• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decoupling Trajectory Tracking for Gliding Reentry Vehicles

    2015-08-11 11:57:31ZixuanLiangZhangRenandXingyueShao
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Zixuan Liang,Zhang Ren,and Xingyue Shao

    Decoupling Trajectory Tracking for Gliding Reentry Vehicles

    Zixuan Liang,Zhang Ren,and Xingyue Shao

    —A decoupling trajectory tracking method for gliding reentry vehicles is presented to improve the reliability of the guidance system.Function relations between state variables and control variables are analyzed.To reduce the coupling between control channels,the multiple-input multiple-output(MIMO) tracking system is separated into a series of two single-input single-output(SISO)subsystems.Tracking laws for both velocity and altitude are designed based on the sliding mode control (SMC).The decoupling approach is verified by the Monte Carlo simulations,and compared with the linear quadratic regulator (LQR)approach in some specific conditions.Simulation results indicate that the decoupling approach owns a fast convergence speed and a strong anti-interference ability in the trajectory tracking.

    Index Terms—Hypersonic,reentry vehicle,decoupling control, trajectory tracking,sliding mode control(SMC).

    I.INTRODUCTION

    H YPERSONIC vehicles are aircrafts with a speed of Mach 5 or higher.The two typical hypersonic vehicles are the air-breathing cruise vehicle[1?2]and the un-powered gliding reentry vehicle[3].The latter can remotely maneuver in the near space(from about100 km to 20 km in altitude[4])without any power.Since the flight environment of the near space is terrible,an advanced guidance,navigation and control(GNC) system has become one of the key technologies for the reentry flight[5].

    The reentry guidance method based on a reference trajectory is a common approach that has been successfully used in the Shuttle[6?7].The basic idea of this approach is tracking a predesigned reference trajectory onboard during the reentry flight. However,the tracking law design is usually complex mainly due to the following reasons:

    1)Strong nonlinear terms exist in the reentry dynamic model;

    2)Parameters in the aerodynamic model are with high uncertainty;

    3)The number of state variables(altitude,range-to-go, velocity,heading angle,etc.)is greater than that of control variables(only the angle of attack and the bank angle).

    To solve this tracking problem,[8]proposed an approximate receding-horizon control law based on the linearized timevarying model with six state variables.Under this control law,the three-dimensional trajectory can be tracked well when the flight initial condition is dispersed.But for large aerodynamic dispersions,it is sometimes hard for this law to own a good performance.In[9],the longitudinal trajectory consisting of three state variables was analyzed and a tracking law based on the linear quadratic regulator(LQR)was developed. Though the guidance algorithm in this approach is much more simplified,its anti-interference ability is not always perfect as the feedback matrix is designed off-line.To improve the performance of trajectory tracking,[10]investigated an adaptive control method,[11]used a prediction control approach,[12] introduced the predictive controllerinto the drag tracking,[13] studied a tracking law based on the inversion control,[14] proposed an adaptive optimal sliding mode controller,and [15]presented a flatness approach.However,most of these approaches are designed based on the multiple-inputmultipleoutput(MIMO)system where couplings exist among control channels,and significantly complex algorithm is required to overcome the couplings.

    In fact,to ensure the reliability of the control and guidance system,the trajectory tracking law should be designed under the following two principles:

    1)The tracking law is robust to any dispersion;

    2)The algorithm is simple to be employed.

    In this paper,a decoupling approach is proposed for the design of the trajectory tracking law.Different from those complex approaches mainly focusing on the first principle, this study pays attention to both principles.

    In the longitudinalplane,to simplify the tracking algorithm, the MIMO system for the multi-objective tracking is separated into a series of two single-input single-output(SISO)subsystems.The former is for velocity tracking,and the latter is for altitude tracking.In each subsystem,to overcome the model uncertainty,sliding mode control(SMC)is used in the tracking law.Finally,simulations on a gliding reentry vehicle modelare carried out to validate the proposed approach.

    II.REENTRY GUIDANCE PROBLEM

    A.Reentry Dynamics

    The three-degree-of-freedom(3 DOF)point-mass equations of an un-powered reentry vehicle over a spherical rotating Earth are as follows[16?17]:

    Here,r is the radial distance from the center of the Earth to the vehicle.θandφare longitude and latitude,respectively. v is the Earth-relative velocity.γandψare the flight path angle and the velocity heading angle,respectively.σis the bank angle.g is the gravitational acceleration,andωis the angular rate of Earth rotation.L and D are the aerodynamic lift and drag accelerations,i.e.,

    where m is the mass of the vehicle,SAis the reference area, CLand CDare the liftand drag coefficients thatdepend on the angle of attackα,andρis the atmospheric density calculated by

    whereρ0is the atmospheric density on the surface ofthe Earth, andβis a constant.h is the altitude and has the relationship with r as in(9),where R0is the radius of the Earth.

