• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Attitude Control of Multiple Rigid Bodies with Uncertainties and Disturbances

    2015-08-11 11:55:20YuanqingXiaNingZhouKunfengLuandYongLi
    IEEE/CAA Journal of Automatica Sinica 2015年1期
    關(guān)鍵詞:省賽投用賽項

    Yuanqing Xia,Ning Zhou,Kunfeng Lu,and Yong Li

    Attitude Control of Multiple Rigid Bodies with Uncertainties and Disturbances

    Yuanqing Xia,Ning Zhou,Kunfeng Lu,and Yong Li

    —Decentralized attitude synchronization and tracking controlfor multiple rigid bodies are investigated in this paper.In the presence of inertia uncertainties and environmental disturbances,we propose a class of decentralized adaptive sliding mode control laws.An adaptive control strategy is adopted to reject the uncertainties and disturbances.Using the Lyapunov approach and graph theory,it is shown that the controllaws can guarantee a group of rigid bodies to track the desired time-varying attitude and angular velocity while maintaining attitude synchronization with other rigid bodies in the formation.Simulation examples are provided to illustrate the feasibility and advantage of the control algorithm.

    Index Terms—Attitude control,attitude synchronization,sliding mode control(SMC),adaptive control.

    I.INTRODUCTION

    D Uring the past decades,the attitude synchronization of rigid bodies(spacecraft)has attracted a great deal of attention.Many techniques and results have been proposed in this research field and these can be classified as leader follower[1?4],virtual structure[5?6],behaviorbased[7?8],and graph-theoretical approach[9?13].Especially, the graph-theoretical approach has been introduced to study the cooperative control of multi-agent system using limited local interaction[14]and also has been applied to attitude synchronization[10],but most of the results under the assumption that the communication links are undirected i.e., bidirectional.In the practical application,the communication topology may be directed,such as in unidirectional satellite laser communication system.Furthermore,compared with the undirected communication topology,the control problem of attitude synchronization under directed communication topology is more challenging.

    It is well known that the attitude dynamics of rigid body is coupled and highly nonlinear,which is the main obstruction to design a high precision attitude control law.Many nonlinear control methods have been employed to improve the closed-loop performances recent years,such as optimalcontrol,sliding mode control,adaptive control,etc.As the sliding mode control(SMC)is an effi cient control technique which is competent for systems with profound nonlinearity and modeling uncertainty,it has been applied in many previous works to rigid body attitude control problem[15?16]. The adaptive control is also a valid method to overcome the parametric uncertainty.An adaptive attitude control law was designed by Chen and Huang to enhance the ability of disturbance rejection of the closed-loop system[17].With the combination of the sliding mode controland adaptive control, Wu and Wang proposed a decentralized adaptive sliding mode control law to ensure that the multispacecraft sliding-mode surface were reached asymptotically,then the attitude error and angular velocity error of each spacecraftconverged to zero asymptotically[1?8].

    In this paper,we consider the attitude synchronization and tracking problems for multiple rigid bodies.First of all,a sliding-mode vector is designed with two parameters for attitude tracking and attitude synchronization,which may allow the designer to prioritize between station-keeping behavior and formation-keeping behavior.As the inertia uncertainties and environmental disturbances are assumed to be bounded with unknown constants,an adaptive control strategy is introduced to reject them.Two decentralized control laws are proposed to ensure thateach rigid body attains the desired time-varying attitude and angular velocity while maintaining attitude synchronization with other rigid bodies in the formation.In the proposed controllaws,the information flow among rigid bodies includes the absolute inertial attitude and angular velocity, the desired attitude and angular velocity,and controlinput,as wellas the nominalinertia matrix.Each rigid body also needs to know its own information.In the singular rigid body attitude control,itdoes notconsider the synchronization problem,and its own information is enough for the control law design.

    The organization of this paper is as follows.In Section II, based on unit quaternion,the rigid body attitude kinematics and dynamics equations are derived.Furthermore,the preliminary notions in graph theory,lemmas and control objective are assembled.In Section III,a decentralized sliding mode control strategy is proposed;also the convergence analysis of the resulting closed-loop system is performed.In Section IV,the modified control scheme is proposed to alleviate the chattering phenomenon.Simulation examples are provided to illustrate the feasibility and superiority of the controlalgorithm in Section V.Finally,conclusion and future work are given in Section VI.

    II.PROBLEM STATEMENT

    A.Rigid Body Attitude Kinematics and Dynamics

    In this paper,the attitude of each rigid body is represented by the unitquaternion representation withoutsingularities.Theattitude kinematics and dynamics of each rigid body in terms of the unit quaternion are given by

    where Ji=JTidenotes a positive definite inertia matrix of the i th rigid body.I∈R3×3is the identity matrix.ωi∈R3denotes the body angular velocity of the i th rigid body with respectto the inertialframe expressed in the body frame ofthe i th rigid body.ui∈R3denotes the control torque.τi∈R3denotes the disturbance torque.qi∈R3and q0,i∈R are the vector partand scalar part of the unitquaternion thatrepresent orientation of the body-fixed frame with respectto the inertial frame.The notation x×for any vector x=£x1x2x3?T∈R3is used to denote the skew-symmetric matrix:

    In the case of tracking a desired rotationalmotion,the problem formulation is similar to that in the related work[18].The desired rotational motion of the i th rigid body is described by the attitude motion of a frame D,whose orientation with respectto the inertialframe is specified by the unitquaternion (ξi,ξ0,i)∈R3×R that is subject to the constraintξTiξi+ξ20,i=1.ωdi=ωdi(t)∈R3is the desired angular velocity of the i th rigid body with respect to frame D.

    The related assumptions aboutthe dynamics of the attitude synchronization and tracking systems are given as follows, which will be used in the further analysis in Sections III and IV.

    Assumption 1.Denote Ji= ˉJi+ ?Ji,whereˉJiand?Jiare the nominal part and uncertain part of the inertia matrix of the i th rigid body,respectively.It is assumed that the inertia matrix uncertainties are bounded and satisfy‖?Ji‖≤Δi.

    Assumption 2.All the environmental disturbances due to gravitation,solar radiation pressure,magnetic forces and aerodynamic drag are assumed to be bounded.Thus,the external disturbances are assumed to satisfy‖τi‖≤ˉτi.

