• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Attitude Control of Multiple Rigid Bodies with Uncertainties and Disturbances

    2015-08-11 11:55:20YuanqingXiaNingZhouKunfengLuandYongLi
    IEEE/CAA Journal of Automatica Sinica 2015年1期
    關(guān)鍵詞:省賽投用賽項

    Yuanqing Xia,Ning Zhou,Kunfeng Lu,and Yong Li

    Attitude Control of Multiple Rigid Bodies with Uncertainties and Disturbances

    Yuanqing Xia,Ning Zhou,Kunfeng Lu,and Yong Li

    —Decentralized attitude synchronization and tracking controlfor multiple rigid bodies are investigated in this paper.In the presence of inertia uncertainties and environmental disturbances,we propose a class of decentralized adaptive sliding mode control laws.An adaptive control strategy is adopted to reject the uncertainties and disturbances.Using the Lyapunov approach and graph theory,it is shown that the controllaws can guarantee a group of rigid bodies to track the desired time-varying attitude and angular velocity while maintaining attitude synchronization with other rigid bodies in the formation.Simulation examples are provided to illustrate the feasibility and advantage of the control algorithm.

    Index Terms—Attitude control,attitude synchronization,sliding mode control(SMC),adaptive control.

    I.INTRODUCTION

    D Uring the past decades,the attitude synchronization of rigid bodies(spacecraft)has attracted a great deal of attention.Many techniques and results have been proposed in this research field and these can be classified as leader follower[1?4],virtual structure[5?6],behaviorbased[7?8],and graph-theoretical approach[9?13].Especially, the graph-theoretical approach has been introduced to study the cooperative control of multi-agent system using limited local interaction[14]and also has been applied to attitude synchronization[10],but most of the results under the assumption that the communication links are undirected i.e., bidirectional.In the practical application,the communication topology may be directed,such as in unidirectional satellite laser communication system.Furthermore,compared with the undirected communication topology,the control problem of attitude synchronization under directed communication topology is more challenging.

    It is well known that the attitude dynamics of rigid body is coupled and highly nonlinear,which is the main obstruction to design a high precision attitude control law.Many nonlinear control methods have been employed to improve the closed-loop performances recent years,such as optimalcontrol,sliding mode control,adaptive control,etc.As the sliding mode control(SMC)is an effi cient control technique which is competent for systems with profound nonlinearity and modeling uncertainty,it has been applied in many previous works to rigid body attitude control problem[15?16]. The adaptive control is also a valid method to overcome the parametric uncertainty.An adaptive attitude control law was designed by Chen and Huang to enhance the ability of disturbance rejection of the closed-loop system[17].With the combination of the sliding mode controland adaptive control, Wu and Wang proposed a decentralized adaptive sliding mode control law to ensure that the multispacecraft sliding-mode surface were reached asymptotically,then the attitude error and angular velocity error of each spacecraftconverged to zero asymptotically[1?8].

    In this paper,we consider the attitude synchronization and tracking problems for multiple rigid bodies.First of all,a sliding-mode vector is designed with two parameters for attitude tracking and attitude synchronization,which may allow the designer to prioritize between station-keeping behavior and formation-keeping behavior.As the inertia uncertainties and environmental disturbances are assumed to be bounded with unknown constants,an adaptive control strategy is introduced to reject them.Two decentralized control laws are proposed to ensure thateach rigid body attains the desired time-varying attitude and angular velocity while maintaining attitude synchronization with other rigid bodies in the formation.In the proposed controllaws,the information flow among rigid bodies includes the absolute inertial attitude and angular velocity, the desired attitude and angular velocity,and controlinput,as wellas the nominalinertia matrix.Each rigid body also needs to know its own information.In the singular rigid body attitude control,itdoes notconsider the synchronization problem,and its own information is enough for the control law design.

    The organization of this paper is as follows.In Section II, based on unit quaternion,the rigid body attitude kinematics and dynamics equations are derived.Furthermore,the preliminary notions in graph theory,lemmas and control objective are assembled.In Section III,a decentralized sliding mode control strategy is proposed;also the convergence analysis of the resulting closed-loop system is performed.In Section IV,the modified control scheme is proposed to alleviate the chattering phenomenon.Simulation examples are provided to illustrate the feasibility and superiority of the controlalgorithm in Section V.Finally,conclusion and future work are given in Section VI.

    II.PROBLEM STATEMENT

    A.Rigid Body Attitude Kinematics and Dynamics

    In this paper,the attitude of each rigid body is represented by the unitquaternion representation withoutsingularities.Theattitude kinematics and dynamics of each rigid body in terms of the unit quaternion are given by

    where Ji=JTidenotes a positive definite inertia matrix of the i th rigid body.I∈R3×3is the identity matrix.ωi∈R3denotes the body angular velocity of the i th rigid body with respectto the inertialframe expressed in the body frame ofthe i th rigid body.ui∈R3denotes the control torque.τi∈R3denotes the disturbance torque.qi∈R3and q0,i∈R are the vector partand scalar part of the unitquaternion thatrepresent orientation of the body-fixed frame with respectto the inertial frame.The notation x×for any vector x=£x1x2x3?T∈R3is used to denote the skew-symmetric matrix:

    In the case of tracking a desired rotationalmotion,the problem formulation is similar to that in the related work[18].The desired rotational motion of the i th rigid body is described by the attitude motion of a frame D,whose orientation with respectto the inertialframe is specified by the unitquaternion (ξi,ξ0,i)∈R3×R that is subject to the constraintξTiξi+ξ20,i=1.ωdi=ωdi(t)∈R3is the desired angular velocity of the i th rigid body with respect to frame D.

    The related assumptions aboutthe dynamics of the attitude synchronization and tracking systems are given as follows, which will be used in the further analysis in Sections III and IV.

    Assumption 1.Denote Ji= ˉJi+ ?Ji,whereˉJiand?Jiare the nominal part and uncertain part of the inertia matrix of the i th rigid body,respectively.It is assumed that the inertia matrix uncertainties are bounded and satisfy‖?Ji‖≤Δi.

    Assumption 2.All the environmental disturbances due to gravitation,solar radiation pressure,magnetic forces and aerodynamic drag are assumed to be bounded.Thus,the external disturbances are assumed to satisfy‖τi‖≤ˉτi.

