• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Large Scale Structures andCompressibility Effect in Compressible Mixing Layerswith a Discontinuous Galerkin Method

    2016-05-12 06:03:08XiaotianShiWeiWangGuiruZhangTiejinWangChiwangShu
    關(guān)鍵詞:壓縮性尺度數(shù)值

    Xiaotian Shi, Wei Wang, Guiru Zhang, Tiejin Wang, Chi-wang Shu

    (1. China Academy of Aerospace Aerodynamics, Beijing 100074, China 2. Brown University, Providence RI 02912, USA)

    ?

    Numerical Simulation of Large Scale Structures andCompressibility Effect in Compressible Mixing Layerswith a Discontinuous Galerkin Method

    Xiaotian Shi1,*, Wei Wang1, Guiru Zhang1, Tiejin Wang1, Chi-wang Shu2

    (1. China Academy of Aerospace Aerodynamics, Beijing 100074, China 2. Brown University, Providence RI 02912, USA)

    Large scale structures in two or three dimensional spatially developing compressible mixing layers, as well as compressibility effect in supersonic mixing layers under the convective Mach numberMc=0.4 andMc=0.8 respectively are numerical studied with a discontinuous Galerkin method. Special attention is paid on the panorama of spatial evolution of large scale structures and the compressibility effect. Theλ2structureextractionmethodisutilizedinthispaper,the“forest”structuresareevident.TheturbulenceandReynoldsstressofthemixinglayersarefounddecreasingwithMcin current simulations, which is expected to offer useful guidance for turbulent modeling in RANS and LES. The current study also shows the success of discontinuous Galerkin method to do compressible turbulence simulation.

    Discontinuous Galerkin Method, Supersonic mixing layers, Large scale structures, Compressibility effects

    Numenclature

    Mc=convective Mach number

    ρ=density

    a=speed of sound

    p=pressure

    e=internal energy

    Cv=specific heat at constant volume

    γ=ratio of specific heat

    0 Introduction

    Structure evolution and compressibility effect are two unfading topics in compressible mixing layers study, and it is believed that the compressibility effect affect the behavior of structures and then further affect on the growth rate of mixing layers, so it is meaningful to investigate the behavior and the evolution of large scale structures with compressibility effect in compressible mixing layers.

    CFD is a powerful tool to do compressible mixing layers study, take the numerical work of [1-7] as examples. However, it should be pointed out that most of the numerical work concern temporal developing mixing layers for computational load consideration, which is useful to investigate the time evolution of structures but can not gain the spatial evolution of structures and transition characteristic of the flow.As for spatially developing compressible mixing layers, the knowledge of large scale coherent structures evolution is still too limited and premature. Actually, good simulation of vortex and shock structures is not an easy task of numerical schemes. Discontinuous Galerkin (DG) finite element method, greatly developed by [8,9], is a high resolution numerical method with the ability of high order accuracy and good discontinuous capture ability, it has low numerical dissipation and easy to be parallel programmed, these advantages make it very suitable for compressible flow simulation and very popular up to date. Shi [10] successfully did direct numerical simulations of two or three dimensional spatially developing compressible mixing layers with the DG scheme, fairly well results were obtained. The spatial evolution of large scale structures, both in two and three dimensions, were visualized and investigated in detail, as well as the characteristics of transition and passive scalar field.

    To visualize large scale structures, people prefer to vorticity and pressure fields for two dimensional cases, but it is not a trivial thing for three dimensional cases. There are several structures definition methods for three dimensional complex flow, such as vorticity magnitude |ω|,λ2andQ2method. |ω| has been widely used in early time to educe coherent structures, but may not always be satisfied since it does not identify vortex core in a shear flow.λ2is the second largest eigenvalue of the symmetric tensor ofS2+Ω2[11], whereSandΩare the symmetric and the anti-symmetric components of the velocity gradient tensor. Ifλ1≥λ2≥λ3aretheeigenvaluesofS2+Ω2,λ2-definitionisequivalenttotherequirementthatλ2<0withinthevortexcore.Theλ2-definitioncorrespondstothepressureminimuminaplaneandonlythecontributionofS2+Ω2top,ijistakenintoaccount.preferλ2isbettertoeducecoherentstructures,moreinformationcanbefoundinreference.Hereinthispaper,λ2methodisusedtoextractlargescalestructures.

    ThepurposeofthispaperistoshowtheprocessofsolvingNSequationwithDiscontinuousGalerkinmethodindetail,andshowthesuccessofDGonfreeshearturbulencesimulation.Furthermore,thewholeviewofspatialevolutionoflargescalestructuresintwoorthreedimensionalspatiallydevelopingcompressiblemixinglayersispresented,exhibitingthecompressibilityeffectonstructuresandtheircharacteristicsduringtransitionprocess.

    1 Optimization Framework

    1.1 Governing Equations

    For the full three dimensional compressible Navier-Stokes (N-S) equations, the non-dimensional form are,

    (1)

    wheretheconservevariablesuand Euler fluxesFe=(f1(u),f2(u),f3(u))are

    (2)

    (3)

    (4)

    And

    (5)

    respectively. WhereμisphysicalviscositybySutherlandlawandλ=-2μ/3thesecondviscositycoefficientwith“Stokesassumption”,andPrisPrandtlnumber. (),x, (),yand(),zarederivativesofphysicalvariableswithrespecttothethreecoordinatecomponents.Thenon-dimensionalparametersinthegoverningequationsareMa,Re,Pr,γ.