    Assumption 3[19].The control law of each rigid body might use its neighbors'angular velocity errors and error quaternions in the cooperative attitude control problem,and error quaternion is bounded from its definition.Thus,the control torque uiis assumed to satisfy

    whereΔi,ˉτiandζi,jare unknown nonnegative constants for i=1,···,n,j=0,1,2,Nirepresents the i th rigid body and all the rigid bodies with which the i th rigid body can communicate,and‖·‖denotes the standard Euclidean vector norm or induced matrix norm,as appropriate.

    Assumption 4.There exist two constantsˉω1>0 andˉω2>0 such that‖ωdi(t)‖≤ ˉω1and‖˙ωdi(t)‖≤ ˉω2for all t≥0.

    Denote the error quaternion(ηi,η0,i)∈R3×R as the i th rigid body orientation of the body-fixed frame with respect to frame D.These error quaternions are subjectto the constraint=1 and are related to(ξi,ξ0,i)and(qi,q0,i)by the quaternion multiplication rule[10].The corresponding rotation matrix Ri=Ri(ηi,η0,i)∈S O(3)is given by Ri=(η20,i?the angular velocity errorω?iof the i th rigid body can be written as

    From(1)~(4),we can obtain the attitude-tracking error dynamics as follows

    It can be seen from the above error system(5)and(6)that the rigid body attitude tracking problem is equivalent to the problem of asymptotic stabilization of?ωiandηi.

    B.Algebraic Graph Theory

    In this paper,a general directed communication topology is adopted to describe the interaction between neighboring rigid bodies.Suppose G(V,E,A)is a directed graph,which consists ofa nonempty finite setof N nodes V={υ1,···,υn},a setof edges or arcs E?V×V and an associated weighted adjacency matrix A=[aij]∈RN×N.In our research,an arc(υi,υj) denotes that rigid bodyυican obtain the information of rigid bodyυj.It is assumed that the graph has no self-loops,i.e., (υi,υj)∈E impliesυi/=υj.The adjacency matrix A of G is a square matrix of size n with entries

    where the nonnegative ai,jwill be chosen to be the control weightparameter for attitude synchronization between the i th and j th rigid bodies subsequently.In addition,we can note that ai,i=0 from(8).

    Define the in-degree matrix D of G,which is a diagonal matrix with diagonal entries

    and the Laplacian matrix L∈Rn×nof graph G[20]

    Remark 1.Note that a graph with the property that for any(υi,υj)∈ E,the edge or arc(υj,υi)∈ E is said to be undirected,which corresponds to having bidirectional measurementin the application ofrigid body attitude synchronization.Since the assumption ai,j=aj,iis valid in the undirected communication topology,the graph Laplacian matrix L becomes a symmetrical matrix,which makes the stability analysis of cooperative control system easier.However,in the directed communication topology,the graph Laplacian matrix L is generally not symmetric because ai,j/=aj,i.

    C.Lemmas

    Lemma 1[20].For a directed graph G with N nodes,all the eigenvalues of the weighted Laplacian matrix L have a nonnegative real part.

    Lemma 2[21].If U∈Rm×m,V∈Rn×n,X∈Rm×m, and Y∈Rn×n,then the following arguments are valid:

    2)If U and V are invertible,then(UV)?1=U?1V?1.

    3)Letλ1,···,λmbe the eigenvalues of U andμ1,···,μmbe those of V.Then the eigenvalues of UV areλiμj(i= 1,···,m and j=1,···,n).

    Lemma 3[22].If n>0,m>0,and a∈R,b∈R,then for any constant c>0,

    Definition 1[24].Consider the nonlinear system ˙x=f(x, u),where x is a state vector,and u is the input vector.The solution is practically finite-time stable(PFS)if for all x(t0) =x0,there existε>0 and T(ε,x0)<∞,such that‖x(t)‖<ε,for all t≥t0+T.

    Lemma 5[24].Consider the nonlinear system ˙x=f(x,u) defined above.If there exist continuous function V(x),scalar λ>0,α∈(0,1)and 0<η<∞such that

    then the trajectory of system ˙x=f(x,u)is PFS.

    D.Control Objective

    In this paper,in the presence of inertia uncertainties and environmental disturbances,we aim at tracking and attitude stabilization in rigid body formation with bounded energy.The tracking error of the i th rigid body is defined by

    where k is a positive constant.The formation-keeping attitude state error between the i th and j th rigid bodies is defined by

    The multiple rigid bodies sliding mode vector is developed and defined as

    where si∈R3×1,and it is given by

    whereˉJiis the nominal inertia matrix of the i th rigid body, scalar bi> 0 is the control weight parameter for attitude tracking which is used to keep the i th rigid body station behavior,scalar ai,j≥0 is the control weight parameter for attitude synchronization between the i th and j th rigid bodies which is used to keep the formation behavior.

    Using the Kronecker product,the multiple rigid bodies sliding mode vector(13)can be rewritten as

    where L is the weighted Laplacian matrix which is described in(10),B=diag{b1,···,bn},ˉJ=diag{ˉJ1,···,ˉJn},and e1={e11,···,e1n}.

    From Lemma 1,the third result in Lemma 2,and the definition of B,it follows that(L+B)I3has full rank. In addition,ˉJ has fullrank.Consequently,we obtain that[(L +B)I3]ˉJ has full rank.Thus,if the sliding-mode surface S=0 is reached,then e1=0,i.e.,e1i=0(i=1,···,n) will be satisfied,and we can get that

    The controlobjective in this paper is to design a decentralized adaptive sliding mode control law such that the slidingmode surface defined in(13)can achieve PFS.

    III.CONTROL LAW DESIGN

    In this section,under a general directed communication topology,in the presence of the inertia uncertainties and environmental disturbances,a decentralized sliding mode control law is developed to ensure that the rigid body attitude error dynamics can converge to a neighborhood ofthe sliding-mode surface in a finite time.

    Using(5)and(6),(16)~(18)are derived to develop the control law.