    Assumption 3[19].The control law of each rigid body might use its neighbors'angular velocity errors and error quaternions in the cooperative attitude control problem,and error quaternion is bounded from its definition.Thus,the control torque uiis assumed to satisfy

    whereΔi,ˉτiandζi,jare unknown nonnegative constants for i=1,···,n,j=0,1,2,Nirepresents the i th rigid body and all the rigid bodies with which the i th rigid body can communicate,and‖·‖denotes the standard Euclidean vector norm or induced matrix norm,as appropriate.

    Assumption 4.There exist two constantsˉω1>0 andˉω2>0 such that‖ωdi(t)‖≤ ˉω1and‖˙ωdi(t)‖≤ ˉω2for all t≥0.

    Denote the error quaternion(ηi,η0,i)∈R3×R as the i th rigid body orientation of the body-fixed frame with respect to frame D.These error quaternions are subjectto the constraint=1 and are related to(ξi,ξ0,i)and(qi,q0,i)by the quaternion multiplication rule[10].The corresponding rotation matrix Ri=Ri(ηi,η0,i)∈S O(3)is given by Ri=(η20,i?the angular velocity errorω?iof the i th rigid body can be written as

    From(1)~(4),we can obtain the attitude-tracking error dynamics as follows

    It can be seen from the above error system(5)and(6)that the rigid body attitude tracking problem is equivalent to the problem of asymptotic stabilization of?ωiandηi.

    B.Algebraic Graph Theory

    In this paper,a general directed communication topology is adopted to describe the interaction between neighboring rigid bodies.Suppose G(V,E,A)is a directed graph,which consists ofa nonempty finite setof N nodes V={υ1,···,υn},a setof edges or arcs E?V×V and an associated weighted adjacency matrix A=[aij]∈RN×N.In our research,an arc(υi,υj) denotes that rigid bodyυican obtain the information of rigid bodyυj.It is assumed that the graph has no self-loops,i.e., (υi,υj)∈E impliesυi/=υj.The adjacency matrix A of G is a square matrix of size n with entries

    where the nonnegative ai,jwill be chosen to be the control weightparameter for attitude synchronization between the i th and j th rigid bodies subsequently.In addition,we can note that ai,i=0 from(8).

    Define the in-degree matrix D of G,which is a diagonal matrix with diagonal entries

    and the Laplacian matrix L∈Rn×nof graph G[20]

    Remark 1.Note that a graph with the property that for any(υi,υj)∈ E,the edge or arc(υj,υi)∈ E is said to be undirected,which corresponds to having bidirectional measurementin the application ofrigid body attitude synchronization.Since the assumption ai,j=aj,iis valid in the undirected communication topology,the graph Laplacian matrix L becomes a symmetrical matrix,which makes the stability analysis of cooperative control system easier.However,in the directed communication topology,the graph Laplacian matrix L is generally not symmetric because ai,j/=aj,i.

    C.Lemmas

    Lemma 1[20].For a directed graph G with N nodes,all the eigenvalues of the weighted Laplacian matrix L have a nonnegative real part.

    Lemma 2[21].If U∈Rm×m,V∈Rn×n,X∈Rm×m, and Y∈Rn×n,then the following arguments are valid:

    2)If U and V are invertible,then(UV)?1=U?1V?1.

    3)Letλ1,···,λmbe the eigenvalues of U andμ1,···,μmbe those of V.Then the eigenvalues of UV areλiμj(i= 1,···,m and j=1,···,n).

    Lemma 3[22].If n>0,m>0,and a∈R,b∈R,then for any constant c>0,

    Definition 1[24].Consider the nonlinear system ˙x=f(x, u),where x is a state vector,and u is the input vector.The solution is practically finite-time stable(PFS)if for all x(t0) =x0,there existε>0 and T(ε,x0)<∞,such that‖x(t)‖<ε,for all t≥t0+T.

    Lemma 5[24].Consider the nonlinear system ˙x=f(x,u) defined above.If there exist continuous function V(x),scalar λ>0,α∈(0,1)and 0<η<∞such that

    then the trajectory of system ˙x=f(x,u)is PFS.

    D.Control Objective

    In this paper,in the presence of inertia uncertainties and environmental disturbances,we aim at tracking and attitude stabilization in rigid body formation with bounded energy.The tracking error of the i th rigid body is defined by

    where k is a positive constant.The formation-keeping attitude state error between the i th and j th rigid bodies is defined by

    The multiple rigid bodies sliding mode vector is developed and defined as

    where si∈R3×1,and it is given by

    whereˉJiis the nominal inertia matrix of the i th rigid body, scalar bi> 0 is the control weight parameter for attitude tracking which is used to keep the i th rigid body station behavior,scalar ai,j≥0 is the control weight parameter for attitude synchronization between the i th and j th rigid bodies which is used to keep the formation behavior.

    Using the Kronecker product,the multiple rigid bodies sliding mode vector(13)can be rewritten as

    where L is the weighted Laplacian matrix which is described in(10),B=diag{b1,···,bn},ˉJ=diag{ˉJ1,···,ˉJn},and e1={e11,···,e1n}.

    From Lemma 1,the third result in Lemma 2,and the definition of B,it follows that(L+B)I3has full rank. In addition,ˉJ has fullrank.Consequently,we obtain that[(L +B)I3]ˉJ has full rank.Thus,if the sliding-mode surface S=0 is reached,then e1=0,i.e.,e1i=0(i=1,···,n) will be satisfied,and we can get that

    The controlobjective in this paper is to design a decentralized adaptive sliding mode control law such that the slidingmode surface defined in(13)can achieve PFS.

    III.CONTROL LAW DESIGN

    In this section,under a general directed communication topology,in the presence of the inertia uncertainties and environmental disturbances,a decentralized sliding mode control law is developed to ensure that the rigid body attitude error dynamics can converge to a neighborhood ofthe sliding-mode surface in a finite time.

    Using(5)and(6),(16)~(18)are derived to develop the control law.

