of grid and data structure. A structured solver is defined by the directional nature of the computational methods and the Cartesian data structure. The geometry topology is defined directionally and the neighboring connectivity is defined by their indices (i,j,k). An unstructured solver is characterized by unordered data structure and the non-directional nature of the numerical method. It is necessary to store connectivity of cell-face-node.

    Due to the high quality of structured grids, structured solver has the properties of high-efficiency and high-accuracy. Lower memory is required because no connectivity information needs to be stored except for the indices (i,j,k). However, when dealing with complex configurations, it would cost a lot of time to generate structured grids. The unstructured solver usually runs on unstructured grids, with the advantages of easier grid generation and reduction on overall turnaround time. Although the unstructured solvers are adopted more and more, the structured solvers are still playing an important role in some scopes, especially for hypersonic flows

    and flow mechanism study.

    As is known to all, the structured/unstructured hybrid grid is a better choice for complex geometries, because it combines the advantages of both structured and unstructured grids. Although hybrid grids are used in realistic applications, applications, almost all the flow solvers for hybrid grids should transfer the data structure of the structured grids into that of the unstructured grid. Consequently, the properties of high-efficiency and high-accuracy of structured grids are not inherited. Therefore, some in-house codes are trying to combine structured and unstructured solvers into a unified platform in recent years. Soetrisno [1] described an explicit parallel coupling between matching structured and unstructured grids. DLR has developed a hybrid solver named “TAU-ijk”[2], by integrating famous structured solver FLOWer with unstructured solver TAU. Two excellent flow solvers, OVERFLOW and USM3D, have been loosely coupled in form of libraries to build a hybrid solver named “DRAGONFLOW” [3,4]. Recently, a new fully integrated solver calledelsA-Hby ONERA for compressible flow simulation on structured and unstructured grids was presented [5,6].

    Since 2005, we started to develop a hybrid CFD platform-HyperFLOW [7-9]. The goal is to integrate structured and unstructured solvers, as well as other multi-discipline solvers, into an unified platform with the same code language. After several years’ programming and testing, the first version of HyperFLOW has been accomplished and applied successfully for realistic applications. In recent years, we are engaged in updating the version of HyperFLOW and enhancing its capability.

    In this paper, the architecture of HyperFLOW is briefly introduced firstly. Then, two typical cases are tested to validate both the structured and unstructured solver, including the Trap-Wing configuration from HiLiftPW-I and the DLR-F6 wing-body configuration from DPW-II. The performance of grid convergence is studied for both solvers. The numerical results demonstrate that HyperFLOW has good grid convergence property on both structured and unstructured grids.

    1 Architecture of the Solvers

    In order to integrate naturally the structured solver and the unstructured solver into an unified platform, we have to redesign the frame architecture and the data structure, since the data structures in two solvers are greatly different. Our final goal is to set up a platform for numerical virtual flight or digital flight, which will include the static and dynamic hybrid grid generator, the flight dynamics solver for rigid and morphing body, the solver for elastic structures, the flight controlling system, and so on. In order to meet all the requirements of structured and unstructured flow solver, and other multi-discipline solvers, and to enhance the universality and expansibility of HyperFLOW, the idea of modularization and the Object-Oriented technique was adopted to construct the new architecture, and C++ language was adopted for coding.

    The sketch of the architecture of HyperFLOW is illustrated in Fig.1. Some basic Classes are extracted from our previous solver, and defined to satisfy the requirement of large-scale parallel CFD simulation and other purposes. The core of the software is ‘Zone’ Class. All the operations are based on ‘Zone’, which represents a sub-domain of the whole computational domain (discretized as grids). The left hand of ‘Zone’ Class is the ‘Geometry’ Class, and the corresponding ‘Grid’ Class. This ‘father’ class can derive two ‘son’ classes, ‘Structured Grid’ Class, and ‘Unstructured Grid’ Class, meanwhile, an ‘Interface’ Class can be defined also to communicate the information between the two ‘son’ classes. On the right hand, the ‘Solver’ Class is defined, including a series of flow solvers, such as solver for Navier-Stokes equations, solvers for different turbulence models. Other multi-discipline solvers can be derived from the ‘Solver’ Class. Furthermore, each solver can be divided into structured solver running on structured grids, and unstructured solver on unstructured grids. The structured solver and the unstructured solver, as well as other special solvers (such as solvers for turbulence models, MHD equations, high-order discontinuous Galerkin NS solver), exist in the code as a sub-class or a derived class (Fig.2). All the data transferring among these classes are stored in a data-base, whose format is very similar to the CGNS library. We named this database a ‘Running Data-base’, because it is online created during the software running, and released after the job termination.

    Fig.2 Architecture of solvers.

    In HyperFLOW, most of the underlying codes are reused for both structured solver and unstructured solver, because that the numerical methods adopted are almost the same for both solvers. In the actual implementation of numerical algorithms such as the time integration or the spatial discretization, the hybrid solver only calls polymorphic function in order to avoid taking care explicitly of structured and unstructured computational method treatments. Due to inheritance, when a pure virtual function is called by a polymorphic object, the concrete function is used in the corresponding derived class. This demonstrates the advantage of a fully-integrated approach versus coupling of separate codes or libraries by a master module, where code duplication would be unavoidable.

