• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous Sliding Mode Controller with Disturbance Observer for Hypersonic Vehicles

    2015-08-11 11:56:51ChaoxuMuQunZongBailingTianandWeiXu
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Chaoxu Mu,Qun Zong,Bailing Tian,and Wei Xu

    Continuous Sliding Mode Controller with Disturbance Observer for Hypersonic Vehicles

    Chaoxu Mu,Qun Zong,Bailing Tian,and Wei Xu

    —In this paper,a continuous sliding mode controller with disturbance observer is proposed for the tracking control of hypersonic vehicles to suppress the chattering.The finite time disturbance observer is involved to make that the continuous sliding mode controller has the property of disturbance rejection. Due to continuous terms replacing the discontinuous term of traditionalsliding mode control,switching modes of velocity and altitude firstly arrive at smallregions with respect to disturbance observation errors.Switching modes keep zero and velocity and altitude asymptotically converge to their reference commands after disturbance observation errors disappear.Simulation results have proved the proposed method can guarantee the tracking of velocity and altitude with continuous sliding mode control laws, and also has the fast convergence rate and robustness.

    Index Terms—Sliding mode control,finite time disturbance observer,chattering suppression,robustness,hypersonic vehicles.

    I.INTRODUCTION

    R ECENTLY,the research of air-breathing hypersonic vehicles(AHVs)has been an interesting issue with great practical value.It is considered as a promising transportation equipment for access to space.However,it is a very challenging problem to design the controller for AHVs as unmanageable nonlinear dynamics including the integrated airframe-propulsion,the uncertainty of atmospheric conditions,the variation of physical and aerodynamic parameters and so on[1?4].

    Due to complex dynamics of AHVs,it is difficult to obtain the real physical mode.Therefore,most research work is based on significative simplified models.For the tracking controlof AHVs in cruise phase,itmainly focuses on velocity and attitude control,where main concerns are longitudinal dynamics of AHVs and lateral movements are allowed for further curtailment.Effective controllers have been developed based on linear models at fixed points and nonlinear models in previous work.Gregory et al.used H∞andμsynthesisto a uncertain linear AHV model[5].Lind proposed the linear parameter-varying method to model and control flexible aircrafts[6].Oppenheimer etal.developed a modified dynamic inversion controller for the linear time-invariant,unstable, non-minimum phase model of AHVs[7].Sigthorsson et al. proposed robust linear output feedback control for AHVs. The control methods based on linear models offer simple and efficient ways to locally stabilize dynamical processes of AHVs[3].Nonlinear models are generally more accurate approximation of AHVs'physical models.Control strategies based on nonlinear models have been proposed for the study of flight control,including adaptive control,robust control, H∞control,sliding mode control,fuzzy logic control.Gibson et al.adopted the adaptive control for thrust and actuator uncertainties of AHVs[8].Serrani et al.introduced integrated adaptive guidance and controlfor constrained nonlinear AHV models[9].Wang et al.proposed the stochastic robust flight control based on dynamical inversion[10].Xu et al.provided the adaptive sliding mode control for the cruising control of the AHV with parameter uncertainties[11].Bowcutt adopted the multidisciplinary optimization control for AHVs[12],and intelligentcontrolalgorithms were used by Jiang etal.[13?14]. These nonlinear controllers on nonlinear vehicle models improve the controlperformance of AHVs from differentaspects.

    Sliding mode control(SMC)is one of well-known nonsmooth methods,which provides an effective and systematic approach to maintain the consistentstability with good robustness.Therefore,the method is widely accepted in the field of flight control for its robustness.Xu et al.have designed adaptive sliding mode controller for rigid and flexible AHVs, which has shown good insensitivity to uncertainties[11,15].In general,non-smooth control laws can improve robustness[16], whereas smooth control laws may not improve disturbance rejection due to Lipschitz continuity of closed loop systems. In sliding mode control,robustness is derived from the discontinuous sign function,which simultaneously leads to the fatal chattering of the traditional sliding mode control.In the practical implementation,actuators can not bear such high frequency switchings.One famous solution to obtain continuous controllers is to introduce boundary layers around sliding mode surfaces proposed by Slotine etal.[17?18],which provides an asymptotic stability to a preestablished fixed region of the origin.

    In this paper,the continuous sliding mode controller is designed to solve the tracking problem of AHVs,which involves continuous terms instead of sign functions in the traditional sliding mode control.In order to keep good robustness,the finite time observer is used to reject disturbances.Before observation errors disappear,system states arrive at small regions around sliding mode surfaces,whose scopes are rel-ated to observation errors.When observation errors converge to zero,system states reach sliding mode surfaces and then move to the origin.It means system states can asymptotically converge to the origin with continuous control laws even disturbances exist.Whereas,the boundary layer method can only guarantee the convergence to a fixed neighborhood ofthe origin.

    This paper is organized as follows.In Section II,the preliminary system description and the control-oriented modelare provided.In Section III,main results are stated and continuous control laws for velocity and altitude tracking of AHVs are designed.Simulation results are presented in Section IV to illustrate that the proposed method is effective and robust. Conclusion is given in the last section.

    II.PROBLEM FORMULATION

    A.The Longitudinal Model of Hypersonic Vehicles

    One of the most popular nonlinear models is reported inmost papers[10,19?23],which is the longitudinal model of a winged-cone AHV.Bolender et al.proposed to attach elastic characteristics of AHVs to the above longitudinal model for the study of reentry flight[24].In this paper,the classical nonlinear modelderived from NASA Langley Research Center is studied at the trim cruise condition[25].The flexible mode and the coupling between longitudinal and lateral dynamics are curtailed.