    Following Assumptions 1~4 and the definitions of L and B, we assume that

    whereθi,0,θi,1,andθi,2are nonnegative constant numbers. Let?θi,0,?θi,1,and?θi,2denote the estimates ofθi,0,θi,1,and θi,2,respectively.Define the adaptive upper bound of the norm‖(L+B)?I3‖1‖δi‖1as

    with i=1,···,n.Then the parameter adaptation errors can be written as?θi,0= ?θi,0?θi,0,?θi,1= ?θi,1?θi,1,and?θi,2= ?θi,2?θi,2.

    According to the above discussions,the following theorem is given for the multiple rigid body attitude synchronization and tracking problems under the general directed communication topology.

    據(jù)了解,魯西集團(tuán)自2010年至今共舉辦了九屆員工職業(yè)技能大賽,隨著企業(yè)不斷地壯大,涉及的產(chǎn)業(yè)越來越多,大賽項目和參加人員、層次連年遞增。競賽項目由第一屆的5個增加到17個,競賽范圍由單純的生產(chǎn)崗位技能競賽增加為涵蓋辦公自動、安全消防、安全駕駛、會計電算化等覆蓋生產(chǎn)操作、后勤崗位的綜合型大賽。隨著集團(tuán)員工實訓(xùn)基地的建設(shè)投用,賽項的承辦由原來與技術(shù)院校共辦,變?yōu)槿坷眉瘓F(tuán)內(nèi)資源開展競賽活動。競賽組織水平通過不斷地總結(jié)提升,并借鑒省賽、國賽標(biāo)準(zhǔn),逐步達(dá)到省級賽事水準(zhǔn)。

    Theorem 1.Consider the rigid body formation attitude tracking dynamics described by(5)~(7).Suppose that the decentralized adaptive sliding mode control law is designed as

    and the adaptation laws are chosen as

    whereσ1,σ2,κi,j,γi,j,i=1,···,n,j=0,1,2,are positive constants and

    If the Assumptions 1~4 are valid,then the sliding-mode surface defined in(13)can achieve PFS.

    Proof.Define the candidate Lyapunov function as follows

    the adaptive sliding mode control law(21)can be rewritten as

    where?ρ=diag{?ρ1,···,?ρn}.

    From(15)and(16),it follows that the derivative of V1is

    Introducing(27)to(28)and using(19)and(20)leads to

    Using the adaptation laws in(22)~(24),it obtains the derivative of V2as follows

    Based on(29)and(30),we getthe derivative of V as follows

    From Lemma 3,we obtain

    Substituting inequalities(32)to(31),we have

    IV.MODIFIED CONTROL DESIGN

    As the sign function is a piecewise continuous function,the proposed control laws,which are designed in(21),and adaptive laws in(22)~(24)are discontinuous across the surface, thus it will lead to control chattering.So we have to remedy this situation by smoothing out the control discontinuity in a thin boundary layer neighboring the switching surface by replacing the sign function by a saturation function in the control laws[25].The saturation function is defined as

    According to the discussion above,the following theorem is given for the multiple rigid body attitude synchronization and tracking problem.

    Theorem 2.Consider the rigid body formation attitudetracking dynamics described by(5)~(7).Suppose that the decentralized adaptive sliding mode control law is designed as(36),and the adaptation laws are chosen as(38)~(40).If Assumptions 1~4 are valid,then S'can achieve PFS.

    Proof.Redefine the candidate Lyapunov function as

    Rewrite the adaptive sliding mode control law(36)as

    The derivative of V3can be obtained as Introducing(42)in(43)leads to

    Based on(32),(44),(45)and Lemma 4,we get the derivative of V'as follows

    And the time needed to reach(47)is bounded asμθ0,where V'0is the initial value of V',0<θ0<1.

    Remark 1.Though the boundary-layer leads to a small terminaltracking error,the practicaladvantages may be significant.Actually,for the practical implementations,due to the negative impact by external disturbances,sampled computation,etc.,the motion cannot reach the objective S=0 but moves along the sliding surface nearby[26?27].

    Remark 2.In the proposed controllaws,the desired attitude of each rigid body with respect to the inertial frame is not restricted to be the same.Thus,the desired relative attitude among rigid bodies can be maintained.The communication topology has to satisfy some restrictions in many previous works(e.g.,undirected graph is connected,directed graph has a spanning tree,etc.),but there is no restriction on communication topology in our results.Thus,the proposed control laws can be applied to any communication topology, which means thatthe communication topology can be unconnected and does not have a spanning tree.The results are not restricted to be ring topology or undirected communication topology[19].Each rigid body is well controlled even when there has no communication link,which can be seen from the proof procedure and simulation section.

    Remark 3.The need to maintain accurate relative orientation between rigid bodies is critical in many satellite formation missions,and there are more general requirements that need to be satisfied in practical applications,such as project Darwin(changed to next Gravitational-wave observatory(NGO)in 2011),in which four or five satellites fly in a tight formation to perform analysis of Earth-like planets,and micro SAR,consisting of small low-cost synthetic aperture radar(SAR)satellites capable of land and sea observations. The reference attitude trajectories are chosen such that the satellite motion is coordinated if all of the satellites are able to follow their reference trajectory accurately[28].This paper designs the control laws that are robust to the disturbances and uncertainties,and also can achieve high precision tracking and synchronization.The values of parameters designed in the sliding mode,control law and adaptation laws should be further tuned using extensive simulations.Further work includes extending the results in this paper to cases where there exist communication delays among rigid bodies and the angular velocity is not available.

    V.NUMERICAL EXAMPLES AND SIMULATIONS

    In this section,simulations for rigid bodies attitude synchronization and tracking are presented to illustrate the effectiveness of the proposed control approaches.

    Example 1.To have a fair comparison of the dynamic performances of the proposed controller in this paper and the controller in[13],we consider two scenarios with four rigid bodies.In the firstscenario,a directed line topology,as shown in Fig.1(a),is considered for in-track(in-plane)formation.In the second scenario,a ring topology is considered for circularlike formation,as shown in Fig.1(b).Itis worth noting thatthe spanning trees of the communication graphs have no influence on the validity of the control law.

    Fig.1.Directed communication topologies.

    Give the corresponding weighted Laplacian matrices as

    Consider the rigid body model(5)~(7)with the actual inertia matrices given by(with unit expressed in kg·m2)

    With the existence of model uncertainties and external disturbances,the nominal inertia matrices of the rigid bodies are given by

    Choose the initialangular velocity errors of allrigid bodies to be zero,and the initial attitude-tracking errors given as follows

    The initial desired quaternion is

    Assume that the time-varying desired angular velocities of the rigid bodies are identical and given as

    In the simulation,we assume that|ui,j|≤2 N·m,for i=1, 2,3,4,j=1,2,3.

