• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Residual Schemes Applied to an Embedded MethodExpressed on Unstructured Adapted Grids

    2016-05-12 06:03:08AbgrallAlcinBeaugendreDobrzynskiNouveau
    空氣動力學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:邊界條件壁面殘差

    R. Abgrall, H. Alcin, H. Beaugendre, C. Dobrzynski, L. Nouveau

    (1. Universit?t Zürich, Institut für Mathematik, Winterthurstrasse 190, CH-8057 Zürich, Switzerland 2. University of Bordeaux, IMB UMR 5251, INRIA Bordeaux Sud-Ouest, F-33400 Talence, France 3. INRIA Bordeaux Sud-Ouest, F-33400 Talence, France)

    ?

    Residual Schemes Applied to an Embedded MethodExpressed on Unstructured Adapted Grids

    R. Abgrall1, H. Alcin3, H. Beaugendre2,*, C. Dobrzynski2, L. Nouveau3

    (1. Universit?t Zürich, Institut für Mathematik, Winterthurstrasse 190, CH-8057 Zürich, Switzerland 2. University of Bordeaux, IMB UMR 5251, INRIA Bordeaux Sud-Ouest, F-33400 Talence, France 3. INRIA Bordeaux Sud-Ouest, F-33400 Talence, France)

    The interest on embedded boundary methods is increasing in Computational Fluid Dynamics because they simplify the mesh generation problem when dealing with the Navier-Stokes equations. To give a few examples, they simplify the simulation of multi-physics flows, the coupling of fluid-solid interactions in situation of large motions or deformations. Nevertheless an accurate treatment of the wall boundary conditions remains an issue of the method. In this work, a penalty term added to the Navier-Stokes equations accounts for the wall boundary conditions and accuracy is recovered using mesh adaptation, thanks to the potential of unstructured meshes.

    Residual schemes, Immersed boundary method, Penalization, Unstructured grids, Mesh adaptation

    0 Introduction

    When dealing with Computational Fluid Dynamics simulations, two kinds of grids are usually used: body-fitted grids and embedded ones. For body fitted grids, solid wall boundaries are meshed and boundary conditions (BCs) are applied on the wall according to additional equations (Neumann or Dirichlet BCs). On the contrary, immersed boundary methods (IBM) are characterised by a mesh covering the entire domain, and BCs are taken into account in a different way. The penalization technique [1] is an IBM in which the BCs are handled inside the equations by adding source

    terms. In this method, the solid body is located on the mesh by the 0 isovalue of the signed distance function. It is then necessary to define this isovalue as well as possible. Mesh adaptation is then introduced [2-4] to catch precisely this isovalue and to accurately compute the penalized source terms. We propose here to solve the penalized compressible Navier-Stokes equations on adapted grids using a residual distri-bution scheme. Those schemes [5-8] are chosen for their easy order increase and parallelization. Penalization combined with mesh adaptation provides a good method to deal with moving bodies. Indeed, for a given (or computed) movement of the

    solid body, if the new position and a mesh can be provided, the solution at the new time step can be computed. In this work the penalization technique applied to anisotropic meshes, presented in [1], is extended in the framework of Residual Distribution Schemes (RDS). A methodology is proposed to account for unsteady flows and moving bodies. Again, in order to improve accuracy of the wall treatment we investigate a dynamic tracking of the moving interface. In [4], a methodology is proposed to follow the level-set function by advection and to get dynamic mesh adaptation. In this work, we propose to follow the process proposed in [4] and to track the surface interface with mesh adaptation.

    1 Description of the Method

    IBM methods are characterized by a mesh covering the entire domain. To take into account solid bodies inside the domain the first step consists in localizing the solids' interfaces (lines in two dimensions and surfaces in three dimensions). A common way for that is to use a level-set function that defines for each node of the mesh the distance between this node and the closest solid interface.

    1.1 Signed Distance Function to a Solid

    From a practical point of view, the level-set function chosen in this work is the signed distance function (SDF). The SDF is the distance of the considered point to the solid surface with a sign in order to determine if the point is inside or outside the surface. For an inside point, the SDF is negative and for an outside one, the SDF is positive. One way of computing the SDF, see Dapogny and Frey [9], is to solve the unsteady Eikonal equation. The inside of the surface to model is defined by

    (1)

    withdthe dimension of space andu0a continuous function. Then, the SDF can be considered as the solution of the following unsteady Eikonal equation:

    (2)

    Using the method of characteristics, the following approached solution is then obtained by the system of Eq. (3):

    (3)

    Algorithm1 modifiedalgorithmwithadaptativetimestepforn=1untilconvergencedo un(x)=un-1(x)foreachnodex∈Γ foreachsimplexTofΓdo foreachnodex∈Tnotinitializeddo ifx?Ωthen dt=minimumheightofT drec=?un-1‖?un-1‖dt T2=T whileT2==Tdo ifx?Ωthen x2=x-drec else x2=x+drec endif FindT2suchthatx2∈T2 ifT2==Tthen drec?=1.1 endif endwhile ifx?Ωthen un(x)=min(un(x),un-1(x-drec))+dt else un(x)=min(un(x),un-1(x+drec))-dt endif endif endfor endforendfor

    Fig.1 Wanted arrival element while tracing backcharacteristics. Improvement of dt so as to have x?dt belonging to another element.