    The control-oriented model for longitudinal dynamics are described by five first order differential equations:

    where v,γ,h,αand q represent velocity,flight-path angle, altitude,angle of attack and pitch rate,R=h+REis the altitude of vehicle,REis the radius of the Earth.Iyyis moment of inertia.Left L and draft D are expressed as follows:

    Pitching moment Myyis described by

    Thrust T is defined as

    The system in(1)is linearized with the given cursing condition M a=15,v=15 060 ft/s,h=110 000 ft, γ =0o,q= 0o.The open-loop eigenvalues shown in Fig.1 are?0.895,0.784,?0.00021±0.0362j and 0.00011[26], where?0.895 and 0.784 are the short period oscillation, corresponding to q andα,?0.00021±0.0362j are the phugoid w.r.t.v andγ,0.00011 is the eigenvalue about the altitude modal.It is obvious the nonlinear aircraft in(1)is unstable.

    Fig.1.The open-loop eigenvalues of winged-cone model at the given cursing condition.

    The engine dynamic ofthe aircraftis expressed by a second order differential equation with the control inputβc

    The precise definition of every variable in the equations(1) and(2)is stated in Appendix A.

    The composite controlled system contains the equations(1) and(2).The elevator defl ection angleδeand the demand of the engine control inputβcare the control inputs,and the longitudinal velocity v and the altitude h are outputs. Considering the equations(1)and(2),v has the relation with βcandδe,which is derived as

    Similarly,the relationship is investigated among h,βcandδe. As

    then we have

    Therefore,βcandδeare explicitly contained in... v and h(4).

    The aircraft in(1)and(2)can be included by the general nonlinear formula,

    where x∈Rnis the state vector,u(t),?(x)∈Rmare inputs and outputs.f(x)and bi(x)along with the function?iare smooth functions on Rn,allowing arbitrary order derivatives to be calculated.

    As the system in(7)has m output components,it is considered to produce m subsystems if the input-outputfeedback linearization is executed,where the relative degree of the i-th subsystem is recorded as ri,i=1,···,m.

    Assumption 1.Allthe relative degree ri,i=1,···,m of m subsystems are constantand known.The system in(7)does notcontain zero dynamics,which means that the system degree?r is equal to the sum of relative degrees ri,P

    The ri-th derivative of yi=?i(x)can be expressed by Lie derivatives

    where Lf?i(x)is the Lie derivative of the function?ialong the vector field f,

    The composite controlled system in(1)and(2)reveals that the system degree is?r=7.According to(3)and(4),the relative degree of velocity subsystem to inputs is r1=3. The relative degree of altitude subsystem to inputs is r2=4 referring to(6).

    It means that the system degree equals to the total relative degrees of subsystems.In other words,the feedback linearization can be executed to reveal that... v and h(4)must be explicitly expressed by the control inputsδeandβc.The original nonlinear model is transformed into two coupling subsystems from inputs to outputs.Therefore we consider the following two subsystems for the cruising control,

    Velocity subsystem:

    Altitude subsystem:

    The ri-th derivatives of velocity and altitude dynamics havethe explicit expression with control variables,combining andas follows:

    is nonsingular over the entire flightenvelope given in[19?20]. As r1=3 and r2=4,the derivatives of v and h are calculated by the chain rule,

    The expressions of˙x,¨x,¨x0,¨α0,¨β0,¨γ,... γ,?w,?,?πandΠ refer to Appendix A[10].

    Remark 1.The feedback linearization transformation aims to explore the explicitcontrolinputs forthe outputs ofvelocity and altitude,which provides the control-oriented subsystems. However,as L3fv(x),L4fh(x)and B(x)are nonlinear,the two subsystems are still nonlinear and coupled.It is easier to design the controller with the explicit control inputs than that with implicit inputs.

    According to the formulae of(9)and(10),the generalmodel of subsystems is described as follows,

    As external disturbances d1(t)and d2(t)existing in¨βand CM(δe)are considered to be matched,the ri-th subsystem is concluded to the manifold,

    Control object:In this paper,the objective is to design a robust continuous sliding mode controller based on velocity and altitude subsystems in the manifold(13),such that the velocity v and the altitude h can track their reference vrand hr,especially existing unknown external disturbances.

    III.CONTINUOUS SLIDING MODE CONTROLLER DESIGN WITH DISTURBANCE COMPENSATION FOR AIR-BREATHING HYPERSONIC VEHICLES

    In this section,the continuous sliding mode controller is studied for the tracking control.When disturbances exist,the original feedback control law is applied to(11),

    where ˉf(x) = [ˉf1(x),ˉf2(x)]T,ˉb(x)= [ˉb1(x),ˉb2(x)]T, w=[w1,w2]Tis the auxiliary control vector.In this case, the controlled objective(13)is equivalent to the ri-th order integrator system,

    whereˉdi(t)=ˉbi(x)?d(t),i=1,2,j=1,2,···,ri?1.

    A.Disturbance Observer Design

    The purpose of disturbance observer is to efficiently estimate real-time disturbances.Observed values are used as compensation terms included in control signals.With the compensator,disturbances can be restrained to zero after a finite time,and the controller guarantees the accessibility and the stability before the free-error observation is achieved.

    Considering the tracking problem of AHVs,it is presented as ‰

    For the differential equation(16),whereσris continuous vector function,the disturbance vectorˉd(t)is bounded and has Lipshitz constants L=[L1,L2]T,where|ˉd1(t)|≤ L1and|ˉd2(t)|≤L2.Therefore,second order observers are used to observeˉd1(t)andˉd2(t)referring to Appendix B,which are expressed in the form of vectors as follows:

    whereλ0,λ1,λ2are gains of the o bserver,converges to dˉ(t)in finite time.

    Remark 2.The convergence proof of disturbance observer can refer to literatures[27?28].In addition,the l-th order observer provides more accurate derivatives than the p order observer,p≤l[29].By(17),z1can converge toˉd(t)in finite time,which guarantees thatobservation errors converge to zero in finite time.

    B.Continuous Sliding Mode Controller Design

    For the subsystem expressed in (15),define σ = [σ1,σ2,···,σri]T,the sliding surface is as follows:

    whereˉC=[0,cri?1ri?1λri?1,···,c1

    ri?1λ].If the derivative is designed as

    where edi(t)= ˉdi(t)?zi1(t),?1> 0,?2> 0,0< o1< 1, o2>1,sigoi(sri)=|sri|oisgn(sri).We can getthe following theorem.