    HyperFLOW was developed for sub-, transonic and hypersonic flow simulations. The basic numerical method in HyperFLOW is the well-known cell-centered, second-order accuracy, finite volume method for Reynolds-Averaged Navier-Stokes equations on structured/unstructured grids. The computational domain is decomposed into a set of partitions using METIS. Both structured solver and unstructured solver is parallelized using MPI message passing library for variable communication. In particular, each processor may run more than one grid zones when parallelization is utilized. Input interfaces to several popular grid data structures are provided, including CGNS, Plot3D, FieldView, and Fluent. The inviscid flux is calculated across the cell interfaces using Roe’s flux-difference splitting scheme, or other schemes, such as van-Leer, Steger-Warming, AUSM. Flow variables are advanced into steady state with LU-SGS implicit methods. Some turbulent models are integrated into the solver, such as S-A model [10], SST model [11]. The essential ingredients in this software are listed in Table 1.

    Table 1 Numerical methods in HyperFLOW

    2 Validation of HyperFLOW

    Validation of CFD software is an important part of its development. The current work verifies the computation of flows over two wing-body cases using both structured and unstructured solvers.

    The Richardson extrapolation is applied to estimate aerodynamic force convergence in the grid convergence study [12]. The extrapolated solution value is obtained using gridiand a fine gridjby:

    (1)

    (2)

    where fkisadiscretesolutionvalueongridlevelk,andfexactistheexactsolution. eijisdifferencebetweenasolutionvariableongridiandgridj. rijisgridrefinefactor,i.e.,thecellnumberratiobetweengridiandj. pisspatialorderofaccuracy,ifthreediscretesolutionswhicharemonotonicasthegridisrefined, pisobtainedby:

    (3)

    NotethatEq. (3)istranscendentalinp,andthusmustbesolvediteratively.

    2.1 NASA High-Lift Trap Wing Model

    2.1.1 Trap Wing Configuration

    The NASA Trap Wing model came from the first AIAA CFD High-Lift Prediction Workshop (HiLiftPW-Ⅰ) [13]. The prediction of high lift flows is a challenge for CFD codes. The difficulties come from the complexity of the geometry and the flow physics [14]. For configurations that include multiple elements, the flow physics are very complex and difficult to predict. The objective of this test is to assess the capability of numerical prediction for high lift flow fields. The focus of this case is on the assessment of grid convergence.

    This configuration is a large chord, semi-span, three elements high lift wing-body configuration. The body is mounted on a standoff, which is fixed on the wall. The geometric details are listed in [14]. The Mach number isM∞=0.2, and Reynolds number based on mean aerodynamic chord isRe=4.0×106.

    2.1.2 Computational Grids

    Grid convergence behavior is analyzed using three successively refined grids, both for structured solver and unstructured solver. In this paper, three suits of grids are adopted.

    1)Committee supplied grids (Grid1). This grid system is designated as UH8 (Unst-Mixed-Node centered-B) in the families of grids supplied by HiLiftPW-Ⅰ committee [13], generated by Solar of DLR. The surface is discretized with a quad-dominant, which allows for triangles to improve the overall mesh quality. Due to the mixed-element sur-face grid, the computational field is hexahedra- dominant, with some prismatic layer stacks.

    2) Mixed unstructured grids (Grid2). This grid system is mixed unstructured grids, which are generated by the authors. Prisms are used to discretize the near wall field, and isotropic tetrahedral cells are used to discretize the off-wall field. Anisotropic tetrahedral cells are used to fill the gap between prisms and isotropic cells.

    3) Multi-block structured grids (Grid3). In order to test the structured solver of HyperFLOW, a suit of multi-block structured grid is generated, with 355, 369, and 369 blocks, for the coarse, medium and fine grids, respectively.

    The cell number of the three grid systems is listed in Table 2.

    Table 2 Grid scale of Trap-Wing

    2.1.3 Results

    According to the suggestion of HiLiftPW-Ⅰ, the Spalart-Allmaras model is adopted to simulate the fully developed turbulent flow [14].

    1) Case 1: Grid Convergence Behavior and Surface Pressure Coefficient.

    The focus of this case is on the assessment of grid convergence for coarse, medium and fine grids, when angle of attack (AOA)=13°, 28°.

    The integral force and pitching moment coefficients are plotted in Fig.3. The grid index factor is the inverse of the number of cells to the power of 2/3(N-2/3). It is convenient to identify the grid convergence trends of these three grid families: a straight line indicates second-order convergence rate [15]. For all the three grid systems, monotone data is acquired. The convergence trends of all force and moment coefficients are similar for all three grid systems, almost a straight line, except for Grid3 at 13°. The streamline near surface is shown in Fig.4. A macroscopic view on the near wall flow field shows no distinct differences between different grids and solvers. All computational results at 13° show larger flow separation on the flap than those at 28°.

    2) Case 2: Force and Moment Coefficients. The focus of this case is on the ability of the structured/unstructured solver to predict the aerodynamic force and moment. For this study, computations are carried on all the three grid systems, and the angles of attack (AOA) include 6°, 13°, 21°, 28°, 32°, 34° and 37°, respectively.