    Once the SDF is defined over the domain, for each solid bodySithe characteristic function of this solid,χSican be defined such as

    (4)

    1.2 Penalized Navier-Stokes Equations

    When a penalization technique is used as an immersed boundary method the solids around which the flow is computed are defined using the so-called penalization method or Brinckman-Navier-Stokes equations. Here, the solids are considered as porous media with a very small intrinsic permeability. The idea is then to extend the velocity field inside the solid body and to solve the flow equations with a penalization term to enforce rigid motion inside the solid. The sign distance function to the solid is used to capture the interface of the solidSi. The penalty terms are added to the classical Navier-Stokes equations to account for the solids inside the domain, as it is described in Eq. (5). We have

    (5)

    p=(γ-1)ρT

    and

    Inthesemodifiedequations,thepenaltytermsaretheterms,whichincludedirectlytheboundaryconditionsofthesolidsintheequations.Indeed,outsidethesolids,theχSifunctionsareequalto0andsothepenalizationtermvanishesandtheusualNavier-Stokesequationsarefoundback.Ontheopposite,insideasolid,thecharacteristicfunctionisequaltoone,andas1/ηis chosen large enough, the penalty terms dominate and the boundary values are imposed. The accuracy of the method depends on the value ofη, in all simulations, we use an implicit scheme withη=1×10-12. This system can be formulated in a matrix way:

    ?tU+·F(U)=·G+S

    (6)

    whereUare the conservative variables,FandGare the advection and viscous flux andSthe penalty source term.

    1.3 Unstructured Mesh Adaptation

    Our numerical simulations are performed on unstructured anisotropic meshes (triangles in two dimensions and tetrahedra in three dimensions). In Abgrall et al.

    [1] we propose to combine our level-set based penalization approach to mesh adaptation. The idea is to conserve the simplicity of the embedded approaches for grid generation process and improve the accuracy of wall treatments by using mesh adaptation. Mesh adaptations are performed using two criteria, the signed distance function (interface of the solid body) and the velocity component of the flow solution. As explained in section 1.1, the solid is located on the mesh thanks to the SDF. In order to define as precisely as possible the solid, mesh adaptation with respect to the 0 level set function can be performed. Indeed, it allows refining the mesh close to the solid boundaries. Thus, the penalization is imposed in a rigorous way. In addition, anisotropic meshes are used. Those meshes are defined by the fact that elements (triangles or tetrahedra) can be stretched a lot, which allows inserting fewer elements in refined areas.

    (7)

    withR=(φ,v1,v2),where(v1,v2) is a base of the tangential plane of the surface defined by the isovalues ofφ, andλithe eigenvalues of the Hessian ofφ. This metric is imposed in a vicinityWof the surface (see Fig.2).

    Fig.2 Area of fine mesh integration.

    Another important and useful way of using mesh adaptation is in areas of large physical variations. Indeed, it allows refining the mesh in order to better catch some phenomena. Thus, without increasing that much the number of nodes and elements, the solution can be considerably improved. For this kind of adaptation, the aim is to control the interpolation error between the exact solutionuand its interpolant ∏huon the mesh. It has been proved in [3] that an upper bound of this error on an elementKis given by:

    (8)

    whereedenote the edges of the mesh,cdis a constant depending on the dimension and the metricM(K) computed with the hessianHuofu:

    whereRis the matrix of the eigenvectors of the Hessian , and theλiare defined by:

    withhmin(respectivelyhmax) the minimum (respectively maximum) size wanted for the mesh andhithe eigenvalues ofHu. Thus, in area of large physical variations, small elements are inserted, and in area where the solution is quasi constant, large elements are placed.

    2 Numerical Schemes

    Our numerical simulations are performed on unstructured anisotropic meshes (2D-triangles and 3D-tetrahedra). The system of equations is discretized using residual distribution schemes [8, 10]. Those numerical schemes allow constructing a high order method with compact stencil to ease parallelism.

    2.1 Residual Distribution Scheme Construction

    The scheme that is used to solve the equations introduced in section 1.2 is a residual distribution scheme (RDS). Here is briefly explained how such schemes are built. More details can be found in [6].

    Considering a 2D steady conservation equation:

    (9)

    AtesselationThofΩis considered. Elements are notedT(boundary ?T). Letuh=∑iuiφi,φibeingthebasisfunctionschosenonthetriangleT. Eq. (9) integrated overΩcan be written as:

    ∫Ω·F(uh)dx=0

    (10)

    WhatiscalledthetotalresidualΦTcan then be defined for each triangle:

    ΦT=∫T·F(uh)dx=∫?TF(uh)·nextds

    (11)

    (12)

    Fig.3 Principle of a residual distribution scheme. Left: distribution for a P1 triangle; Right: gathering all triangles contributions.

    The distribution coefficients are defined according to the scheme used (Lax-Wendroff, Lax-Friedrichs, etc…). Then, all the contributions of each triangle whereibelongs to are added (see Fig.3), and the RDS is formulated as:

    (13)

    The solution of (13) can be obtained by solving the pseudo iterative scheme [5]:

    (14)

    or more sophisticated iterative methods. An extension to the NS equations is defined in [7] and leads to an Eq. (13), with a total residual taking into account the viscous terms.

    A RDS has a consistency property, is a positive scheme and is said linearity preserving.

    Consistency: The distribution coefficients must satisfy

    (15)

    Nodal Residual Formulation: The nodal residual can be written as

    (16)

    ?i∈Th, ?Ti,

    (17)

    PositivitycanbeassimilatedtotheTotalVariationDiminishingprincipleknownforhighorderschemes.Itensuresthatnospuriousoscillationappears.

    ?i∈Th, ?iT, ||

    (18)

    TwoexamplesofRDSaredescribedinthetwonextsections.

    2.2 A Variant of the SUPG Scheme or Lax-Wendroff RDS

    As said before, the RDS depends on the coefficient distribution chosen. The total residual is equally distributed to the DoFs and a stabilization term is added [7]. For P1 triangles, we have

    (19)

    Thestabilizationisdefinedsuchthatbothadvectionanddiffusionareconsidered:

    (20)

    LookingattheEq. (6),Ais the Jacobian matrix of the advection:A=uFandKis such that:G=KU.