    Following Assumptions 1~4 and the definitions of L and B, we assume that

    whereθi,0,θi,1,andθi,2are nonnegative constant numbers. Let?θi,0,?θi,1,and?θi,2denote the estimates ofθi,0,θi,1,and θi,2,respectively.Define the adaptive upper bound of the norm‖(L+B)?I3‖1‖δi‖1as

    with i=1,···,n.Then the parameter adaptation errors can be written as?θi,0= ?θi,0?θi,0,?θi,1= ?θi,1?θi,1,and?θi,2= ?θi,2?θi,2.

    According to the above discussions,the following theorem is given for the multiple rigid body attitude synchronization and tracking problems under the general directed communication topology.

    據(jù)了解,魯西集團(tuán)自2010年至今共舉辦了九屆員工職業(yè)技能大賽,隨著企業(yè)不斷地壯大,涉及的產(chǎn)業(yè)越來越多,大賽項目和參加人員、層次連年遞增。競賽項目由第一屆的5個增加到17個,競賽范圍由單純的生產(chǎn)崗位技能競賽增加為涵蓋辦公自動、安全消防、安全駕駛、會計電算化等覆蓋生產(chǎn)操作、后勤崗位的綜合型大賽。隨著集團(tuán)員工實訓(xùn)基地的建設(shè)投用,賽項的承辦由原來與技術(shù)院校共辦,變?yōu)槿坷眉瘓F(tuán)內(nèi)資源開展競賽活動。競賽組織水平通過不斷地總結(jié)提升,并借鑒省賽、國賽標(biāo)準(zhǔn),逐步達(dá)到省級賽事水準(zhǔn)。

    Theorem 1.Consider the rigid body formation attitude tracking dynamics described by(5)~(7).Suppose that the decentralized adaptive sliding mode control law is designed as

    and the adaptation laws are chosen as

    whereσ1,σ2,κi,j,γi,j,i=1,···,n,j=0,1,2,are positive constants and

    If the Assumptions 1~4 are valid,then the sliding-mode surface defined in(13)can achieve PFS.

    Proof.Define the candidate Lyapunov function as follows

    the adaptive sliding mode control law(21)can be rewritten as

    where?ρ=diag{?ρ1,···,?ρn}.

    From(15)and(16),it follows that the derivative of V1is

    Introducing(27)to(28)and using(19)and(20)leads to

    Using the adaptation laws in(22)~(24),it obtains the derivative of V2as follows

    Based on(29)and(30),we getthe derivative of V as follows

    From Lemma 3,we obtain

    Substituting inequalities(32)to(31),we have

    IV.MODIFIED CONTROL DESIGN

    As the sign function is a piecewise continuous function,the proposed control laws,which are designed in(21),and adaptive laws in(22)~(24)are discontinuous across the surface, thus it will lead to control chattering.So we have to remedy this situation by smoothing out the control discontinuity in a thin boundary layer neighboring the switching surface by replacing the sign function by a saturation function in the control laws[25].The saturation function is defined as

    According to the discussion above,the following theorem is given for the multiple rigid body attitude synchronization and tracking problem.

    Theorem 2.Consider the rigid body formation attitudetracking dynamics described by(5)~(7).Suppose that the decentralized adaptive sliding mode control law is designed as(36),and the adaptation laws are chosen as(38)~(40).If Assumptions 1~4 are valid,then S'can achieve PFS.

    Proof.Redefine the candidate Lyapunov function as

    Rewrite the adaptive sliding mode control law(36)as

    The derivative of V3can be obtained as Introducing(42)in(43)leads to

    Based on(32),(44),(45)and Lemma 4,we get the derivative of V'as follows

    And the time needed to reach(47)is bounded asμθ0,where V'0is the initial value of V',0<θ0<1.

    Remark 1.Though the boundary-layer leads to a small terminaltracking error,the practicaladvantages may be significant.Actually,for the practical implementations,due to the negative impact by external disturbances,sampled computation,etc.,the motion cannot reach the objective S=0 but moves along the sliding surface nearby[26?27].

    Remark 2.In the proposed controllaws,the desired attitude of each rigid body with respect to the inertial frame is not restricted to be the same.Thus,the desired relative attitude among rigid bodies can be maintained.The communication topology has to satisfy some restrictions in many previous works(e.g.,undirected graph is connected,directed graph has a spanning tree,etc.),but there is no restriction on communication topology in our results.Thus,the proposed control laws can be applied to any communication topology, which means thatthe communication topology can be unconnected and does not have a spanning tree.The results are not restricted to be ring topology or undirected communication topology[19].Each rigid body is well controlled even when there has no communication link,which can be seen from the proof procedure and simulation section.

    Remark 3.The need to maintain accurate relative orientation between rigid bodies is critical in many satellite formation missions,and there are more general requirements that need to be satisfied in practical applications,such as project Darwin(changed to next Gravitational-wave observatory(NGO)in 2011),in which four or five satellites fly in a tight formation to perform analysis of Earth-like planets,and micro SAR,consisting of small low-cost synthetic aperture radar(SAR)satellites capable of land and sea observations. The reference attitude trajectories are chosen such that the satellite motion is coordinated if all of the satellites are able to follow their reference trajectory accurately[28].This paper designs the control laws that are robust to the disturbances and uncertainties,and also can achieve high precision tracking and synchronization.The values of parameters designed in the sliding mode,control law and adaptation laws should be further tuned using extensive simulations.Further work includes extending the results in this paper to cases where there exist communication delays among rigid bodies and the angular velocity is not available.

    V.NUMERICAL EXAMPLES AND SIMULATIONS

    In this section,simulations for rigid bodies attitude synchronization and tracking are presented to illustrate the effectiveness of the proposed control approaches.

    Example 1.To have a fair comparison of the dynamic performances of the proposed controller in this paper and the controller in[13],we consider two scenarios with four rigid bodies.In the firstscenario,a directed line topology,as shown in Fig.1(a),is considered for in-track(in-plane)formation.In the second scenario,a ring topology is considered for circularlike formation,as shown in Fig.1(b).Itis worth noting thatthe spanning trees of the communication graphs have no influence on the validity of the control law.

    Fig.1.Directed communication topologies.