    The lift, drag, and pitching moment coefficients for whole grid families of the three grid systems are shown in Fig.5. Results from some famous CFD codes (elsA, USM3D, OverFlow) are listed in the figure as well [16-19]. Lower and upper experiment bounds are indicated by dash lines. It indicates that the numerical results approach closer to the experimental data with the grid refinement. The computations of both the structured and unstructured solvers of HyperFLOW match well with the reference data, for the lift and drag coefficients. However, the pitching moment coefficients scatter relatively larger, this phenomenon is similar to that of HiLiftPW-Ⅰ.

    (a) α=13°

    (b) α=28°Fig.3 Grid convergence for three grid systems: lift(CL), drag(CD), pitching moment(Cm) coefficient.

    (a) α=13°

    (b) α=28°Fig.4 Comparison of surface streamlines on medium grids: Grid1(left), Grid2(middle), Grid3(right).

    (a) Grid1

    (b) Grid2

    (c) Grid3Fig.5 Lift, drag, pitching moment coefficient curves.

    Predicting the flow at higher angles of attack nearing stall is difficult, due to the complex flow structure near the wing tip. Accurate simulation of the flow field near the wing tip turned out to be a challenge in HiLiftPW-Ⅰ also. As shown in Fig.6, a wing tip vortex forms and rolls up over the flap wing. Simulation by solving the RANS equations is not accurate enough to capture this vortex.

    (a) Stream lines

    (b) Pressure contour

    2.2 DLR-F6 Wing Body Configuration

    2.2.1 Geometry and Computational Conditions

    The DLR-F6 wing-body configuration came from the second AIAA Drag Prediction Workshop (DPW-II) [20-21]. The focus of this workshop is to assess the state-of-the-art of the CFD drag prediction in the aircraft industry. In this paper, the configuration without nacelle-pylon is chosen to assess the drag prediction ability of the HyperFLOW solvers.

    Two cases are tested:

    Case 1: FixedCLsingle point grid refinement study, atM∞=0.75,CL=0.5, with fully turbulent boundary layer, based on coarse, medium and fine grids.

    Case 2: Drag polar, atM∞=0.75,α= -3, -2, -1.5, -1, 0, 1, 1.5 deg.

    The Reynolds number of both cases is 3.0×106, based on the wing mean aerodynamic chord of 0.1412 m.

    2.2.2 Computational Grids

    Similar to the Trap-Wing model, three suits of grids are adopted also. The first grid system, named as Grid1 in this paper, is supplied by DPW-III committee, in which the same configuration of DLR-F6 is adopted [20]. The second grid system, named as Grid2, generated by the authors, is similar to that in the Trap-Wing test case, in which prisms are used to discretize the near wall field, and tetrahedral cells are used to discretize the off-wall field. The third grid system, named as Grid3, is a multi-block structured grid, to test the structured solver. The cell numbers of these grids are listed in Table 3.

    Table 3 Grid scale of DLR-F6 configuration

    2.2.3 Results

    To examine the convergence behavior, the predictedCD(drag coefficients) distribution and the extrapolation by Richardson method are shown respectively in Fig.7 for the three grid systems. The drag coefficients approach closer to the experimental data monotonously with the grid refinement. Especially, the Richardson extrapolated values match very well with the experimental data.

    Fig.7 Drag convergence and extrapolation for Case 1.

    Fig.8 shows CFD predicted separation bubble streamlines in the area of the trailing edge wing-body juncture. An overview on the near wall flow field shows no obvious difference between different grids and solvers. The separation bubble on the wing obtained by Grid2 is smaller than others, and the bubble on fuselage based on Grid3 is smaller than others.

    Fig.8 Comparison of surface streamlines on medium grid: Grid1(left), Grid2(middle), Grid3(right).

    (a) Grid1

    (b) Grid2

    (c) Grid3Fig.9 Lift, drag, pitching moment coefficients.

    The lift, drag, and pitching moment curves for all the grid systems are plotted in Fig.9. The results show a consistently over-prediction of the lift. This behavior is also similar to that of DPW-II. However, both the unstructured solver based on Grid1 and Grid2, and the structured solver based on Grid3, exhibit excellent grid convergence behavior for lift and drag curves. For the drag polar curve, unstructured solver based on Grid1 exhibits the best behavior, which shows the closest approach to the experimental data as the grid refinement. From Fig.9, we can see that the force curves by the unstructured solver distribute more widely than those by the structured solver. The lift vs. pitching moment curves show relatively large difference, especially at higher angles of attack.

    3 Conclusion and Future Work

    In order to validate the in-house hybrid CFD platform, HyperFLOW, numerical simulations are carried out for the trap wing model and the DLR-F6 wing body. Both the unstructured and structured solvers in HyperFLOW are tested on a set of unstructured grids and structured grids. The behavior of grid convergence is studied emphatically. The numerical results are compared with the experimental data and other reference numerical results, which demonstrate the capability of HyperFLOW for the simulations of subsonic and transonic flows over complex geometries.

    In order to combine the most valuable advantages of structured solver and unstructured solver, both solvers are integrated into HyperFLOW to form a hybrid solver. Although several three dimensional cases have been tested [7] for hybrid solver, more work are need to be done in the future, such as the study of robustness, computational efficiency, accuracy, etc.