    B.Guidance Strategy

    The guidance system's mission is to provide commands with which the vehicle can travel from the initial interface to the terminal interface and the flight constraints are well satisfi ed. To simplify this system,we can design it separately in the longitudinal and lateral planes.

    In the lateral plane,the control variable is the sign of the bank angle.With a conventional heading error corridor,the bank reversal logic is designed as

    whereσk?1is the bank angle command in the previous guidance cycle,Δψ is the heading error andΔψdis the boundary of the heading error corridor.

    In the longitudinal plane,the control variables include the magnitude of the bank angle and the angle of attack.The task for longitudinal guidance is tracking the reference trajectory with the flight constraints satisfied.The three typical reentry constraints are expressed as follows[17?18]:

    where˙Q is the heating rate,n the normal aerodynamic load, q the dynamic pressure,and K˙Qis a constant.

    Generally,a reference longitudinal trajectory is planned by the off-line optimization to satisfy reentry constraints,and then a reliable tracking law is employed onboard to track this reference trajectory.

    III.DECOUPLING TRAJECTORY TRACKING

    A.Decoupling Design for Guidance System

    The main state variables in the longitudinal plane are altitude,velocity,flight path angle and range-to-go stogo.As the flightpath angle can be controlled by the stable tracking of altitude,the task for control can be simplified to tracking the altitude and velocity trajectories with stogoas the independent variable.

    Considering thatω2≈ 0 andγ≈ 0 in(4),the derivative of velocity is controlled directly by the aerodynamic drag D. Similarly,from(1)and(5),the derivative of altitude(which equals to the rate of r)is found to be controlled by L cosσ. Furthermore,L and D in(7)mainly depend onρ,v andα. Therefore,the function relations among controlvariables(the bank angle and the angle of attack)and state variables(altitude and velocity)are obtained as in Fig.1.

    Fig.1. Function relations for control variables.

    From Fig.1,itis found thatthe angle of attack has a direct effect on velocity,but the bank angle affects the velocity indirectly through flight path angle,altitude and the atmospheric density.After neglecting effects of the bank angle on velocity, the simplified relations are given by Fig.2.The velocity and the altitude are controlled by the angle of attack and bank angle,respectively,since the function from the angle of attack to the altitude can be supposed as dispersion in the lift model.

    Fig.2. Simplified function relations for control variables.

    Hence,the MIMO system for longitudinaltrajectory control can be separated into two SISO subsystems:the velocity control and the altitude control.Considering that the angle of attack has an effect on altitude,a series connection for the two controllers is employed.The control diagram is designed as in Fig.3.

    Fig.3.Diagram for decoupling tracking approach.

    In Fig.3,the reference trajectory is given by the off-line optimization and saved as several discrete sequences, i.e., [v0,v1,v2,···,vn], [h0,h1,h2,···,hn], and [s togo,0,s togo,1,s togo,2,···,s togo,n]. Given s togo ∈

    [stogo,i+1,stogo,i],the reference velocity and altitude are calculated by(12)and(13).The first or second derivatives for vrefand hrefused in the trajectory tracking law can be calculated by the numericaldifferentiation,since the optimized reference trajectory is usually smooth.

    B.Velocity Tracking Law

    The task for the velocity tracking is to track the reference velocity trajectory vrefwith the angle of attack as the control variable.First,neglecting the second order term ofω,the differential equation for the velocity in(4)can be expressed as

    whereΔD is the uncertainty in the drag model including errors ofthe atmospheric density,the liftand drag coefficients, and the vehicle mass.With the state variable x=v and the control variable u=CD(α),a first order SISO system for the velocity is obtained,which is

    Though an uncertain term exists in Bv,it is supposed to be bounded by

    where?Bvis the estimation of Bvand computed by setting ΔD to be zero in(16).

    To overcome the uncertainty,the SMC theory is to be used in the tracking law design.Define the sliding surface

    Combining with(15),we have

    Hence,the control law based on SMC is given by

    Substituting(21)into(20),we have

    where kvis designed as

    By substituting(23)into(22),it can be proved that the sliding condition is satisfied as

    To reduce the chattering,the saturation function is employed and the control law is replaced by(25),where?vis the boundary layer thickness for the velocity tracking,and is set in a time varying form?v=0.01v.

    At last,the guidance command for the angle of attack can be computed from CD(α)=u.

    C.Altitude Tracking Law

    The task for the altitude tracking is to track the reference altitude trajectory hrefwith the bank angle as the control variable.From(1),the differential equation for the altitude is

    By a further derivation and combining with(4)and(5),the second order differential of altitude is expressed as

    whereΔL andΔD are the uncertainties in the lift and drag models,respectively.