    1.2 DG Discretization

    1.2.1 Euler Equation

    For simplicity, we assume that the calculation domainΩis a collection of rectangle cellJh,andfortwoelementsK1andK2,ife=K1∩K2≠?,theneis either an edge of bothK1andK2orapoint.WedenotebyVhthepolynomialspacewiththeordernotlargerthanpndefinedonK∈Jh.WemultiplytheEulerequationbyatestfunctionvh∈VhandintegrateoverK∈Jh,replacetheexactsolutionuby its approximationuh∈Vh,thereis:

    -∫KFe(uh)·vhdK=0

    ∫Kuh(t=0)vhdK=∫Ku0vhdK, ?vh∈Vh

    (6)

    Inoursimulation,thebasisfunctionischosenasLegendrepolynomial

    (7)

    Atthecellboundary,thenumericalfluxisobtainedbylocalLax-Friedrichs fluxes. For time advance, third order accuracy Runge-Kutta is used.

    1.2.2 N-S Equation

    The gradients of velocityS=u[12]inviscosityfluxesisincludedasanewvariabletoreducetheorderofthepartialdifferentialequations(PDE)

    S-u=0

    (8)

    ut+·F(u,S)=0

    (9)

    DiscretizingthecomputationaldomainΩas a collection of non-overlapping brick elementsK, multiplying the PDE with “test function”qandw, integrating them by parts on each cell, we obtain the weighted residual formulation of N-S equations

    (10)

    -∫KFe(u)·

    (11)

    Oneachelement,taketheplaceofu,S,q,win Eq.(10) and (11) by their projection uh, Sh, qh, whinthepolynomialspaceVhwiththeordernomorethank

    (12)

    1.2.3DiscontinuousIndicator

    TherearetwokindsoflimiterinRK-DGcalculation,namelyTVD(TotalVariationDiminishing)andTVB(TotalVariationBounded)limiter.TVDlimiterhaslargerdissipationthanaTVBlimiter.Inoursimulation,adiscontinuousindicatorfromWENOisused[13]tokeephighresolutionbothonsmoothandstrongdiscontinuouszones.

    αi=|ui-1-ui|2+ε,

    ξi=|ui-1-ui+1|2+ε,

    (13)

    Theindicatortakesthevalue0asstrongdiscontinuousoccurredand1insmoothzones.ThentheTVBlimiterconstantisaconstantmultiplythediscontinuousindicator.

    (14)

    Inthismanner,theschemecankeephighresolutioninthecalculationdomain.

    1.2.4TestCases

    Shu-Osher Test Problem

    Shu-Osher test problem [14] is a one dimensional problem that reflects interaction between wave and shock structures, the Euler equation is solved with initial condition

    (15)

    and third-order accuracy, both with TVD and TVB limiter. The space step is Δx= 1/40, TVB constant isM=300 for TVB limiter. Numerical results are shown in Fig.1, from which we can see the advantage of DG scheme on detailed structures presentation, and a suitable TVB constant can improve the resolution significantly.

    From figure 1, the P2 limiter with TVB constantM=300 “Proj4m300phi” is the best and ready for our mixing layer simulation.

    Fig.1 Simulation results and zoom in of Shu-Osher test program.

    Forced N-S Equation

    A Forced N-S equation which has exact solution as Eq.(16)

    (16)

    issolvedtovalidatethecodeforN-Sequation,thesimulationresultsisTable1,thirdorderaccuracyisobtainedforP2TVDRK-DG.

    1.3 Computational Details

    1.3.1 Run Conditions

    The equation is solved with a third order accuracy DG scheme, Legendre polynomial is taken as the basis functions. The time marching is done with a third order Runge-Kutta method. The numerical mesh is uniform inxdirectionandstretchedfromthestreamsinterfacetooutsideinydirection,theparametersofcalculationdomainandgrids,aswellasflowparametersarelistedinTable2.

    1.3.2GridFreeValidation

    Figure2showsthegridvalidationofthecurrentschemeforthesimulationofcaseMc=0.4, where

    (a) Center of the mixing layer yc, momentum thickness δm, vorticity thickness δω, nominal thickness δ90

    (b) Mean streamwise velocity comparison for different stream positions, the ycoordinate is normalized with δmFig.2 Numerical comparison of the results obtained with the coarse grid and the fine grid for the case Mc=0.4.

    Table 1 Accuracy test of forced NS equation with P2 TVD RK-DG method

    Tabel 2 Parameters of calculation domain and grids

    2 Results and Discussion

    2.1 Large Scale Structures Visualization

    2.1.1 Two Dimensional Cases

    Fig.3 shows the typical instantaneous results of the 2D spatially developing compressible mixing layers with the convective Mach numberMc=0.4andMc=0.8fromtheDNSresults.Fig.3 (a)showstheinstantaneouspressurefieldofcaseMc=0.4,fromwhichthesmallfinesonicwavesatthemixinglayersinletcanbeclearlyseen,thegreenlowpressurelocateinthecenterofvortexesandtheredhighvaluesbetweentwoneighborvortexes.Fig.3 (b)showstheconcentrationfield,fromwhichlargescalecoherentstructuresofBrown-Roshkovortexcanbeeasilyseen.Fig.3 (c)andFig.3 (d)showthepressureandconcentrationfieldsofcaseMc=0.8.FromFig.3,itcanbeseenthat,atupstream,theperturbationischosenbythefields,thesignalsnearthemostunstablefrequencybegintobeamplifiedandevaluatetolargescalestructures.Duetointeractionbetweenvortexesandshocklets,thefieldsbecomecomplexatdownstream.ThepassivescalarmixingisdominatedbylargescalestructuresforthelowerMccase. For the higherMccase, the phenomenon of “engulfing” can be seen at the position aboutx=350fromFig.3 (d),wheretheconcentrationisengulfedfromthehighspeedstreamtothelowspeedstreamwithoutmixingsufficiently.