    Theorem 1.For system(15),if the continuous controller is used

    the reachability of srihas two cases:

    1)if the observer error edi(t)=0,system states reach the sliding manifold sri=0 in finite time;

    2)ifthe observererror edi(t)/=0,system states reach theψ neighborhood of sri=0 in fi nite time and never escape from the region,where

    Proof.The Lyapunov function is selected aswhereis positive definite.

    Case 1:edi(t)=0,the time derivative of V1

    The other case is|sri|=ψ2,

    From the two cases,it can be concluded thatthe system states can reach the surface|sri|=ψin finite time.

    The region|sri|≤ ψ =min{ψ1,ψ2}is an attractive area for the states of system(15).System states do not escape from the region once reach it.To prove that,we need only to show that any system state on the boundary |sri|= ψ = min{ψ1,ψ2},never enters the region of |sri|> ψ =min{ψ1,ψ2}again.According to the above analysis,the time derivative of V1(sri)on the boundary |sri|=min{ψ1,ψ2}is always negative definite refereing to (22)and(23),namely˙V1(sri)=??,?>0.This means|sri| is monotonically decreasing,system states on the boundary enter the region|sri|<ψand never escape it.

    In sum,with the controller(21),the states of system(15) always reach the sliding mode surface sri=0 in finite time without observation errors and arrive at the region|sri|≤ψ in finite time if observation errors exist. □

    C.Continuous Sliding Mode Controller with Disturbance Compensation for The Tracking Control of AHVs

    Define the tracking error as ev(t)=v(t)?vr(t)and eh(t)=h(t)?hr(t),such that

    For disturbancesˉd1(t)andˉd2(t),the disturbance observer is used to estimate them.We have the corollary forobservation errors.

    Corollary 1.The disturbance observation errors,edi(t)= ˉdi(t)?zi1(t),i=1,2,are obviously bounded and should converge to zero after a finite time T,which is

    whereτi,i=1,2 is bounded constants.

    Theorem 2.For system(24)and(25),if the following continuous sliding mode controllerwith disturbance compensation is used,

    the velocity v and the altitude h are guaranteed to asymptotically track reference signals vrand hrwith switching modes svand sh,where z11(t)and z21(t)are compensation terms for disturbancesˉd1(t)andˉd2(t),respectively,obtained by(17).

    Proof.Via feedback linearization,two decoupled subsystems are presented.The velocity switching mode is designed in the manifold,

    whereλv= [c22λ2,c12λ,1],Ev= [ev,˙ev,¨ev]T.The time derivative of svis

    whereˉλv=[0,c22λ2,c12λ].

    The altitude switching mode is considered as

    whereˉλh=[0,c33λ3,c23λ2,c13λ].

    Combining the equations of˙svand˙sh,we have the compact expression

    The control variables in the above formula are replaced by the designed control law(27),then the derivative of V is

    Corollary 1 shows the property of observation errors edi(t), which is bounded and converges to zero after a finite time. According to Theorem 2,when edi(t)/=0,system states would reach neighborhoods of switching modes with respect to edi(t).When ed1(t)/=0,system states[ev,˙ev,¨ev]reachtheψvregion of sv=0,ψvWhen ed2(t)/=0,system statesregion of sh=0,ψh=mineventually stabilizes to zero after a finite time,system states also reach sv=0 and sh=0 in fi nite time.

    When sv=0 and sh=0,the dynamics of tracking error system on sliding modes sv=0 and sh=0 are obtained,

    It can be concluded that ev=c1e?λt,eh=c2e?λt,where c1,c2are undetermined constants,e is the natural exponent. Therefore,evand ehcan asymptotically converge to zero,v and h can track reference signals vrand hr,respectively.□

    Remark 3.The figure of the function|sri|oisgn(sri)is presented in Fig.2.It is obvious that the function is continuous.Therefore,the control law in(27)is also continuous. For the continuous controller,the chattering is eliminated. Note thatsystem states arrive ata smallneighborhood of sri, i=1,2 before observation errors edi(t)reach zero,which is considered to be the cost of eliminating the chattering. The boundary layer method keeps the width of convergence region no matter what edi(t)is,and the convergence is asymptoticalto the smallregion.The proposed method enables the asymptoticalconvergence to zero when edi(t)reaches zero and avoids chattering.

    Remark 4.The terms??1sigo1(sri)??2sigo2(sri)in the controllaw(27)can increase the convergence rate.When system states are far away from sri=0,the term??2sigo2(sri) would accelerate the convergence.When system states are very close to sri=0,the term??1sigo1(sri)help the convergence. Refer to Fig.2,|sri|oisgn(sri)with oi=0.5,oi=1.5 and oi=2.2.

    Fig.2. The continuous function|sri|oisgn(sri)with different oivalues.

    IV.SIMULATION

    In this section,simulation is executed to demonstrate the effectiveness of the proposed method.

    As a representative case study,the hypersonic vehicle is assumed to trim at v=15 060 ft/s and h=110 000 ft,and the aerodynamic coefficients and model parameters are given in Table I.

    Parameters of the sliding mode controller areλv=λh=1,?1= ?2=10,o1=0.6 and o2=1.5.Parameters of disturbance observer are designed asλ0=3,λ1=1.5, λ2=1.1,L1=15,L2=50.

    A.Tracking Control

    The reference velocity is 14 960 ft/s and the reference altitude is 110 200 ft.During the tracking process,the vehicle is perturbed by

    The continuous sliding mode controller is adopted,where the finite time disturbance observer is used as the compensator to reject disturbance.Figs.3(a)and 3(b)show that the designed observer can work effectively to exactly estimate disturbances in fi nite time,where dotted lines represent actual disturbances and solid lines depict observed values. The observed values z11and z21have well approximation to disturbancesˉd1andˉd2after a finite time.