    Equation(27)establishes the relation between bank angle and altitude.With the state variable x=h and the control variable u=cosσ,a second order SISO system forthe altitude is obtained,i.e.,

    where Bhand Fhare supposed to be bounded by

    where?Bhand?Fhare estimations of Bhand Fh,and can be calculated by settingΔL andΔD to be zero in(28)and(29), respectively.

    Then,define the sliding surface

    Combining with(30),we have

    Similar to the velocity tracking law,the SMC theory and the saturation function are employed,and the tracking law for the altitude is given by

    where?his the boundary layer thickness for the altitude tracking and set in a time varying form?h=0.012v,and khis designed as

    Finally,the guidance command for bank angle is given by σ=arccos u.

    IV.SIMULATIONS AND ANALYSIS

    A model for the gliding reentry vehicle is used in simulations to test the decoupling trajectory tracking method presented in this study.The reentry initial conditions are as fell h0=75 km,v0=7 200 m/s,θ0=10 deg,φ0=0 deg,γ0=?0.5 deg,ψ0=49 deg,stogo,0=11 127 km.The terminal conditions are:hf=40 km,vf=2 950 m/s,|Δψf|≤5 deg, and stogo,f=150 km.The flight constraints are:Qmax= 3 MW/m2,nmax=3 g,qmax=100 kPa.Other parameters in the trajectory tracking laws are configured asχL=χD=1.6, δh=0.5.

    A.Simulations for Robustness

    Simulations of reentry flight in dispersed cases are performed to testthe robustness ofthe trajectory tracking method. Typical dispersions for reentry initial conditions and aerodynamic parameters are configured in Table I.With these dispersions,the Monte Carlo simulations are employed for a totalof 1 000 cases ofreentry flight.The altitude and velocity histories with stogoas the independent variable are shown in Figs.4 and 5,respectively.It is seen that the decoupling method is effective on both tracking speed and tracking accuracy forboth altitude and velocity trajectories.

    Fig.4.Altitude histories for 1 000 dispersed cases.

    Fig.5. Velocity histories for 1 000 dispersed cases.

    TABLE I DISPERSIONS IN MONTE CARLO SIMULATIONS

    Fig.6 expresses the distribution for the terminal velocityaltitude errors in the 1 000 dispersed cases.The altitude errors are kept in 0.3 km,and the velocity errors are kept in 10 m/s. The ground tracks for the 1 000 dispersed cases are shown in Fig.7,which indicates that the lateral guidance performs well.The distribution for the terminal heading errors is shown in Fig.8.It is seen that the heading errors are kept within ±5 deg,which indicates that the terminal constraint is well satisfied.

    Fig.6. Terminal h?v errors for 1 000 dispersed cases.

    B.Comparison of Different Methods

    The trajectory tracking law based on LQR is another simply designed method and has been used in many studies[9,19?21]. Simulations in the same specific conditions are performed tocompare the decoupling guidance method based on SMC with the conventional guidance method based on LQR.

    Fig.7. Ground tracks for 1 000 dispersed cases.

    Fig.8.Terminal heading errors for 1 000 dispersed cases.

    Fig.9.Comparison of the altitude errors for two methods.

    First,the two methods are simulated with dispersions forthe flightinitialconditionΔh0=2 km andΔv0=50 m/s.Figs.9 and 10 record the altitude error histories for the two methods. Although both methods can reduce the altitude error and the velocity errorto zero atthe reentry terminal,the SMC method has an advantage in the convergence speed.

    Secondly,the two methods are simulated in four conditions with different dispersions for the lift and drag coefficients. Simulation results are shown in Tables II and III.For the decoupling SMC method,the terminal altitude errors are within 0.2 km and the terminal velocity errors are in within 5 m/s.However,for the conventional LQR method,the terminal errors in the first three conditions are acceptable,but divergence appears in the last condition.Hence,compared with the conventional LQR method,the proposed decoupling approach based on SMC has the better anti-interference ability for the aerodynamic dispersions.

    In summary,the new decoupling SMC approach is more effective than the conventional LQR approach.

    Fig.10.Comparison of the velocity errors for two methods.

    TABLE II SIMULATION RESULTS FOR THE DECOUPLING SMC METHOD

    TABLE III SIMULATION RESULTS FOR THE CONVENTIONAL LQR METHOD

    V.CONCLUSION

    In this paper,the traditional multi-objective tracking problem for the reentry trajectory is separated into the altitude tracking and the velocity tracking,and both of the tracking laws are designed with the SMC theory.From Monte Carlo simulations of 1 000 dispersed cases,the decoupling tracking method is shown to be robust to the uncertain reentry conditions.From the comparison with the conventional LQR method,itis indicated that the decoupling tracking law owns better performance in the convergence speed and the antiinterference ability for large dispersions.

    With the decoupling strategy presented in this paper,the trajectory tracking algorithm for the reentry vehicle is significantly simplified.In future works,other control theories for a SISO system can be applied to the altitude tracking law and the velocity tracking law based on this decoupling strategy.