    Fig.3 Large scale structures in the two-dimensional compressible mixing layers with the convective Mach number Mc=0.4 and Mc=0.8.

    InthecaseMc=0.8,thetwodifferentthingstothelowerMccase are that strong shock waves appear due to the high compressibility effect and the vortex structures are flatted. Shocklets structures have been reported in the numerical work of [1,3,5,7,15] and experimental work of [16, 17]. Actually, shocklet structures have close relationship with large scale vortex. The orientation of shocklet structures is changed as the process of turnover of large scale vortex. Figure 4 shows the snapshots of instantaneous pressure field withMc=0.8atthetimet=1 782, 1 797, 1 812, 1 827,atypicaltwovortexmergingprocessiscoloredwithrectanglezones.Fromwhichwecanseethattheevolutionprocessissimilartothatoftemporaldevelopingmixinglayersforthecompressibilityeffect,apairofshockletsappearatupperanddownpartofavortex,theshockletsintheexpansionzonebecomeweakeranddisappear,whiletheshockletsincompressionzonebecomestrongerandsurvived.Intemporaldevelopingcases,theevolutionofshockletsismainlyaffectedbytwovortexesmergingforthereasonthatthecalculationdomainisingeneralevenintegertimesofperturbationwavelength.Whileinspatialdevelopingmixinglayers,theinteractionbetweenshockletsandvortexesbecomemorecomplexbecausethefieldcontainsricherfrequencyofperturbation,therandomvortexesmergingmakesthebehaviorofshockletsneartothenaturalhappenedmixinglayers.

    Fig.4 Snapshots of instantaneous pressure field with Mc=0.8 at the time t=1 782, 1 797, 1 812, 1 827, the colorful parts are typical evolution of two-vortex merging.

    2.1.2ThreeDimensionalCases

    Fig.5andFig.6givetheinstantaneousvisualizationoflargescalestructuresdefinedwiththeλ2method for casesMc=0.4 andMc=0.8, the color reflect the velocity value component in streamwise direction. At the slicez=0, equal pressure contour is plotted to visualize the expansion/compression waves.

    Fig.5 Large scale structures defined with λ2 method in 3D spatially developing compressible mixing layers with Mc=0.4,x ranges from -2 to 202, iso-surface of λ2=-0.001, colored with stream-wise velocity magnitudeU (1.2~2.0, 40 contour levels).

    Fig.6 Large scale structures defined with λ2 method in 3D spatially developing compressible mixing layers with Mc=0.8,x ranges from -2 to 202, iso-surface of λ2=-0.008, colored with stream-wise velocity magnitudeU (1.2~2.8, 40 contour levels).

    From Fig.5, we can see clearly the whole process of large scale structures evolution in the lowerMccase, which is similar to that of incompressible case. After chosen by the field, the perturbation signal added at the inlet is amplified in some frequencies. Well organized large scalerollerstructures begin to form for the two dimensional Kelvin-Helmholtz instability. With the developing, the second instability in the span-wise direction begins to work, which makes the two neighboring roller structures be connected by theribstructures. Theribsgrow in further downstream of the field, stream-wise vortexes with aλshapebegintoflourishandtheflowtransitsintofullydevelopedturbulence.FromtheLST,themostunstableperturbationsignalistwodimensionalinthiscase,nosignificantobliquemodeisobserved,andthemaininstabilityisinthestream-wisedirection.Thepressurefieldintheslicez=0revealsthatsonicwavestructureslocateattheinletofthefield,andexpansion/compressionwavestructuressetnearthelargescalestructures,nostrongdiscontinuousarefound.Fig.6showsustheevolutionoflargescalestructuresinthehigherMccase, it is different from caseMc=0.4∶1) the structures are finer and have smaller scale than that of the lowerMccase for the increasing three dimensional characteristic of structures, and it seems that the transition happens earlier. 2) Strong compressible wave structures appear for the increasing compressibility effects, as distinctly shown in the flood of pressure field in thezdirection slice. The forest of structures becomes flourishing downstream and the field becomes more complex.

    2.2 Compressibility on Reynolds Stress

    After a long time average, statistical results of the simulations are obtained, the mean flow has the self-similarity property downstream in density, pressure and velocity field, as well as turbulence and Reynolds stress.

    Fig.7 gives the profiles of mean density and mean velocity component in cross flow direction at different stream-wise position for caseMc=0.4. The profiles at different stream position collapse toalmost a same curve in the coordinate ofξ=(y-yc(x))/δm(x),which means a good self-similarity property is obtained, it is a statistical characteristic of free shear flow and means that the current simulation is believable. Actually, not only the mean physical variables, such as pressure, velocity, temperature, but also the turbulence intensities are self-similar.

    Fig.7 Self-similar of mean pressure for three dimensional case Mc=0.4, profiles at positionsx=0.6Lx, 0.7Lx, 0.8Lx, 0.9Lx, the coordinatey is scaled with local momentum thickness δm(x).

    Fig.8 gives the average profiles of turbulence intensity components and Reynolds stress in self-similar region, the average is done along the coordinate ofξ. For convenience, results from experimental results [21,22], DNS results of [18,20], LES results of [21], are also plotted.