    TABLE I AERODYNAMIC AND INERTIAL COEFFICIENTS

    Fig.3. Real disturbance values and estimated values.

    Fig.4. The positive boundaries of velocity and altitude switching modes.

    As stated in Theorem 1,before estimated errors become zero,the velocity switching mode and the altitude switching mode arrive at small regions with respect to estimated errors. In other words,if the track error of velocity ed1(t)/=0, evreaches theψvregion of sv= 0,whereψv=For the same reason,if the tracking error ed2(t)/=0 of altitude,ehalso runs into theψhregion of sh=0,whereψhOnce tracking errors edi(t)stabilizes to zero aftera finite time, system states also reach sv=0 and sh=0 in finite time.Fig.4 presents the boundaries ofthe two smallregions,whereψvand ψhwith solid lines describe positive boundaries for velocity and altitude switching modes,and

    Fig.5 further describes curves of svand sh,which locate in small regions before tracking errors reach zero,restrained

    Fig.6 provides the continuous control lawsβcandδeto avoid the chattering.Simultaneously,tracking results of velocity and altitude are also displayed in Fig.6,where velocity and altitude are both asymptotically stabilize attheir reference commands.It exhibits good robustness against disturbances with the composite controller.The boundary layer method is executed to compare with the proposed method.The sign function is replaced by the saturation function and the finite time disturbance observeris stillused as the compensator.The width of the saturation function isτ=0.5,the gain l1=20. The simulation results are illustrated in Fig.6 with dashed lines.The chattering has been eliminated,but the system responses are stillslower than thatwith the proposed method.

    Fig.5. Switching mode variables located in their regions.

    B.Robustness

    It can be observed that the composite control has finished the tracking of velocity and altitude within ten seconds in the previous simulation.The hypersonic aircraft is expected to track step commands,where vr=14 960 ft/s and hr= 110 200 ft change to vr=14 870 ft/s and hr=110 360 ft at t=20 s.The disturbances also change at t=35 s,which are designed as follows:

    The robustness ofcontrolleris checked here.Allparameters are set the same as the previous simulation.The varying disturbances are effectively estimated by the finite time observer,shown in Fig.7,where dotted lines represent disturbances, solid lines are provided by estimated values.

    Fig.6.Control laws and output responses,continuous TSMC with DO,saturation SMC with DO.

    Fig.7. Estimated values forˉd1andˉd2.

    Fig.8 presents new boundaries of svand shconsidering new varying disturbances.Switching mode variables svand share firstly restrained to small regions,and then the two switching mode variables arrive atzero when estimated errors converge to zero.

    The continuous control laws illustrated in Fig.9.v and h keep convergentto reference signals,where the robustness of the continuous controller is illustrated.Velocity and altitude are not perturbed even if new disturbances are added at t=35 s,and stillkeep welltracking to step reference signals.

    Fig.8.Switching modes and their regions.

    Fig.9.Control laws and output responses.

    V.CONCLUSION

    In this paper,a composite continuous controlleris discussed for the tracking problem of hypersonic vehicles.The system model is linearized to velocity and altitude subsystems. The continuous controller is designed to reduce chattering. The finite time disturbance observer is introduced to reject disturbances.Because the discontinuous term is replaced by continuous terms,switching modes of velocity and altitude arrive at small regions which vary depending on disturbance observation errors.When observation errors disappear,the observer converges to disturbance signals in finite time.It turns out that restrained regions to switching modes become zero and tracking errors of velocity and altitude asymptotically converge to zero.The method has significantly improved boundary layer method.Simulations have proved the effectiveness of the proposed continuous sliding mode controlwith disturbance observer for the tracking control of AHVs and high convergence rate is also provided.

    APPENDIX A

    Nomenclature:

    v?speed of sound

    γ?flight-path angle

    h?altitude

    α?angle of attack

    q?pitch rate

    T?thrust

    D?drag

    L?lift

    CT(β)?thrust coefficient

    CD(α)?drag coefficient

    CL(α)?lift coefficient

    CM(q)?pitch rate contribution to moment

    CM(α)?angle of attack contribution to moment

    CM(δe)?elevator deflection contribution to moment

    m?mass

    RE?radius of the Earth

    R?radial distance from Earth's center

    ˉc?mean aerodynamic chord

    cβ?throttle coefficient in CT

    ce?elevator coefficient in CM(δe)

    Iyy?moment of inertia

    Myy?pitching moment

    S?reference area

    δE?elevator angular deflection

    β?throttle setting

    βc?control contribution to throttle settingβ

    wn?natural frequency for throttle settingβ

    ξ?damping ratio for throttle settingβ

    μ?gravitational constant

    ρ?density of air

    Expression:

    APPENDIX B

    Considering the system ˙x(t)=y(t)+g(t),allderivatives˙g(t), ¨g(t),···,g(p?1)(t)of the disturbance term g(t)are assumed to be bounded,such that there is a known Lipshitz constant L>0 for g(p?1)(t).

    For a continuous function x(t)defined t≥ 0,if y(t)is Lebesgue-measurable,when input noises of x(t)and y(t)are zero,the exact finite time observer for g(t)can be established as follows:with enough large parametersλi,i=0,···,p,z0,z1,···,zpcan converge to x,g(t),···,g(p?1)(t)in fi nite time.

    REFERENCES

    [1]Fidan B,Mirmirani M,Ioannou P A.Flight dynamics and control of air-breathing hypersonic vehicles:review and new directions.In:Proceedings of the 2003 AIAA International Space Planes and Hypersonic Systems and Technologies.Norfolk,USA:AIAA,2003.

