• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Multi-Moment Finite Volume Method forIncompressible Navier-Stokes Equationson Unstructured Grids

    2016-05-12 06:03:08BinXiePengJinFengXiao
    空氣動力學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:四面體魯棒魯棒性

    Bin Xie, Peng Jin, Feng Xiao

    (Department of Energy Science, Tokyo Institute of Technology, 226-8502, Japan)

    ?

    A Multi-Moment Finite Volume Method forIncompressible Navier-Stokes Equationson Unstructured Grids

    Bin Xie*, Peng Jin, Feng Xiao

    (Department of Energy Science, Tokyo Institute of Technology, 226-8502, Japan)

    A robust and accurate finite volume method (FVM) is proposed for incompressible viscous fluid dynamics on triangular and tetrahedral unstructured grids. Different from conventional FVM where the volume integrated average (VIA) value is the only computational variable, the present formulation treats both VIA and the point value (PV) as the computational variables which are updated at each time step. The VIA is computed from a finite volume scheme of flux form, and is thus numerically conservative. The PV is updated from the differential form of the governing equation that does not have to be conservative but can be solved in a very efficient way. Including PV as the additional variable enables us to make higher-order reconstructions over compact mesh stencil to improve the accuracy, and moreover, the resulting numerical model is more robust for unstructured grids. We present the numerical formulations in both two and three dimensions on triangular and tetrahedral mesh elements. Numerical results of several benchmark tests are also presented to verify the proposed numerical method as an accurate and robust solver for incompressible flows on unstructured grids.

    Finite volume method, Unstructured grid, Robustness, Accuracy, Triangular/tetrahedral mesh, Incompressible flow, Multi-moment, Compact-stencil

    0 Introduction

    The finite volume method (FVM) has gained a great popularity in computational fluid dynamics (CFD) because of its better conservativeness and flexibility to adapt to both structured and unstructured grids. However, conventional FVM requires wide stencil to generate high-order reconstructions, and the choice of the cell stencil is not straightforward.

    As mentioned in [1], particular attention must be paid to choose the admissible stencils and there is not a simple rule to guide this procedure for reconstructions higher than first order. As a matter of fact, most operational codes are limited to the second order on unstructured grids, where a linear reconstruction such as the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme [2, 3] is used.

    On the other hand, the majority of numerical methods for incompressible flows are essentially based on the pressure-correction (or pressure-projection) approach, even they appear in the literature as different variants, such as the projection method[4], MAC(Marker and Cell)[5] method, SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method[6], SIMPLEC(SIMPLE Corrected) method [7] and PISO(Pressure Implicit with Splitting Operators) method[8]. All these methods work very well under the second-order FVM framework where the velocity can be directly coupled with the pressure through a pressure-projection step when staggering or co-volume arrangement is adopted.

    Although the second-order FVM on unstructured meshes proves itself a good trade-off between computational complexity and numerical accuracy, and has been widely accepted as a practical CFD framework for real-case applications, some remaining problems, for example the dependency of solution quality on computational mesh and the poor accuracy in advection computation, still deserve further efforts for more accurate and robust formulations. Some high-order DG methods have been devised for incompressible unsteady Navier-Stokes equations [9-12]. A common practice is to use the fractional-step pressure projection for the temporal updating and use DG for the spatial discretization, which is usually more complex and computationally expensive compared to the conventional FVM.

    In this paper, we propose a novel numerical formulation to solve incompressible unsteady Navier-Stokes equations by including the point value (PV) of the velocity field at the cell vertices as a new DOF in addition to the volume integrated average (VIA) that is the only computational variable in the conventional FVM. The present method is called Volume integrated average and Point value based Multi-moment (VPM) method, in which the VIA moment is computed by a finite volume formulation of flux form, and thus exactly conservative, while the PV moment is updated by point-wise Riemann solver that can be computed very efficiently in unstructured grids. The reconstruction that is needed to evaluate the numerical fluxes and the derivatives in the spatial discretization is determined from the constraint conditions in terms of both VIA and PV as the computational variables. More precisely, we construct piecewise incomplete quadratic polynomials of 6 DOFs in 2 and 8 DOFs in 3 dimensions. In addition to one VIA and three (2D) or four (3D) PVs of a single grid cell, the derivatives at the cell center are also used to determine the polynomials. The derivatives are approximated from the VIA and PVs of the cells sharing the boundary edges with the target cell. The stencil is compact, and more importantly there is no arbitrariness in choosing the stencil for reconstruction. Compared to the conventional finite volume method, significant improvements in accuracy and robustness can be achieved by the present method without large increase in algorithmic complexity and computational cost.

    The present formulation can be seen as an extension of the CIP multi-moment finite volume methods [13-22] to incompressible Navier-Stokes equations on unstructured grids with triangular and tetrahedral elements. The multi-moment finite volume methods have been developed on structured grids as accurate and robust fluid solvers and applied so far to various applications. The underlying idea to make use of multiple types of moments facilitates novel numerical models of greater efficiency and flexibility and is consequently much beneficial for implementations in unstructured grids.

    1 Numerical Formulation on Unstructured Mesh

    We consider the incompressible unsteady Navier-Stokes equations,

    (1)

    (2)

    whereu=(u,v,w)isthevelocityvectorwithcomponentsu,vandwinx,yandzdirections respectively.pis the pressure,ρthe kinematic viscosity.

    The projection method of Chorin [4] provides a simple and robust solution procedure for incompressible flow and is adopted in this paper. We briefly summarize the numerical steps to update the velocity from time levelm(t=tm)tom+1(t=tm+Δt)asfollows.

    1)Giventhevelocityfieldumat step m, compute the intermediate velocityu*from the momentum Eq.(2) without the pressure gradient term,

    (3)

    2)Theintermediatevelocityu*usually does not satisfy the mass conservation Eq.(1), and must be corrected by the projection shown in the next step. For that purpose, we solve the pressure field at step (m+1) from the following Poisson equation,

    (4)

    3)Correctthevelocitybytheprojectionstep,

    (5)

    Itisstraightforwardtoshowthattheupdatedvelocitysatisfies·um+1=0.

    Ourmajorinterestinthispaperistodevelopanovelapproachforthespatialdiscretizationforthesolutionprocedureshownabove.

    1.1 Computational Mesh

    We firstly describe the numerical formulation in 2D by discarding the component inzdirection. The computational domain is divided into non-overlapping triangular cellsΩi(i=1,…,Ne)withthreeverticesθij(j=1,2,3)locatedat(xi1,yi1), (xi2,yi2)and(xi3,yi3)respectivelyasshowninFig.1(a).WealsodenotethemasscenterofΩibyθic.

    (a)

    (b)Fig.1 Triangular mesh element (a) and the definition of discrete moments (b).

    (6)

    where |Ωi|denotesthevolumeofcellΩi.

    Given both VIA and PV, a polynomial can be constructed in terms of VIA and PV. For simplicity, mesh cellΩiis mapped onto a standard element

    (7)

    We give some numerical formula to transform the first-order derivatives between the global coordinate system (x,y) and the local coordinate (ξ,η)

    (8)

    and

    (9)

    where |Ji(ξ,η)|=xξi(ξ,η)yηi(ξ,η)-xηi(ξ,η)yξi(ξ,η)isthedeterminantoftheJacobianmatrix.