    2.3 A Lax-Friedrich Scheme

    The Jacobian matrixAis decomposed such asA=LΛR,whereΛ=diag(λi)isadiagonalmatrixandR,Lare the matrices of the Eigenvectors. The nodal residual is written as:

    (21)

    andthenodalresidualiscomputedasfollows

    Asforthepreviousscheme,thisschemeiscenteredandneedsastreamlinedissipationterminsmoothregionsoftheflow,theschemeisthengivenby

    whereτTis defined by Eq. (20), and ∈T(uh)≈1 in smooth regions and 0 close to discontinuities.

    2.4 Validations on Numerical Test Cases

    Using some test cases we demonstrate the ability of the proposed method to obtain an accurate solution along with an accurate wall treatment even when the initial mesh does not contain any point on the level-set 0.

    2.4.1 Supersonic Flow Around a Triangle

    In the first example we consider the supersonic flow around a solid body of triangular shape (heighth=0.5, half angleθ=20°, see Fig.4). The same computational domain as [11] is chosen and the computation is stopped when a steady state is obtained. The Lax-Friedrich RDS scheme is used for this numerical test case.

    Our initial mesh is only slightly adapted to the 0 level set (see Fig.5(a)). The penalized variables are the velocity (uS=0) and the temperature (TS=3).

    The Reynolds number is fixed toRe= 50 000 and the Mach number is chosen equal toMa= 2.37 to get a shock in contact with the triangle peak.

    Fig.4 Studied triangle and domain.

    (a) Initial mesh

    (b) Component u of the velocity computed on the initial meshFig.5 Supersonic triangle test case.

    The componentuof the velocity on the initial mesh is given in Fig.5(b). For the adaptations, the following parameters (for both the level-set and theu-velocity) have been chosen:

    (22)

    The mesh obtained after 6 cycles of adaptation and the computedu-velocity on this mesh are presented in Fig.6. A way to validate this test case is to compute the angle between the shock and the horizontal axis because this angle can be analytically computed. As in [1], the angle is measured using a point located on the shock aty=0 and we foundβ=53.33° for a analytic one ofβ≈53.46°. As in Boiron et al.

    [11] an oblique shock is predicted and attached to the triangle, see Fig.5(b) and Fig.6. Our results are in good agreement with the theory and the numerical solutions performed in [11].

    Fig.6 Supersonic triangle, adapted mesh with the component u of the velocity isoline.

    2.4.2 Flow Around an Ellipse

    In this 3D test case taken from [1], the flow around an ellipse (sizes: (0.5,0.1,0.2)) centered in a spherical (radiusr=10) domain is studied. The SUPG like RDS scheme is used for this numerical test. The parameters are set toRe=500 andMa=0.375. As for the previous test case, the initial mesh is only adapted to the 0 level set (see Fig.7(a)). The componentuof the velocity obtained on this mesh is presented in Fig.7(b). Two cycles of adaptation have been done with the following parameters (for both the level-set and theu-velocity adaptation):

    (23)

    (a) Initial mesh

    (b) Corresponding u component of the velocityFig.7 Flow around an ellipse.

    The adapted mesh is presented in Fig.8(a), and its solution, the componentuof the velocity in Fig.8(b).

    (a) Adapted mesh

    (b) Corresponding u component of the velocityFig.8 Flow around an ellipse.

    3 Moving Bodies

    3.1 Unsteady Residual Schemes

    Now we seek approximations of the solution of a time dependent problem defined by

    ?tu+·F(u)=0

    (24)

    FollowingaPetrov-Galerkinfiniteelementapproximationwith

    weendedupwith,foranydegreeoffreedomi,

    (25)

    Letmijbeing the mass matrix coefficient, we define the total flux of Eq. (24) by

    (26)

    withΦTdefined by Eq. (11). The discrete counterparts of this equation are then given by

    (27)

    We propose to use the idea that in everyT∈Ththecombinationoftermsarisingfromthemultiplicationofthemassmatrixwiththenodaltimederivativesshouldgivebackanintegralofthetimederivativeofuhover a dual sub-elementcj∈T.

    with|Cj|=βj|T|toguaranteetheconsistency.

    FollowingthisideathetwostepsoftheexplicitRunge-Kutta2 (RK2)schemearedefinedasfollows

    (28)

    Thisconstructionoftheexplicitapproachisbasedonthreemainpoints:firstrecasttheRDdiscretizationasastabilizedGalerkinscheme,thenuseashiftedtimediscretizationinthestabilizationoperator,andlastlyapplyhighordermasslumpingontheGalerkincomponentofthediscretization.Allthedetailsoftheschemeandproofscanbefoundin[10].

    3.1.1SplittingApproach

    The accuracy of the penalization method depends on the value ofη, in all steady simulations, we use an implicit scheme withη=1×10-12. For unsteady simulations the RK2 scheme described above is an explicit scheme. To overcome CFL restriction due to the penalty source term we propose a splitting algorithm. We solve step 1 and step 2 of Eq. (28) for the classical Navier-Stokes equations, without the penalty source term, then we add a third step to take into account implicitly the penalty source term.

    (29)

    3.1.2NumericalTestonanOscillatingandPitchingAirfoil

    In this test case, we model an oscillating wing experiencing simultaneous pitchingθ(t) and heavingh(t) motions. The infinitely long wing is based on a NACA 0015 airfoil.

    The pitching axis is located along the airfoil chord at the position (xp,yp)=(1/3,0).Theairfoilmotionisdefinedbytheheavingh(t) and the pitching angleθ(t) defined as follows

    (30)

    whereH0is the heaving amplitude andθ0is the pitching amplitude. The angular frequency is defined byω=2πfand the phase differenceζis set to 90°. The heaving velocity is then given by

    Vy(t)=H0ωcos(ωt+ζ)

    (31)

    Basedontheimposedmotionandontheupstreamflowconditions,theairfoilexperiencesaneffectiveangleofattackα(t) and an effective upstream velocityVeff(t) defined by

    An operating regime corresponding to the parametersRe=5 000,H0/c=0.5,f=0.14 andθ0=40.1deg has been computed.