    [2]Fiorentini L,Serrani A,Bolender M A,Doman D B.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles.Journal of Guidance,Control,and Dynamics,2009,32(2):401?416

    [3]Sigthorsson D O,Jankovsky P,Serrani A,Yurkovich S,Bolender M, Doman D B.Robust linear output feedback control of an air-breathing hypersonic vehicle.Journal of Guidance,Control,and Dynamics,2008, 31(4):1052?1065

    [4]Zhu Y J,Shi Z K.Several problems of flight characteristics and flight control for hypersonic vehicles.Flight Dynamics,2005,23(3):5?8

    [5]Gregory I M,McMinn J D,Chowdhry R S,Shaughnessy J D.Hypersonic Vehicle Model and Control Law Development Using H∞and μSynthesis,NASA Technical Memorandum,USA,NASA TM-4562, 1994.

    [6]Lind R.Linear parameter-varying modeling and controlof structuraldynamics with aero-thermodynamic effects.Journal of Guidance,Control, and Dynamics,2002,25(4):733?739

    [7]Oppenheimer M W,Doman D B.Control of an unstable,nonminimum phase hypersonic vehicle model.In:Proceedings of the 2006 Aerospace Conference.Big Sky,MT:IEEE,2006.1?22

    [8]Gibson T E,Annaswamy A M.Adaptive controlof hypersonic vehicles in the presence of thrust and actuator uncertainties.In:Proceedings of the 2008 AIAA Guidance,Navigation and Control Conference and Exhibit.Hawali,USA:AIAA,2008.

    [9]Serrani A,Zinnecker A M,Fiorentini L,Bolender M A,Doman D B.Integrated adaptive guidance and control of constrained nonlinear air-breathing hypersonic vehicle models.In:Proceedings of the 2009 American ControlConference.St.Louis,USA:IEEE,2009.3172?3177

    [10]Wang Q,Stengel R F.Robustnonlinear controlof a hypersonic aircraft. Journal of Guidance,Control,and Dynamics,2000,23(4):577?585

    [11]Xu J H,Mirmirani M,loannou P A.Adaptive sliding mode control design for a hypersonic flightvehicle.Journal of Guidance,Control,and Dynamics,2004,27(5):829?838

    [12]Bowcutt K G.Multidisciplinary optimization of airbreathing hypersonic vehicles.Journal of Propulsion and Power,2001,17(6):1184?1190

    [13]Jiang C H,Zhang C Y,Zhu L.Research of robust adaptive trajectory linearization control based on T-S fuzzy system.Journal of Systems Engineering and Electronics,2008,19(3):537?545

    [14]Zhu L,Jiang C S,Zhang C Y.Adaptive trajectory linearization control for aerospace vehicle based on RBFNN disturbance observer.Acta Aeronautica etAstronauticaSinica,2007,28(3):673?677

    [15]Hu X X,Wu L G,Hu C H,Gao H J.Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle.Journal of the FranklinInstitute,2012,349(2):559?577

    [16]Yu S H,Yu XH,Shirinzadeh B,Man Z H.Continuous finite-time control for robotic manipulators with terminalsliding mode.Automatica,2005, 41(11):1957?1964

    [17]Slotine J J,Sastry S S.Tracking control of non-linear systems using sliding surfaces with application to robot manipulators.International Journal of Control,1983,38(2):465?492

    [18]Slotine J J,Li W P.Applied Nonlinear Control.New Jersey:Prentice Hall,1991.

    [19]Li S H,Sun H B,Sun C Y.Composite controldesign for an air-breathing hypersonic vehicle.Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2012,226(5): 651?664

    [20]Sun H B,Li S H,Sun C Y.Finite time integralsliding mode controlof hypersonic vehicles.Nonlinear Dynamics,2013,73(1?2):229?244

    [21]Zong Q,JiY H,Zeng F L,Liu H L.Outputfeedback back-stepping control for a generic hypersonic vehicle via small-gain theorem.Aerospace Science and Technology,2012,23(1):409?417

    [22]Zong,Q,Wang J,Tao Y.Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle.International Journal of RobustNonlinear Control,2013,23(15):1718?1736

    [23]Sigthorsson D O,Jankovsky P,Serrani A,Yurkovich S,Bolender M, Doman D B.Robust linear output feedback control of an air-breathing hypersonic vehicle.Journal of Guidance,Control and Dynamics,2008, 31(4):1052?1066

    [24]Bolender M A,Doman D B.Nonlinear longitudinaldynamicalmodelof an air-breathing hypersonic vehicle.Journal of Spacecraft and Rockets, 2007,44(2):374?387

    [25]Shaughnessy J D,Pinckney S Z.Hypersonic Vehicle Simulation Model: Winged-Cone Configuration,NASA Technical Memorandum,USA, NASA TM-102610,1991.

    [26]Li F H.Guidance and Control Technology of Hypersonic Aircrafts. Beijing:China Astronautic Publishing House,2012.

    [27]Levant A.High-order sliding modes,differentiation and outputfeedback control.International Journal of Control,2002,76(9?10):924?9412

    [28]Shtessel Y B,Shkolnikov A,Levant A.Smooth second-order sliding modes:missile guidance application.Automatica,2007,43(8): 1470?1476

    [29]Levant A.Robust exact differentiation via sliding mode technique. Automatica,1998,34(3):379?384

    Qun Zong Received the bachelor,master,and Ph.D. degrees all in automatic control from Tianjin University,in 1983,1995 and 2002,respectively.Since 1983,he has been with the School of Electrical Engineering and Automation,Tianjin University,where he is currently a professor.His research interests include complex system modeling and flightcontrol. Corresponding author of this paper.

    Bailing Tian Received his Ph.D.degree in automatic controlfrom Tianjin University in 2011.Since 2011,he has been with the Schoolof Electrical Engineering and Automation,Tianjin University,where he is currently a lecturer.His research interests include trajectory optimization,guidance and control.

    Wei Xu Received the Ph.D.degree in electrical engineering from the Institute of Electrical Engineering,Chinese Academy of Sciences in 2008.He is currently a professor with the School of Electrical and Electronic Engineering,Huazhong University of Science and Technology.His research interests include controland electromagnetic design for electric machines.

    Received her Ph.D.degree in control theory and control engineering from School of Automation,Southeast University,in 2012.Since 2012,she is a lecturer at the School of Electricaland Automation Engineering,Tianjin University. Her research interests include sliding mode control, nonlinear system control,and intelligent control.