    REFERENCES

    [1]Xu B,Sun F,Liu H,Ren J.Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping.IET Control Theory and Applications,2012,6(4):487?497

    [2]Yang J,Li S H,Sun C Y,Guo L.Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles.IEEE Transactions onAerospace and Electronic Systems,2013,49(2):1263?1275

    [3]Stewart J D,Greenshields D H.Entry vehicles for space programs. Journal of Spacecraft and Rockets,1969,6(10):1089?1102

    [4]Sun Chang-Yin,Mu Chao-Xu,Yu Yao.Some control problems for near space hypersonic vehicles.Acta Automatica Sinica,2013,39(11): 1901?1913(in Chinese)

    [5]Bao Wei-Min.Presentsituation and developmenttendency of aerospace control techniques.Acta Automatica Sinica,2013,39(6):697?702(in Chinese)

    [6]Harpold J C,Graves C A.Shuttle entry guidance.Journal of the Astronautical Sciences,1979,27(3):239?268

    [7]Lu P.Entry guidance and trajectory controlfor reusable launch vehicle. Journal of Guidance,Control,and Dynamics,1997,20(1):143?149

    [8]Lu P.Regulation about time-varying trajectories:precision entry guidance illustrated.Journal of Guidance,Control,and Dynamics,1999, 22(6):784?790

    [9]Dukeman G A.Profile-following entry guidance using linear quadratic regulator theory.In:Proceedings of the 2002 AIAA Guidance,Navigation,and Control Conference and Exhibit.Monterey,USA:AIAA, 2002.2002-4457

    [10]Mooij E.Model reference adaptive guidance for re-entry trajectory tracking.In:Proceedings of the 2004 AIAA Guidance,Navigation,and Control Conference and Exhibit.Providence,USA:AIAA,2004.2004-4900

    [11]Zhang Jun,Xiao Yu-Zhi,Bi Zhen-Fa.Guidance method based on multimodel prediction for re-entry vehicles.Acta Aeronautica et Astronautic Sinica,2008,29(Sup):S20?S25(in Chinese)

    [12]Benito J,Mease K D.Nonlinearpredictive controllerfordrag tracking in entry guidance.In:Proceedings of the 2008 AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Honolulu,USA:AIAA,2008.2008-7350

    [13]Pu Z Q,Tan X M,Fan G L,Yi J Q.Design of entry trajectory tracking law for a hypersonic vehicle via inversion control.In:Proceedings ofthe 10th World Congress on Intelligent Control and Automation.Beijing, China:IEEE,2012.1092?1097

    [14]Zhu Kai.Study of Reentry Guidance and Control Algorithm for Glide Missile[Ph.D.dissertation],Harbin Institute of Technology,China, 2011.(in Chinese)

    [15]Desiderio D,Lovera M.Guidance and control for planetary landing: flatness-based approach.IEEE Transactions on Control Systems Technology,2013,21(4):1280?1294

    [16]Vinh N X,Busemann A,Culp R D.Hypersonic and Planetary Entry Flight Mechanics.Ann Arbor,MI:University of Michigan Press,1980. 26?28

    [17]Xue S B,Lu P.Constrained predictor-corrector entry guidance.Journal of Guidance,Control,and Dynamics,2010,33(4):1273?1281

    [18]Li H F,Zhang R,Li Z Y,Zhang R.New method to enforce inequality constraints of entry trajectory.Journalof Guidance,Control,and Dynamics,2012,35(5):1662?1667

    [19]Li Yu.Study of Trajectory Optimization and Guidance Algorithm for Boost-Glide Missile[Ph.D.dissertation],Harbin Institute of Technology, China,2009(in Chinese)

    [20]Liang Z X,Ren Z,Bai C.Lateral reentry guidance for maneuver glide vehicles with geographic constraints.In:Proceedings of the 32nd Chinese Control Conference.Xi'an,China:IEEE,2013.5187?5192

    [21]Zhou W,Tan S,Chen H.A simple reentry trajectory generation and tracking scheme for common aero vehicle.In:Proceedings of the 2012 AIAA Guidance,Navigation,and Control Conference.Minneapolis, USA:AIAA,2012.2012-4709

    Zixuan Liang Ph.D.candidate at the Science and Technology on Aircraft Control Laboratory,Beihang University.His research interests include guidance and control technology for the reentry vehicles.Corresponding author of this paper.

    Zhang Ren Professoratthe Science and Technology on Aircraft Control Laboratory,Beihang University.His research interests include precision guidance, optimal control,adaptive control,computer control and simulation.