    A.Under the Line Communication Topology

    In the first scenario,the controller parameters are selected as[19]σ1=0.01,σ2=9,k=1,bi=1,a1,2=1,a2,3=1, a3,4=1,a4,1=0,?=0.15,and the parameters of the adaptation laws in(38)~(40)are chosen asκi,0=0.1,κi,1= κi,2=0.2,γi,0=γi,1=γi,2=1,for i=1,2,3,4,the initial values of?θi,0,?θi,1,?θi,2are given by?θ0i,0= ?θ0i,1= ?θ0i,2=0.

    Using the control law(36),Fig.2(a)shows the attitude tracking error of the second rigid body;for convenience of interpretation,attitude errors are expressed in Euler angles converted from unit quaternion.Attitude tracking errors of other rigid bodies are similar to those of the second rigid body. Fig.3(a)shows the relative attitude error between the firstand fourth rigid bodies.Relative attitude errors between otherpairs of rigid bodies are similar to Fig.3(a).The controltorque(36) ofthe second rigid body is shown in Fig.4(a).The response of the adaptive parameters?θ2,0,?θ2,1,?θ2,2as defined in(17),are shown in Fig.5(a),and thus the efficacy ofthe adaptation laws (38)~(40)is verified.The response of the sliding mode s'2is given in Fig.6(a).The control torques,adaptive parameters and sliding modes of other rigid bodies are similar to those of the second rigid body,and are not plotted here due to space constraint.The corresponding performance indexes using the controller in[13]are shown in Figs.2(b)~6(b).

    As observed from the simulation fi gures,Figs.2~6,we can see that the response of attitude tracking error and relative attitude error between rigid bodies,as shown in Figs.2(a)and 3(a),have slightly faster convergence rate and higher accuracy than those using the controller in[13].

    Fig.2. Attitude tracking error of the second rigid body.

    Fig.3.Relative attitude error between the first and the fourth rigid bodies under the line topology.

    Fig.4. Control torque of the second rigid body.

    B.Under the Ring Communication Topology

    Under the ring communication topology,we choose all the controller parameters as the first subsection,except that a4,1=1 in this subsection.Figs.7(a)and 8(a)show the attitude tracking error of the second rigid body and relative attitude error between the first and fourth rigid bodies using the control law(36),respectively.Figs.7(b)and 8(b)arethe corresponding performance indexes using the controller in[13].As observed from Figs.2(a),3(a),7(a)and 8(a),we can see that the attitude tracking error and relative attitude error in the ring topology are slightly smaller than those in the line topology,because of the additional coupling between the fourth and first rigid bodies in the ring topology.Furthermore,similar to Subsection 4.1,we can conclude that the responses ofattitude tracking errors and relative attitude errors between rigid bodies using controller(36)show slightly faster convergence rate and higher accuracy than those using the controllerin[13],as shown in Figs.7 and 8,and we omitother comparing figures due to space constraint.Thus,the simulation results validate the effectiveness of the proposed control law under a unidirectional ring communication topology.

    Fig.5. Adaptive parameters?θ2,0,?θ2,1,?θ2,2ofthe second rigid body.

    Fig.6. Sliding surface of the second rigid body.

    VI.CONCLUSIONS

    In this paper,based on the sliding mode controland adaptive control techniques,in the presence of inertia uncertainties and environmental disturbances,two novel decentralized adaptive sliding mode control laws are proposed to ensure that the sliding modes S and S'can achieve PFS,respectively.Detailed simulation results have been presented to illustrate the developed method.Further work includes extending the results in this paper to cases where there exist communication delays between rigid bodies and the angular velocity is notavailable.

    Fig.8. Relative attitude error between the first and the fourth rigid bodies under the ring topology.

    REFERENCES

    [1]Du H B,Li S H,Qian C J.Finite-time attitude tracking controlof spacecraft with application to attitude synchronization.IEEE Transactionson Automatic Control,2011,56(11):2711?2717

    [2]Igarashi Y,Hatanaka T,Fujita M,Spong M W.Passivity-based attitude synchronization in SE(3).IEEE Transactions on Control Systems Technology,2009,17(5):1119?1134

    [3]Dong X G,Cao X B,Zhang J X,Shi L.A robust adaptive control law for satellite formation flying.Acta Automatica Sinica,2013,39(2):128?137

    [4]Peng J M,Wang J N,Ye X D.Distributed adaptive tracking control for unknown nonlinear networked systems.Acta Automatica Sinica,2013, 39(10):1729?1735

    [5]Cao Y C,Ren W.Distributed coordinated tracking with reduced interaction via a variable structure approach.IEEE Transactionson Automatic Control,2012,57(1):33?48

    [6]Suul J A,Luna A,Rodriguez P,Undeland T.Voltage-sensor-less synchronization to unbalanced grids by frequency-adaptive virtual flux estimation.IEEE Transactions on Industrial Electronics,2012,59(7): 2910?2923

    [7]Lawton J R,Beard R W.Synchronized multiple spacecraft rotations. Automatica,2002,38(8):1359?1364

    [8]Abdessameud A,Tayebi A.Attitude synchronization of a group of spacecraft without velocity measurements.IEEE Transactions on AutomaticControl,2009,54(11):2642?2648

    [9]Bai H,Arcak M,Wen J T.Rigid body attitude coordination without inertial frame information.Automatica,2008,44(12):3170?3175

    [10]Ren W.Distributed cooperative attitude synchronization and tracking for multiple rigid bodies.IEEE Transactions on Control Systems Technology,2010,18(2):383?392

    [11]Min Hai-Bo,Liu Zhi-Guo,Liu Yuan,Wang Shi-Cheng,Yang Yan-Li. Coordination control of networked Euler-Lagrange systems with possible switching topology.Acta Automatica Sinica,2013,39(7):1003?1010(in Chinese)

    [12]Zhou N,Xia Y Q,Lu K F,Li Y.Decentralised finite-time attitude synchronisation and tracking control for rigid spacecraft.International Journal of Systems Science,2013,doi:10.1080/00207721.2013.868949