    Itisstraightforwardfrom(7)that

    (10)

    and

    |Ji(ξ,η)|=2|Ωi|=(xi2-xi1)(yi3-yi1)-

    (xi3-xi1)(yi2-yi1)

    (11)

    1.2 Multi-moment Reconstruction

    The piecewise reconstruction polynomial for physical fieldφ(x,y) on cellΩiis written in the local coordinate system as,

    Φi(ξ,η)=c00+c10ξ+c01η+c11ξη+c20ξ2+c02η2

    (12)

    Theunknowncoefficientsareuniquelydeterminedby

    whichareobtainedfromthefollowingconstraintconditionsintermsofthemultiplemoments,

    (14)

    Interpolationfunction(12)canbeequivalentlycastintoabasisfunctionformas,

    (15)

    wherethebasisfunctionsread

    (16)

    whichareidenticalforallmeshcells.

    Inthepresentmodel,bothVIAandPVaretreatedasthecomputationalvariablesandupdatedateverytimestepthroughthepressure-projectionsolutionprocedureshownabove.ItshouldbenotedthatinclusionofthePVsasnewcomputationalvariablescausesincreaseincomputationalcost.Forasinglephysicalvariable,wehavetomemorizeboththePVforeachvertexandVIAforeachgridcell.AnincreaseinCPUisalsoobserved.Allthesedependonthetopologyofthegridelements.Adetailedcomparisonwiththeconventionalfinitevolumemethodwillbeshownlater.Itrevealsthatthepresentmethodismoresuperiorregardingthecompromisebetweennumericalaccuracyandcomputationalcost.

    Next,wediscussthespatialdiscreteschemesateachsub-stepindetails.

    1.3 Scheme for Advection-diffusion Equation

    The advection-diffusion equation in 2D is written in conservative form as

    ?φ/?t=-·(φu)+ν2φ

    (17)

    whereφis the physical quantity, which stands for eitheruorvin 2D Navier-Stokes equations. Remembering that all terms on the right hand side of (17) are known at each time level, we omit the superscriptmhereafter unless it is needed.

    In the present method, two types of moments, i.e. the volume integrated average (VIA) and the point value (PV) of the physical fieldφ, are treated as the prognostic variables and updated separately. Their governing equations can be immediately obtained from definition (6) and (17), i.e.

    (18)

    forVIAmomentand

    (19)

    forPVmoment.NotethatwehaveusedGaussdivergencetheoremandassumedaconstantkinematicviscositytoyield(18).

    Next,wedescribethespatialdiscretizationforthetermsontherighthandsidesof(18)and(19).

    1.3.1AdvectionFlux

    The total advection flux for cellΩiis approximated by the summation of those across each boundary segment,

    (20)

    The line-integrated average ofφalong edgeΓijis not continuous and has different values for the two neighboring cells sharingΓij. We choose the upwinding side value according to the hyperbolic feature of the advection equation,

    (21)

    whereΦi updenotes the reconstruction function (12) or (15) over the upwinding cell, i.e.

    (22)

    ItshouldbenotedthattheSimpsonquadratureformulain(21)isexactforreconstruction(12)or(15).Toshowthis,wegiveexplicitlytheline-integratedaverageofΦialong edgeΓijas

    (23)

    1.3.2 Diffusion Flux

    In a similar way, the total diffusion flux for cellΩiis approximated by the summation of those across each boundary edge,

    ∮Γi(n·φ)ij|

    (24)

    (25)

    (26)

    1.3.3GradientOperatorintheAdvectionTerm

    The PV moment at the vertices (θij) of the triangular mesh elementΩi,φij(j=1,2,3), is predicted from the differential form equation (19), where the gradients of the advection terms are computed from a weighted upwinding scheme,

    (27)

    for derivative with respect to xand

    (28)

    forderivativewithrespecttoy.Here,Ωk(k=1,2,…,K)representtheunionofcellsthatsharevertexθij,andΦkthereconstructionfunctions(12)or(15)oncellΩk.TheweightΩkiscomputedby

    (29)

    1.3.4DiffusionOperator

    We denote again byΩk(k=1,2,…,K) the union of cells that share vertex (θij). Given the net diffusion fluxes for these cells calculated by (24), the point wise value of the diffusion term atθijcan be simply obtained from the Time-evolution converting (TEC) formula described in [16, 19]. To be more precise, the time tendency of VIA in this case is computed by

    (30)

    whichisalreadyobtainedby(24).

    ThetimetendencyofthePVduetotheLaplaceoperatoristhencomputedfromtheTECformulabasedontheleastsquareminimizationdescribedinappendixBin[23],whichyields

    ν(2φ)ij=δtφij=TEC

    (31)

    1.3.5TimeIntegrationScheme

    The semi discrete equations (18) and (19) are used to update the VIA and PV moments. We summarize these equations into a form of ordinary differential equation,

    (32)

    whereL(φ)standsforthespatialapproximationsdiscussedabove.

    Giventhesolutionφmattimeleveltm,weusetheRunge-Kuttatimeintegrationschemestopredictthesolutionφ*fortheadvection-diffusionequation.BothsecondandthirdorderRunge-Kuttaschemescanbeused.ThethirdorderTVDRunge-Kuttatimeintegrationmethod[24]isappliedfortimeintegrationinthispaper.Wegivetheschemeasfollows.

    (33)

    whereΔt=tm+1-tmisthetimeintegrationinterval.

    InthecontextofincompressibleNavier-Stokesequations,theaboveprocedureappliescomponent-wiselytogettheintermediatevelocityfieldu*.

    1.4 Scheme for Pressure Poisson Equation

    In the present formulation, we only use the VIA moment for pressure. The Poisson equation (4) is recast in an integral form.

    (34)

    Discretizing (34) over cell Ωiyields

    (35)

    Theunitvectorofrijisdenotedbyeij=(exij,eyij)=rij/|rij|.

    ThelinearinterpolationfunctionovertwoneighboringcellsΩiandΩijisthenwritteninthefollowingform,

    (36)

    (37)

    (38)

    From(37)and(38),withsomealgebraicmanipulation,wehave

    (39)

    Following[25, 26],weconsideracorrectiontothenon-orthogonalityofthemesh.WedecomposethenormalvectorofedgeΓijasfollows,

    (40)

    wheren‖ijrepresentsavectorco-linearwithedgeΓij.Thepressuregradienttermin(35)isthensplitintotwoparts,i.e.theorthogonalpartandthenon-orthogonalcorrectionpart,

    (41)

    Asadoptedin(17),wecalculatetheorthogonalcomponentimplicitlyusingthevaluesatlevelm+1andthenon-orthogonalcorrectionexplicitlywiththevaluesatlevelm,

    (42)

    Thus,Poissonequation(35)forpressureisfinallywrittenas

    (43)

    where

    and

    1.5 Projection of the Velocity Field

    As the final step of the solution procedure, the velocity field must be projected onto a divergence-free subset. From the pressure field computed above, we firstly calculate the pressure gradients over each boundary edge by

    (44)

    and

    (45)

    TheVIAofvelocitycomponentsarethenupdatedby,

    (46)

    and

    (47)

    GiventheincrementsofVIAfrom(46)and(47)ontheunionofcells(Ωk,k=1,2,…,K)thatsharevertex(θij),weupdatethePVsofvelocityattheverticesagainbythetime-evolutionconverting(TEC)formulainappendixBas

    (48)

    and

    (49)

    1.6 Summary of the Numerical Procedure

    In order to allow the users to follow the algorithm easily, we summarize again the solution procedure as the following steps.