    Manuscriptreceived October 15,2013;accepted April11,2014.This work was supported by National Natural Science Foundation of China(61125306, 61273092,61301035,61304018,and 61411130160),National High-Technology Research and Development Program of China(2014AA051901), Tianjin Science and Technology Supporting Program(14JCQNJC05400), Research Innovation Program of Tianjin University(2013XQ0101),Hubei Science and Technology Supporting Program(XYJ2014000314),Aeronautical Science Foundation of China Supported by Science and Technology on Aircraft Control Laboratory(20125848004),and China Post-doctoral Science Foundation(2014M561559).Recommended by Associate Editor Bin Xian

    :Chaoxu Mu,Qun Zong,Bailing Tian,WeiXu.Continuous sliding mode controllerwith disturbance observerforhypersonic vehicles.IEEE/CAA Journalof Automatica Sinica,2015,2(1):45?55

    Chaoxu Mu,Qun Zong,and Bailing Tian are with the Departmentof Electrical Engineering and Automation,Tianjin University,Tianjin 300072,China (e-mail:cxmu@tju.edu.cn;zongqun@tju.edu.cn;bailing?tian@tju.edu.cn).

    Wei Xu is with the School of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074,China(email:weixu@hust.edu.cn).

    精品国产乱码久久久久久小说| 亚洲av美国av| 最近最新中文字幕大全电影3 | 一本色道久久久久久精品综合| 成人国产av品久久久| 欧美日韩国产mv在线观看视频| 久久国产精品人妻蜜桃| 正在播放国产对白刺激| 免费久久久久久久精品成人欧美视频| 久久精品国产99精品国产亚洲性色 | 97人妻天天添夜夜摸| 女同久久另类99精品国产91| 黄网站色视频无遮挡免费观看| 国产精品久久久久久精品古装| 成人国产一区最新在线观看| 老熟妇乱子伦视频在线观看| 少妇 在线观看| 777久久人妻少妇嫩草av网站| 久热爱精品视频在线9| 亚洲精品在线美女| 一本久久精品| 黄色片一级片一级黄色片| 久久午夜亚洲精品久久| 精品熟女少妇八av免费久了| 日本wwww免费看| 两人在一起打扑克的视频| 狂野欧美激情性xxxx| 成人三级做爰电影| 黄色丝袜av网址大全| 国产av国产精品国产| 咕卡用的链子| av不卡在线播放| 黄色视频在线播放观看不卡| 黄网站色视频无遮挡免费观看| 日韩免费av在线播放| 每晚都被弄得嗷嗷叫到高潮| 自线自在国产av| 国产日韩欧美亚洲二区| 国产精品久久久av美女十八| 男女无遮挡免费网站观看| 日韩 欧美 亚洲 中文字幕| 国产精品国产av在线观看| 人人妻人人爽人人添夜夜欢视频| 黄色视频不卡| 国产精品 国内视频| 久久久久国内视频| 在线观看免费午夜福利视频| 精品久久久久久电影网| 欧美成人免费av一区二区三区 | 啪啪无遮挡十八禁网站| 91国产中文字幕| 亚洲人成伊人成综合网2020| av网站在线播放免费| 人人澡人人妻人| 久久国产亚洲av麻豆专区| 又黄又粗又硬又大视频| 一级a爱视频在线免费观看| 老司机靠b影院| 99国产极品粉嫩在线观看| avwww免费| 天堂动漫精品| 国产有黄有色有爽视频| 久久免费观看电影| 成年人黄色毛片网站| 亚洲成a人片在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品国产欧美久久久| 国产99久久九九免费精品| 国产亚洲精品一区二区www | av免费在线观看网站| 欧美日韩黄片免| 97在线人人人人妻| 日韩欧美一区视频在线观看| 日韩 欧美 亚洲 中文字幕| 99re6热这里在线精品视频| 久久精品人人爽人人爽视色| 在线看a的网站| 色婷婷av一区二区三区视频| 免费av中文字幕在线| 真人做人爱边吃奶动态| 亚洲一区中文字幕在线| 黄色成人免费大全| 欧美精品啪啪一区二区三区| 老司机深夜福利视频在线观看| 黄色视频在线播放观看不卡| 国产一区二区三区视频了| www.自偷自拍.com| 在线观看一区二区三区激情| 另类亚洲欧美激情| 欧美激情 高清一区二区三区| 日韩视频一区二区在线观看| 国产成人影院久久av| 中文字幕色久视频| 我的亚洲天堂| 午夜福利影视在线免费观看| 黑人巨大精品欧美一区二区mp4| 午夜视频精品福利| 亚洲第一av免费看| 十八禁网站网址无遮挡| 日韩欧美免费精品| 嫁个100分男人电影在线观看| 亚洲人成电影免费在线| 老司机福利观看| 亚洲 欧美一区二区三区| 成人永久免费在线观看视频 | 久久免费观看电影| 免费不卡黄色视频| 久久午夜综合久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 久久婷婷成人综合色麻豆| 国产精品香港三级国产av潘金莲| 午夜福利免费观看在线| 久久久久久久久久久久大奶| 一区在线观看完整版| 美女扒开内裤让男人捅视频| 国产1区2区3区精品| 国产精品1区2区在线观看. | 老司机深夜福利视频在线观看| 妹子高潮喷水视频| 亚洲少妇的诱惑av| 久久久久精品人妻al黑| 久久精品国产亚洲av高清一级| 国产精品美女特级片免费视频播放器 | 在线观看免费高清a一片| 欧美性长视频在线观看| 亚洲专区中文字幕在线| 久久亚洲精品不卡| 国产一区二区三区在线臀色熟女 | 人人妻,人人澡人人爽秒播| 国产不卡av网站在线观看| 国产一区二区三区在线臀色熟女 | 亚洲精品在线观看二区| 另类亚洲欧美激情| 狠狠婷婷综合久久久久久88av| 如日韩欧美国产精品一区二区三区| 亚洲免费av在线视频| 久久青草综合色| 久久精品亚洲熟妇少妇任你| 午夜两性在线视频| 免费黄频网站在线观看国产| 人妻 亚洲 视频| 免费高清在线观看日韩| 久久精品亚洲av国产电影网| 最新在线观看一区二区三区| 看免费av毛片| 国产成+人综合+亚洲专区| 国产高清视频在线播放一区| 一进一出好大好爽视频| 亚洲av第一区精品v没综合| 欧美日韩福利视频一区二区| www.