    Give the corresponding weighted Laplacian matrices as

    Consider the rigid body model(5)~(7)with the actual inertia matrices given by(with unit expressed in kg·m2)

    With the existence of model uncertainties and external disturbances,the nominal inertia matrices of the rigid bodies are given by

    Choose the initialangular velocity errors of allrigid bodies to be zero,and the initial attitude-tracking errors given as follows

    The initial desired quaternion is

    Assume that the time-varying desired angular velocities of the rigid bodies are identical and given as

    In the simulation,we assume that|ui,j|≤2 N·m,for i=1, 2,3,4,j=1,2,3.

    A.Under the Line Communication Topology

    In the first scenario,the controller parameters are selected as[19]σ1=0.01,σ2=9,k=1,bi=1,a1,2=1,a2,3=1, a3,4=1,a4,1=0,?=0.15,and the parameters of the adaptation laws in(38)~(40)are chosen asκi,0=0.1,κi,1= κi,2=0.2,γi,0=γi,1=γi,2=1,for i=1,2,3,4,the initial values of?θi,0,?θi,1,?θi,2are given by?θ0i,0= ?θ0i,1= ?θ0i,2=0.

    Using the control law(36),Fig.2(a)shows the attitude tracking error of the second rigid body;for convenience of interpretation,attitude errors are expressed in Euler angles converted from unit quaternion.Attitude tracking errors of other rigid bodies are similar to those of the second rigid body. Fig.3(a)shows the relative attitude error between the firstand fourth rigid bodies.Relative attitude errors between otherpairs of rigid bodies are similar to Fig.3(a).The controltorque(36) ofthe second rigid body is shown in Fig.4(a).The response of the adaptive parameters?θ2,0,?θ2,1,?θ2,2as defined in(17),are shown in Fig.5(a),and thus the efficacy ofthe adaptation laws (38)~(40)is verified.The response of the sliding mode s'2is given in Fig.6(a).The control torques,adaptive parameters and sliding modes of other rigid bodies are similar to those of the second rigid body,and are not plotted here due to space constraint.The corresponding performance indexes using the controller in[13]are shown in Figs.2(b)~6(b).

    As observed from the simulation fi gures,Figs.2~6,we can see that the response of attitude tracking error and relative attitude error between rigid bodies,as shown in Figs.2(a)and 3(a),have slightly faster convergence rate and higher accuracy than those using the controller in[13].

    Fig.2. Attitude tracking error of the second rigid body.

    Fig.3.Relative attitude error between the first and the fourth rigid bodies under the line topology.

    Fig.4. Control torque of the second rigid body.

    B.Under the Ring Communication Topology

    Under the ring communication topology,we choose all the controller parameters as the first subsection,except that a4,1=1 in this subsection.Figs.7(a)and 8(a)show the attitude tracking error of the second rigid body and relative attitude error between the first and fourth rigid bodies using the control law(36),respectively.Figs.7(b)and 8(b)arethe corresponding performance indexes using the controller in[13].As observed from Figs.2(a),3(a),7(a)and 8(a),we can see that the attitude tracking error and relative attitude error in the ring topology are slightly smaller than those in the line topology,because of the additional coupling between the fourth and first rigid bodies in the ring topology.Furthermore,similar to Subsection 4.1,we can conclude that the responses ofattitude tracking errors and relative attitude errors between rigid bodies using controller(36)show slightly faster convergence rate and higher accuracy than those using the controllerin[13],as shown in Figs.7 and 8,and we omitother comparing figures due to space constraint.Thus,the simulation results validate the effectiveness of the proposed control law under a unidirectional ring communication topology.

    Fig.5. Adaptive parameters?θ2,0,?θ2,1,?θ2,2ofthe second rigid body.

    Fig.6. Sliding surface of the second rigid body.

    VI.CONCLUSIONS

    In this paper,based on the sliding mode controland adaptive control techniques,in the presence of inertia uncertainties and environmental disturbances,two novel decentralized adaptive sliding mode control laws are proposed to ensure that the sliding modes S and S'can achieve PFS,respectively.Detailed simulation results have been presented to illustrate the developed method.Further work includes extending the results in this paper to cases where there exist communication delays between rigid bodies and the angular velocity is notavailable.

    Fig.8. Relative attitude error between the first and the fourth rigid bodies under the ring topology.

    REFERENCES

    [1]Du H B,Li S H,Qian C J.Finite-time attitude tracking controlof spacecraft with application to attitude synchronization.IEEE Transactionson Automatic Control,2011,56(11):2711?2717

    [2]Igarashi Y,Hatanaka T,Fujita M,Spong M W.Passivity-based attitude synchronization in SE(3).IEEE Transactions on Control Systems Technology,2009,17(5):1119?1134

    [3]Dong X G,Cao X B,Zhang J X,Shi L.A robust adaptive control law for satellite formation flying.Acta Automatica Sinica,2013,39(2):128?137

    [4]Peng J M,Wang J N,Ye X D.Distributed adaptive tracking control for unknown nonlinear networked systems.Acta Automatica Sinica,2013, 39(10):1729?1735

    [5]Cao Y C,Ren W.Distributed coordinated tracking with reduced interaction via a variable structure approach.IEEE Transactionson Automatic Control,2012,57(1):33?48

    [6]Suul J A,Luna A,Rodriguez P,Undeland T.Voltage-sensor-less synchronization to unbalanced grids by frequency-adaptive virtual flux estimation.IEEE Transactions on Industrial Electronics,2012,59(7): 2910?2923

    [7]Lawton J R,Beard R W.Synchronized multiple spacecraft rotations. Automatica,2002,38(8):1359?1364

    [8]Abdessameud A,Tayebi A.Attitude synchronization of a group of spacecraft without velocity measurements.IEEE Transactions on AutomaticControl,2009,54(11):2642?2648

    [9]Bai H,Arcak M,Wen J T.Rigid body attitude coordination without inertial frame information.Automatica,2008,44(12):3170?3175

    [10]Ren W.Distributed cooperative attitude synchronization and tracking for multiple rigid bodies.IEEE Transactions on Control Systems Technology,2010,18(2):383?392

    [11]Min Hai-Bo,Liu Zhi-Guo,Liu Yuan,Wang Shi-Cheng,Yang Yan-Li. Coordination control of networked Euler-Lagrange systems with possible switching topology.Acta Automatica Sinica,2013,39(7):1003?1010(in Chinese)

    [12]Zhou N,Xia Y Q,Lu K F,Li Y.Decentralised finite-time attitude synchronisation and tracking control for rigid spacecraft.International Journal of Systems Science,2013,doi:10.1080/00207721.2013.868949