    Xingyue Shao Ph.D.candidate at the Science and Technology on Aircraft Control Laboratory,Beihang University.His research interests include guidance and control technology for the reentry vehicles.

    t

    September 9,2013;accepted May 28,2014.This work was supported by National Natural Science Foundation of China(91116002, 91216034,61333011,61121003).Recommended by Associate Editor Bin Xian

    :Zixuan Liang,Zhang Ren,Xingyue Shao.Decoupling trajectory tracking for gliding reentry vehicles.IEEE/CAAJournalofAutomaticaSinica, 2015,2(1):115?120

    Zixuan Liang,Zhang Ren,and Xingyue Shao are with the Science and Technology on Aircraft Control Laboratory,Beihang University,Beijing 100191,China(e-mail:aliang@buaa.edu.cn;renzhang@buaa.edu.cn; shao86830@163.com).

    给我免费播放毛片高清在线观看| 国产亚洲精品久久久久久毛片| 亚洲av成人一区二区三| 亚洲成人久久性| 亚洲成人精品中文字幕电影| 欧美性猛交黑人性爽| 久久中文字幕人妻熟女| 老司机午夜十八禁免费视频| 久久久精品大字幕| 女同久久另类99精品国产91| 男女午夜视频在线观看| 久久中文字幕人妻熟女| 最近最新免费中文字幕在线| 国产69精品久久久久777片 | 男女床上黄色一级片免费看| 性色av乱码一区二区三区2| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 可以在线观看毛片的网站| 一二三四在线观看免费中文在| 亚洲欧美日韩无卡精品| 天天添夜夜摸| 女人被狂操c到高潮| 99久久成人亚洲精品观看| 亚洲国产日韩欧美精品在线观看 | 黄色女人牲交| 一个人观看的视频www高清免费观看 | 精品久久蜜臀av无| 亚洲天堂国产精品一区在线| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| 日本五十路高清| 亚洲中文av在线| 两性夫妻黄色片| 最新美女视频免费是黄的| 久久国产精品影院| 99热只有精品国产| 亚洲国产欧美一区二区综合| 日韩欧美免费精品| 国产私拍福利视频在线观看| 91av网站免费观看| 成熟少妇高潮喷水视频| 男女视频在线观看网站免费| 1024手机看黄色片| 精品无人区乱码1区二区| 国产亚洲精品久久久久久毛片| 桃红色精品国产亚洲av| 狠狠狠狠99中文字幕| 九九久久精品国产亚洲av麻豆 | 欧美又色又爽又黄视频| 国产又色又爽无遮挡免费看| 亚洲中文av在线| 国产精品久久视频播放| 久久久国产成人免费| 亚洲精品456在线播放app | 中文字幕精品亚洲无线码一区| 久99久视频精品免费| 岛国视频午夜一区免费看| 亚洲黑人精品在线| 欧美大码av| 欧美日韩综合久久久久久 | 免费看日本二区| 窝窝影院91人妻| 国产午夜精品论理片| 亚洲成人免费电影在线观看| 午夜a级毛片| 国产成人精品无人区| 久久草成人影院| 欧美乱码精品一区二区三区| av天堂在线播放| 久久久久久久午夜电影| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 国产私拍福利视频在线观看| 日韩有码中文字幕| 国产成人av激情在线播放| 国产一区二区三区视频了| 亚洲成人中文字幕在线播放| 欧美黑人巨大hd| 日韩有码中文字幕| 麻豆一二三区av精品| 一个人看视频在线观看www免费 | 国产成人影院久久av| 成熟少妇高潮喷水视频| 成年女人看的毛片在线观看| 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| 国产高清videossex| 欧美不卡视频在线免费观看| 久久精品国产清高在天天线| 国产真实乱freesex| 午夜精品一区二区三区免费看| 欧美三级亚洲精品| 亚洲国产欧美人成| 国内精品久久久久久久电影| 香蕉久久夜色| 午夜福利欧美成人| 精品国产乱码久久久久久男人| 国内精品久久久久久久电影| 精品福利观看| www.999成人在线观看| 真人一进一出gif抽搐免费| 亚洲男人的天堂狠狠| 黑人欧美特级aaaaaa片| 午夜两性在线视频| 黄色 视频免费看| 男女下面进入的视频免费午夜| 母亲3免费完整高清在线观看| 欧美丝袜亚洲另类 | 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 