    Table 3 Comparison of peak turbulent intensities of compressible mixing layers with references

    Fig.8 Turbulence intensity and Reynolds stress comparison for caseMc=0.4 andMc=0.8.

    3 Conclusion and Future Work

    The process of solving NS equation with TVD- or TVB-RK Discontinuous Galerkin method is given in this paper in detail. To low order the NS equation, an intermediate variableS=uis introduced and solved with the convection-diffusion PDE.

    The simulation results of test cases show that the current code is credible and ready to do mixing layer simulations. Spatial developing mixing layers both in two dimensions and three dimensions are simulated with convective Mach numberMc=0.4 andMc=0.8.

    Special attention is paid to the spatial evolution of large scale structures and compressibility effect both on structures and turbulence variables. The charac-teristic of large scale structures are fully demon-strated, which show the potential ability of DG on compressible free shear turbulence simulation.

    Implicit time advancement and hybrid method of finite volume and DG will be the next step work in future, and the compressibility effect will be studied quantitatively.

    [1]Lele S K, Direct numerical simulation of compressible free shear flows; AIAA 89-0374[R]. Reston: AIAA, 1989.

    [2]Sarkar S. The stabilizing effect of compressibility in turbulent shear flow[J]. J. Fluid Mech., 1995, 282: 163-186.

    [3]Vreman B. Direct and Large-eddy simulation of the compressible turbulent mixing layer[R]. University of Twente, Department of Applied Mathematics,Thesis, 1995.

    [4]Vreman A, Sandham N, et al. Compressible mixing layer growth rate and turbulence characteristics[J].J. Fluid Mech., 1996. 320: 235-258.

    [5]Freund J, Lele S, et al. Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate[J].J. Fluid Mech., 2000, 421: 229-267.

    [6]Freund J, Moin P, et al. Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar[J].

    J. Fluid Mech., 2000, 421: 269-292.

    [7]Li Q, Fu S. Numerical simulation of high-speed planar mixing layer[J]. Computers & Fluids. 2003,32(10):1357-1377.

    [8]Cockburn B, Lin S Y, et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems[J]. J. Comp. Phys., 1989, 84: 90-113.

    [9]Cockburn B, Shu C-W. The Runge-Kutta discontinuous Galerkin method for conservation Laws: multidimensional systems. J. Comput. Phys, 1998,141(2): 199-224.

    [10]Shi X T, Chen J, et al. Numerical simulations of compressible mixing layers with a discontinuous Galerkin method[J]. Acta Mechanica Sinica, 2019, 27(3): 318-329.

    [11]Jeong J, Hussain F. On the identification of a vortex[J]. Journal of Fluid Mech., 285: 69-94.

    [12]Bassi F, Rebay S.Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J]. Int. J. Numer. Meth. Fluids,2000, 40: 197-207.

    [13]Xu Z, Shu C-W. Anti-diffusive flux corrections for high order finite difference WENO schemes[J]. J. Comp. Phys., 2005, 205: 458-485.

    [14]Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. J. Comp. Phys., 1988. 77: 439-471.

    [15]Fu D X, Ma Y W. Direct numerical simulation of coherent structures in planar mixing layer[J]. Science in China A, 1996, 26(7): 657-664.

    [16]Papamoschou D, Roshko A. The compressible turbulent shear layer: an experimental study[J]. J. Fluid Mech., 1988, 197: 453-477.

    [17]Clemens N T, Mungal M G. Large-scale structure and entrainment in the supersonic mixing layer[J]. J. Fluid Mech., 1995, 284:171-216.

    [18]Rogers M M, Moser R D. Direct simulation of a self-smilar turbulent mixing layer[J. Phys. Fluids, 1994,6(2): 903-923.

    [19]Bell J, Mehta R. Development of a two-stream mixing layer from tripped and untripped boundary layers[J]. AIAA Journal, 1990,28(12):2034-2042.

    [20]Pantano C, Sarkar S. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation[J]. J. Fluid Mech., 2002,451.

    [21]Hadjadj A, Yee H C, Sjogreen B. LES of temporally evolving mixing layers by an eighth-order filter scheme[J]. Int. J. Num. Meth. in Fluids. 2012, 70(11): 1405-27.

    [22]Spencer B W, Jones B. Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer; AIAA-71613[R]. Reston: AIAA, 1971.

    0258-1825(2016)02-0224-08

    基于間斷有限元方法的可壓縮混合層中大尺度結(jié)構(gòu)和壓縮性效應(yīng)的數(shù)值模擬研究

    時(shí)曉天1,*,王 偉1, 張桂茹1,王鐵進(jìn)1,舒其望2

    (1. 中國(guó)航天空氣動(dòng)力技術(shù)研究院, 北京 100074, 中國(guó); 2. 布朗大學(xué),羅得島州 普羅維登斯市 02912, 美國(guó))

    基于間斷有限元方法(DGM),對(duì)二維和三維、對(duì)流馬赫數(shù)Mc=0.4和0.8的空間發(fā)展的可壓縮混合層進(jìn)行了數(shù)值模擬,并對(duì)混合層中的大尺度結(jié)構(gòu)及壓縮性效應(yīng)進(jìn)行了研究。重點(diǎn)觀察了大尺度結(jié)構(gòu)隨壓縮性變化的全景圖像,文中采用λ2方法定義三維流動(dòng)中的大尺度結(jié)構(gòu),流場(chǎng)中能夠觀察到大尺度的渦結(jié)構(gòu)森林。當(dāng)前數(shù)值模擬表明混合層的湍動(dòng)能和雷諾應(yīng)力隨對(duì)流馬赫數(shù)的增加而降低,這對(duì)RANS和LES模型的建立具有一定的參考意義。本研究也表明,間斷有限元方法能夠成功地應(yīng)用于可壓縮湍流的數(shù)值模擬。

    間斷有限元方法;超聲速混合層;大尺度結(jié)構(gòu);壓縮性效應(yīng)

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0004

    *Assistant Professor;xxtshi@163.com

    format: Shi X T, Wang W, Zhang G R, et al. Numerical Simulation of Large Scale Structures and Compressibility Effect in Compressible Mixing Layers with a Discontinuous Galerkin Method[J]. Acta Aerodynamica Sinica, 2016, 34(2): 224-231.