    1.7 Extension of the Numerical Procedure

    All the numerical procedures in 2D described above can be extended to 3D in a straightforward manner. Here, we only present the 3D multi-moment reconstruction for tetrahedral mesh element, presuming that the rest of the 3D formulation can be derived by analogizing the corresponding component in 2D.

    Fig.2 Tetrahedral mesh element for 3D.

    We use the tetrahedral element for three dimensions. Shown in Fig. 2, cellΩi(i=1,…,Ne) has four verticesθij(j=1,2,3,4) located at (xi1, yi1), (xi2, yi2), (xi3, yi3)and(xi4,yi4).

    Inasimilarway,thevolume-integratedaverage(VIA)andpoint-value(PV)attheverticesofaphysicalvariableφ(x,y,z,t)aredefinedas:

    (50)

    The3Dpiecewisereconstructionpolynomialforphysicalfieldφ(x,y,z)incellΩiinthelocalcoordinate(ξ,η,ζ)systemiscastintoabasisfunctionformintermsofmultiplemomentsas,

    φi(ξ,η,ζ)=ψ1φi 1+ψ2φi 2+ψ3φi 3+ψ4φi 4+

    (51)

    whereφξi,φηiandφξiare the partial derivatives at the cell center, and the basis functions read

    (52)

    ψξ=ξ-η-ζ+ξη+ξζ+ηζ-ξ2+η2+ζ2

    ψη=η-ξ+ζ+ξη+ξζ+ηζ+ξ2-η2+ζ2

    ψξ=ζ-ξ-η+ξη+ξζ+ηζ+ξ-ζ2

    Itisnotedthatthebasisfunction(52)aredeterminedfromthefollowingconstraintconditionsintermsofthemultiplemoments,

    2 Numerical Results

    We present some numerical tests to show the accuracy and robustness of the numerical method presented in this paper. In order to quantify the numerical errors, we defineL1andL2errors as follows,

    (54)

    and

    (55)

    where φniandφeidenotenumericalandexactsolutionsrespectively.

    2.1 Advection of a Sine Wave

    To evaluate the convergence rate of the advection scheme presented in section 1.3, we computed the advection transport of a sine function as in [27] with gradually refined grids. The advected profile is initially defined as

    φ0(x,y)=sin2π(x+y)

    (56)

    overa[0,1]×[0,1]computationaldomain,theperiodicboundaryconditionisimposedinbothxandydirections.

    Aconstantanduniformadvectionvelocityisspecified

    u=1.0,v=1.0

    (57)

    NumericalexperimentswereconductedongraduallyrefinedgridsgeneratedbyDelaunayalgorithmwithdoublyincreasedresolution.ThetimestepofΔtisusedthroughoutallcomputations.

    Table 1 Comparison of errors and convergence rates of different advection schemes

    TheL1errors and the convergence rates of VPM and other standard schemes att=1.0 are given in Table 1 for grids of different resolutions.

    It is observed that the presented scheme is of 3th order accuracy. Because the multi-moment reconstructions is of second order, the VIA is theoretically expected to be of third order accuracy, which is justified by the numerical output. Other standard schemes widely used for unstructured grids show convergence rates less than 2nd order, among which the QUICK scheme is more accurate for this smooth-profile test problem. Moreover, a comparison between the errors of VPM and standard schemes reveal a large improvement in numerical accuracy. On the grid of 57 518 elements, for example, theL1error of VPM is only 3% of the QUICK scheme.

    2.2 Solid Rotation of a 2D Cone

    It is well known that numerical solutions on unstructured grid depend on the quality of computational grid. In this test, we examine the robustness of the advection scheme to the quality of computational grid. A 2D cone of the initial distribution specified by

    (58)

    over [0,1]×[0,1] is transported with a rotational velocity field defined by u=-2π(y-0.5)andv=2π(x-0.5).

    (a) Grid A: a mesh generated by Delaunay algorithm

    (b) Grid B: a mesh where a region has heavily distorted triangular elements with bas conditionin orthogonality, skewness and uniformityFig.3 Computational meshes for advection test.

    Weusetwounstructuredgridswithtriangularelements.AsshowninFig.3,gridAisgeneratedbytheDelaunayalgorithmandhasgoodquality,whilegridBhasaregionwherethemeshelementsaredistortedwithlargeskewnessandhighaspectratio.ThenumericalresultsoftheVPMschemeafteronerevolutionofrotationareshowninFig.4.Itisfoundthatthedegradationinmeshqualitydoesn’tsignificantlyaffectthenumericalresults.

    (a) Grid A

    (b) Grid BFig.4 Numerical results of VPM scheme with the solid rotation advection tests on grid A and grid B.

    (a) Grid A

    (b) Grid BFig.5 Same as Fig.4 but by the QUICK scheme.

    Forcomparison,wealsoincludethenumericalresultsfromotherstandardadvectionschemesusedinconventionalFVMcodes,suchastheQUICKscheme[28],Superbee-TVDscheme[29]andMUSCLscheme[2-3],whichareavailableintheOpenFoam[30]platform.Figs. 5, 6and7displaythecorrespondingoutputsoftheseschemesontwogrids.

    (a) Grid A

    (b) Grid BFig.6 Same as Fig.4 but by the Superbee TVD scheme.

    (a) Grid A

    (b) Grid BFig.7 Same as Fig.4 but by the MUSCL scheme.

    ComparedagainstFig.4,weobservethattheVPMschemeisthemostaccurateonbothgrids.Moreimportant,theconventionalschemesaremoresensitivetothemeshquality,whosenumericalresultslookremarkablyworseongridB.

    Toquantifythisobservation,wegiveinTable2theL2errorsonbothAandBgridsforVPMmethodandotherstandardfinitevolumeschemeswiththe“degradationrate”definedby

    (59)

    As an indicator of the robustness to the computational grid, a smaller value of the degradation rate shows a better robustness in respect to the quality of mesh elements.

    We can see that having the smallest degradation rate, the VPM scheme is the most robust one with regard to the computational grid, and thus retains the numerical accuracy even on a grid of worse quality. It is very sensible if we consider that in the present scheme both the cell average and vertex value are updated, which compensates the loss of the information due to the worse nonorthogonality and skewness of the mesh.

    2.3 Taylor Vortex Problem

    To evaluate the accuracy of the whole incompressible fluid solver, we computed the Taylor vortex problem [9, 11]. An analytical solution for this problem isavailable as

    (60)

    (61)

    ( 62 )

    where ReisReynoldsnumber.WeuseRe=100inthisexample.

    Wecomputedthistestproblemover[0,1]×[0,1]domainwiththeperiodicalboundarycondition,usinggridsofdifferentresolutions.Ourinteresthereistoevaluatethenumericalaccuracyinspatialdiscretization,andarelativelysmalltimesteppingincrement(Δt=10-4)isused.Weshowthenumericalerrorsandconvergenceratesforbothvelocityandpressurefieldsatt=0.1inTable3andFig.8.WealsoincludetheresultsoftheconventionalfinitevolumemethodwiththeQUICK,Superbee-TVDandMUSCLschemesastheadvectionsolvers.ItshouldbenotedthattheconventionalFVMmodelwasgeneratedbymergingthetemplatesprovidedbytheOpenFOAMsourcecodeintotheprojectionsolutionprocedureshowninsection1.