精华液| 一本综合久久免费| 国产欧美日韩一区二区三区在线| 两个人免费观看高清视频| 欧美激情高清一区二区三区| 一区在线观看完整版| 国产片内射在线| 女人爽到高潮嗷嗷叫在线视频| 女人被躁到高潮嗷嗷叫费观| 精品乱码久久久久久99久播| 天堂中文最新版在线下载| 国产极品粉嫩免费观看在线| 国产精品一区二区在线不卡| 国产精品久久久久成人av| 国产欧美日韩一区二区三区在线| 深夜精品福利| 交换朋友夫妻互换小说| 亚洲伊人久久精品综合| 黄色怎么调成土黄色| 久久国产精品影院| 少妇精品久久久久久久| 久久久久精品人妻al黑| 色精品久久人妻99蜜桃| 夜夜夜夜夜久久久久| 精品高清国产在线一区| 在线观看www视频免费| h视频一区二区三区| 国产一区二区三区在线臀色熟女 | 久久婷婷成人综合色麻豆| 国产高清激情床上av| 久久中文字幕一级| 国产欧美日韩综合在线一区二区| 国产精品欧美亚洲77777| 超碰成人久久| 久久久久久久国产电影| 国产91精品成人一区二区三区 | 日本wwww免费看| 国产一区二区 视频在线| 真人做人爱边吃奶动态| 精品一区二区三区视频在线观看免费 | 老熟妇仑乱视频hdxx| 国产一卡二卡三卡精品| 日本a在线网址| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 成人av一区二区三区在线看| 男女床上黄色一级片免费看| 视频在线观看一区二区三区| 国产精品欧美亚洲77777| 岛国在线观看网站| 老熟女久久久| 久久久水蜜桃国产精品网| 18在线观看网站| 久久久久国产一级毛片高清牌| 精品高清国产在线一区| 国产一区二区三区视频了| 国产一卡二卡三卡精品| 日韩人妻精品一区2区三区| 一本色道久久久久久精品综合| 黑人操中国人逼视频| 在线亚洲精品国产二区图片欧美| 99国产精品免费福利视频| 亚洲精品自拍成人| 中文字幕色久视频| 一区二区三区乱码不卡18| 三上悠亚av全集在线观看| 亚洲精品美女久久久久99蜜臀| 啪啪无遮挡十八禁网站| 精品午夜福利视频在线观看一区 | 老司机靠b影院| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 99久久精品国产亚洲精品| 国产亚洲精品一区二区www | av线在线观看网站| 黄色视频不卡| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 亚洲中文字幕日韩| 欧美人与性动交α欧美软件| 免费黄频网站在线观看国产| 国产av精品麻豆| 18禁裸乳无遮挡动漫免费视频| 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| 老司机影院毛片| 极品人妻少妇av视频| 亚洲av成人一区二区三| 老熟女久久久| 大陆偷拍与自拍| 亚洲免费av在线视频| 我要看黄色一级片免费的| 纯流量卡能插随身wifi吗| 捣出白浆h1v1| 欧美日韩一级在线毛片| 高潮久久久久久久久久久不卡| 成年人午夜在线观看视频| 久久狼人影院| 欧美在线一区亚洲| 成人18禁在线播放| 一边摸一边抽搐一进一出视频| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 夜夜夜夜夜久久久久| 国产在视频线精品| 国产男靠女视频免费网站| 午夜福利在线免费观看网站| 香蕉国产在线看| 精品第一国产精品| 不卡一级毛片| 热99久久久久精品小说推荐| 久久免费观看电影| 成人18禁在线播放| 麻豆乱淫一区二区| 国产91精品成人一区二区三区 | 国产精品熟女久久久久浪| 精品亚洲乱码少妇综合久久| videosex国产| 午夜老司机福利片| 国产精品电影一区二区三区 | 悠悠久久av| 欧美激情极品国产一区二区三区| 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 亚洲专区中文字幕在线| 岛国毛片在线播放| 两性夫妻黄色片| 色视频在线一区二区三区| 亚洲成人免费电影在线观看| 亚洲第一青青草原| 成人手机av| 精品少妇久久久久久888优播| 亚洲精品国产区一区二| 99精品欧美一区二区三区四区| 亚洲人成电影观看| 天堂8中文在线网| 12—13女人毛片做爰片一| 老汉色av国产亚洲站长工具| 国产av又大| 国产av国产精品国产| 亚洲少妇的诱惑av| 日韩欧美免费精品| 国产激情久久老熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 一级黄色大片毛片| 久久亚洲精品不卡| 欧美精品人与动牲交sv欧美| 大码成人一级视频| 美女国产高潮福利片在线看| 国产不卡一卡二| 久久性视频一级片| 久久久久久久久免费视频了| 中文字幕制服av| 欧美激情高清一区二区三区| 亚洲综合色网址| 女人爽到高潮嗷嗷叫在线视频| av线在线观看网站| 久久人妻福利社区极品人妻图片| 成人三级做爰电影| 亚洲色图av天堂| 人妻一区二区av| 无人区码免费观看不卡 | 国产欧美日韩一区二区三| 亚洲五月婷婷丁香| 久久99热这里只频精品6学生| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 麻豆国产av国片精品| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看| √禁漫天堂资源中文www| 国产精品熟女久久久久浪| 国产精品久久久人人做人人爽| 