    [13]Zhou N,Xia Y,Wang M,Fu M.Finite-time attitude controlof multiple rigid spacecraft using terminal sliding mode.International Journal of Robustand Nonlinear Control,2014,doi:10.1002/rnc.3182

    [14]Khoo S Y,Xie L H,Man Z H.Robust finite-time consensus tracking algorithm for multirobot systems.IEEE/ASME Transactionson Mechatronics,2009,14(2):219?228

    [15]Chen Y P,Lo S C.Sliding-mode controllerdesign forspacecraftattitude tracking maneuvers.IEEE Transactions on Aerospace and Electronic Systems,1993,29(4):1328?1333

    [16]Lo S C,Chen Y P.Smooth sliding-mode control for spacecraft attitude tracking maneuvers.Journal of Guidance Control and Dynamics,1995, 18(6):1345?1349

    [17]Chen Z Y,Huang J.Attitude tracking and disturbance rejection of rigid spacecraftby adaptive control.IEEETransactionsonAutomatic Control, 2009,54(2):600?605

    [18]Ahmed J,Coppola V T,Bernstein D S.Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification.Journal of Guidance,Control,and Dynamics,1998,21(5):684?691

    [19]Wu B L,Wang D W,Poh E K.Decentralized robustadaptive controlfor attitude synchronization underdirected communication topology.Journal of Guidance,Control,and Dynamics,2011,34(4):1276?1282

    [20]Merris R.Laplacian matrices of graphs:a survey.Linear Algebra and Its Applications,1994,197?198(5):143?176

    [21]Horn R A,Johnson C R.TopicsinMatrixAnalysis.Cambridge,England, UK:Cambridge University Press,1991.242?254

    [22]Qian C J,Lin W.A continuous feedback approach to global strong stabilization of nonlinear systems.IEEE Transactions on Automatic Control,2001,46(7):1061?1079

    [23]Hardy G H,Littlewood J E,Polya G.Inequalities.Cambridge,England, UK:Cambridge University Press,1952.

    [24]Zhu Z,Xia Y Q,Fu M Y.Attitude stabilization of rigid spacecraft with finite-time convergence.International Journal of Robust and Nonlinear Control,2010,21(6):686?702

    [25]Slotine J J E,Coetsee J A.Adaptive sliding controller synthesis for nonlinearsystems.InternationalJournalofControl,1986,43(6):1631?1651

    [26]Lu K F,Xia Y Q.Adaptive attitude tracking control for rigid spacecraft with finite-time convergence.Automatica,2013,49(12):3591?3599

    [27]Shtessel Y,Taleb M,Plestan F.A novel adaptive-gain supertwisting sliding mode controller:Methodology and application.Automatica, 2012,48(5):759?769

    [28]Zhou J K,Hu Q L,Friswell M I.Decentralized finite time attitude synchronization controlofsatellite formation flying.JournalofGuidance Control and Dynamics,2013,36(1):185?195

    Yuanqing Xia Professor at the School of Automation,Beijing Institute of Technology.His research interests include networked control systems,robust control,active disturbance rejection control and flight control.Corresponding author of this paper.

    Ning Zhou Ph.D.candidate at the School of Automation,Beijing Institute of Technology.Her research interests include attitude synchronization, finite-time control,sliding mode control,and fuzzy control.

    Kunfeng Lu Ph.D.candidate at the School of Automation,Beijing Institute of Technology.His research interests include spacecraftattitude control, finite-time control,sliding mode control,and adaptive control.

    Yong Li Professor and principle investigator of Qian Xuesen Laboratory of Space Technology,China Academy of Space Technology.His main research interest is spacecraft control.

    t

    July 3,2013;accepted April 15,2014.This work was supported by National Basic Research Program of China(973 Program) (2012CB720002),National High Technology Research and Development Program of China(863 Program)(2012AA120601),National Natural Science Foundation of China(61225015),the Ph.D.Programs Foundation of Ministry of Education of China(20111101110012),and China Academy of Space Technology(CAST)Foundation(CAST201210).Recommended by Associate Editor Changyin Sun

    :Yuanqing Xia,Ning Zhou,Kunfeng Lu,Yong Li.Attitude control of multiple rigid bodies with uncertainties and disturbances.IEEE/CAA Journal of Automatica Sinica,2015,2(1):2?10

    Yuanqing Xia,Ning Zhou,and Kunfeng Lu are with the Schoolof Automation,Key Laboratory of Intelligent Controland Decision of Complex Systems, Beijing Institute of Technology,Beijing 100081,China(e-mail:xiayuanqing@bit.edu.cn;zhouning2010@gmail.com;kunfenglu001@gmail.com).

    Yong Li is with the Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology,Beijing 100094,China(e-mail:liyong@cast.cn).