    [1]Soetrisno M, Imlay S T, Roberts D W. A zonal implicit procedure for hybrid structured-unstructured grids[C]//32nd AIAA Aerospace Sciences Meeting and Exhibit , Reno, NV, 1994:10-13.

    [2]Schwamborn D, Gerhold T. The DLR TAU-CODE: recent applications in research and industry[C]//European conference on Computational Fluid Dynamics.The Netherlands, 2006:5-8.

    [3]Zheng Y, Liu M S. A novel approach of three-dimensional hybrid grid methodology: Part 1. Grid generation[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(37-38): 4147-4171.

    [4]Liu M S, Zheng Y. A novel approach of three-dimensional hybrid grid methodology: Part 2. Flow solution[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(37-38):4173-4193.

    [5]Guillaume Puigt, Michel Gazaix. Development of a new hybrid compressible solver inside the CFD else Software. AIAA 2011-3379[R]. Reston: AIAA, 2011.

    [6]Vincent Couaillier, Claude Marmignon. Further developments in the multiblock hybrid CFD solver else-H. AIAA 2012-1112[R]. Reston: AIAA, 2012.

    [7]He X, Zhao Z, Zhang L P. The research and development of structured-unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics. 2013, 30:116-126.

    [8]He X, Zhang L, Zhao Z. Research of general large scale CFD software architecture and data strucutre[J]. Acta Aerodynamica Sinica, 2012, 30(5): 557-565. (in Chinese)[9]Zhao Z, He X, Zhang L P, et al.Numerical research of NASA high-lift trap wing model based on HyperFLOW[J]. Acta Aerodynamica Sinica, 2015, 33(5): 594-602. (in Chinese)[10]Spalart S R. A one-equation turbulence model for aerodynamic flows. AIAA-92-0439[R]. Reston: AIAA, 1992.

    [11]Wilcox D C. Reassessment of the scale-determing equation for advanced turbulence models[J]. AIAA Journal, 1988, 26:1299-1310.

    [12]Christopher J R. Grid convergence error analysis for mixed-order numerical schemes. AIAA 2001-2606[R]. Reston: AIAA, 2001.

    [13]1st AIAA CFD high lift prediction workshop[EB/OL]. http://hiliftpw.larc.nasa.gov/index-workshop1.html/[14]Rumsey C L, Slotnick J P, Long M, et al. Summary of the first AIAA CFD High-Lift prediction workshop[J]. Journal of Aircraft, 2011, 48(6): 2068-2079.

    [15]Simone C, Stefan M W. DLR contribution to the first high lift prediction workshop. AIAA 2011-938 [R]. Reston: AIAA, 2011.

    [16]Peter E, Ardeshir H, Shia H P. Influence of transition on High-Lift prediction for the NASA trap wing model. AIAA 2011-3009[R]. Reston: AIAA, 2011.

    [17]Anthony J S, Jeffrey P S, John C V. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model. AIAA 2012-2919[R]. Reston: AIAA, 2012.

    [18]Eliasson P, Peng S H, Hanifi A. Improving the prediction for the NASA High-Lift trap wing model. AIAA 2011-867[R]. Reston: AIAA, 2011.

    [19]Wiart L, Meunier M. Computational assessment of the HiLifPW-1 Trap-Wing model using the elsA CFD software. AIAA 2011-865[R]. Reston: AIAA, 2011.

    [20]2nd AIAA CFD Drag Prediction Workshop[EB/OL]. http://aaac.larc.nasa.gov/ts-ab/cfdlarc-dpw/[21]KellY R, Brodersen O. Summary of data from the second AIAA CFD drag prediction workshop(invited). AIAA 2004-555[R]. Reston: AIAA, 2004.

    0258-1825(2016)02-0267-09

    HyperFLOW亞跨聲速流動驗(yàn)證

    赫 新1,2, 趙 鐘1,*, 馬 戎1, 王年華1, 張來平1,2

    (1. 中國空氣動力研究與發(fā)展中心, 四川 綿陽 621000; 2. 空氣動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 四川 綿陽 621000)

    主要介紹了結(jié)構(gòu)/非結(jié)構(gòu)混合CFD軟件HyperFLOW的設(shè)計開發(fā)與驗(yàn)證。HyperFLOW軟件在結(jié)構(gòu)網(wǎng)格上采用結(jié)構(gòu)算法,在非結(jié)構(gòu)網(wǎng)格上采用非結(jié)構(gòu)算法,以充分利用兩種網(wǎng)格及解算器的優(yōu)點(diǎn)。首先介紹了軟件的體系結(jié)構(gòu)和基本算法,然后采用NASA Trap-Wing高升力外形和DLR-F6翼身組合體,對軟件的結(jié)構(gòu)解算器和非結(jié)構(gòu)解算器進(jìn)行了驗(yàn)證。結(jié)果表明,該軟件的結(jié)構(gòu)解算器和非結(jié)構(gòu)解算器均有較好的網(wǎng)格收斂性,計算結(jié)果與其他參考結(jié)果和試驗(yàn)數(shù)據(jù)均符合較好,具有可接受的可信度。

    HyperFLOW;CFD軟件;NASA Trap-Wing高升力外形;DLR-F6翼身組合體

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0002

    *Research associate; bell_cardc@163.com.

    format: He X, Zhao Z, Ma R, et al. Validation of HyperFLOW in subsonic and transonic flow[J]. Acta Aerodynamica Sinica, 2016, 34(2): 267-275.