    [13]Zhou N,Xia Y,Wang M,Fu M.Finite-time attitude controlof multiple rigid spacecraft using terminal sliding mode.International Journal of Robustand Nonlinear Control,2014,doi:10.1002/rnc.3182

    [14]Khoo S Y,Xie L H,Man Z H.Robust finite-time consensus tracking algorithm for multirobot systems.IEEE/ASME Transactionson Mechatronics,2009,14(2):219?228

    [15]Chen Y P,Lo S C.Sliding-mode controllerdesign forspacecraftattitude tracking maneuvers.IEEE Transactions on Aerospace and Electronic Systems,1993,29(4):1328?1333

    [16]Lo S C,Chen Y P.Smooth sliding-mode control for spacecraft attitude tracking maneuvers.Journal of Guidance Control and Dynamics,1995, 18(6):1345?1349

    [17]Chen Z Y,Huang J.Attitude tracking and disturbance rejection of rigid spacecraftby adaptive control.IEEETransactionsonAutomatic Control, 2009,54(2):600?605

    [18]Ahmed J,Coppola V T,Bernstein D S.Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification.Journal of Guidance,Control,and Dynamics,1998,21(5):684?691

    [19]Wu B L,Wang D W,Poh E K.Decentralized robustadaptive controlfor attitude synchronization underdirected communication topology.Journal of Guidance,Control,and Dynamics,2011,34(4):1276?1282

    [20]Merris R.Laplacian matrices of graphs:a survey.Linear Algebra and Its Applications,1994,197?198(5):143?176

    [21]Horn R A,Johnson C R.TopicsinMatrixAnalysis.Cambridge,England, UK:Cambridge University Press,1991.242?254

    [22]Qian C J,Lin W.A continuous feedback approach to global strong stabilization of nonlinear systems.IEEE Transactions on Automatic Control,2001,46(7):1061?1079

    [23]Hardy G H,Littlewood J E,Polya G.Inequalities.Cambridge,England, UK:Cambridge University Press,1952.

    [24]Zhu Z,Xia Y Q,Fu M Y.Attitude stabilization of rigid spacecraft with finite-time convergence.International Journal of Robust and Nonlinear Control,2010,21(6):686?702

    [25]Slotine J J E,Coetsee J A.Adaptive sliding controller synthesis for nonlinearsystems.InternationalJournalofControl,1986,43(6):1631?1651

    [26]Lu K F,Xia Y Q.Adaptive attitude tracking control for rigid spacecraft with finite-time convergence.Automatica,2013,49(12):3591?3599

    [27]Shtessel Y,Taleb M,Plestan F.A novel adaptive-gain supertwisting sliding mode controller:Methodology and application.Automatica, 2012,48(5):759?769

    [28]Zhou J K,Hu Q L,Friswell M I.Decentralized finite time attitude synchronization controlofsatellite formation flying.JournalofGuidance Control and Dynamics,2013,36(1):185?195

    Yuanqing Xia Professor at the School of Automation,Beijing Institute of Technology.His research interests include networked control systems,robust control,active disturbance rejection control and flight control.Corresponding author of this paper.

    Ning Zhou Ph.D.candidate at the School of Automation,Beijing Institute of Technology.Her research interests include attitude synchronization, finite-time control,sliding mode control,and fuzzy control.

    Kunfeng Lu Ph.D.candidate at the School of Automation,Beijing Institute of Technology.His research interests include spacecraftattitude control, finite-time control,sliding mode control,and adaptive control.

    Yong Li Professor and principle investigator of Qian Xuesen Laboratory of Space Technology,China Academy of Space Technology.His main research interest is spacecraft control.

    t

    July 3,2013;accepted April 15,2014.This work was supported by National Basic Research Program of China(973 Program) (2012CB720002),National High Technology Research and Development Program of China(863 Program)(2012AA120601),National Natural Science Foundation of China(61225015),the Ph.D.Programs Foundation of Ministry of Education of China(20111101110012),and China Academy of Space Technology(CAST)Foundation(CAST201210).Recommended by Associate Editor Changyin Sun

    :Yuanqing Xia,Ning Zhou,Kunfeng Lu,Yong Li.Attitude control of multiple rigid bodies with uncertainties and disturbances.IEEE/CAA Journal of Automatica Sinica,2015,2(1):2?10

    Yuanqing Xia,Ning Zhou,and Kunfeng Lu are with the Schoolof Automation,Key Laboratory of Intelligent Controland Decision of Complex Systems, Beijing Institute of Technology,Beijing 100081,China(e-mail:xiayuanqing@bit.edu.cn;zhouning2010@gmail.com;kunfenglu001@gmail.com).

    Yong Li is with the Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology,Beijing 100094,China(e-mail:liyong@cast.cn).