看片在线看免费视频| 日本五十路高清| 亚洲七黄色美女视频| aaaaa片日本免费| 国产亚洲精品一区二区www| 国产激情偷乱视频一区二区| 91在线观看av| 久久精品人妻少妇| 国产精品日韩av在线免费观看| 一本久久中文字幕| 中文在线观看免费www的网站| 国产亚洲精品一区二区www| 国产一区二区在线观看日韩 | 最近最新免费中文字幕在线| 怎么达到女性高潮| 免费看a级黄色片| 亚洲九九香蕉| 亚洲欧美日韩高清专用| 中文字幕久久专区| 国产一区二区在线观看日韩 | 老司机午夜十八禁免费视频| 岛国在线观看网站| 国产91精品成人一区二区三区| 亚洲国产色片| 又黄又爽又免费观看的视频| 天堂√8在线中文| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 精品国产三级普通话版| 国产麻豆成人av免费视频| netflix在线观看网站| 日韩 欧美 亚洲 中文字幕| 高清毛片免费观看视频网站| 中文字幕最新亚洲高清| 午夜精品在线福利| 国产不卡一卡二| 757午夜福利合集在线观看| 亚洲在线自拍视频| 亚洲一区二区三区不卡视频| 欧美激情久久久久久爽电影| 日本五十路高清| 欧美性猛交黑人性爽| 最近在线观看免费完整版| 真实男女啪啪啪动态图| 精品福利观看| 国产又色又爽无遮挡免费看| 两性夫妻黄色片| 日韩高清综合在线| 成年女人毛片免费观看观看9| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 国产三级在线视频| 久久精品综合一区二区三区| 后天国语完整版免费观看| 91老司机精品| 欧美日韩瑟瑟在线播放| 国产高清视频在线观看网站| 精品午夜福利视频在线观看一区| 国产精品久久久久久久电影 | 观看免费一级毛片| 一个人免费在线观看的高清视频| 黄频高清免费视频| 嫩草影院精品99| 亚洲黑人精品在线| 女生性感内裤真人,穿戴方法视频| 久久精品国产清高在天天线| 国产不卡一卡二| 久久亚洲真实| 亚洲欧美精品综合久久99| 熟妇人妻久久中文字幕3abv| 日韩欧美国产一区二区入口| 亚洲精品粉嫩美女一区| 午夜福利在线观看吧| av黄色大香蕉| 在线十欧美十亚洲十日本专区| 国产精品影院久久| 午夜亚洲福利在线播放| 首页视频小说图片口味搜索| 亚洲av熟女| 99久久国产精品久久久| 精品久久久久久久久久久久久| 99热这里只有是精品50| 91在线观看av| 人妻久久中文字幕网| 嫩草影院入口| 老司机福利观看| 欧美日韩国产亚洲二区| 最好的美女福利视频网| 亚洲av电影在线进入| 熟女人妻精品中文字幕| 久久久久久久久免费视频了| 麻豆久久精品国产亚洲av| 岛国视频午夜一区免费看| 青草久久国产| 亚洲在线观看片| 日韩中文字幕欧美一区二区| 久久久久久久久久黄片| 日本a在线网址| 美女高潮的动态| 老司机深夜福利视频在线观看| 久久欧美精品欧美久久欧美| 视频区欧美日本亚洲| 亚洲国产精品成人综合色| 人妻久久中文字幕网| 久久久久国产精品人妻aⅴ院| 91av网一区二区| 免费大片18禁| 日本撒尿小便嘘嘘汇集6| 一区二区三区国产精品乱码| 一本综合久久免费| 日韩欧美一区二区三区在线观看| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| avwww免费| 欧美黑人巨大hd| 国产成人精品久久二区二区免费| 十八禁网站免费在线| 国产单亲对白刺激| 此物有八面人人有两片| 亚洲成av人片免费观看| 在线a可以看的网站| 国产一区二区激情短视频| 亚洲av电影不卡..在线观看| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 一级黄色大片毛片| 最近视频中文字幕2019在线8| 国产综合懂色| 热99在线观看视频| 欧美丝袜亚洲另类 | 天天添夜夜摸| 级片在线观看| 日本 av在线| 免费人成视频x8x8入口观看| 亚洲国产日韩欧美精品在线观看 | 国产精品爽爽va在线观看网站| 91麻豆av在线| 国产av在哪里看| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| 欧美中文日本在线观看视频| 国产av在哪里看| 欧美成狂野欧美在线观看| 亚洲av成人精品一区久久| 欧美在线黄色| 在线看三级毛片| 黄色日韩在线| 欧美一区二区国产精品久久精品| 啦啦啦观看免费观看视频高清| 国产一区二区在线观看日韩 | 日韩欧美在线二视频| 婷婷精品国产亚洲av在线| 日韩高清综合在线| 白带黄色成豆腐渣| 欧美日韩乱码在线| 欧美乱码精品一区二区三区| 国产黄a三级三级三级人| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 欧美一区二区精品小视频在线| 啦啦啦免费观看视频1| 此物有八面人人有两片| 成在线人永久免费视频| 精品久久久久久,| 久久久国产欧美日韩av| 天天躁日日操中文字幕| 观看免费一级毛片| 久久久久久九九精品二区国产| 亚洲激情在线av| 91麻豆精品激情在线观看国产| 国产精品美女特级片免费视频播放器 | 老鸭窝网址在线观看| 国产午夜精品久久久久久| 男女视频在线观看网站免费| 