    10.7638/kqdlxxb-2016.0002. 赫新,趙鐘,馬戎,等. HyperFLOW亞跨聲速流動驗(yàn)證(英文)[J]. 空氣動力學(xué)學(xué)報, 2016, 34(2): 267-275.

    Received: 2015-12-15; Revised:2016-01-10

    Supported by National Science Foundation of China (No. 11272339)

    猜你喜歡
    高升組合體綿陽
    SpaceX公司超重-星艦組合體首飛異常情況初步分析
    空間站組合體3D展示產(chǎn)品
    基于安全性需求的高升力控制系統(tǒng)架構(gòu)設(shè)計
    四川綿陽卷
    簡析“凌云高升壺”的藝術(shù)造型
    山東陶瓷(2020年5期)2020-03-19 01:35:40
    “拆”解組合體求積問題
    四川綿陽卷
    翠綠制造高升系列
    ——愿你的努力都不被辜負(fù)
    中國寶玉石(2018年4期)2018-09-07 03:19:04
    記憶深處的綿陽(綿陽老照片)
    綿陽為中醫(yī)藥“強(qiáng)身健體”
    欧美97在线视频| 国产午夜福利久久久久久| 成人三级黄色视频| 最近视频中文字幕2019在线8| 午夜免费激情av| 啦啦啦啦在线视频资源| 欧美激情国产日韩精品一区| 国产免费一级a男人的天堂| 婷婷六月久久综合丁香| 搡老妇女老女人老熟妇| 干丝袜人妻中文字幕| 成人午夜精彩视频在线观看| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影| 乱人视频在线观看| 韩国高清视频一区二区三区| 亚洲无线观看免费| 亚洲精品,欧美精品| 一级毛片电影观看 | 久久精品国产亚洲av天美| 97超碰精品成人国产| 国产精品一区二区性色av| 亚洲欧美成人综合另类久久久 | 99视频精品全部免费 在线| 国产一区二区在线观看日韩| 男女视频在线观看网站免费| 亚洲精品一区蜜桃| 中文亚洲av片在线观看爽| 亚洲欧美成人综合另类久久久 | 免费观看在线日韩| 菩萨蛮人人尽说江南好唐韦庄 | av专区在线播放| 国内精品美女久久久久久| 国产成人免费观看mmmm| 大香蕉97超碰在线| 欧美97在线视频| 天堂中文最新版在线下载 | 插逼视频在线观看| 黑人高潮一二区| av线在线观看网站| av在线亚洲专区| 午夜福利在线在线| 观看美女的网站| 麻豆乱淫一区二区| 国产免费男女视频| 久久亚洲精品不卡| 最近手机中文字幕大全| 国产淫语在线视频| 亚洲精品aⅴ在线观看| 亚洲18禁久久av| 男人的好看免费观看在线视频| 国产精品永久免费网站| 成年女人看的毛片在线观看| 国产亚洲午夜精品一区二区久久 | 久久韩国三级中文字幕| 国产精品蜜桃在线观看| 一个人看的www免费观看视频| 精品人妻视频免费看| 亚洲av电影在线观看一区二区三区 | 久久这里只有精品中国| 亚洲综合精品二区| 午夜久久久久精精品| 在线a可以看的网站| 久久这里只有精品中国| 男人和女人高潮做爰伦理| 丝袜喷水一区| 欧美一区二区精品小视频在线| 亚洲国产欧洲综合997久久,| 久久久国产成人免费| 国产色婷婷99| 久久欧美精品欧美久久欧美| av在线播放精品| 国产中年淑女户外野战色| 久久久久久久久中文| 午夜福利在线在线| 国产高清国产精品国产三级 | 色噜噜av男人的天堂激情| 国产一区二区亚洲精品在线观看| 久久韩国三级中文字幕| 三级毛片av免费| 桃色一区二区三区在线观看| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久 | 国产免费福利视频在线观看| 亚洲精品国产成人久久av| 水蜜桃什么品种好| 亚洲在久久综合| 亚洲自拍偷在线| 国产黄色小视频在线观看| 如何舔出高潮| 国产av码专区亚洲av| 丰满人妻一区二区三区视频av| 国产在视频线精品| 国产激情偷乱视频一区二区| 国产一区二区三区av在线| 综合色丁香网| 欧美成人免费av一区二区三区| 国产成人freesex在线| 日本午夜av视频| 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| 日韩精品青青久久久久久| 乱人视频在线观看| 在线播放国产精品三级| 日本免费一区二区三区高清不卡| 日韩成人av中文字幕在线观看| 亚洲av不卡在线观看| 女人久久www免费人成看片 | 尾随美女入室| 婷婷六月久久综合丁香| 国产成人aa在线观看| 精品国内亚洲2022精品成人| 亚洲av中文av极速乱| 免费看美女性在线毛片视频| 成年av动漫网址| 一级黄色大片毛片| 国产一区二区亚洲精品在线观看| 午夜福利成人在线免费观看| 天堂中文最新版在线下载 | 成人毛片a级毛片在线播放| 床上黄色一级片| 51国产日韩欧美| 看片在线看免费视频| 亚洲第一区二区三区不卡| 成人三级黄色视频| 久久99热这里只有精品18| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产| 国产精品不卡视频一区二区| 亚洲伊人久久精品综合 | 国内精品一区二区在线观看| 我的女老师完整版在线观看| 99热全是精品| 国产精品一区二区在线观看99 | 欧美性猛交黑人性爽| 国产亚洲一区二区精品| av.