    10.7638/kqdlxxb-2016.0004. 時(shí)曉天,王偉,張桂茹,等. 基于間斷有限元方法的可壓縮混合層中大尺度結(jié)構(gòu)和壓縮性效應(yīng)的數(shù)值模擬研究(英文)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2016, 34(2): 224-231.

    Received: 2015-12-15; Revised:2016-01-10

    Supported by the National Natural Science Foundation (No.11302213)

    猜你喜歡
    壓縮性尺度數(shù)值
    用固定數(shù)值計(jì)算
    核素骨顯像對(duì)骨質(zhì)疏松性胸腰椎壓縮性骨折的診斷價(jià)值
    數(shù)值大小比較“招招鮮”
    提防痛性癱瘓——椎體壓縮性骨折
    中老年保健(2021年2期)2021-08-22 07:27:36
    PKP在老年人胸腰椎壓縮性骨折中的臨床應(yīng)用
    財(cái)產(chǎn)的五大尺度和五重應(yīng)對(duì)
    宇宙的尺度
    太空探索(2016年5期)2016-07-12 15:17:55
    基于Fluent的GTAW數(shù)值模擬
    焊接(2016年2期)2016-02-27 13:01:02
    9
    PKP術(shù)治療老年骨質(zhì)疏松性胸腰椎壓縮性骨折的臨床觀察
    亚洲欧美日韩高清在线视频| 禁无遮挡网站| 少妇粗大呻吟视频| 国内精品久久久久精免费| 可以在线观看的亚洲视频| 国产伦人伦偷精品视频| 国产精品,欧美在线| 免费看a级黄色片| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲美女久久久| 啦啦啦观看免费观看视频高清| 老司机午夜福利在线观看视频| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人av| avwww免费| 91成人精品电影| 不卡一级毛片| 国语自产精品视频在线第100页| 黄色毛片三级朝国网站| 久久伊人香网站| 国产日本99.免费观看| 十八禁人妻一区二区| 精品免费久久久久久久清纯| 国产一区二区在线av高清观看| 婷婷六月久久综合丁香| 日韩精品青青久久久久久| 成人特级黄色片久久久久久久| 欧美激情久久久久久爽电影| 亚洲最大成人中文| 国产亚洲精品综合一区在线观看 | 可以免费在线观看a视频的电影网站| 中文字幕人妻熟女乱码| 18美女黄网站色大片免费观看| 叶爱在线成人免费视频播放| 久久久久久国产a免费观看| 草草在线视频免费看| 色哟哟哟哟哟哟| 亚洲电影在线观看av| 精品福利观看| 老司机深夜福利视频在线观看| av电影中文网址| 久久精品国产综合久久久| 精品一区二区三区av网在线观看| 日本在线视频免费播放| svipshipincom国产片| 国产激情久久老熟女| 午夜免费激情av| 成人午夜高清在线视频 | 成人国语在线视频| 久久午夜亚洲精品久久| 在线天堂中文资源库| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区三| 91麻豆精品激情在线观看国产| 午夜免费成人在线视频| 草草在线视频免费看| 日韩成人在线观看一区二区三区| 97人妻精品一区二区三区麻豆 | 久久天躁狠狠躁夜夜2o2o| 给我免费播放毛片高清在线观看| 国产极品粉嫩免费观看在线| 狂野欧美激情性xxxx| 日本在线视频免费播放| 亚洲 欧美一区二区三区| 女人被狂操c到高潮| 精品一区二区三区四区五区乱码| 给我免费播放毛片高清在线观看| 一个人观看的视频www高清免费观看 | 亚洲国产欧美日韩在线播放| 成人国产综合亚洲| 欧美 亚洲 国产 日韩一| 国产熟女xx| 国产亚洲精品av在线| 观看免费一级毛片| 日韩欧美在线二视频| 99久久综合精品五月天人人| 精品无人区乱码1区二区| 午夜精品久久久久久毛片777| 两性夫妻黄色片| 又大又爽又粗| 久久久久国内视频| 日本 欧美在线| 一级片免费观看大全| 日日干狠狠操夜夜爽| 久久久精品欧美日韩精品| 十八禁网站免费在线| 午夜福利一区二区在线看| 久久久国产欧美日韩av| av中文乱码字幕在线| 亚洲真实伦在线观看| www.