    猜你喜歡
    省賽投用賽項
    2022年全國職業(yè)院校技能大賽汽車技術(shù)賽項在我校成功舉辦
    浙江首個“云收費(fèi)站”投用
    渝黔復(fù)線高速公路連接道項目2024年建成投用
    石油瀝青(2021年4期)2021-10-14 08:50:58
    河南高等職業(yè)教育技能大賽建筑工程識圖賽項圓滿落幕
    岳陽職業(yè)技術(shù)學(xué)院教師在省賽中再次斬獲一等獎
    “省賽”視域下中學(xué)歷史教學(xué)設(shè)計的優(yōu)化
    “省賽”指標(biāo)參照下學(xué)前教育師范生教學(xué)技能專業(yè)性的調(diào)查與思考
    ——基于370份學(xué)前教育本科生的樣本
    北京懷柔科學(xué)城創(chuàng)新小鎮(zhèn)投用
    省賽分賽區(qū)活動剪影
    廣東科技(2016年16期)2016-12-27 05:16:53
    淺談DCS自動投用及PID整定
    日本午夜av视频| 亚洲综合精品二区| 超碰97精品在线观看| 一级毛片aaaaaa免费看小| 老司机影院毛片| 国产精品偷伦视频观看了| 色哟哟·www| 午夜福利视频1000在线观看| 99热这里只有是精品50| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 国产av国产精品国产| 国产精品一二三区在线看| 99久久精品一区二区三区| 永久网站在线| 国产精品国产三级国产av玫瑰| 久久韩国三级中文字幕| 91精品国产九色| 国产伦理片在线播放av一区| 亚洲自拍偷在线| 亚洲最大成人av| 国产美女午夜福利| 在线播放无遮挡| 男女边摸边吃奶| 一边亲一边摸免费视频| 男人和女人高潮做爰伦理| 涩涩av久久男人的天堂| 天堂中文最新版在线下载 | 综合色av麻豆| 免费黄色在线免费观看| 国产欧美日韩一区二区三区在线 | 欧美日韩国产mv在线观看视频 | 成年版毛片免费区| 日韩精品有码人妻一区| 成人无遮挡网站| 直男gayav资源| 国产成人精品福利久久| 亚洲伊人久久精品综合| 禁无遮挡网站| av专区在线播放| 男女那种视频在线观看| 亚洲欧美一区二区三区黑人 | 免费播放大片免费观看视频在线观看| 18禁在线无遮挡免费观看视频| 美女视频免费永久观看网站| 成人免费观看视频高清| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 国产成人精品一,二区| 国产精品久久久久久久电影| 国产亚洲午夜精品一区二区久久 | 五月伊人婷婷丁香| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 人体艺术视频欧美日本| 国产亚洲91精品色在线| 少妇人妻精品综合一区二区| 欧美人与善性xxx| 国产精品偷伦视频观看了| 欧美一区二区亚洲| 极品教师在线视频| 黄色配什么色好看| 精品国产三级普通话版| 性插视频无遮挡在线免费观看| 亚洲av不卡在线观看| 国产成人一区二区在线| 草草在线视频免费看| 在线观看免费高清a一片| 成人二区视频| 色5月婷婷丁香| 国产精品福利在线免费观看| 丝袜美腿在线中文| 日本一本二区三区精品| 2022亚洲国产成人精品| 美女xxoo啪啪120秒动态图| 色视频www国产| 欧美老熟妇乱子伦牲交| 国产黄频视频在线观看| 免费观看无遮挡的男女| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 国产精品一及| 亚洲欧美一区二区三区国产| 91狼人影院| 国产免费一级a男人的天堂| 免费观看a级毛片全部| 久久99精品国语久久久| 亚洲一级一片aⅴ在线观看| 精品少妇久久久久久888优播| 51国产日韩欧美| 中文字幕亚洲精品专区| 亚洲图色成人| 成人一区二区视频在线观看| 欧美激情久久久久久爽电影| 国产乱人视频| 久久久久久伊人网av| 精品少妇久久久久久888优播| 国产精品国产三级国产专区5o| 亚洲人成网站高清观看| h日本视频在线播放| 夜夜看夜夜爽夜夜摸| 亚洲三级黄色毛片| 国产午夜精品一二区理论片| 亚洲精品亚洲一区二区| 久久ye,这里只有精品| 久久久久国产精品人妻一区二区| 欧美97在线视频| 在线a可以看的网站| 99热国产这里只有精品6| av一本久久久久| 国产老妇伦熟女老妇高清| 尤物成人国产欧美一区二区三区| 人妻制服诱惑在线中文字幕| 久久国产乱子免费精品| 男女边吃奶边做爰视频| 欧美xxxx黑人xx丫x性爽| 成人二区视频| 亚洲性久久影院| 中文字幕av成人在线电影| 欧美国产精品一级二级三级 | 18+在线观看网站| 精品国产一区二区三区久久久樱花 | 狂野欧美激情性xxxx在线观看| 99热6这里只有精品| 干丝袜人妻中文字幕| 亚洲人成网站在线观看播放| 欧美xxⅹ黑人| 26uuu在线亚洲综合色| 久久久国产一区二区| 亚洲婷婷狠狠爱综合网| 久久久久国产精品人妻一区二区| 极品少妇高潮喷水抽搐| 美女被艹到高潮喷水动态| 色综合色国产| 欧美日韩在线观看h| 色哟哟·www| 亚洲va在线va天堂va国产| 国产一级毛片在线| 国产成人午夜福利电影在线观看| 永久网站在线| 亚洲综合色惰| av在线播放精品| 日韩一区二区三区影片| 亚洲成人中文字幕在线播放| 夫妻午夜视频| 亚洲人与动物交配视频| 欧美97在线视频| 色网站视频免费| 日本黄大片高清| 亚洲最大成人手机在线| av线在线观看网站| 久久精品国产亚洲av涩爱| 中文字幕av成人在线电影| 国产欧美另类精品又又久久亚洲欧美| 男插女下体视频免费在线播放| 伊人久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 99久国产av精品国产电影| 91精品国产九色| 联通29元200g的流量卡| 岛国毛片在线播放| 亚洲激情五月婷婷啪啪| 亚洲天堂av无毛| 国产在线一区二区三区精| 大又大粗又爽又黄少妇毛片口| 91狼人影院| 国产精品国产三级专区第一集| 啦啦啦在线观看免费高清www| av国产久精品久网站免费入址| 欧美日韩亚洲高清精品| 91精品一卡2卡3卡4卡| 国产永久视频网站| 777米奇影视久久| 久久久久九九精品影院| 亚洲美女搞黄在线观看| 人妻制服诱惑在线中文字幕| 国产 一区精品| 黄色怎么调成土黄色| 国产精品久久久久久精品电影小说 | 