    Fig.9 shows preliminary results for the vorticity at four different times on the fixed unstructured mesh. The motion of the wing is imposed using Eqs. (30) and (31) thanks to the penalty source term. Snapshot of theu-component andv-component of the velocity at timet=2.72 are presented in Fig.10 showing that the penalized components of the velocity are not constant through the wing.

    (a) t=0

    (b) t=1.43

    (c) t=1.68

    (d) t=2.72Fig.9 Zoom of the NACA 0012 oscillating and pitching airfoil mesh along with vorticity contours.

    (a) u-component of the velocity

    (b) v-component of the velocityFig.10 Wind turbine test case, snapshot at time t=2.72.

    For this test case the interface of the NACA airfoil is moved at each time step and the sign distance function is computed for each new position as described in section 1.1.

    3.2 Investigation on Unsteady Mesh Adaptation

    Further investigations are performed to deal with moving bodies. The first step consists in following the moving body with the adapted grid. Two different approaches can be studied, the first one consists in solving the advection equation which governs the level-set evolution and the second one computes the whole signed distance function on the mesh after each displacement as it has been done in the previous test case.

    For the first approach, as the body is defined by the sign distance functionφ, for a body moving at speedV(t,x), the SDF is then governed by the following advection equation

    (32)

    whereφ0(x) corresponds to the initial position of the object, i.e the initial SDF. Here again the goal is to adapt the mesh to zero isoline of the level-set, and this time at each time step. As studied in [4], a characteristic method can be used. The nodes at timetn+1are considered and their “original position” at timetnis searched by tracing back the characteristic. The mesh is then adapted to this new SDF. As we want to deal with physical displacements, time steps are very small and so are the displacements. Instead of using an iterative process as presented in [4], due to the small movement, the new zero level-set is defined in an already adapted area. Indeed as explained in section 1.3, when adaptation to zero level-set is done, the vicinityWof the zero level-set is also refined. Then, just after the advection, adaptation can be done.

    A well known problem when dealing with level-set advection is the mass loss. Indeed, each advection leads to a small deformation of the surface. Therefore, another way of thinking is, instead of advecting the whole signed distance function, only the surface defining the solid is advected, and the SDF is computed using the method presented in section 1.1. This is the second approach. With this second approach, no mass loss is introduced. The problem is that computational time for large meshes is considerably higher than with the advective method. Consequently, our idea is to find a way of coupling advection and SDF computation to choose the best compromise between CPU time and quality of the solution.

    4 Conclusions

    In this work, we combined the simplicity given by the penalization method to compute flow solutions around complex geometries with the power of mesh adaptation to improve accuracy. The accuracy is seek in the localization of the 0 level-set function (to be able to impose correctly boundary conditions inside our IBM) and also in the physical solution (to correctly capture shock waves for example). Another advantage of using IBM is the facility of studying moving bodies. To be able to perform unsteady computations we are studying a way of tracking interfaces on a mesh.

    The idea is to advect during (N-1) time steps the SDF, and everyNtime steps to advect the surface to compute the whole SDF (see Fig.11). Fig.12 presents the displacement (rotation + translation) of a 3D quadrangle([-0.1,0.1]×[-0.2,0.2]×[-0.05,0.05]) and Fig.13 shows a 2D oscillating and pitching NACA airfoil. The next step will be to couple this unsteady mesh adaptation process to our unsteady penalized residual distribution schemes.

    Fig.11 Adaptation process, Ti, Soli and Surfidenote respectively mesh, solution and surface at time i.

    Fig.12 Moving quadrangle, top: isosurface; bottom: mesh cut with level-set.

    (a) Initial mesh

    (b) Final meshFig.13 Oscillating NACA airfoil.

    Acknowledgement:

    · Experiments presented in this paper were carried out using the PlaFRIM experimental testbed, being developed under the INRIA PlaFRIM development action with support from LABRI and IMB and other entities: Conseil Regional d′Aquitaine, FeDER, Bordeaux University and CNRS (see https://plafrim.bordeaux.inria.fr/).

    · Computer time for this study was provided by the computing facilities MCIA (Mesocentre de Calcul Intensif Aquitain) Université de Bordeaux et Universitéé de Pau et des Pays de l′Adour.

    · This study has been carried out in the frame of the investments for the future, Programme IdEx Bordeaux, CPU (ANR-10-IDEX-03-02).

    · R. Abgrall was supported by part by SNFS grant #200021_153604/1.

    [1]Abgrall R, Beaugendre H, Dobrzynski C. An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques[J]. JCP,2014, 257: 2014,83-101.

    [2]Dobrzynski C , Frey P. Anisotropic delaunay mesh adaptation for unsteady simulations[C]//Proceedings of 17th Int. Meshing Roundtable, Pittsburgh, USA, 2008.

    [3]Frey P, Alauzet F. Anisotropic mesh adaptation for CFD computations[J]. Comput. Methods Appl. Mesh. Engrg., 2005,194:5068-5082.

    [4]Dapogny C. Bui C, Frey P. An accurate anisotropic adaptation

    method for solving the level set advection equation[J]. Int. J. Numer. Meth. Fluid, 2011.

    [5]Abgrall R, Roe P L. High order fluctuation schemes on triangular meshes[J]. J. Sc. Comp., 2003,13: 1-3.

    [6]Abgrall R. Essentially non-oscillatory residual distribution schemes for hyperbolic problems[J]. J. Comput. Phys., 2006, 214(2): 773-808.