在线天堂| 色综合站精品国产| 久久精品国产亚洲av天美| 天堂中文最新版在线下载 | 日韩人妻高清精品专区| 舔av片在线| 晚上一个人看的免费电影| av天堂中文字幕网| 国产精品爽爽va在线观看网站| 国产精品久久久久久久久免| 国产精品一区二区性色av| 亚洲av电影在线观看一区二区三区 | 99九九线精品视频在线观看视频| 直男gayav资源| 亚洲av日韩在线播放| 乱人视频在线观看| 久久精品国产鲁丝片午夜精品| 97超碰精品成人国产| 精品一区二区三区人妻视频| 一边亲一边摸免费视频| 99久久精品国产国产毛片| 欧美潮喷喷水| 免费播放大片免费观看视频在线观看 | 亚洲精品乱码久久久v下载方式| 你懂的网址亚洲精品在线观看 | 伊人久久精品亚洲午夜| 亚洲熟妇中文字幕五十中出| 十八禁国产超污无遮挡网站| 最近中文字幕2019免费版| 97超视频在线观看视频| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久av| 欧美另类亚洲清纯唯美| 边亲边吃奶的免费视频| 色播亚洲综合网| 男女那种视频在线观看| av国产免费在线观看| 一级毛片我不卡| 免费一级毛片在线播放高清视频| 久久亚洲精品不卡| 麻豆精品久久久久久蜜桃| 99久久九九国产精品国产免费| 午夜a级毛片| 成人午夜高清在线视频| 色视频www国产| 日韩视频在线欧美| av.在线天堂| 丰满人妻一区二区三区视频av| 精品久久久久久久末码| 欧美成人精品欧美一级黄| 日韩在线高清观看一区二区三区| 1000部很黄的大片| 99久久精品热视频| 成人午夜高清在线视频| 国产精品久久久久久久久免| 精品久久久久久久人妻蜜臀av| 全区人妻精品视频| 九九久久精品国产亚洲av麻豆| 超碰av人人做人人爽久久| 最近的中文字幕免费完整| 级片在线观看| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 国产美女午夜福利| 亚洲自偷自拍三级| 麻豆国产97在线/欧美| 我要搜黄色片| 99久久无色码亚洲精品果冻| 一本一本综合久久| 国产精品美女特级片免费视频播放器| av女优亚洲男人天堂| a级毛色黄片| 国产 一区 欧美 日韩| 午夜免费男女啪啪视频观看| 国产精品电影一区二区三区| 最近中文字幕2019免费版| 日本wwww免费看| 国产免费视频播放在线视频 | 午夜福利视频1000在线观看| 丰满少妇做爰视频| 亚洲熟妇中文字幕五十中出| 日韩欧美 国产精品| 国产爱豆传媒在线观看| 国产亚洲5aaaaa淫片| 亚洲国产欧洲综合997久久,| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 免费av不卡在线播放| 亚洲av成人精品一二三区| 偷拍熟女少妇极品色| 成人二区视频| 精品少妇黑人巨大在线播放 | 午夜精品在线福利| 高清在线视频一区二区三区 | 久久精品影院6| 国产美女午夜福利| 久久久久久久久久成人| av国产免费在线观看| 性插视频无遮挡在线免费观看| 欧美高清性xxxxhd video| 久久精品国产亚洲av涩爱| av国产免费在线观看| 成人特级av手机在线观看| 日韩制服骚丝袜av| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 国产精品一区二区性色av| 日本免费a在线| 亚洲国产精品久久男人天堂| 插逼视频在线观看| 五月玫瑰六月丁香| 欧美丝袜亚洲另类| 久久久久国产网址| 最新中文字幕久久久久| 男人的好看免费观看在线视频| 亚洲丝袜综合中文字幕| 国产极品精品免费视频能看的| 床上黄色一级片| 1024手机看黄色片| 好男人在线观看高清免费视频| 尤物成人国产欧美一区二区三区| 国产又黄又爽又无遮挡在线| 国产爱豆传媒在线观看| 搡老妇女老女人老熟妇| 亚洲av电影不卡..在线观看| 国产午夜福利久久久久久| 听说在线观看完整版免费高清| av线在线观看网站| 午夜福利在线观看免费完整高清在| 国内揄拍国产精品人妻在线| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 亚洲电影在线观看av| 久久精品影院6| 国模一区二区三区四区视频| 国产又色又爽无遮挡免| 成人国产麻豆网| 国产精华一区二区三区| 色5月婷婷丁香| 精品国产三级普通话版| 亚洲精品国产av成人精品| 99热这里只有是精品50| 午夜福利高清视频| 偷拍熟女少妇极品色| 99热这里只有精品一区| 精品酒店卫生间| 99在线人妻在线中文字幕| 成年免费大片在线观看| 人人妻人人澡人人爽人人夜夜 | 国产探花极品一区二区| 