91老司机精品| 日本与韩国留学比较| 色播亚洲综合网| 99精品久久久久人妻精品| 成人永久免费在线观看视频| 午夜福利18| 制服丝袜大香蕉在线| 桃色一区二区三区在线观看| 亚洲天堂国产精品一区在线| 精品电影一区二区在线| 91麻豆精品激情在线观看国产| av女优亚洲男人天堂 | 久久香蕉国产精品| 国产97色在线日韩免费| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 久久久国产成人免费| 亚洲国产日韩欧美精品在线观看 | 波多野结衣高清作品| 99久久国产精品久久久| 亚洲欧美日韩东京热| 一进一出好大好爽视频| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 宅男免费午夜| 最新美女视频免费是黄的| 一区福利在线观看| 精品午夜福利视频在线观看一区| 啦啦啦免费观看视频1| 两人在一起打扑克的视频| 亚洲 国产 在线| 国产精华一区二区三区| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 不卡一级毛片| 这个男人来自地球电影免费观看| 国产亚洲av高清不卡| 欧美zozozo另类| 老司机深夜福利视频在线观看| 亚洲性夜色夜夜综合| 真人做人爱边吃奶动态| 亚洲精品粉嫩美女一区| 国产1区2区3区精品| 岛国视频午夜一区免费看| 日韩欧美国产在线观看| 久久中文看片网| 99久久成人亚洲精品观看| 久久精品夜夜夜夜夜久久蜜豆| 国产v大片淫在线免费观看| 精品人妻1区二区| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 国产精品98久久久久久宅男小说| 亚洲欧美一区二区三区黑人| 国产伦一二天堂av在线观看| 国产伦人伦偷精品视频| 757午夜福利合集在线观看| 亚洲九九香蕉| 超碰成人久久| 亚洲九九香蕉| 超碰成人久久| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 日本免费a在线| 香蕉久久夜色| 一夜夜www| 中文资源天堂在线| 免费大片18禁| 少妇熟女aⅴ在线视频| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 精品国产三级普通话版| 日韩欧美国产在线观看| 五月玫瑰六月丁香| 亚洲在线观看片| 五月玫瑰六月丁香| 国产av麻豆久久久久久久| 19禁男女啪啪无遮挡网站| 欧美一级a爱片免费观看看| 亚洲av免费在线观看| 黄色丝袜av网址大全| 色综合亚洲欧美另类图片| 高清在线国产一区| 亚洲av美国av| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区久久| 久久午夜综合久久蜜桃| 深夜精品福利| 免费在线观看日本一区| 久久久久久久午夜电影| 国产亚洲精品一区二区www| 日韩欧美免费精品| 成人国产综合亚洲| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2| 亚洲色图 男人天堂 中文字幕| 亚洲午夜精品一区,二区,三区| 99久久无色码亚洲精品果冻| 又黄又爽又免费观看的视频| 久久精品91无色码中文字幕| 日本成人三级电影网站| 欧美成狂野欧美在线观看| 免费在线观看影片大全网站| 熟女人妻精品中文字幕| 国产三级在线视频| 一卡2卡三卡四卡精品乱码亚洲| 美女免费视频网站| 亚洲国产中文字幕在线视频| 国产精品免费一区二区三区在线| 精品国内亚洲2022精品成人| 国产午夜精品久久久久久| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 亚洲无线观看免费| 一个人免费在线观看电影 | 男人和女人高潮做爰伦理| 麻豆久久精品国产亚洲av| 欧美日韩福利视频一区二区| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区精品| 国产精品影院久久| 99久久综合精品五月天人人| 国产精品av视频在线免费观看| 精品久久久久久久久久久久久| 久久久久久久久久黄片| 成人精品一区二区免费| 免费观看人在逋| 国产精品国产高清国产av| 91久久精品国产一区二区成人 | 成人国产一区最新在线观看| 国产成人欧美在线观看| 日韩欧美国产一区二区入口| 99久国产av精品| 一a级毛片在线观看| 久久久久国产一级毛片高清牌| 最新中文字幕久久久久 | 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久电影中文字幕| 亚洲av免费在线观看| 成人欧美大片| 成人特级av手机在线观看| 国产伦一二天堂av在线观看| 亚洲五月天丁香| 女同久久另类99精品国产91| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| 热99re8久久精品国产| 午夜福利18| 亚洲男人的天堂狠狠| 国产精品一及| 真人做人爱边吃奶动态| 亚洲av第一区精品v没综合| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久| 成人永久免费在线观看视频| 亚洲av免费在线观看| 