    [7]Abgrall R, De Santis D. High order residual distribution scheme for Advection-Diffusion problems[J]. Siam J. Sci. Comput., accepted, 2014.

    [8]Abgrall R, Larat A, Ricchiuto M. Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[J]. JCP, 2011, 230(11):4103-4136.

    [9]Dapogny C, Frey P. Computation of the signed distance function to a discrete contour on adapted triangulation[J]. Calcolo, 2012, 49:193-219.

    [10]Ricchiuto M, Abgrall R. Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case[J]. JCP, 2010, 229(16): 5653-5691.

    [11]Boiron O, Chiavassa G, Donat R. A high-resolution penalization method for large Mach number flows in the presence of obstacles. Computers and Fluids, 2009,38(3):703-714.

    0258-1825(2016)02-0214-10

    基于非結(jié)構(gòu)自適應(yīng)網(wǎng)格和嵌入邊界法的殘差格式研究

    R. Abgrall1, H. Alcin3, H. Beaugendre2,*, C. Dobrzynski2, L. Nouveau3

    (1. Universit?t Zürich, Institut für Mathematik, Winterthurstrasse 190, CH-8057 Zürich, Switzerland; 2. University of Bordeaux, IMB UMR 5251, INRIA Bordeaux Sud-Ouest, F-33400 Talence, France; 3. INRIA Bordeaux Sud-Ouest, F-33400 Talence, France)

    嵌入邊界法由于在求解NS方程時能夠簡化網(wǎng)格生成問題而在計算流體領(lǐng)域受到越來越廣泛的關(guān)注。簡言之,嵌入邊界法能夠簡化大變形和運動條件下多物理流動模擬、流固相互作用耦合問題,然而壁面邊界條件的精確處理仍舊是該方法需要解決的問題。在本文工作中,為考慮壁面邊界條件而在NS方程中增加了補償項,同時采用非結(jié)構(gòu)網(wǎng)格自適應(yīng)技術(shù)保持了壁面邊界條件的精度。

    殘差格式;浸入邊界法;補償;非結(jié)構(gòu)網(wǎng)格;網(wǎng)格自適應(yīng)

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0010

    *Assistant Professor, Department of Mathematics; Heloise.beaugendre@math.u-bordeaux1.fr

    format: Abgrall R, Alcin H, Beaugendre H, et al. Residual schemes applied to an embedded method expressed on unstructured adapted grids[J]. Acta Aerodynamica Sinica, 2016, 34(2): 214-223.

    10.7638/kqdlxxb-2016.0010. Abgrall R, Alcin H, Beaugendre H, 等. 基于非結(jié)構(gòu)自適應(yīng)網(wǎng)格和嵌入邊界法的殘差格式研究(英文)[J]. 空氣動力學(xué)學(xué)報, 2016, 34(2): 214-223.