欧美日本亚洲视频在线播放| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| av又黄又爽大尺度在线免费看 | 成人综合一区亚洲| 欧美又色又爽又黄视频| 欧美xxxx黑人xx丫x性爽| 国产精品麻豆人妻色哟哟久久 | 少妇被粗大猛烈的视频| av国产久精品久网站免费入址| 真实男女啪啪啪动态图| 成人毛片60女人毛片免费| 有码 亚洲区| 简卡轻食公司| 中文字幕av在线有码专区| 只有这里有精品99| 亚洲高清免费不卡视频| 亚洲人成网站在线观看播放| 久久亚洲精品不卡| 国产黄色视频一区二区在线观看 | 国产高清有码在线观看视频| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 亚洲综合精品二区| 国产午夜精品论理片| 久久久久久伊人网av| 在线免费观看不下载黄p国产| 日韩,欧美,国产一区二区三区 | 亚洲精品一区蜜桃| 2022亚洲国产成人精品| 插阴视频在线观看视频| av在线亚洲专区| 爱豆传媒免费全集在线观看| 久久草成人影院| 午夜福利高清视频| 一个人观看的视频www高清免费观看| 一级毛片aaaaaa免费看小| 国内揄拍国产精品人妻在线| 一级黄片播放器| 欧美不卡视频在线免费观看| 欧美一区二区国产精品久久精品| 欧美极品一区二区三区四区| 日韩人妻高清精品专区| 一区二区三区乱码不卡18| 国产伦精品一区二区三区四那| 免费观看a级毛片全部| 男插女下体视频免费在线播放| 亚洲成av人片在线播放无| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 免费看光身美女| 菩萨蛮人人尽说江南好唐韦庄 | 欧美激情久久久久久爽电影| 国产精品一及| 女人被狂操c到高潮| 国产精品一区二区在线观看99 | 日日啪夜夜撸| av卡一久久| 国产精品电影一区二区三区| 婷婷色综合大香蕉| 人妻少妇偷人精品九色| 日韩国内少妇激情av| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 亚洲在线自拍视频| 成人毛片60女人毛片免费| 日韩强制内射视频| 亚洲国产成人一精品久久久| 99视频精品全部免费 在线| 91久久精品国产一区二区三区| 特大巨黑吊av在线直播| 黄色一级大片看看| 久久99热这里只有精品18| 国产精品熟女久久久久浪| 亚洲欧美日韩东京热| 精品久久久久久电影网 | 久久久久国产网址| 在线免费观看的www视频| 成人av在线播放网站| 欧美激情国产日韩精品一区| 亚洲精品色激情综合| 非洲黑人性xxxx精品又粗又长| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| av黄色大香蕉| 村上凉子中文字幕在线| 亚洲综合精品二区| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新中文字幕免费大全7| 建设人人有责人人尽责人人享有的 | 特大巨黑吊av在线直播| 久久热精品热| 久久久久九九精品影院| 国产精品99久久久久久久久| av又黄又爽大尺度在线免费看 | 你懂的网址亚洲精品在线观看 | 蜜臀久久99精品久久宅男| 国产黄色视频一区二区在线观看 | 亚洲欧美精品综合久久99| 日本午夜av视频| 中文字幕亚洲精品专区| 中文字幕av成人在线电影| 亚洲精品影视一区二区三区av| 中文资源天堂在线| 久久久久久伊人网av| 三级毛片av免费| 国产精品久久久久久久电影| 噜噜噜噜噜久久久久久91| 国产又黄又爽又无遮挡在线| 亚洲自拍偷在线| 日本欧美国产在线视频| 搞女人的毛片| 国产精品国产三级国产av玫瑰| 精品无人区乱码1区二区| 在线a可以看的网站| 中文字幕熟女人妻在线| 十八禁国产超污无遮挡网站| av免费观看日本| 熟女人妻精品中文字幕| 女人久久www免费人成看片 | 欧美高清成人免费视频www| 五月玫瑰六月丁香| 国产精品久久电影中文字幕| 亚洲精品亚洲一区二区| 成人无遮挡网站| 国产精品人妻久久久久久| 在线免费观看的www视频| 干丝袜人妻中文字幕| av天堂中文字幕网| 亚洲精品国产成人久久av| 国产 一区 欧美 日韩| 久久欧美精品欧美久久欧美| 国产精华一区二区三区| 九草在线视频观看| 欧美性猛交黑人性爽| 真实男女啪啪啪动态图| 男人舔女人下体高潮全视频| 久久精品国产亚洲网站| 在线天堂最新版资源| 女人十人毛片免费观看3o分钟| 中文资源天堂在线| 国国产精品蜜臀av免费| 国产av一区在线观看免费| 国产亚洲5aaaaa淫片| 国语对白做爰xxxⅹ性视频网站| 又黄又爽又刺激的免费视频.