    ItisobservedthattheVPMmethodismoreaccuratethantheconventionalFVMmodelsregardingbothnumericalerrorsandconvergencerate.NumericalsolutioninvelocityofVPMshowsaconvergenceratehigher2.5.Intheresultsontherefinedmesh(57 670cells),duetothehighconvergenceratethenumericalerrorsofVPMmodelinbothvelocityandpressurearereduceddowntoonly1%ofthoseintheconventionalFVMmodels.Itisalsofoundthattheerrorsinvelocityareapproximatelyone-tenthofthoseinpressureinallresults.

    Table 3 Numerical errors on different grids and degradation rate

    (a) Velocity

    (b) PressureFig.8 Numerical errors and convergence rates for velocity and pressure.

    2.4 Remarks on Computational Cost

    Using both VIA and PV as the computational variables causes an increase in memory requirement. For a single physical field, we need to keep the PVs at the element vertices as the new degrees of freedom (DOFs) in addition to the VIAs as in the conventional FVM. It also leads to an increase in CPU consumption.

    In order to quantify the computational cost in comparison with the conventional FVM, we run the 2D advection test with different grid resolutions for 1000 steps on a PC with a single CPU (Intel(R) Xeon E5-2687W, 3.10 GHz). We give in Table 4 the DOFs for the memory requirement and elapse time for CPU consumption. It is observed that for the triangular mesh the number of DOFs increases about 51%. As described before, the spatial discretization can be computed by firstly finding and saving the numerical fluxes and the derivatives from the multi-moment reconstructions for all cells, and then updating VIA cell-wisely and PV point-wisely. It is noted that the PVs at cell vertices are readily for use in the calculation of the numerical fluxes, which simplifies the operations and saves CPU time. Shown in Table 4, the elapse time increase may reach 1.5 fold

    in comparison with the QUICK scheme. As shown in section 2.1, large improvement can be obtained by VPM scheme. From Table 1, we see that the numerical error of VPM on a 5 463-element grid is smaller than that of the QUICK scheme on a 14 412-element grid. It leads to an observation that for a given error level the VPM scheme is much more efficient in terms of both memory requirement and CPU consumption compared to the standard schemes due to its high accuracy and faster convergence.

    The computational cost of the full fluid solver is also evaluated using Taylor vortex test shown above. About 34% increase is seen in the memory requirement due the fact that we only use the VIA for pressure field. The increase in elapse time varies with grid resolution, which is smaller for a coarse grid and becomes larger toward a saturation value of 42% when the number of grid cells is larger than 104. The increase in CPU consumption of the whole fluid solver is less significant than that of the pure advection computation. This result is consistent with the well-known observation that the pressure Poisson equation consumes the large part of CPU time.

    It is observed that the numerical errors of VPM can be smaller than the conventional FVM by two orders of magnitude. Similar to the advection case, we can conclude that the VPM model is much superior in computational efficiency and requires much less hardware resource to reach a given error level in comparison with conventional FVM model. This justifies the practical utility of the VPM method.

    2.5 Lid Driven Cavity Flows with Different Shapes

    Incompressible viscous flows in closed cavities under the forcing of the upper lid moving at a constant speed provide a benchmark test set to verify numerical solvers. Following the standard test of Ghia et al.

    [31], other tests of different geometric configurations were suggested as well to evaluate the capability of numerical codes to deal with complex geometries. We show next the results of the VPM model for four cavities of different shapes, i.e. square, forward-step duct, skewed rectangle and semi-circle. The Reynolds number used in the following four test cases is 1000.

    2.5.1 Lid Driven Square Cavity Problem

    Table 4 Computational cost estimation for advection calculation of VPM in comparison with the QUICK scheme

    Fig.9 Geometrical configurations and computational meshes for 2D incompressible flow benchmark tests.

    (a) u profile along x=0.5 line

    (b) v profile along y=0.5 line

    2.5.2 Lid Driven Square Cavity Problem

    A cavity with a forward-step shown in the upper-right panel of Fig.9 is used in [32] to evaluate numerical solvers developed in general coordinates. Numerical results are given in Fig.12 with the reference velocity profiles provided in [32] which were computed on a 512×512 curvilinear grids. Shown in Fig.12 (b)-(c), the present model is able to reproduce adequate solutions even with much coarser mesh resolutions. The solutions on meshes of more than 2 704 cells agree well with the reference solution.

    2.5.3 Lid Driven Skew Cavity Problem

    Numerical example of viscous flow in skew cavities with inclined angles of 30° is found in [33] and [32]. Our numerical results are shown in Fig.13. The reference solution in [33] is computed on 320×320 structured grids. Our numerical solution converges to the reference solution with much coarser grids compared to other existing conventional FVM schemes.

    2.5.4 Lid Driven Semi-circular Cavity Problem

    We computed the lid-driven viscous incompressible flow in a semi-circular cavity (bottom-right panel of Fig.9) which has been extensively investigated in [34]. We use the results in [34] for comparison which were computed on a triangular mesh with a representative size of 1/128. Shown in Fig.14, our results converge to the reference results even with a relatively low mesh resolution.

    Fig.12 Numerical results of forward-step cavity flow problem. Displayed are streamline on a 7538-cell mesh (a),the u profile along x=0.75 line (b) and v profile along y=0.75 line (c).

    Fig.13 Numerical results of a 30° inclined skew cavity flow problem. Displayed are streamline on a 1872-cell mesh (a),u profile along y=tan(30°)(x-0.5) line (b) and v profile along y=tan(30°/2) line (c).

    Fig.14 Numerical results of semi-circular cavity flow problem. Displayed are streamline on a 2266-cell mesh (a),u profile along x=0.5 line (b) and v profile along y=-0.25 line (c).

    2.6 3D Lid Driven Cubic Cavity Problem

    As a verification of the 3D code, we simulated a 3D lid driven flow in a unit cube[-0.5,0.5]×[-0.5,0.5]×[-0.5,0.5]. Following [35], we imposed a constant velocityv(-0.5,y,z)=1 on surfacex=-0.5 and computed this test using tetrahedral grids of different resolutions. The velocity component inydirection (v) along centerline (x,0,0) and that inxdirection (u) along centerline (0,y,0) are plotted in Fig.15. For comparison, we also include the numerical results in [35] as a reference solution which are solved by a Chebyshev-collocation method with 96×96×64 Gauss-Lobatto points. It is seen that the present solver converges quickly to the reference solution.

    (a) u profile

    (b) v profileFig.15 Numerical results of 3D lid driven cubic cavity. Displayed are u profile along centerline (x,0,0) (a) and v profile along centerline (0,y,0) (b). The reference results of [35] was computed by Chebyshev-collocation method with 96×96×96 Gauss-Labatto points.

    3 Conclusion Remarks

    We have presented and evaluated a novel numerical solver forincompressible Navier-Stokes equations on triangular and tetrahedral unstructured meshes by using the multi-moment finite volume formulation. The numerical method, so-called VPM, treats the point value (PV) at the cell vertex as a new computational variable in addition to the volume integrated average (VIA) value that is the only computational variable in the conventional finite volume method. VIA is solved via a finite volume formulation of flux form, and is thus numerically conserved. PV is computed point-wisely based on the differential form of the governing equations which need not to be numerically conservative but can be solved efficiently. The numerical formulation can be very easily implemented on unstructured grids. With multiple moments, more DOFs can be used for each grid cell and high order reconstruction can be built on a compact stencil to calculate the numerical flux and derivatives for spatial discretization, which appears to be particularly important to unstructured grids. Another advantage of the present method is that there is not any arbitrariness in choosing the neighboring cells for the reconstructions.