    Received date: 2016-02-04; Revised date:2016-03-27

    猜你喜歡
    邊界條件壁面殘差
    二維有限長度柔性壁面上T-S波演化的數(shù)值研究
    基于雙向GRU與殘差擬合的車輛跟馳建模
    一類帶有Stieltjes積分邊界條件的分?jǐn)?shù)階微分方程邊值問題正解
    帶有積分邊界條件的奇異攝動邊值問題的漸近解
    基于殘差學(xué)習(xí)的自適應(yīng)無人機目標(biāo)跟蹤算法
    基于遞歸殘差網(wǎng)絡(luò)的圖像超分辨率重建
    壁面溫度對微型內(nèi)燃機燃燒特性的影響
    平穩(wěn)自相關(guān)過程的殘差累積和控制圖
    河南科技(2015年8期)2015-03-11 16:23:52
    帶Robin邊界條件的2維隨機Ginzburg-Landau方程的吸引子
    顆?!诿媾鲎步Ec數(shù)據(jù)處理
    又大又爽又粗| 亚洲天堂av无毛| 久久精品aⅴ一区二区三区四区| 美女国产高潮福利片在线看| 国产精品一区二区在线不卡| 亚洲av男天堂| 校园春色视频在线观看| 国产一区二区在线av高清观看| 两个人免费观看高清视频| 国产一区二区三区视频了| 国产成人av激情在线播放| 韩国av一区二区三区四区| 免费一级毛片在线播放高清视频 | av免费在线观看网站| 日日爽夜夜爽网站| 黄色毛片三级朝国网站| 国产精品99久久99久久久不卡| 美女大奶头视频| 俄罗斯特黄特色一大片| 精品国产一区二区久久| 国内精品久久久久精免费| 免费无遮挡裸体视频| 亚洲中文字幕日韩| 在线观看免费视频日本深夜| 老司机在亚洲福利影院| 老司机在亚洲福利影院| 麻豆成人av在线观看| 在线十欧美十亚洲十日本专区| 精品国内亚洲2022精品成人| 国产乱人伦免费视频| 久久精品国产综合久久久| 最近最新中文字幕大全电影3 | 身体一侧抽搐| 亚洲最大成人中文| 黄色a级毛片大全视频| 美女扒开内裤让男人捅视频| 亚洲一码二码三码区别大吗| 国产免费av片在线观看野外av| 麻豆成人av在线观看| 99riav亚洲国产免费| 亚洲成人国产一区在线观看| avwww免费| 久久精品国产清高在天天线| 久热这里只有精品99| 久久狼人影院| 精品国产一区二区三区四区第35| 亚洲国产精品sss在线观看| 在线观看一区二区三区| 在线永久观看黄色视频| 涩涩av久久男人的天堂| 日韩欧美国产一区二区入口| 97人妻精品一区二区三区麻豆 | 露出奶头的视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品粉嫩美女一区| 色综合亚洲欧美另类图片| 午夜福利18| 日韩精品免费视频一区二区三区| 亚洲国产看品久久| 91字幕亚洲| 黑人巨大精品欧美一区二区mp4| 夜夜夜夜夜久久久久| 午夜精品久久久久久毛片777| 在线观看日韩欧美| 老司机午夜十八禁免费视频| 在线av久久热| 久久人妻av系列| 丁香六月欧美| 亚洲va日本ⅴa欧美va伊人久久| 九色亚洲精品在线播放| 欧美日韩黄片免| 精品少妇一区二区三区视频日本电影| 欧美国产精品va在线观看不卡| 日本撒尿小便嘘嘘汇集6| 狂野欧美激情性xxxx| 一进一出抽搐动态| 欧美人与性动交α欧美精品济南到| 美女 人体艺术 gogo| 91国产中文字幕| 欧美成人性av电影在线观看| 国产成人精品久久二区二区91| tocl精华| 色综合站精品国产| 国产三级黄色录像| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美在线一区二区| АⅤ资源中文在线天堂| 在线免费观看的www视频| 欧美日本中文国产一区发布| 十八禁网站免费在线| av欧美777| 亚洲专区中文字幕在线| АⅤ资源中文在线天堂| 国产精品 国内视频| 中文字幕人妻熟女乱码| 亚洲成av人片免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人欧美特级aaaaaa片| 免费不卡黄色视频| 女人精品久久久久毛片| 免费一级毛片在线播放高清视频 | 91麻豆精品激情在线观看国产| a级毛片在线看网站| 久久久精品国产亚洲av高清涩受| 亚洲情色 制服丝袜| 久久精品91蜜桃| 长腿黑丝高跟| 久久久国产成人精品二区| 老司机深夜福利视频在线观看| 91字幕亚洲| 亚洲九九香蕉| 久久人妻av系列| 黄色 视频免费看| 黄色视频不卡| 成人三级做爰电影| 国产精品99久久99久久久不卡| 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 又黄又粗又硬又大视频| 一区福利在线观看| 欧美成人一区二区免费高清观看 | 欧美黄色片欧美黄色片| 久久午夜亚洲精品久久| 看片在线看免费视频| 欧美日本亚洲视频在线播放| 中国美女看黄片| 淫妇啪啪啪对白视频| 999久久久国产精品视频| 露出奶头的视频| 亚洲第一欧美日韩一区二区三区| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 午夜老司机福利片| 精品久久久精品久久久| 啦啦啦免费观看视频1| 久久精品成人免费网站| 国内精品久久久久精免费| 好男人电影高清在线观看| 91av网站免费观看| 亚洲avbb在线观看| 精品不卡国产一区二区三区| 久久久精品欧美日韩精品| 老司机午夜福利在线观看视频| 国产乱人伦免费视频| 人人妻人人爽人人添夜夜欢视频| 久久久国产成人精品二区| 国产乱人伦免费视频| 中文字幕人妻丝袜一区二区| www国产在线视频色| 国产精品一区二区精品视频观看| 亚洲精品粉嫩美女一区| 性欧美人与动物交配| 成年版毛片免费区| 99热只有精品国产| 欧美日韩福利视频一区二区| 欧美日韩瑟瑟在线播放| 宅男免费午夜| 桃色一区二区三区在线观看| 在线观看www视频免费| 久久久久久久午夜电影| 少妇的丰满在线观看| 女同久久另类99精品国产91| 大陆偷拍与自拍| 成人三级做爰电影| 黄网站色视频无遮挡免费观看| 久久久久久国产a免费观看| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 国产一区二区三区在线臀色熟女| svipshipincom国产片| 国产一区二区三区视频了| 国产精品自产拍在线观看55亚洲| 国产片内射在线| 99久久久亚洲精品蜜臀av| 日韩视频一区二区在线观看| 中文字幕最新亚洲高清| 一区二区三区高清视频在线| 亚洲av熟女| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 亚洲一码二码三码区别大吗| 