久久人人爽人人片av| 欧美日韩亚洲高清精品| 99热这里只有是精品50| 人妻制服诱惑在线中文字幕| 日韩欧美精品v在线| 综合色av麻豆| 秋霞在线观看毛片| 午夜视频国产福利| 精品人妻偷拍中文字幕| xxx大片免费视频| 日本欧美国产在线视频| 国产亚洲av片在线观看秒播厂| 久久久久国产网址| 精品国产乱码久久久久久小说| 日韩成人av中文字幕在线观看| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 亚洲最大成人av| 精品亚洲乱码少妇综合久久| 久久国产乱子免费精品| 欧美xxxx性猛交bbbb| h日本视频在线播放| 男女边吃奶边做爰视频| 在线观看人妻少妇| 美女主播在线视频| 国内精品宾馆在线| 少妇高潮的动态图| 久久久久久久午夜电影| 一级爰片在线观看| 日韩精品有码人妻一区| 国产成人aa在线观看| 少妇高潮的动态图| 免费大片18禁| 欧美97在线视频| eeuss影院久久| 在线 av 中文字幕| 色综合色国产| 观看美女的网站| 日本一本二区三区精品| 日本wwww免费看| 狂野欧美激情性bbbbbb| av.在线天堂| 偷拍熟女少妇极品色| 在线观看人妻少妇| 亚洲av成人精品一二三区| 国产人妻一区二区三区在| 欧美激情久久久久久爽电影| 我要看日韩黄色一级片| 欧美97在线视频| 久久精品国产自在天天线| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 99久久精品一区二区三区| 九九久久精品国产亚洲av麻豆| 国产成人aa在线观看| 久久久久久久久久人人人人人人| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 精品午夜福利在线看| 久热久热在线精品观看| 婷婷色麻豆天堂久久| 成人无遮挡网站| 人人妻人人爽人人添夜夜欢视频 | 你懂的网址亚洲精品在线观看| av在线天堂中文字幕| 国产色爽女视频免费观看| 亚洲天堂av无毛| 简卡轻食公司| 国产成人精品久久久久久| 欧美zozozo另类| 久久这里有精品视频免费| 搡女人真爽免费视频火全软件| 少妇 在线观看| 一级毛片黄色毛片免费观看视频| 天天躁日日操中文字幕| 国产成人freesex在线| 亚洲内射少妇av| 久久精品国产鲁丝片午夜精品| 国产精品国产三级专区第一集| 国产亚洲精品久久久com| 久久久久国产网址| 色视频在线一区二区三区| 日韩一区二区视频免费看| 视频区图区小说| 99热全是精品| 亚洲精品视频女| 禁无遮挡网站| 99视频精品全部免费 在线| 久久久久久久精品精品| 亚洲精品一二三| 啦啦啦在线观看免费高清www| 欧美成人午夜免费资源| 日本午夜av视频| 亚洲欧美日韩另类电影网站 | 国产精品成人在线| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品50| 18禁裸乳无遮挡动漫免费视频 | 大片电影免费在线观看免费| 免费不卡的大黄色大毛片视频在线观看| 欧美丝袜亚洲另类| 22中文网久久字幕| 色婷婷久久久亚洲欧美| 久久女婷五月综合色啪小说 | 日韩电影二区| 亚州av有码| 中文字幕制服av| 国产爱豆传媒在线观看| 下体分泌物呈黄色| 日本黄大片高清| 成人无遮挡网站| 大香蕉久久网| 国产高清有码在线观看视频| 国产精品国产av在线观看| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 韩国av在线不卡| av在线蜜桃| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 超碰av人人做人人爽久久| 久久久精品免费免费高清| 精品午夜福利在线看| 极品少妇高潮喷水抽搐| 99热网站在线观看| 新久久久久国产一级毛片| 国产一区二区在线观看日韩| 18禁动态无遮挡网站| 国产精品成人在线| 在线免费观看不下载黄p国产| av天堂中文字幕网| 日韩大片免费观看网站| 熟女人妻精品中文字幕| 尾随美女入室| 日本wwww免费看| 男男h啪啪无遮挡| 久久久久久久国产电影| 最近中文字幕2019免费版| 九色成人免费人妻av| 免费看日本二区| 一级毛片黄色毛片免费观看视频| 色哟哟·www| 国产欧美日韩一区二区三区在线 | 国产成人免费观看mmmm| 亚洲人与动物交配视频| 国产精品.久久久| 久久久精品94久久精品| 晚上一个人看的免费电影| 亚洲电影在线观看av| 日韩强制内射视频| 成年av动漫网址| 边亲边吃奶的免费视频| 久久97久久精品| 国产色婷婷99| 亚洲熟女精品中文字幕| 老司机影院成人| 欧美激情久久久久久爽电影| 午夜激情久久久久久久| 国产亚洲一区二区精品| 99视频精品全部免费 在线| 日日撸夜夜添| 一本色道久久久久久精品综合| 国内精品宾馆在线| h日本视频在线播放| 一级毛片久久久久久久久女| 亚洲丝袜综合中文字幕| 免费电影在线观看免费观看| 干丝袜人妻中文字幕| 亚洲av欧美aⅴ国产| 久久久久九九精品影院| 成年版毛片免费区| 超碰av人人做人人爽久久| 精品一区二区三卡| av免费在线看不卡| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| www.av在线官网国产| 欧美性猛交╳xxx乱大交人| 丝袜喷水一区| 国产极品天堂在线| 久久久久久久精品精品| 国产精品不卡视频一区二区| 大片电影免费在线观看免费| 亚洲精品一区蜜桃| 亚洲精品亚洲一区二区| 春色校园在线视频观看| 日本熟妇午夜| 我要看日韩黄色一级片| 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 91精品国产九色| 边亲边吃奶的免费视频| 亚洲aⅴ乱码一区二区在线播放| a级一级毛片免费在线观看| 国产精品av视频在线免费观看| 人妻少妇偷人精品九色| 天天一区二区日本电影三级| 亚洲av男天堂| 国产一级毛片在线| 1000部很黄的大片| 国产免费视频播放在线视频| 国产又色又爽无遮挡免| 国产成人免费观看mmmm| 亚洲精品国产av蜜桃| 亚洲av国产av综合av卡| 春色校园在线视频观看| www.av在线官网国产| 国产精品爽爽va在线观看网站| 精品亚洲乱码少妇综合久久| 欧美日韩在线观看h| 国产 精品1| 国产精品久久久久久久电影| av国产精品久久久久影院| 午夜免费观看性视频| 一级毛片 在线播放| 中文字幕制服av| 