    As shown in this paper, when applied to incompressible fluid dynamics, VPM model causes about 30%-40% increase in the memory requirement and 40%-50% increase in CPU time. Nevertheless, a large leap in improving numerical accuracy and robustness is achieved. Our numerical results show that the numerical errors of VPM can be smaller than the conventional FVM by two orders of magnitude. The numerical experiments reveal that the numerical results of the present method converge to the reference solutions even with the relatively coarse grid resolutions. Consequently, the VPM model is much superior in computational efficiency and requires much less computer resource to reach a given error level in comparison with conventional FVM models. Moreover, the numerical solutions of the VPM model are less dependent on the quality of computational grids. All these justify the practicability of the VPM method in real-case applications.

    The present formulation uses only cell average and point values at cell vertices as the unknown DOFs for triangular (2D) and tetrahedral (3D) elements. We have also applied the same idea to unstructured grids with other elements, such as quadrilateral (2D) and hexahedral (3D) elements, and obtained very promising results, which will be reported soon.

    Higher order formulations for unstructured grids with other types of moments need further exploration. Given the DG formulation as a standard track, how to balance the algorithmic cost and the solution quality, which is always problem-dependent, should be a key in future practices. To sum up, with a modest increase in computational complexity and cost, the present VPM method is able to achieve significant improvements in accuracy and robustness in comparison with conventional finite volume method. Thus, it provides a practical solver for incompressible viscous flows which well balances the numerical accuracy and computational complexity.

    [1]Friedrich O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids[J]. J. Comput. Phys. 1998, 144: 194-212.

    [2]Van Leer B. Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection[J]. J. Comput. Phys., 1977, 23: 276-299.

    [3]Van Leer B. Towards the ultimate conservative difference scheme, V: A second order sequel to Godunov’s method[J]. J. Comp. Phys., 1979, 32: 101-136.

    [4]Chorin A J. Numerical Solution of the Navier-Stokes equations[J]. Math. Comp., 1968, 22: 745-762.

    [5]Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface[J]. Physics of Fluids, 1965, 8: 2182-2189.

    [6]Patankar S V, Spalding D B. A calculation procedure for heat and mass transfer in three-dimensional parabolic flows[J]. Int. J. Heat and Mass Transfer, 1972, 15: 1787-1806.

    [7]Van Doormaal J P, Raithby G D. Enhancements of the SIMPLE method for predicting incompressible fluid flows[J]. Num. Heat Transfer, 1984, 7: 147-163.

    [8]Issa R I. Solution of implicitly discretized fluid flow equations by operator splitting[J]. J. Comput. Phys., 1986, 62: 40-65.

    [9]Shahbazi K, Fischer P, Ethier C. A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations[J]. J. Comput. Phys., 2007, 222: 391-407.

    [10]Hesthanven J, Warburton T. Nodal discontinuous Galerkin Methods[M]. Springer, 2008.

    [11]Ferrer E, Willden R. A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations[J]. Comput. and Fluids, 2011, 46: 224-230.

    [12]Steinmoeller D T, Stastna M, Lamb K G. A short note on the discontinuous Galerkin discretization of the pressure projection operator in incompressible flow[J]. J. Comput. Phys., 2013, 251: 480-486.

    [13]Yabe T, Aoki T. A universal solver for hyperbolic-equations by cubic-polynomial interpolation. 1. One-dimensional solver[J]. Comput. Phys. Commun., 1991, 66: 219-232.

    [14]Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis[J]. J. Comput. Phys., 2001, 169: 556-593.

    [15]Xiao F, Yabe T. Completely conservative and oscillation-less semi-Lagrangian schemes for advection transportation[J]. J. Comput. Phys, 2001, 170 : 498-522.

    [16]Xiao F. Unified formulation for compressible and incom-pressible flows by using multi integrated moment method: one-dimensional inviscid compressible flow[J]. J. Comput. Phys., 2004, 195: 629-654.

    [17]Xiao F, Ikebata A, Hasegawa T. Numerical simulations of free-interface fluids by a multi integrated moment method[J]. Comput. Struct., 2005, 83: 409-423.

    [18]Ii S, Shimuta M, Xiao F. A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments[J]. Comput. Phys. Comm., 2005, 173: 17-33.

    [19]Xiao F, Akoh R, Ii S. Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incom-pressible flows[J]. J. Comput. Phys., 2006, 213: 31-56.

    [20]Ii S, Xiao F. CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation[J]. J. Comput. Phys., 2007, 222: 849-871.

    [21]Akoh R, Ii S, Xiao F. A CIP/multi-moment finite volume method for shallow water equations with source terms[J]. Int. J. Numer. Method in Fluid, 2008, 56: 2245-2270.

    [22]Chen C G, Xiao F. Shallow water model on spherical-cubic grid by multi-moment finite volume method[J]. J. Comput. Phys., 2008, 227: 5019-5044.

    [23]Xie B, Ii S, Ikebata A, et al. A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids: Volume-average/point-value formulation [J]. Journal of Computational Physics, 2014, 277: 138-162.

    [24]Shu C -W. Total-variation-diminishing time discretizations[J]. SIAM J. Sci. Stat. Comput., 1988, 9: 1073-1084.

    [25]Rossi R. Direct numerical simulation of scalar transport using unstructured finite-volume schemes[J]. J. Comput. Phys., 2009, 229: 1639-1657.

    [26]Juretic' F, Gosman A D. Error analysis of the finite-volume method with respect to mesh type[J]. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57(6): 414-439.

    [27]Hu C, Shu C -W. Weighted essentially non-oscillatory schemes on triangular meshes[J]. J. Comput. Phys., 1999, 150: 97-127.

    [28]Leonard B P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation[J]. Comput. Methods Appl. Mech. Eng., 1979, 19: 59-98.

    [29]Roe P L. Some contributions to the modeling of discontinuous flows[R]. Springer Verlag: Lectures in Applied Mathematics, 1985, 22: 163-193.

    [30]Jasak H. OpenFOAM: Open source CFD in research and industry[J]. Int. J. Naval Archit. and Ocean engin., 2009, 1: 89 -94.

    [31]Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. J. Comp. Phys., 1982, 48: 387-411.

    [32]Oosterlee C W, Wesseling P, Brakkee E. Benchmark solutions for the incompressible Navier-Stokes equations in general co-ordinates on staggered grids[J]. Int. J. Numer. Method in Fluid, 1993, 17: 301-321.

    [33]Demird?i I, Lilek ?, Peri M. Fluid flow and heat transfer test problems for non-orthogonal grids: Bench-mark solutions [J]. International Journal for Numerical Methods in Fluids, 1992, 15(3): 329-354.

    [34]Glowinski R, Guidoboni G, Pan T W. Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity[J]. J. Comput. Phys., 2006, 216: 76-91.

    [35]Albensoeder S, Kuhlmann H C. Accurate three-dimensional lid-driven cavity flow[J]. J. Comp. Phys., 2005, 206: 536-558.