久久国产亚洲av麻豆专区| 久久人人精品亚洲av| 国产精品久久久久久人妻精品电影| 精品第一国产精品| 亚洲伊人色综图| 搡老妇女老女人老熟妇| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 欧美乱色亚洲激情| 久久婷婷人人爽人人干人人爱 | 亚洲第一av免费看| 青草久久国产| 亚洲色图av天堂| 黄色视频不卡| 国产精品一区二区在线不卡| 亚洲第一av免费看| 亚洲色图 男人天堂 中文字幕| 咕卡用的链子| 天堂动漫精品| 在线av久久热| 大型黄色视频在线免费观看| 一区二区三区精品91| 搡老熟女国产l中国老女人| 国产精品久久久久久精品电影 | 午夜日韩欧美国产| 久久精品国产亚洲av香蕉五月| 国产麻豆成人av免费视频| 欧美绝顶高潮抽搐喷水| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 欧美日韩黄片免| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添小说| 巨乳人妻的诱惑在线观看| 午夜精品在线福利| 搞女人的毛片| 成人亚洲精品一区在线观看| 黑人欧美特级aaaaaa片| 亚洲国产精品999在线| 嫁个100分男人电影在线观看| 亚洲av成人一区二区三| 色综合亚洲欧美另类图片| 日韩一卡2卡3卡4卡2021年| 一边摸一边做爽爽视频免费| 午夜亚洲福利在线播放| 国内精品久久久久精免费| 日本欧美视频一区| 久9热在线精品视频| 欧美激情久久久久久爽电影 | 亚洲va日本ⅴa欧美va伊人久久| 国产视频一区二区在线看| 亚洲性夜色夜夜综合| xxx96com| 久久精品国产亚洲av香蕉五月| 很黄的视频免费| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 久久久久久久久免费视频了| 精品人妻在线不人妻| 三级毛片av免费| 欧美不卡视频在线免费观看 | 国产成年人精品一区二区| 国产精品亚洲av一区麻豆| 亚洲精品国产区一区二| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 国产精品久久久人人做人人爽| x7x7x7水蜜桃| 国产一区二区三区视频了| 国产成人精品无人区| 免费一级毛片在线播放高清视频 | 久久久久久久久中文| 久久精品国产清高在天天线| 亚洲男人的天堂狠狠| 久久欧美精品欧美久久欧美| 麻豆国产av国片精品| 手机成人av网站| 嫩草影院精品99| 久久午夜综合久久蜜桃| 色在线成人网| 国产麻豆69| 久久久久久免费高清国产稀缺| 69av精品久久久久久| 一级毛片精品| 国产精品免费一区二区三区在线| 午夜成年电影在线免费观看| 亚洲第一av免费看| 热99re8久久精品国产| 国产精品亚洲一级av第二区| 免费搜索国产男女视频| 久久精品国产综合久久久| 中文字幕人妻丝袜一区二区| 九色国产91popny在线| 99re在线观看精品视频| 精品一区二区三区四区五区乱码| 欧美一区二区精品小视频在线| 免费人成视频x8x8入口观看| www日本在线高清视频| 国产亚洲欧美在线一区二区| 国产99久久九九免费精品| 男女做爰动态图高潮gif福利片 | 亚洲伊人色综图| 亚洲色图 男人天堂 中文字幕| 9热在线视频观看99| 日韩视频一区二区在线观看| 波多野结衣巨乳人妻| 国产91精品成人一区二区三区| 亚洲第一欧美日韩一区二区三区| 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久精品久久久| 天堂动漫精品| 两个人看的免费小视频| 亚洲精品久久成人aⅴ小说| 欧美黄色淫秽网站| 午夜视频精品福利| 青草久久国产| 久久国产精品影院| 亚洲七黄色美女视频| 亚洲国产日韩欧美精品在线观看 | 日韩有码中文字幕| 一边摸一边做爽爽视频免费| 日韩大码丰满熟妇| 757午夜福利合集在线观看| or卡值多少钱| 精品久久久久久久人妻蜜臀av | 久久伊人香网站| 亚洲国产精品999在线| 国产麻豆69| 一进一出抽搐gif免费好疼| 18美女黄网站色大片免费观看| 99国产精品一区二区三区| or卡值多少钱| 黑人操中国人逼视频| 日韩三级视频一区二区三区| 日日爽夜夜爽网站| 国产精品一区二区三区四区久久 | 看片在线看免费视频| www.999成人在线观看| 成人18禁在线播放| 亚洲国产看品久久| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 99久久国产精品久久久| 亚洲一区二区三区色噜噜| 视频在线观看一区二区三区| 少妇 在线观看| 一级片免费观看大全| 老司机深夜福利视频在线观看| 成在线人永久免费视频| 国产成人精品久久二区二区免费| 久久久国产精品麻豆| 精品国产乱子伦一区二区三区| 欧美老熟妇乱子伦牲交| 午夜久久久久精精品| 黄色女人牲交| www.精华液| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 亚洲第一av免费看| www国产在线视频色| 亚洲美女黄片视频| 操美女的视频在线观看| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 色哟哟哟哟哟哟| 成年人黄色毛片网站| 中文亚洲av片在线观看爽| 久久天躁狠狠躁夜夜2o2o| 国语自产精品视频在线第100页| 欧美成人性av电影在线观看| 亚洲色图av天堂| 欧美在线一区亚洲| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 咕卡用的链子| 亚洲av第一区精品v没综合| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 女性被躁到高潮视频| 亚洲精品中文字幕一二三四区| 亚洲自偷自拍图片 自拍| 极品教师在线免费播放| 欧美乱码精品一区二区三区| 一夜夜www| 亚洲自偷自拍图片 自拍| 91av网站免费观看| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 大陆偷拍与自拍| 国产熟女xx| 日韩视频一区二区在线观看| 欧美 亚洲 国产 日韩一| 搡老妇女老女人老熟妇| 在线十欧美十亚洲十日本专区| 亚洲欧美一区二区三区黑人| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 久久天躁狠狠躁夜夜2o2o| 亚洲专区国产一区二区| 十八禁人妻一区二区| 精品国产亚洲在线| 欧美成狂野欧美在线观看| 麻豆久久精品国产亚洲av| 成年人黄色毛片网站| 丝袜在线中文字幕| 操出白浆在线播放| 