久久99精品国语久久久| 在线 av 中文字幕| 国产精品一区二区在线观看99| 国产亚洲最大av| 成人美女网站在线观看视频| 国产精品av视频在线免费观看| 亚洲精品中文字幕在线视频 | av女优亚洲男人天堂| 亚洲av日韩在线播放| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 禁无遮挡网站| 91午夜精品亚洲一区二区三区| 亚洲精品成人av观看孕妇| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| 99热这里只有精品一区| 爱豆传媒免费全集在线观看| 赤兔流量卡办理| 中国国产av一级| 国产一区二区三区综合在线观看 | 亚洲av在线观看美女高潮| 中国三级夫妇交换| 欧美潮喷喷水| 视频中文字幕在线观看| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡免费网站照片| 麻豆久久精品国产亚洲av| 国产 精品1| 一区二区三区精品91| 18禁动态无遮挡网站| 少妇人妻久久综合中文| 成年女人在线观看亚洲视频 | 看十八女毛片水多多多| 亚洲四区av| 国产女主播在线喷水免费视频网站| 黄色视频在线播放观看不卡| 国产真实伦视频高清在线观看| 国产爽快片一区二区三区| 国产精品一及| 国产在线男女| 嫩草影院新地址| 三级男女做爰猛烈吃奶摸视频| 婷婷色综合www| 午夜福利网站1000一区二区三区| 韩国高清视频一区二区三区| 99热国产这里只有精品6| 老女人水多毛片| 国产久久久一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 久久97久久精品| 国产老妇女一区| 热99国产精品久久久久久7| 亚洲精品视频女| 极品教师在线视频| 亚洲精品乱久久久久久| 赤兔流量卡办理| 亚洲精品久久午夜乱码| 高清午夜精品一区二区三区| 国产精品99久久99久久久不卡 | 亚洲在线观看片| 国产精品爽爽va在线观看网站| 人妻制服诱惑在线中文字幕| 久久国内精品自在自线图片| 蜜臀久久99精品久久宅男| 欧美极品一区二区三区四区| 在线观看三级黄色| 国产淫语在线视频| 午夜亚洲福利在线播放| 高清午夜精品一区二区三区| 韩国av在线不卡| 久久久久精品久久久久真实原创| 成人综合一区亚洲| 午夜免费鲁丝| 国产有黄有色有爽视频| 韩国av在线不卡| 深夜a级毛片| 少妇熟女欧美另类| 视频区图区小说| 夜夜爽夜夜爽视频| 观看美女的网站| 美女脱内裤让男人舔精品视频| 国产成人aa在线观看| 街头女战士在线观看网站| 内地一区二区视频在线| 啦啦啦在线观看免费高清www| 亚洲无线观看免费| 精品久久久精品久久久| 日日啪夜夜撸| 熟妇人妻不卡中文字幕| 日韩av免费高清视频| 国产成人一区二区在线| 日韩免费高清中文字幕av| 久久精品人妻少妇| 高清毛片免费看| 国产成人福利小说| 国产成人精品福利久久| 亚洲欧美中文字幕日韩二区| 亚洲天堂av无毛| 日本一本二区三区精品| 国产综合精华液| 一级毛片黄色毛片免费观看视频| 建设人人有责人人尽责人人享有的 | 夫妻性生交免费视频一级片| 欧美xxxx性猛交bbbb| 最新中文字幕久久久久| 国产欧美日韩精品一区二区| 69av精品久久久久久| 1000部很黄的大片| 久久久久久久大尺度免费视频| 97超视频在线观看视频| 欧美+日韩+精品| 日本一二三区视频观看| 久久99精品国语久久久| 老师上课跳d突然被开到最大视频| 久久久久久国产a免费观看| 国产欧美亚洲国产| 久久久久精品性色| 日本午夜av视频| 天堂网av新在线| 免费大片18禁| 制服丝袜香蕉在线| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 亚洲欧美日韩另类电影网站 | 大话2 男鬼变身卡| 最近手机中文字幕大全| 肉色欧美久久久久久久蜜桃 | 1000部很黄的大片| 国产淫片久久久久久久久| 中文天堂在线官网| 国产 精品1| 午夜日本视频在线| 麻豆乱淫一区二区| 亚洲真实伦在线观看| 久久99热6这里只有精品| 亚洲精品,欧美精品| 热re99久久精品国产66热6| 亚洲天堂av无毛| 亚洲精品国产av蜜桃| 欧美日韩精品成人综合77777| 午夜精品国产一区二区电影 | 亚洲va在线va天堂va国产| 肉色欧美久久久久久久蜜桃 | 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 自拍偷自拍亚洲精品老妇| 男人狂女人下面高潮的视频| 国产成人精品婷婷| 久久鲁丝午夜福利片| 国产老妇伦熟女老妇高清| 精品国产乱码久久久久久小说| av专区在线播放| 美女内射精品一级片tv| 亚洲真实伦在线观看| 又黄又爽又刺激的免费视频.| 免费大片18禁| 国产精品一区二区性色av| 国产欧美日韩一区二区三区在线 | 色综合色国产| 久久久久国产精品人妻一区二区| 美女国产视频在线观看| 国产伦在线观看视频一区| 禁无遮挡网站| 日韩中字成人| 国产欧美日韩精品一区二区| 18禁在线无遮挡免费观看视频| 蜜臀久久99精品久久宅男| 又黄又爽又刺激的免费视频.| 日本爱情动作片www.在线观看| 日韩欧美 国产精品| 国产欧美日韩一区二区三区在线 | 国产黄片美女视频| 国产乱来视频区| 国产精品人妻久久久影院| 国产毛片a区久久久久| 少妇 在线观看| 中国三级夫妇交换| 成人高潮视频无遮挡免费网站| 国产成人aa在线观看| 国产成人免费观看mmmm| 日韩国内少妇激情av| 国产成人aa在线观看| 日日撸夜夜添| 亚洲欧美日韩东京热| 欧美xxxx性猛交bbbb| 成人国产av品久久久| 91久久精品国产一区二区成人| 亚洲精品视频女| 极品少妇高潮喷水抽搐| 欧美另类一区| 看免费成人av毛片| 亚洲av免费高清在线观看| 亚洲国产精品国产精品| 免费观看在线日韩| 99热6这里只有精品| 婷婷色综合大香蕉| 精品亚洲乱码少妇综合久久| 国产黄a三级三级三级人| 不卡视频在线观看欧美| 性色avwww在线观看| 国产乱人视频| 超碰97精品在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| 国产成人福利小说| 国产探花极品一区二区| 国产精品久久久久久av不卡| 永久网站在线| 三级国产精品片| 少妇人妻 视频| 日韩视频在线欧美| 亚洲av一区综合| 一级毛片黄色毛片免费观看视频|