    0258-1825(2016)02-0252-15

    基于非結(jié)構(gòu)網(wǎng)格的不可壓N-S方程多矩有限體積法

    Bin Xie*, Peng Jin, Feng Xiao

    (Department of Energy Science, Tokyo Institute of Technology, 226-8502, Japan)

    提出了一種基于三角形及四面體非結(jié)構(gòu)網(wǎng)格的有限體積法(FVM),用以魯棒且精確地求解不可壓粘性流動問題。與傳統(tǒng)的FVM方法僅將體積分平均值(VIA)作為計算變量的做法不同,本文提出的方法將VIA及點(diǎn)值(PV)同時作為計算變量并在每個迭代步進(jìn)行計算更新。VIA以通量形式進(jìn)行計算以確保數(shù)值守恒,PV可以通過控制方程的不同形式進(jìn)行求解更新,無需守恒,因此可以采用非常高效的方法進(jìn)行求解。將PV作為增加的變量使得緊致網(wǎng)格模板得以實現(xiàn)更高階精度的重構(gòu),而且由此獲得的數(shù)值模型對于非結(jié)構(gòu)網(wǎng)格變得更魯棒。本文針對二維/三維的三角形/四面體非結(jié)構(gòu)網(wǎng)格提出了數(shù)值格式,給出了幾個基準(zhǔn)測試算例,驗證了本文提出的數(shù)值方法在采用非結(jié)構(gòu)網(wǎng)格求解不可壓粘性流動問題時的精確性和魯棒性。

    有限體積法; 非結(jié)構(gòu)網(wǎng)格; 魯棒性; 精度; 三角形/四面體網(wǎng)格; 不可壓流動;多矩; 緊致模板

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0013

    *JSPS Researcher, Department of Energy Science; Xie.aa@m.titech.ac.jp

    format: Xie B, Jin P, Xiao F. A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids[J]. Acta Aerodynamica Sinica, 2016, 34(2): 252-266.

    10.7638/kqdlxxb-2016.0013. Xie B, Jin P, Xiao F. 基于非結(jié)構(gòu)網(wǎng)格的不可壓N-S方程多矩有限體積法(英文)[J]. 空氣動力學(xué)學(xué)報, 2016, 34(2): 252-266.