| 国产成人精品久久久久久| 成人特级av手机在线观看| 九九爱精品视频在线观看| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 中文精品一卡2卡3卡4更新| 久久精品国产鲁丝片午夜精品| 又粗又爽又猛毛片免费看| 一本一本综合久久| 亚洲av成人精品一区久久| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区| 成年女人看的毛片在线观看| 成人无遮挡网站| 黄色一级大片看看| 成人无遮挡网站| av在线蜜桃| 国产乱来视频区| 深夜a级毛片| 亚洲图色成人| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 日日摸夜夜添夜夜爱| 色网站视频免费| 亚洲国产色片| 黄片无遮挡物在线观看| 国产精品永久免费网站| 天堂√8在线中文| 亚洲人成网站在线观看播放| a级毛片免费高清观看在线播放| 免费观看精品视频网站| 国产男人的电影天堂91| 久久久精品大字幕| 七月丁香在线播放| 日本三级黄在线观看| 国产一区二区三区av在线| 三级国产精品片| 91午夜精品亚洲一区二区三区| 免费观看的影片在线观看| 亚洲经典国产精华液单| 亚洲欧美日韩卡通动漫| 特级一级黄色大片| 欧美性感艳星| 中文资源天堂在线| 91久久精品国产一区二区三区| av专区在线播放| 99在线人妻在线中文字幕| 亚洲人成网站高清观看| 国产成人免费观看mmmm| 高清毛片免费看| 最新中文字幕久久久久| 国产v大片淫在线免费观看| 国产精品无大码| 久久精品久久久久久久性| 2022亚洲国产成人精品| 美女高潮的动态| 久久久成人免费电影| 精品久久久噜噜| 99九九线精品视频在线观看视频| 黄色日韩在线| 成人av在线播放网站| 少妇人妻一区二区三区视频| 精品久久久久久久久久久久久| 国产一区二区在线av高清观看| 一个人看视频在线观看www免费| 一级毛片我不卡| 日韩av在线免费看完整版不卡| 在线免费观看不下载黄p国产| 男人舔奶头视频| 久久人人爽人人爽人人片va| 欧美成人一区二区免费高清观看| 看黄色毛片网站| 色综合亚洲欧美另类图片| 国产乱来视频区| 久久久亚洲精品成人影院| 亚洲人与动物交配视频| 亚洲精品久久久久久婷婷小说 | 国产精品伦人一区二区| 国产乱人视频| 午夜福利视频1000在线观看| 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| www.av在线官网国产| 69人妻影院| 波多野结衣巨乳人妻| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 婷婷色综合大香蕉| 日本黄色片子视频| 汤姆久久久久久久影院中文字幕 | 欧美一区二区国产精品久久精品| 亚洲人成网站在线观看播放| 久久久久久久午夜电影| 十八禁国产超污无遮挡网站| 亚洲怡红院男人天堂| 日韩欧美国产在线观看| 我要看日韩黄色一级片| 99视频精品全部免费 在线| 久久人人爽人人片av| 久久精品久久久久久噜噜老黄 | 一级毛片久久久久久久久女| 日本黄色视频三级网站网址| 女人被狂操c到高潮| 亚洲精品乱久久久久久| 亚洲,欧美,日韩| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| 99久久人妻综合| 九九热线精品视视频播放| 免费无遮挡裸体视频| 国产人妻一区二区三区在| 在线观看一区二区三区| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 精品人妻偷拍中文字幕| 国产精品久久电影中文字幕| 成人特级av手机在线观看| 老司机影院毛片| 麻豆乱淫一区二区| 免费电影在线观看免费观看| 91狼人影院| 18禁裸乳无遮挡免费网站照片| 2021天堂中文幕一二区在线观| 国产 一区 欧美 日韩| 91久久精品国产一区二区三区| 三级男女做爰猛烈吃奶摸视频| 一级黄片播放器| av免费在线看不卡| 色5月婷婷丁香| 亚洲av免费高清在线观看| 国产精品无大码| 久久人妻av系列| 嫩草影院精品99| av.在线天堂| 91精品国产九色| 国产成人福利小说| 夫妻性生交免费视频一级片| 青春草国产在线视频| 久久久久久伊人网av| av在线亚洲专区| 精品欧美国产一区二区三| 国产不卡一卡二| 国产午夜精品一二区理论片| 最后的刺客免费高清国语| 国产精品无大码| 国产淫语在线视频| 精品久久久久久久末码| 久久99蜜桃精品久久| 天堂网av新在线| 91在线精品国自产拍蜜月| 国产高潮美女av| av线在线观看网站| 欧美一区二区亚洲| 麻豆久久精品国产亚洲av| 蜜桃久久精品国产亚洲av| 精品久久久久久久久av| 国产白丝娇喘喷水9色精品| 韩国av在线不卡| 亚洲精品乱久久久久久| 久久久久国产网址| 热99re8久久精品国产| 亚洲怡红院男人天堂| 日韩成人伦理影院| 2021少妇久久久久久久久久久| 看非洲黑人一级黄片| 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 久久国内精品自在自线图片| 久久精品久久久久久噜噜老黄 | 六月丁香七月| 国产精品福利在线免费观看| 成人一区二区视频在线观看| 桃色一区二区三区在线观看| 搡女人真爽免费视频火全软件| 久久亚洲国产成人精品v| 老司机影院成人| 日韩制服骚丝袜av| 特级一级黄色大片| 日韩 亚洲 欧美在线|