少妇人妻一区二区三区视频| 色播亚洲综合网| 亚洲一区二区三区不卡视频| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 久久久国产欧美日韩av| 亚洲一区高清亚洲精品| 亚洲精品一区av在线观看| av女优亚洲男人天堂 | 亚洲中文av在线| 啦啦啦韩国在线观看视频| 精品乱码久久久久久99久播| 亚洲人成电影免费在线| 1000部很黄的大片| 一本一本综合久久| 久久国产精品影院| 免费观看人在逋| 国产亚洲精品综合一区在线观看| 美女黄网站色视频| 91老司机精品| 国产一区二区在线av高清观看| 中文字幕高清在线视频| 一a级毛片在线观看| x7x7x7水蜜桃| 久久精品91蜜桃| 久久久久九九精品影院| 国语自产精品视频在线第100页| 亚洲国产精品成人综合色| 不卡av一区二区三区| 精品国产三级普通话版| 亚洲精品乱码久久久v下载方式 | 19禁男女啪啪无遮挡网站| 怎么达到女性高潮| 日韩成人在线观看一区二区三区| 国产亚洲欧美98| 婷婷精品国产亚洲av在线| 人妻系列 视频| 神马国产精品三级电影在线观看| 99热6这里只有精品| 边亲边吃奶的免费视频| 国产黄片视频在线免费观看| 精品久久久久久久人妻蜜臀av| 嫩草影院精品99| 内射极品少妇av片p| 我要看日韩黄色一级片| 中文资源天堂在线| 免费观看性生交大片5| 亚洲av二区三区四区| 亚洲国产最新在线播放| 国产免费福利视频在线观看| 麻豆成人午夜福利视频| 男人舔奶头视频| 国产亚洲一区二区精品| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 3wmmmm亚洲av在线观看| 女的被弄到高潮叫床怎么办| 男人舔女人下体高潮全视频| 免费看av在线观看网站| 亚洲乱码一区二区免费版| 韩国高清视频一区二区三区| 亚洲精品亚洲一区二区| 在线免费观看不下载黄p国产| 色综合色国产| 亚州av有码| 联通29元200g的流量卡| 淫秽高清视频在线观看| 国产成人a区在线观看| 亚洲18禁久久av| 丝袜喷水一区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲美女搞黄在线观看| 91av网一区二区| 超碰97精品在线观看| 少妇被粗大猛烈的视频| 国产v大片淫在线免费观看| 欧美日韩在线观看h| 蜜桃久久精品国产亚洲av| 国产熟女欧美一区二区| 欧美成人a在线观看| 伦理电影大哥的女人| 亚洲av熟女| av天堂中文字幕网| 最近手机中文字幕大全| 国产精品一区二区性色av| 久久久久网色| 边亲边吃奶的免费视频| 秋霞在线观看毛片| 中文欧美无线码| 日韩一区二区三区影片| 国产白丝娇喘喷水9色精品| 国产一区二区亚洲精品在线观看| 国产久久久一区二区三区| 91久久精品电影网| 精品人妻熟女av久视频| 精品人妻视频免费看| 女的被弄到高潮叫床怎么办| 日日撸夜夜添| 成人综合一区亚洲| 亚洲精品国产成人久久av| 国产精品不卡视频一区二区| 精品免费久久久久久久清纯| 亚洲色图av天堂| 97热精品久久久久久| 永久网站在线| 亚洲成人久久爱视频| 亚洲成人精品中文字幕电影| av线在线观看网站| 国产精品一及| 欧美一级a爱片免费观看看| 国产一区二区在线av高清观看| 色5月婷婷丁香| 嫩草影院入口| 九草在线视频观看| videossex国产| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 亚洲精品日韩av片在线观看| 18禁动态无遮挡网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久黄片| 成人午夜精彩视频在线观看| 舔av片在线| 亚洲欧美日韩东京热| 男女国产视频网站| 国产精品乱码一区二三区的特点| 亚洲高清免费不卡视频| 午夜福利在线观看免费完整高清在| 国产精品三级大全| 欧美日韩国产亚洲二区| 女人十人毛片免费观看3o分钟| 三级经典国产精品| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 男人狂女人下面高潮的视频| 国产成人91sexporn| 中文在线观看免费www的网站| 亚洲国产欧洲综合997久久,| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜爱| 日本-黄色视频高清免费观看| 简卡轻食公司| 精品人妻视频免费看| 在线播放国产精品三级| 亚洲av成人av| 国产精品人妻久久久久久| 亚洲aⅴ乱码一区二区在线播放| 三级男女做爰猛烈吃奶摸视频| 在现免费观看毛片| 最近中文字幕2019免费版| 18禁裸乳无遮挡免费网站照片| av在线蜜桃| 麻豆乱淫一区二区| 国产真实伦视频高清在线观看| 亚洲美女搞黄在线观看| 99久久中文字幕三级久久日本| 久久精品熟女亚洲av麻豆精品 | 日韩欧美精品v在线| 精品欧美国产一区二区三| 婷婷色麻豆天堂久久 | 黄片wwwwww| 久久人妻av系列| or卡值多少钱| 成年版毛片免费区| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 亚洲av不卡在线观看| 高清日韩中文字幕在线| 看片在线看免费视频|