自偷自拍.com| 国产精品久久久久久亚洲av鲁大| 91成人精品电影| 美女午夜性视频免费| 亚洲欧美日韩无卡精品| 无遮挡黄片免费观看| 欧美一区二区精品小视频在线| ponron亚洲| 妹子高潮喷水视频| 日本黄色视频三级网站网址| 精品福利观看| 热re99久久国产66热| 级片在线观看| 天堂影院成人在线观看| 黄色片一级片一级黄色片| 亚洲成人久久爱视频| 欧美人与性动交α欧美精品济南到| 久久精品成人免费网站| 这个男人来自地球电影免费观看| av超薄肉色丝袜交足视频| av超薄肉色丝袜交足视频| 久久亚洲真实| 视频在线观看一区二区三区| 国产成人精品无人区| 嫩草影院精品99| 久久香蕉国产精品| www.999成人在线观看| 亚洲久久久国产精品| 1024香蕉在线观看| 一级a爱片免费观看的视频| 大型黄色视频在线免费观看| 欧美一区二区精品小视频在线| 老熟妇仑乱视频hdxx| 精品福利观看| 欧美绝顶高潮抽搐喷水| 91九色精品人成在线观看| 久久久久久久久免费视频了| 日韩欧美国产在线观看| 亚洲欧洲精品一区二区精品久久久| 久久精品国产99精品国产亚洲性色| 1024手机看黄色片| 免费观看人在逋| 欧美午夜高清在线| 伊人久久大香线蕉亚洲五| 妹子高潮喷水视频| 999久久久精品免费观看国产| 美国免费a级毛片| 国产精品一区二区免费欧美| 亚洲色图 男人天堂 中文字幕| 成在线人永久免费视频| 精品国产一区二区三区四区第35| 伊人久久大香线蕉亚洲五| 岛国在线观看网站| 成人一区二区视频在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美成人免费av一区二区三区| 亚洲国产精品成人综合色| 午夜福利一区二区在线看| 啦啦啦观看免费观看视频高清| 国产精品一区二区免费欧美| svipshipincom国产片| 久久伊人香网站| 国产激情久久老熟女| 午夜福利成人在线免费观看| 一进一出抽搐动态| 国产精品久久久久久人妻精品电影| 国产精品精品国产色婷婷| 国产av不卡久久| 岛国视频午夜一区免费看| 亚洲成人国产一区在线观看| 日韩成人在线观看一区二区三区| 久久久久久九九精品二区国产 | 成人永久免费在线观看视频| 真人做人爱边吃奶动态| 在线播放国产精品三级| 日本在线视频免费播放| 97超级碰碰碰精品色视频在线观看| av超薄肉色丝袜交足视频| 天天添夜夜摸| 亚洲第一青青草原| 亚洲国产精品sss在线观看| 国产一区二区三区视频了| 亚洲av片天天在线观看| 成人18禁在线播放| 国产97色在线日韩免费| 嫁个100分男人电影在线观看| 51午夜福利影视在线观看| 琪琪午夜伦伦电影理论片6080| 久久天堂一区二区三区四区| 精品人妻1区二区| 好男人电影高清在线观看| 亚洲av五月六月丁香网| 无限看片的www在线观看| 日本在线视频免费播放| 中文字幕人妻熟女乱码| 变态另类丝袜制服| 久久精品91蜜桃| 亚洲最大成人中文| 亚洲av片天天在线观看| 日本在线视频免费播放| 国产亚洲欧美98| 久久中文字幕人妻熟女| 午夜免费观看网址| 成人国产一区最新在线观看| 亚洲国产高清在线一区二区三 | 天天躁狠狠躁夜夜躁狠狠躁| 日本免费一区二区三区高清不卡| 欧美精品亚洲一区二区| 女人爽到高潮嗷嗷叫在线视频| 91老司机精品| 少妇的丰满在线观看| 亚洲成人久久爱视频| 欧美黑人巨大hd| 欧美性猛交╳xxx乱大交人| 在线永久观看黄色视频| 丁香欧美五月| 国产爱豆传媒在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 91av网站免费观看| 久久香蕉国产精品| 国产一区二区在线av高清观看| 亚洲精品美女久久av网站| 国产精品一区二区三区四区久久 | 少妇裸体淫交视频免费看高清 | 黄色 视频免费看| 夜夜看夜夜爽夜夜摸| 精品国产超薄肉色丝袜足j| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产区一区二| 精品国产亚洲在线| 国产午夜福利久久久久久| 少妇 在线观看| 亚洲人成网站在线播放欧美日韩| 777久久人妻少妇嫩草av网站| 色婷婷久久久亚洲欧美| 精品高清国产在线一区| 一本精品99久久精品77| 久久精品国产99精品国产亚洲性色| 久久久国产成人精品二区| 国产v大片淫在线免费观看| 日本在线视频免费播放| 亚洲欧洲精品一区二区精品久久久| 少妇的丰满在线观看| 99久久综合精品五月天人人| 欧美成人免费av一区二区三区| 免费在线观看黄色视频的| 日本 av在线| 成人国产一区最新在线观看| 成人国产一区最新在线观看| 午夜福利在线在线| 国产又爽黄色视频| 国产av一区二区精品久久| 18禁国产床啪视频网站| 一二三四社区在线视频社区8| 亚洲av成人av| 欧美性猛交黑人性爽| 久久久国产精品麻豆| 香蕉丝袜av| 母亲3免费完整高清在线观看| 日本a在线网址| 日韩av在线大香蕉| 十八禁人妻一区二区| 制服诱惑二区| x7x7x7水蜜桃| 亚洲一区高清亚洲精品| aaaaa片日本免费| 久久久国产成人免费| 麻豆av在线久日| 在线观看午夜福利视频| 俺也久久电影网| 久99久视频精品免费| 国产欧美日韩一区二区精品| 国产av又大| 最近最新免费中文字幕在线| 亚洲精品中文字幕一二三四区| 精品国产乱码久久久久久男人| 免费高清在线观看日韩| 国产成人精品无人区| 免费看十八禁软件| 国产成人影院久久av| 免费看十八禁软件| 久久天躁狠狠躁夜夜2o2o| 好男人在线观看高清免费视频 | 久久香蕉精品热| 国产亚洲av高清不卡| 日本成人三级电影网站| 亚洲精品中文字幕在线视频| 少妇 在线观看| 精品福利观看| 动漫黄色视频在线观看| 精品国产超薄肉色丝袜足j| 亚洲人成网站在线播放欧美日韩| 韩国精品一区二区三区| 无遮挡黄片免费观看| 一级a爱片免费观看的视频| av在线播放免费不卡| 欧美黑人精品巨大| 