18禁观看日本| 欧美丝袜亚洲另类 | 国内久久婷婷六月综合欲色啪| 日本 av在线| 国产片内射在线| 久久中文看片网| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久午夜电影| 91在线观看av| 亚洲av熟女| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久久5区| 国产精品亚洲美女久久久| 极品教师在线免费播放| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 国产aⅴ精品一区二区三区波| 88av欧美| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 国产熟女xx| 亚洲av第一区精品v没综合| 欧美激情久久久久久爽电影 | 老熟妇仑乱视频hdxx| 国产国语露脸激情在线看| 97碰自拍视频| 精品欧美一区二区三区在线| 免费av毛片视频| 欧美久久黑人一区二区| 亚洲精品美女久久久久99蜜臀| 国产1区2区3区精品| 色综合站精品国产| 一本综合久久免费| 大型av网站在线播放| 亚洲色图av天堂| 丝袜人妻中文字幕| 久久久久久免费高清国产稀缺| 在线观看日韩欧美| 免费看a级黄色片| 国产单亲对白刺激| 精品人妻在线不人妻| xxx96com| 亚洲av电影在线进入| 香蕉久久夜色| 最近最新免费中文字幕在线| 麻豆久久精品国产亚洲av| 三级毛片av免费| 欧美av亚洲av综合av国产av| 午夜成年电影在线免费观看| 亚洲成av片中文字幕在线观看| 欧美最黄视频在线播放免费| 极品教师在线免费播放| 激情在线观看视频在线高清| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 操美女的视频在线观看| 在线播放国产精品三级| 少妇被粗大的猛进出69影院| 欧美一级a爱片免费观看看 | 悠悠久久av| aaaaa片日本免费| 搡老岳熟女国产| 在线播放国产精品三级| 日韩三级视频一区二区三区| 欧美乱色亚洲激情| 18美女黄网站色大片免费观看| 亚洲精品国产区一区二| 桃色一区二区三区在线观看| 精品人妻在线不人妻| 50天的宝宝边吃奶边哭怎么回事| 成在线人永久免费视频| 国产精品一区二区精品视频观看| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 日韩欧美在线二视频| 亚洲av美国av| 99久久99久久久精品蜜桃| 69av精品久久久久久| 亚洲电影在线观看av| 日本一区二区免费在线视频| 美女午夜性视频免费| 九色国产91popny在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美一区二区三区| 黑丝袜美女国产一区| 9热在线视频观看99| 亚洲色图 男人天堂 中文字幕| 国产av在哪里看| 亚洲精品国产一区二区精华液| 美女高潮喷水抽搐中文字幕| 女人爽到高潮嗷嗷叫在线视频| 69av精品久久久久久| 精品国产超薄肉色丝袜足j| 很黄的视频免费| avwww免费| 啦啦啦观看免费观看视频高清 | 国产视频一区二区在线看| 日本一区二区免费在线视频| 亚洲国产看品久久| 啦啦啦观看免费观看视频高清 | 欧美成人午夜精品| 国产国语露脸激情在线看| 欧美av亚洲av综合av国产av| 国产日韩一区二区三区精品不卡| 成在线人永久免费视频| 久久国产精品影院| 午夜老司机福利片| 两个人免费观看高清视频| 91老司机精品| 免费女性裸体啪啪无遮挡网站| 又紧又爽又黄一区二区| 非洲黑人性xxxx精品又粗又长| av欧美777| 国产精品电影一区二区三区| 大型av网站在线播放| 欧美亚洲日本最大视频资源| 桃色一区二区三区在线观看| 宅男免费午夜| 久久国产亚洲av麻豆专区| 99国产精品一区二区蜜桃av| 一区二区三区高清视频在线| 桃色一区二区三区在线观看| 欧美午夜高清在线| 热re99久久国产66热| 亚洲国产欧美一区二区综合| 国产高清视频在线播放一区| 亚洲av电影不卡..在线观看| 黄色视频不卡| www日本在线高清视频| 如日韩欧美国产精品一区二区三区| 午夜影院日韩av| 国产人伦9x9x在线观看| 久久久国产精品麻豆| 国产精品1区2区在线观看.| 99在线视频只有这里精品首页| 精品久久久久久,| 黑人欧美特级aaaaaa片| 欧美激情高清一区二区三区| 精品国产超薄肉色丝袜足j| 欧美黄色淫秽网站| 深夜精品福利| 国产成+人综合+亚洲专区| 日本 欧美在线| 91字幕亚洲| 欧美国产日韩亚洲一区| 美女高潮到喷水免费观看| 成人国产综合亚洲| 欧美日韩一级在线毛片| 国产高清激情床上av| 麻豆一二三区av精品| 一级片免费观看大全| 不卡一级毛片| 狂野欧美激情性xxxx| 一二三四社区在线视频社区8| 日韩国内少妇激情av| 后天国语完整版免费观看| 欧美在线黄色| 日日夜夜操网爽| 啪啪无遮挡十八禁网站| 大型黄色视频在线免费观看| 亚洲第一电影网av| 极品教师在线免费播放| 久久精品91蜜桃| 可以免费在线观看a视频的电影网站| 亚洲久久久国产精品| 亚洲自偷自拍图片 自拍| 男人操女人黄网站| 在线观看一区二区三区| 中文字幕高清在线视频| 99riav亚洲国产免费| 久久久国产欧美日韩av| 精品国产乱子伦一区二区三区| 狠狠狠狠99中文字幕| 午夜福利高清视频| 在线播放国产精品三级| 亚洲九九香蕉| 身体一侧抽搐| 亚洲国产中文字幕在线视频| 国产精品爽爽va在线观看网站 | 欧美+亚洲+日韩+国产| 高清在线国产一区| 黑丝袜美女国产一区| 精品一区二区三区视频在线观看免费| 欧美一级毛片孕妇| 女性生殖器流出的白浆| 久久香蕉精品热| 成年女人毛片免费观看观看9| 日韩三级视频一区二区三区| 国产精品99久久99久久久不卡| 极品人妻少妇av视频| 88av欧美| 亚洲av五月六月丁香网| 免费在线观看亚洲国产| 深夜精品福利| 9热在线视频观看99| 日韩一卡2卡3卡4卡2021年| 88av欧美| 亚洲色图av天堂| 97超级碰碰碰精品色视频在线观看| 深夜精品福利| 精品福利观看| 国内精品久久久久久久电影| 99热只有精品国产| 国产精品国产高清国产av| 久久这里只有精品19| 美女高潮喷水抽搐中文字幕| 美女国产高潮福利片在线看| 三级毛片av免费| 亚洲男人天堂网一区| 成人国产综合亚洲| 性少妇av在线| 欧美黑人欧美精品刺激| 老司机在亚洲福利影院| 国产亚洲欧美98| 亚洲久久久国产精品| 亚洲欧美精品综合一区二区三区| 真人一进一出gif抽搐免费| av天堂在线播放| 熟女少妇亚洲综合色aaa.| 深夜精品福利| 美女高潮到喷水免费观看| 看免费av毛片|