    猜你喜歡
    省賽投用賽項
    2022年全國職業(yè)院校技能大賽汽車技術(shù)賽項在我校成功舉辦
    浙江首個“云收費(fèi)站”投用
    渝黔復(fù)線高速公路連接道項目2024年建成投用
    石油瀝青(2021年4期)2021-10-14 08:50:58
    河南高等職業(yè)教育技能大賽建筑工程識圖賽項圓滿落幕
    岳陽職業(yè)技術(shù)學(xué)院教師在省賽中再次斬獲一等獎
    “省賽”視域下中學(xué)歷史教學(xué)設(shè)計的優(yōu)化
    “省賽”指標(biāo)參照下學(xué)前教育師范生教學(xué)技能專業(yè)性的調(diào)查與思考
    ——基于370份學(xué)前教育本科生的樣本
    北京懷柔科學(xué)城創(chuàng)新小鎮(zhèn)投用
    省賽分賽區(qū)活動剪影
    廣東科技(2016年16期)2016-12-27 05:16:53
    淺談DCS自動投用及PID整定
    国产亚洲精品久久久com| 99热这里只有是精品50| 宅男免费午夜| 国产国拍精品亚洲av在线观看 | 久久久国产成人免费| 成熟少妇高潮喷水视频| 欧美一级a爱片免费观看看| 人妻夜夜爽99麻豆av| 男女之事视频高清在线观看| 成人高潮视频无遮挡免费网站| 一级作爱视频免费观看| av天堂中文字幕网| 99热6这里只有精品| 少妇丰满av| 国产精品野战在线观看| 51午夜福利影视在线观看| 国产野战对白在线观看| 欧美大码av| 免费人成视频x8x8入口观看| 在线观看舔阴道视频| www.www免费av| av在线蜜桃| 一级作爱视频免费观看| 岛国视频午夜一区免费看| svipshipincom国产片| 观看美女的网站| 久久精品人妻少妇| 脱女人内裤的视频| 国模一区二区三区四区视频| 日本黄大片高清| svipshipincom国产片| 狠狠狠狠99中文字幕| 在线观看av片永久免费下载| 久99久视频精品免费| 我的老师免费观看完整版| 色综合欧美亚洲国产小说| 黄色女人牲交| 99久久精品一区二区三区| 久久中文看片网| 亚洲国产日韩欧美精品在线观看 | 长腿黑丝高跟| 老汉色∧v一级毛片| 真实男女啪啪啪动态图| 18美女黄网站色大片免费观看| 日本 av在线| 欧美日韩瑟瑟在线播放| 国产成人欧美在线观看| 久久久久亚洲av毛片大全| 夜夜夜夜夜久久久久| 一a级毛片在线观看| 男女那种视频在线观看| 国产精品日韩av在线免费观看| 国产乱人伦免费视频| 日本在线视频免费播放| 十八禁网站免费在线| 变态另类成人亚洲欧美熟女| 国产单亲对白刺激| 哪里可以看免费的av片| 精品国产亚洲在线| 亚洲av不卡在线观看| 精品国产美女av久久久久小说| 免费av观看视频| 亚洲av免费高清在线观看| 特级一级黄色大片| 日韩有码中文字幕| 久久久久久久久久黄片| 免费在线观看影片大全网站| 一区二区三区国产精品乱码| 在线播放国产精品三级| 性欧美人与动物交配| 国产精品爽爽va在线观看网站| 亚洲午夜理论影院| 在线看三级毛片| 岛国在线免费视频观看| 精品国产美女av久久久久小说| 999久久久精品免费观看国产| 成人精品一区二区免费| 久久人妻av系列| 桃色一区二区三区在线观看| 成年人黄色毛片网站| 欧美成人a在线观看| 精品久久久久久久毛片微露脸| 在线免费观看的www视频| 在线免费观看的www视频| 免费电影在线观看免费观看| 熟妇人妻久久中文字幕3abv| 国产亚洲精品综合一区在线观看| 国产精品美女特级片免费视频播放器| 日韩欧美三级三区| av天堂中文字幕网| 法律面前人人平等表现在哪些方面| 亚洲黑人精品在线| 97超视频在线观看视频| 男女午夜视频在线观看| 亚洲人成网站在线播放欧美日韩| 老熟妇乱子伦视频在线观看| av福利片在线观看| 欧美绝顶高潮抽搐喷水| 日韩欧美在线乱码| 精品99又大又爽又粗少妇毛片 | 一a级毛片在线观看| 欧美最新免费一区二区三区 | 一级黄色大片毛片| 亚洲欧美日韩高清在线视频| 成人av在线播放网站| 免费看美女性在线毛片视频| 少妇人妻一区二区三区视频| 成人特级黄色片久久久久久久| 小蜜桃在线观看免费完整版高清| 国产精品美女特级片免费视频播放器| 成人无遮挡网站| 久久久国产精品麻豆| 免费高清视频大片| 国产精品,欧美在线| 丁香欧美五月| 精华霜和精华液先用哪个| 国产三级在线视频| 亚洲精品在线观看二区| 动漫黄色视频在线观看| 亚洲 欧美 日韩 在线 免费| 日本成人三级电影网站| 夜夜看夜夜爽夜夜摸| 国产爱豆传媒在线观看| av天堂在线播放| 国产野战对白在线观看| 国产主播在线观看一区二区| 免费电影在线观看免费观看| 国产不卡一卡二| 午夜福利欧美成人| 亚洲真实伦在线观看| 午夜两性在线视频| 波野结衣二区三区在线 | 国产精品98久久久久久宅男小说| 亚洲成人免费电影在线观看| 精品福利观看| 免费无遮挡裸体视频| av福利片在线观看| 99久久久亚洲精品蜜臀av| 两个人的视频大全免费| 亚洲国产精品999在线| 一a级毛片在线观看| 国产精品久久久久久精品电影| 午夜a级毛片| 88av欧美| 国产一区二区激情短视频| 黄色视频,在线免费观看| 免费人成视频x8x8入口观看| 国产免费av片在线观看野外av| 少妇高潮的动态图| 搞女人的毛片| 欧美国产日韩亚洲一区| 最近在线观看免费完整版| 嫁个100分男人电影在线观看| 国产精品一区二区三区四区久久| 成人特级黄色片久久久久久久| 麻豆久久精品国产亚洲av| 在线观看免费视频日本深夜| 国产黄片美女视频| 精品国产超薄肉色丝袜足j| 亚洲国产高清在线一区二区三| 又粗又爽又猛毛片免费看| 色在线成人网| 少妇丰满av| 黄片小视频在线播放| 琪琪午夜伦伦电影理论片6080| 深夜精品福利| 欧美在线黄色| 亚洲国产精品sss在线观看| 国产主播在线观看一区二区| 久久这里只有精品中国| 国产真人三级小视频在线观看| 日本与韩国留学比较| 亚洲精品亚洲一区二区| 一进一出抽搐gif免费好疼| 久久久久久九九精品二区国产| 色哟哟哟哟哟哟| 成人av一区二区三区在线看| 欧美一区二区精品小视频在线| 一级黄色大片毛片| 久久精品91蜜桃| 精品一区二区三区视频在线观看免费| h日本视频在线播放| 欧美区成人在线视频| 久久精品91蜜桃| 夜夜看夜夜爽夜夜摸| 久久精品91蜜桃| 人人妻,人人澡人人爽秒播| 国产高清激情床上av| 岛国视频午夜一区免费看| АⅤ资源中文在线天堂| 亚洲精品色激情综合| 一个人免费在线观看电影| 叶爱在线成人免费视频播放| 免费观看人在逋| 