    Received date: 2015-12-15; Revised date:2016-02-10

    猜你喜歡
    四面體魯棒魯棒性
    四面體小把戲
    R3中四面體的幾個新Bonnesen型不等式
    R3中四面體的Bonnesen型等周不等式
    荒漠綠洲區(qū)潛在生態(tài)網(wǎng)絡(luò)增邊優(yōu)化魯棒性分析
    基于確定性指標(biāo)的弦支結(jié)構(gòu)魯棒性評價
    基于學(xué)習(xí)的魯棒自適應(yīng)評判控制研究進(jìn)展
    目標(biāo)魯棒識別的抗旋轉(zhuǎn)HDO 局部特征描述
    基于非支配解集的多模式裝備項目群調(diào)度魯棒性優(yōu)化
    西南交通大學(xué)學(xué)報(2016年6期)2016-05-04 04:13:11
    基于Cauchy魯棒函數(shù)的UKF改進(jìn)算法
    欧美日本视频| 国产麻豆成人av免费视频| 免费高清视频大片| 哪里可以看免费的av片| a级毛片免费高清观看在线播放| 九九热线精品视视频播放| 亚洲性夜色夜夜综合| 99久久无色码亚洲精品果冻| 我要搜黄色片| 一夜夜www| 日日摸夜夜添夜夜爱| 男人的好看免费观看在线视频| 最近的中文字幕免费完整| 99久国产av精品| 观看免费一级毛片| 国产精品人妻久久久久久| 亚洲中文日韩欧美视频| 天天一区二区日本电影三级| 国产视频一区二区在线看| 午夜福利高清视频| av国产免费在线观看| 亚洲精品色激情综合| 国产精品精品国产色婷婷| 99久久无色码亚洲精品果冻| 成人av在线播放网站| 成年女人毛片免费观看观看9| 国产精品久久电影中文字幕| 久久久精品大字幕| 99久久九九国产精品国产免费| 久久久欧美国产精品| 成人亚洲欧美一区二区av| 日韩精品青青久久久久久| 一a级毛片在线观看| 日本精品一区二区三区蜜桃| 黄色视频,在线免费观看| 97热精品久久久久久| 国产真实乱freesex| 国产v大片淫在线免费观看| 国产高清三级在线| 日日摸夜夜添夜夜添av毛片| 黄色日韩在线| 国产精品一区二区性色av| 自拍偷自拍亚洲精品老妇| 久久婷婷人人爽人人干人人爱| 亚州av有码| 久久久精品94久久精品| 日韩av在线大香蕉| 国产真实乱freesex| 如何舔出高潮| 成人美女网站在线观看视频| 91狼人影院| 欧美激情久久久久久爽电影| 欧美+日韩+精品| 99视频精品全部免费 在线| 亚洲精品在线观看二区| 黄片wwwwww| 长腿黑丝高跟| 天美传媒精品一区二区| 美女cb高潮喷水在线观看| 亚洲成a人片在线一区二区| 精品午夜福利视频在线观看一区| 亚洲在线自拍视频| 内射极品少妇av片p| 成年女人看的毛片在线观看| 国产女主播在线喷水免费视频网站 | 午夜福利成人在线免费观看| 国产乱人偷精品视频| 成人精品一区二区免费| 亚洲最大成人中文| 两个人的视频大全免费| 亚洲激情五月婷婷啪啪| 热99在线观看视频| 丰满乱子伦码专区| 精品免费久久久久久久清纯| 最近在线观看免费完整版| 成年免费大片在线观看| 免费观看精品视频网站| 白带黄色成豆腐渣| 国产男靠女视频免费网站| 精华霜和精华液先用哪个| 九九久久精品国产亚洲av麻豆| 亚洲内射少妇av| 午夜亚洲福利在线播放| 俺也久久电影网| 中文字幕精品亚洲无线码一区| 老司机福利观看| 男女那种视频在线观看| 免费av观看视频| 亚洲精品一卡2卡三卡4卡5卡| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久亚洲av鲁大| 菩萨蛮人人尽说江南好唐韦庄 | 国产v大片淫在线免费观看| 成人综合一区亚洲| 日韩,欧美,国产一区二区三区 | 午夜福利成人在线免费观看| 国产精品一区二区免费欧美| 色5月婷婷丁香| .国产精品久久| 波多野结衣高清无吗| 国产蜜桃级精品一区二区三区| 欧美性猛交黑人性爽| 丝袜美腿在线中文| 久久精品夜色国产| 级片在线观看| 尾随美女入室| 久久精品91蜜桃| 国产精品无大码| 99在线人妻在线中文字幕| 免费观看人在逋| 国产亚洲av嫩草精品影院| 免费看av在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 免费观看精品视频网站| 少妇高潮的动态图| 男人舔奶头视频| 99热网站在线观看| 亚洲精品国产成人久久av| 亚洲精品久久国产高清桃花| 热99re8久久精品国产| 99热这里只有精品一区| 国产亚洲精品综合一区在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲真实伦在线观看| 丰满人妻一区二区三区视频av| 日韩成人av中文字幕在线观看 | 亚洲精华国产精华液的使用体验 | 国产精品久久久久久亚洲av鲁大| 日韩制服骚丝袜av| a级毛片a级免费在线| 99久久精品国产国产毛片| 人妻久久中文字幕网| 在线国产一区二区在线| av视频在线观看入口| 美女 人体艺术 gogo| 久久精品国产鲁丝片午夜精品| 特级一级黄色大片| 一区二区三区高清视频在线| 国产精品久久久久久精品电影| 丝袜美腿在线中文| 最近在线观看免费完整版| 久久久久久久久久久丰满| 免费av观看视频| 国产精品一区二区性色av| 国产高清激情床上av| 在线观看美女被高潮喷水网站| 亚洲国产精品成人久久小说 | 在线播放国产精品三级| 特级一级黄色大片| 亚洲中文字幕一区二区三区有码在线看| 精品人妻视频免费看| 国产av不卡久久| 夜夜爽天天搞| 欧美色欧美亚洲另类二区| 精品一区二区三区av网在线观看| 久久久久久久久久成人| 国产黄片美女视频| 日产精品乱码卡一卡2卡三| 长腿黑丝高跟| av卡一久久| 色av中文字幕| 小蜜桃在线观看免费完整版高清| 你懂的网址亚洲精品在线观看 | 国产 一区 欧美 日韩| 国产成人一区二区在线| 99久久久亚洲精品蜜臀av| 高清日韩中文字幕在线| 丝袜美腿在线中文| 麻豆av噜噜一区二区三区| 国产在线男女| 一区二区三区高清视频在线| 黑人高潮一二区| 18禁在线无遮挡免费观看视频 | 嫩草影视91久久| 亚洲av成人av| 听说在线观看完整版免费高清| 少妇猛男粗大的猛烈进出视频 | 听说在线观看完整版免费高清| 1024手机看黄色片| 99热全是精品| 麻豆av噜噜一区二区三区| 亚洲在线观看片| 国产高清不卡午夜福利| 2021天堂中文幕一二区在线观| 嫩草影院精品99| aaaaa片日本免费| 免费一级毛片在线播放高清视频| 寂寞人妻少妇视频99o| 在线免费观看的www视频| 99riav亚洲国产免费| 欧美高清性xxxxhd video| 欧美最新免费一区二区三区| 人人妻,人人澡人人爽秒播| 国产免费男女视频| 黄色一级大片看看| 中国美白少妇内射xxxbb| 午夜福利在线观看免费完整高清在 | 中文字幕精品亚洲无线码一区| 老女人水多毛片| 在线观看66精品国产| 久久精品久久久久久噜噜老黄 | 国产女主播在线喷水免费视频网站 | 欧美人与善性xxx| av在线观看视频网站免费| 精品免费久久久久久久清纯| 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 久久精品国产清高在天天线| 91久久精品国产一区二区三区| 午夜激情福利司机影院| 久久精品国产亚洲av涩爱 | 亚洲自拍偷在线| 综合色丁香网| 欧美成人精品欧美一级黄| 国产aⅴ精品一区二区三区波| av在线亚洲专区| 日韩一本色道免费dvd| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 97超碰精品成人国产| 亚洲成人中文字幕在线播放| 99国产精品一区二区蜜桃av| 在线播放国产精品三级| 精品熟女少妇av免费看| 波多野结衣高清作品| 精品人妻熟女av久视频| 免费看光身美女| 久久精品国产自在天天线| 欧美xxxx黑人xx丫x性爽| 大又大粗又爽又黄少妇毛片口| av在线观看视频网站免费| 亚洲自偷自拍三级| 欧美xxxx性猛交bbbb| 搞女人的毛片| 久久精品国产清高在天天线| 别揉我奶头~嗯~啊~动态视频| a级毛片免费高清观看在线播放| 欧美三级亚洲精品| 亚洲,欧美,日韩| 国内精品美女久久久久久| 亚洲一级一片aⅴ在线观看| 一本久久中文字幕| 国产aⅴ精品一区二区三区波| 国产精品亚洲一级av第二区| 日韩制服骚丝袜av| 性色avwww在线观看| 中文字幕人妻熟人妻熟丝袜美| 在线a可以看的网站| 日韩制服骚丝袜av| 18禁裸乳无遮挡免费网站照片| 国内久久婷婷六月综合欲色啪| 国产高清不卡午夜福利| 国产私拍福利视频在线观看| 日韩欧美精品免费久久| 国产又黄又爽又无遮挡在线| 高清午夜精品一区二区三区 | 不卡视频在线观看欧美| 日本色播在线视频| 一区二区三区四区激情视频 | 日本撒尿小便嘘嘘汇集6| 赤兔流量卡办理| 波多野结衣高清无吗| 丰满乱子伦码专区| 老司机影院成人| 亚洲三级黄色毛片| 精品一区二区三区人妻视频| 久久久久久国产a免费观看| 非洲黑人性xxxx精品又粗又长| 久久鲁丝午夜福利片| 久久热精品热| 久久精品综合一区二区三区| 麻豆乱淫一区二区| 国产毛片a区久久久久| 亚洲av.av天堂| 日韩亚洲欧美综合| 日韩欧美在线乱码| 美女免费视频网站| 国产成人影院久久av| 99热精品在线国产| 国产三级中文精品| 丝袜美腿在线中文| 日本一本二区三区精品| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 精品人妻一区二区三区麻豆 | 色哟哟·www| 啦啦啦啦在线视频资源| 三级经典国产精品| 亚洲av成人av| a级毛色黄片| 欧美最新免费一区二区三区| 精品久久国产蜜桃| 亚洲在线自拍视频| 97超视频在线观看视频| 最近最新中文字幕大全电影3| www日本黄色视频网| 秋霞在线观看毛片| 日韩一本色道免费dvd| 久久午夜亚洲精品久久| 