88av欧美| 亚洲久久久国产精品| 国产91精品成人一区二区三区| 亚洲精品久久成人aⅴ小说| 日韩欧美一区视频在线观看| 国产精品免费一区二区三区在线| 国产午夜精品久久久久久| 亚洲精品色激情综合| 91成年电影在线观看| 亚洲aⅴ乱码一区二区在线播放 | 1024视频免费在线观看| 日韩大码丰满熟妇| 免费搜索国产男女视频| 大型av网站在线播放| 欧美黑人巨大hd| 成年人黄色毛片网站| 成人手机av| 狂野欧美激情性xxxx| 亚洲天堂国产精品一区在线| 观看免费一级毛片| 国产高清videossex| 91大片在线观看| 高潮久久久久久久久久久不卡| 精品国产乱子伦一区二区三区| 国产亚洲精品一区二区www| 亚洲国产精品合色在线| 欧美国产精品va在线观看不卡| 757午夜福利合集在线观看| 亚洲电影在线观看av| 一进一出抽搐gif免费好疼| 亚洲全国av大片| 国产午夜福利久久久久久| 亚洲欧美精品综合一区二区三区| 老熟妇乱子伦视频在线观看| 熟女电影av网| 亚洲真实伦在线观看| 一区二区日韩欧美中文字幕| 色综合亚洲欧美另类图片| 久久99热这里只有精品18| 亚洲国产欧洲综合997久久, | 免费看日本二区| 成年人黄色毛片网站| 欧美黄色淫秽网站| xxx96com| 黑人操中国人逼视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品无人区乱码1区二区| 真人一进一出gif抽搐免费| 国产亚洲欧美98| www.熟女人妻精品国产| 99久久综合精品五月天人人| 桃色一区二区三区在线观看| 成人18禁在线播放| 欧美丝袜亚洲另类 | 日日爽夜夜爽网站| 女人爽到高潮嗷嗷叫在线视频| 黑人巨大精品欧美一区二区mp4| 天天躁夜夜躁狠狠躁躁| 18禁黄网站禁片免费观看直播| 国产精品久久久av美女十八| 999久久久国产精品视频| 国产精品永久免费网站| 亚洲自拍偷在线| 亚洲九九香蕉| 中文字幕另类日韩欧美亚洲嫩草| 久久中文看片网| 99热只有精品国产| www.999成人在线观看| 国内揄拍国产精品人妻在线 | 欧美日韩亚洲综合一区二区三区_| av视频在线观看入口| a在线观看视频网站| 亚洲色图 男人天堂 中文字幕| 欧美一级毛片孕妇| 亚洲欧美激情综合另类| 国产区一区二久久| 精品无人区乱码1区二区| 黑人欧美特级aaaaaa片| 亚洲天堂国产精品一区在线| 日本三级黄在线观看| 法律面前人人平等表现在哪些方面| 成年女人毛片免费观看观看9| 久久久精品国产亚洲av高清涩受| 特大巨黑吊av在线直播 | 不卡一级毛片| 在线观看免费视频日本深夜| 精品少妇一区二区三区视频日本电影| 日韩欧美 国产精品| 人人妻人人澡欧美一区二区| 午夜福利高清视频| 国产又色又爽无遮挡免费看| 亚洲第一青青草原| or卡值多少钱| 男女视频在线观看网站免费 | 国产伦人伦偷精品视频| 99久久无色码亚洲精品果冻| 一区二区三区精品91| 欧美日韩一级在线毛片| 女人被狂操c到高潮| 高潮久久久久久久久久久不卡| 老司机深夜福利视频在线观看| 国产精品99久久99久久久不卡| 久久久久亚洲av毛片大全| 香蕉av资源在线| 久久精品影院6| 夜夜爽天天搞| 日本一区二区免费在线视频| 欧美色欧美亚洲另类二区| 狂野欧美激情性xxxx| 男女那种视频在线观看| 真人做人爱边吃奶动态| 国产精品99久久99久久久不卡| 精品电影一区二区在线| 2021天堂中文幕一二区在线观 | 久久香蕉激情| 久久久久国产一级毛片高清牌| 国产99久久九九免费精品| 亚洲 欧美一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲三区欧美一区| 在线观看www视频免费| 国产精品久久久久久亚洲av鲁大| 精华霜和精华液先用哪个| 国产一区在线观看成人免费| 亚洲成av片中文字幕在线观看| 亚洲性夜色夜夜综合| 男人操女人黄网站| 在线播放国产精品三级| 夜夜躁狠狠躁天天躁| 国产亚洲精品综合一区在线观看 | 又紧又爽又黄一区二区| 一边摸一边做爽爽视频免费| 欧美另类亚洲清纯唯美| 精品熟女少妇八av免费久了| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产一区二区精华液| 一区二区三区国产精品乱码| 欧美乱色亚洲激情| 99国产精品一区二区三区| 999精品在线视频| 丁香欧美五月| 免费观看人在逋| 禁无遮挡网站| 欧美国产日韩亚洲一区| 久久久久久久久中文| 国产一区二区三区视频了| 国产真人三级小视频在线观看| 国产一区二区激情短视频| 18美女黄网站色大片免费观看| www.