亚洲精品影视一区二区三区av| 日韩亚洲欧美综合| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久久免 | 一区福利在线观看| 亚洲av成人av| 日本免费a在线| 99久久无色码亚洲精品果冻| 毛片女人毛片| 午夜激情欧美在线| 国产久久久一区二区三区| 中文字幕av在线有码专区| 搡老熟女国产l中国老女人| 手机成人av网站| 三级国产精品欧美在线观看| 国产一区二区在线观看日韩 | 深夜精品福利| 亚洲精品成人久久久久久| 欧美bdsm另类| av中文乱码字幕在线| 身体一侧抽搐| 免费看a级黄色片| 国产一级毛片七仙女欲春2| 国产精品亚洲美女久久久| 亚洲国产高清在线一区二区三| h日本视频在线播放| 国产午夜福利久久久久久| 精品电影一区二区在线| 亚洲片人在线观看| 色综合站精品国产| 一边摸一边抽搐一进一小说| 欧美丝袜亚洲另类 | 欧美国产日韩亚洲一区| 国产精品野战在线观看| 99久久九九国产精品国产免费| 日韩免费av在线播放| 人人妻人人澡欧美一区二区| 日本精品一区二区三区蜜桃| 色播亚洲综合网| 男人和女人高潮做爰伦理| 亚洲一区高清亚洲精品| 亚洲不卡免费看| netflix在线观看网站| xxx96com| 亚洲人成网站高清观看| 在线国产一区二区在线| 特级一级黄色大片| 精品福利观看| 日韩人妻高清精品专区| 免费看a级黄色片| 免费av毛片视频| 露出奶头的视频| 高清毛片免费观看视频网站| tocl精华| 国产97色在线日韩免费| 欧美中文日本在线观看视频| 国产成人啪精品午夜网站| 黄色丝袜av网址大全| 午夜精品一区二区三区免费看| av天堂中文字幕网| 亚洲精品成人久久久久久| 舔av片在线| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 日本熟妇午夜| 男女午夜视频在线观看| 午夜福利免费观看在线| 在线观看免费午夜福利视频| 久久久久久久亚洲中文字幕 | 成人无遮挡网站| 亚洲成人久久爱视频| 老司机福利观看| 一级毛片高清免费大全| 国产高清videossex| 中文资源天堂在线| 国语自产精品视频在线第100页| 亚洲专区中文字幕在线| 国产精品久久久久久精品电影| 叶爱在线成人免费视频播放| 无人区码免费观看不卡| 夜夜躁狠狠躁天天躁| 小说图片视频综合网站| 亚洲成人中文字幕在线播放| 精品久久久久久久毛片微露脸| 国产亚洲精品久久久com| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 搡老熟女国产l中国老女人| 搡老熟女国产l中国老女人| 久久久久免费精品人妻一区二区| 日本成人三级电影网站| 亚洲人成网站在线播放欧美日韩| 五月伊人婷婷丁香| 此物有八面人人有两片| 欧美午夜高清在线| 亚洲av美国av| 国产一区二区三区在线臀色熟女| 久久九九热精品免费| 亚洲av电影不卡..在线观看| 亚洲一区二区三区不卡视频| 好男人电影高清在线观看| 99久久精品热视频| 搡老妇女老女人老熟妇| 97超级碰碰碰精品色视频在线观看| 国产高清videossex| 国产老妇女一区| eeuss影院久久| 国产真实伦视频高清在线观看 | 天堂影院成人在线观看| 网址你懂的国产日韩在线| 国产不卡一卡二| 欧美性猛交黑人性爽| 91麻豆av在线| 18+在线观看网站| 日韩中文字幕欧美一区二区| 免费看a级黄色片| 久久香蕉国产精品| 高清毛片免费观看视频网站| 亚洲精品色激情综合| netflix在线观看网站| 国产极品精品免费视频能看的| 国产真实伦视频高清在线观看 | 免费看日本二区| 成人永久免费在线观看视频| 婷婷精品国产亚洲av在线| 久久久久久国产a免费观看| 午夜精品久久久久久毛片777| 欧美一级a爱片免费观看看| 精品国产超薄肉色丝袜足j| 国产精品一区二区三区四区久久| 成年人黄色毛片网站| 午夜福利成人在线免费观看| 伊人久久精品亚洲午夜| 婷婷精品国产亚洲av在线| 欧美一区二区亚洲| 国产精品亚洲av一区麻豆| 激情在线观看视频在线高清| 亚洲激情在线av| 最近最新免费中文字幕在线| 免费看日本二区| 欧美绝顶高潮抽搐喷水| 精品人妻1区二区| 俄罗斯特黄特色一大片| 中文字幕精品亚洲无线码一区| 国产精品电影一区二区三区| 午夜福利高清视频| 99精品欧美一区二区三区四区| 99riav亚洲国产免费| 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 宅男免费午夜| 男人的好看免费观看在线视频| 看免费av毛片| 99热精品在线国产| 老熟妇乱子伦视频在线观看| 亚洲 国产 在线| 久久99热这里只有精品18| 欧美一区二区国产精品久久精品| 免费看十八禁软件| 别揉我奶头~嗯~啊~动态视频| 日本一本二区三区精品| 无限看片的www在线观看| 亚洲 国产 在线| 国产精品久久久人人做人人爽| 国产精华一区二区三区| 最近最新中文字幕大全电影3| 小说图片视频综合网站| 日韩欧美三级三区| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 久久精品人妻少妇| 欧美性猛交╳xxx乱大交人| 国产单亲对白刺激| 国产乱人伦免费视频| 宅男免费午夜| 精品熟女少妇八av免费久了| 在线国产一区二区在线| 国产野战对白在线观看| 欧美黑人巨大hd| 狂野欧美激情性xxxx| 亚洲人成网站高清观看| h日本视频在线播放| 成人国产一区最新在线观看| 琪琪午夜伦伦电影理论片6080| 一本久久中文字幕| 国产v大片淫在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品日韩av片在线观看 | 91久久精品国产一区二区成人 | 熟妇人妻久久中文字幕3abv| 亚洲精品日韩av片在线观看 | 在线看三级毛片| 无限看片的www在线观看| 亚洲精品成人久久久久久| 免费搜索国产男女视频| 99久国产av精品| 小说图片视频综合网站| 宅男免费午夜| 亚洲成人久久爱视频| 成人18禁在线播放| 国产精品国产高清国产av| 欧美日本亚洲视频在线播放| 日韩欧美免费精品| 蜜桃久久精品国产亚洲av| 亚洲成人免费电影在线观看| 国产国拍精品亚洲av在线观看 | 国产精品久久电影中文字幕| 亚洲精品在线美女| 久久久精品欧美日韩精品| 久久午夜亚洲精品久久| 亚洲久久久久久中文字幕| 日本一本二区三区精品| 夜夜躁狠狠躁天天躁| 一区二区三区高清视频在线| 丰满人妻一区二区三区视频av | 中文字幕高清在线视频| 国产三级中文精品| 嫩草影院入口| av专区在线播放| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 69av精品久久久久久| 怎么达到女性高潮| 最好的美女福利视频网| 久久精品91无色码中文字幕| 亚洲国产欧美网| av在线天堂中文字幕| 首页视频小说图片口味搜索| 99国产精品一区二区三区| 在线免费观看的www视频| 免费在线观看亚洲国产| 国产精品国产高清国产av| 88av欧美| 久久久国产成人精品二区| 在线观看免费视频日本深夜| 五月玫瑰六月丁香| 性欧美人与动物交配| 久久国产精品影院| 黄色女人牲交| 热99re8久久精品国产| 一级毛片高清免费大全| 大型黄色视频在线免费观看| www.