亚洲中文字幕日韩| 成人无遮挡网站| 成人高潮视频无遮挡免费网站| a级毛片a级免费在线| 精品久久久噜噜| 国产精品久久久久久精品电影| 99久国产av精品| 日产精品乱码卡一卡2卡三| 亚洲欧美中文字幕日韩二区| 麻豆久久精品国产亚洲av| 97热精品久久久久久| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 成人精品一区二区免费| 久久久久久大精品| 麻豆一二三区av精品| 免费高清视频大片| 乱码一卡2卡4卡精品| 亚洲欧美成人综合另类久久久 | 精品无人区乱码1区二区| av在线蜜桃| 国产亚洲精品久久久com| 一级黄色大片毛片| 18禁裸乳无遮挡免费网站照片| 精品福利观看| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放 | 午夜激情福利司机影院| 97碰自拍视频| 午夜激情福利司机影院| 亚洲精品在线观看二区| 热99re8久久精品国产| 国产高潮美女av| 毛片女人毛片| 不卡一级毛片| 午夜精品在线福利| 亚洲中文字幕日韩| 99久国产av精品国产电影| 一级黄色大片毛片| 男人的好看免费观看在线视频| 亚洲av二区三区四区| а√天堂www在线а√下载| 国产精品亚洲美女久久久| 91久久精品国产一区二区三区| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 免费人成在线观看视频色| 亚洲av成人av| 免费人成在线观看视频色| 国产男人的电影天堂91| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 日本一本二区三区精品| 免费高清视频大片| 国产精品野战在线观看| 国产精品爽爽va在线观看网站| 赤兔流量卡办理| 欧美一区二区国产精品久久精品| 亚洲精华国产精华液的使用体验 | 午夜激情福利司机影院| 免费看a级黄色片| 99热这里只有是精品在线观看| 1000部很黄的大片| 美女内射精品一级片tv| 特级一级黄色大片| 亚洲av成人av| 国产v大片淫在线免费观看| 国产高清不卡午夜福利| 亚洲自偷自拍三级| 最新在线观看一区二区三区| 在线天堂最新版资源| 欧美日韩乱码在线| 亚洲人成网站高清观看| 在线观看一区二区三区| 午夜激情欧美在线| 在线天堂最新版资源| 日韩成人av中文字幕在线观看 | 精品午夜福利在线看| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 午夜福利在线观看吧| 国产精品不卡视频一区二区| 国产精品一及| 99久国产av精品| 亚洲av中文av极速乱| 春色校园在线视频观看| 看免费成人av毛片| 乱人视频在线观看| 国产精品电影一区二区三区| 国产男人的电影天堂91| 午夜视频国产福利| 中国国产av一级| 日日摸夜夜添夜夜添av毛片| 免费观看人在逋| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件| 人妻制服诱惑在线中文字幕| 国产精品久久视频播放| 亚洲欧美精品自产自拍| 午夜爱爱视频在线播放| 2021天堂中文幕一二区在线观| 女人被狂操c到高潮| 国产一区二区三区av在线 | 伦理电影大哥的女人| 夜夜爽天天搞| 久久精品91蜜桃| 老司机影院成人| 精品人妻偷拍中文字幕| 国产亚洲欧美98| 国内少妇人妻偷人精品xxx网站| 男女视频在线观看网站免费| 大香蕉久久网| 一本久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 黄色视频,在线免费观看| 国产精品不卡视频一区二区| 亚洲欧美日韩卡通动漫| 欧美区成人在线视频| 国内精品宾馆在线| 日韩人妻高清精品专区| 欧美3d第一页| 九九久久精品国产亚洲av麻豆| 日本在线视频免费播放| 亚洲熟妇中文字幕五十中出| 亚洲精华国产精华液的使用体验 | 成人二区视频| 亚洲欧美成人综合另类久久久 | 成年av动漫网址| 日韩欧美一区二区三区在线观看| 日韩大尺度精品在线看网址| 我的女老师完整版在线观看| 国产伦精品一区二区三区四那| 中文字幕熟女人妻在线| 久久久欧美国产精品| 亚洲av成人av| 免费看日本二区| 精品久久久久久久久久久久久| 午夜福利在线在线| 亚洲七黄色美女视频| 亚洲性久久影院| 女生性感内裤真人,穿戴方法视频| 极品教师在线视频| 九九爱精品视频在线观看| 真实男女啪啪啪动态图| 日韩欧美精品v在线| 成人性生交大片免费视频hd| 国产女主播在线喷水免费视频网站 | 国产爱豆传媒在线观看| 亚洲国产欧美人成| 日本一本二区三区精品| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 九九久久精品国产亚洲av麻豆| 亚洲久久久久久中文字幕| 热99在线观看视频| 中文字幕免费在线视频6| 看非洲黑人一级黄片| 免费看日本二区| 亚洲欧美清纯卡通| 成人二区视频| 99国产极品粉嫩在线观看| 九色成人免费人妻av| 国产色爽女视频免费观看| 日本 av在线| 亚洲av不卡在线观看| 亚洲美女黄片视频| 99热全是精品| 欧美又色又爽又黄视频| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 亚洲va在线va天堂va国产| 精品福利观看| а√天堂www在线а√下载| 搞女人的毛片| 欧美日韩乱码在线| 特级一级黄色大片| 欧美日韩乱码在线| 欧美绝顶高潮抽搐喷水| 综合色丁香网| 国产精品亚洲美女久久久| 九九热线精品视视频播放| 一级毛片aaaaaa免费看小| 亚洲国产欧美人成| 黄色配什么色好看| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 亚洲图色成人| 一进一出好大好爽视频| 国产综合懂色| 日韩三级伦理在线观看| 天堂网av新在线| 精品午夜福利在线看| 国产伦精品一区二区三区四那| 丰满乱子伦码专区| 久久久久久久久中文| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区 | 久久鲁丝午夜福利片| 嫩草影院新地址| 黄色一级大片看看| 狠狠狠狠99中文字幕| 成人高潮视频无遮挡免费网站| 国产成人a∨麻豆精品| 三级男女做爰猛烈吃奶摸视频| 毛片女人毛片| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区| 亚洲成人久久爱视频| 麻豆久久精品国产亚洲av| 一进一出抽搐动态| 国内精品美女久久久久久| 在线免费十八禁| 男女啪啪激烈高潮av片| 久99久视频精品免费| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| av中文乱码字幕在线| 久久久久性生活片| 日本五十路高清| 免费在线观看成人毛片| 日本五十路高清| 欧美丝袜亚洲另类| 精品人妻偷拍中文字幕| 最近2019中文字幕mv第一页| 欧美+亚洲+日韩+国产| 秋霞在线观看毛片| 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色| 午夜影院日韩av| 中出人妻视频一区二区| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播| 看非洲黑人一级黄片| 亚洲人成网站在线播| 国产蜜桃级精品一区二区三区| 亚洲av电影不卡..在线观看| 少妇被粗大猛烈的视频| 国产av一区在线观看免费| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 国产真实伦视频高清在线观看| 亚洲av电影不卡..在线观看| www.色视频.com| 啦啦啦观看免费观看视频高清| 久久久久久久午夜电影| 日韩在线高清观看一区二区三区| 久久韩国三级中文字幕| 12—13女人毛片做爰片一| 欧美中文日本在线观看视频| 深夜精品福利| 国产精品99久久久久久久久| 久久午夜亚洲精品久久| 少妇被粗大猛烈的视频| 精品久久久久久久人妻蜜臀av| 久久午夜福利片| 日本五十路高清| 国产在线精品亚洲第一网站| 狠狠狠狠99中文字幕| 久久久久久九九精品二区国产| 国产久久久一区二区三区| 九九热线精品视视频播放| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| eeuss影院久久| 可以在线观看毛片的网站| 国产一区二区激情短视频| 一个人看的www免费观看视频| 少妇熟女欧美另类| 久久久久久久久久黄片| 久久精品国产亚洲av涩爱 | 国产精品美女特级片免费视频播放器| 97碰自拍视频| 丝袜美腿在线中文| 午夜久久久久精精品| 99热网站在线观看| 天堂网av新在线| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 亚洲av五月六月丁香网| 麻豆国产av国片精品| 亚洲乱码一区二区免费版| 精品无人区乱码1区二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 18禁在线播放成人免费| 伦理电影大哥的女人| 亚洲av免费高清在线观看| 亚洲av中文av极速乱| 色av中文字幕| 美女黄网站色视频| 人人妻人人看人人澡| 日韩av在线大香蕉| 精品一区二区三区视频在线观看免费| 非洲黑人性xxxx精品又粗又长| 看非洲黑人一级黄片| 十八禁国产超污无遮挡网站| 国产欧美日韩精品亚洲av| 色5月婷婷丁香| 国产精品久久视频播放| 22中文网久久字幕| 国产精品久久久久久久久免| 免费电影在线观看免费观看| 国产伦精品一区二区三区四那| 搡老妇女老女人老熟妇| 成人特级黄色片久久久久久久| 亚洲成人久久爱视频| eeuss影院久久| 天堂网av新在线| 亚洲av一区综合| 九九在线视频观看精品| 一进一出抽搐动态| 国产不卡一卡二| 精品久久久噜噜|