熟女人妻精品国产| 国产伦一二天堂av在线观看| 老熟妇仑乱视频hdxx| 一进一出好大好爽视频| a级毛片在线看网站| 欧洲精品卡2卡3卡4卡5卡区| 欧美性长视频在线观看| 国产三级在线视频| 女生性感内裤真人,穿戴方法视频| 中文字幕人妻熟女乱码| 欧美久久黑人一区二区| 中文亚洲av片在线观看爽| 成人三级黄色视频| 满18在线观看网站| 免费看日本二区| 麻豆成人av在线观看| av中文乱码字幕在线| 美女高潮到喷水免费观看| 99在线视频只有这里精品首页| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 波多野结衣高清无吗| 免费高清在线观看日韩| 国产极品粉嫩免费观看在线| 欧美成人免费av一区二区三区| 欧美 亚洲 国产 日韩一| 亚洲国产看品久久| 嫩草影院精品99| 操出白浆在线播放| 热re99久久国产66热| 亚洲美女黄片视频| 亚洲中文av在线| 中文亚洲av片在线观看爽| 两人在一起打扑克的视频| 夜夜躁狠狠躁天天躁| 亚洲电影在线观看av| 久久天堂一区二区三区四区| 亚洲av熟女| 成人三级做爰电影| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 亚洲精品美女久久av网站| 最近最新免费中文字幕在线| 久久伊人香网站| 夜夜看夜夜爽夜夜摸| 国产精品,欧美在线| a级毛片在线看网站| 久久午夜综合久久蜜桃| 欧美日韩精品网址| 欧美黑人精品巨大| 狠狠狠狠99中文字幕| 成熟少妇高潮喷水视频| 不卡av一区二区三区| 国产不卡一卡二| 久久精品成人免费网站| 三级毛片av免费| 精品国内亚洲2022精品成人| 91字幕亚洲| 欧美性猛交黑人性爽| 国产区一区二久久| 国产精品1区2区在线观看.| 国产又色又爽无遮挡免费看| 国产成人精品无人区| 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 国产野战对白在线观看| 日本a在线网址| 午夜免费鲁丝| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 免费看日本二区| 岛国在线观看网站| 国产高清激情床上av| 后天国语完整版免费观看| 久久精品亚洲精品国产色婷小说| 欧美日本亚洲视频在线播放| 免费女性裸体啪啪无遮挡网站| 午夜久久久在线观看| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 中文字幕精品亚洲无线码一区 | 国产精品98久久久久久宅男小说| 国产av一区二区精品久久| 久久精品成人免费网站| 亚洲av片天天在线观看| 搡老岳熟女国产| 最近最新免费中文字幕在线| 91大片在线观看| 久久久久亚洲av毛片大全| 欧美黑人巨大hd| 国产精品电影一区二区三区| 午夜福利18| 一级片免费观看大全| 午夜久久久久精精品| 大型黄色视频在线免费观看| 成人午夜高清在线视频 | 国产一卡二卡三卡精品| 日韩大码丰满熟妇| 亚洲人成网站高清观看| 日韩欧美国产一区二区入口| cao死你这个sao货| 老司机福利观看| 国产亚洲精品综合一区在线观看 | 91大片在线观看| 精品电影一区二区在线| 香蕉国产在线看| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 很黄的视频免费| 岛国在线观看网站| 国产精品久久久久久精品电影 | 丝袜在线中文字幕| 久久久精品欧美日韩精品| 精品欧美一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉国产精品| 色av中文字幕| 亚洲精品中文字幕在线视频| or卡值多少钱| 成熟少妇高潮喷水视频| 999精品在线视频| 国产亚洲精品久久久久5区| 最新美女视频免费是黄的| 久久久久久人人人人人| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看 | 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 欧美精品亚洲一区二区| 天天添夜夜摸| 亚洲av电影不卡..在线观看| 成人特级黄色片久久久久久久| 久久久久久大精品| 天堂影院成人在线观看| www.自偷自拍.com| 国产伦人伦偷精品视频| 国产高清videossex| 一区二区三区高清视频在线| 久久久久久久精品吃奶| 国产激情偷乱视频一区二区| www日本黄色视频网| 久久人妻福利社区极品人妻图片| 女人被狂操c到高潮| 亚洲av成人一区二区三| 亚洲自拍偷在线| 久久午夜亚洲精品久久| xxx96com| 欧美亚洲日本最大视频资源| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合 | 日韩一卡2卡3卡4卡2021年| 一二三四在线观看免费中文在| 嫩草影院精品99| 国产精品久久电影中文字幕| 老汉色∧v一级毛片| 亚洲精华国产精华精| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av| a在线观看视频网站| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片午夜丰满| 少妇 在线观看| 亚洲av日韩精品久久久久久密| 久久午夜综合久久蜜桃| 最好的美女福利视频网| 免费观看人在逋| 国产精品电影一区二区三区| 香蕉av资源在线| 亚洲人成电影免费在线| 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠躁躁| 久久天躁狠狠躁夜夜2o2o| 亚洲av片天天在线观看| 在线观看一区二区三区|