色视频.com| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 亚洲国产高清在线一区二区三| 超碰av人人做人人爽久久 | 高潮久久久久久久久久久不卡| 欧美最新免费一区二区三区 | 国产精品久久久久久久电影 | 国产伦精品一区二区三区四那| av天堂在线播放| 久久久久九九精品影院| 久久午夜亚洲精品久久| 美女大奶头视频| 嫩草影院入口| 中文字幕av在线有码专区| 亚洲精品日韩av片在线观看 | 欧美成人性av电影在线观看| 中文字幕人妻熟人妻熟丝袜美 | 亚洲欧美日韩卡通动漫| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 天堂动漫精品| 最近在线观看免费完整版| 欧美绝顶高潮抽搐喷水| 美女黄网站色视频| 精品无人区乱码1区二区| 国产老妇女一区| 香蕉丝袜av| 久久久久久久久中文| 高清日韩中文字幕在线| 国产精品美女特级片免费视频播放器| 婷婷亚洲欧美| 亚洲精品国产精品久久久不卡| 人妻久久中文字幕网| 一进一出抽搐gif免费好疼| 国产精品久久久久久人妻精品电影| 国产成人av激情在线播放| 成人三级黄色视频| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 男女下面进入的视频免费午夜| 日本一二三区视频观看| 日韩国内少妇激情av| 亚洲内射少妇av| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 给我免费播放毛片高清在线观看| 色综合婷婷激情| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 欧美一区二区精品小视频在线| 欧美xxxx黑人xx丫x性爽| 欧美日韩国产亚洲二区| 欧美午夜高清在线| 最新在线观看一区二区三区| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 免费一级毛片在线播放高清视频| 国产免费av片在线观看野外av| 狂野欧美激情性xxxx| 免费av不卡在线播放| 亚洲av免费在线观看| 美女高潮的动态| 欧美日韩综合久久久久久 | 18禁美女被吸乳视频| 精品久久久久久久久久久久久| 色哟哟哟哟哟哟| 天美传媒精品一区二区| 日本三级黄在线观看| 国产野战对白在线观看| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 亚洲激情在线av| 亚洲av不卡在线观看| 久久精品人妻少妇| 毛片女人毛片| 国产黄片美女视频| 亚洲av一区综合| 最近最新中文字幕大全电影3| 91av网一区二区| 在线观看免费午夜福利视频| 国产老妇女一区| 日本免费a在线| 日日夜夜操网爽| 国产精品,欧美在线| 亚洲av不卡在线观看| 最好的美女福利视频网| 熟女人妻精品中文字幕| 欧美日韩黄片免| 18禁黄网站禁片午夜丰满| 欧美不卡视频在线免费观看| 少妇裸体淫交视频免费看高清| 亚洲人成网站高清观看| 黄色女人牲交| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观| 麻豆国产av国片精品| www日本在线高清视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲最大成人手机在线| 手机成人av网站| 在线观看美女被高潮喷水网站 | 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 久久久久久国产a免费观看| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 999久久久精品免费观看国产| 俺也久久电影网| 99视频精品全部免费 在线| 久久亚洲真实| 国产探花极品一区二区| 90打野战视频偷拍视频| 脱女人内裤的视频| 久久婷婷人人爽人人干人人爱| 三级毛片av免费| 午夜福利高清视频| 午夜精品在线福利| 变态另类成人亚洲欧美熟女| 51午夜福利影视在线观看| 看黄色毛片网站| 亚洲精品粉嫩美女一区| av黄色大香蕉| 欧美日本亚洲视频在线播放| 国产日本99.免费观看| 欧美又色又爽又黄视频| 很黄的视频免费| 日韩欧美国产一区二区入口| 午夜激情欧美在线| 每晚都被弄得嗷嗷叫到高潮| 欧美色视频一区免费| 白带黄色成豆腐渣| 亚洲av熟女| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 久久人妻av系列| 高清日韩中文字幕在线| 国产综合懂色| 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| 日韩成人在线观看一区二区三区| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 国产亚洲欧美98| av国产免费在线观看| 中出人妻视频一区二区| 中文字幕人成人乱码亚洲影| 久久久国产成人精品二区| 99国产极品粉嫩在线观看| 国产中年淑女户外野战色| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久 | 亚洲成a人片在线一区二区| av天堂在线播放| 午夜激情欧美在线| av天堂在线播放| 首页视频小说图片口味搜索| 成人三级黄色视频| 欧美成人免费av一区二区三区| avwww免费| 精品99又大又爽又粗少妇毛片 | 久久久国产成人精品二区| 午夜福利18| 老司机午夜福利在线观看视频| 97人妻精品一区二区三区麻豆| 中出人妻视频一区二区| 3wmmmm亚洲av在线观看| 免费看日本二区| eeuss影院久久| 99久国产av精品| 久久亚洲精品不卡| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av成人精品一区久久| 欧美午夜高清在线|