国产色视频综合| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 亚洲国产精品一区二区三区在线| 黄色丝袜av网址大全| 精品一区二区三区视频在线观看免费 | 99在线人妻在线中文字幕 | 国产成人一区二区三区免费视频网站| 日本av手机在线免费观看| 日韩欧美国产一区二区入口| 中文字幕人妻丝袜制服| 国产精品免费大片| 精品国产亚洲在线| 99在线人妻在线中文字幕 | 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| 日韩欧美一区二区三区在线观看 | 亚洲九九香蕉| 欧美国产精品一级二级三级| 欧美亚洲日本最大视频资源| 国产一区二区三区综合在线观看| 久久这里只有精品19| 下体分泌物呈黄色| 老汉色av国产亚洲站长工具| 性少妇av在线| 下体分泌物呈黄色| 精品少妇黑人巨大在线播放| 一级,二级,三级黄色视频| 淫妇啪啪啪对白视频| 亚洲欧美色中文字幕在线| 最新的欧美精品一区二区| 亚洲中文日韩欧美视频| 国产真人三级小视频在线观看| 久久精品亚洲av国产电影网| 天天躁日日躁夜夜躁夜夜| a级片在线免费高清观看视频| 国产成人av教育| 黄色成人免费大全| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 人人妻,人人澡人人爽秒播| 亚洲一区二区三区欧美精品| 精品少妇内射三级| 久久毛片免费看一区二区三区| 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 香蕉丝袜av| 一级毛片女人18水好多| 日本欧美视频一区| 精品熟女少妇八av免费久了| 黄片播放在线免费| 男女无遮挡免费网站观看| 亚洲综合色网址| 美女午夜性视频免费| 2018国产大陆天天弄谢| 精品人妻在线不人妻| 夫妻午夜视频| 久久中文看片网| 久久热在线av| 日本黄色日本黄色录像| 午夜福利视频精品| 99精国产麻豆久久婷婷| 50天的宝宝边吃奶边哭怎么回事| 久久久水蜜桃国产精品网| 国产精品电影一区二区三区 | 久久九九热精品免费| 999久久久精品免费观看国产| 国产av又大| 少妇粗大呻吟视频| 老司机午夜十八禁免费视频| 国产在线观看jvid| 欧美成人免费av一区二区三区 | 亚洲久久久国产精品| 国产成人av激情在线播放| 一二三四社区在线视频社区8| 国产精品电影一区二区三区 | 国产精品秋霞免费鲁丝片| www.自偷自拍.com| 少妇的丰满在线观看| 美女午夜性视频免费| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| 国产一区二区 视频在线| 99国产精品免费福利视频| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 又黄又粗又硬又大视频| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区mp4| 黄片大片在线免费观看| 三上悠亚av全集在线观看| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 国产男女内射视频| 亚洲视频免费观看视频| 亚洲 欧美一区二区三区| 国产精品.久久久| 99九九在线精品视频| 中文字幕另类日韩欧美亚洲嫩草| 黄色视频在线播放观看不卡| 青草久久国产| 嫩草影视91久久| 老司机午夜十八禁免费视频| 少妇精品久久久久久久| 色尼玛亚洲综合影院| 国产不卡av网站在线观看| 色视频在线一区二区三区| 大型黄色视频在线免费观看| 一区二区三区精品91| 欧美 日韩 精品 国产| 亚洲国产av新网站| 久久国产精品男人的天堂亚洲| √禁漫天堂资源中文www| 宅男免费午夜| 少妇猛男粗大的猛烈进出视频| 国产一区二区三区在线臀色熟女 | 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 最近最新中文字幕大全电影3 | 女性生殖器流出的白浆| 我要看黄色一级片免费的| 人成视频在线观看免费观看| 激情视频va一区二区三区| 在线观看免费午夜福利视频| 丝袜喷水一区| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人爽人人添夜夜欢视频| 热re99久久国产66热| 一夜夜www| 一级黄色大片毛片| 欧美日韩福利视频一区二区| 亚洲国产毛片av蜜桃av| av天堂久久9| 成年人免费黄色播放视频| 亚洲国产欧美网| 久久99一区二区三区| 在线观看免费视频日本深夜| 99香蕉大伊视频| 日本五十路高清| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 亚洲成人手机| 满18在线观看网站| 激情视频va一区二区三区| 热99re8久久精品国产| 天天影视国产精品| 制服人妻中文乱码| 岛国毛片在线播放| 老司机亚洲免费影院| 十八禁人妻一区二区| 男人舔女人的私密视频| 国产单亲对白刺激| 亚洲精品一二三| 91精品国产国语对白视频| 男女之事视频高清在线观看| 亚洲中文字幕日韩| 日本撒尿小便嘘嘘汇集6| 99re在线观看精品视频| 色视频在线一区二区三区| 极品教师在线免费播放| 一二三四在线观看免费中文在| 欧美日韩视频精品一区| 免费看a级黄色片| www.精华液| 国产一区二区三区综合在线观看| 老司机深夜福利视频在线观看| 免费看十八禁软件| 少妇粗大呻吟视频| 精品欧美一区二区三区在线| 免费在线观看完整版高清| 亚洲国产欧美网| 夜夜爽天天搞| 久久久久久久大尺度免费视频| 亚洲免费av在线视频| 久久久欧美国产精品| 99精品在免费线老司机午夜| 日本a在线网址| 国产亚洲一区二区精品| 菩萨蛮人人尽说江南好唐韦庄| 国产精品香港三级国产av潘金莲| 久久热在线av| 久久中文字幕人妻熟女| 亚洲欧美激情在线| 久久这里只有精品19| 好男人电影高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲男人天堂网一区| 王馨瑶露胸无遮挡在线观看| 中亚洲国语对白在线视频| 久久久久久久国产电影| 国产男女内射视频| 国产精品九九99| 不卡av一区二区三区| 欧美亚洲 丝袜 人妻 在线| av在线播放免费不卡| 淫妇啪啪啪对白视频| 日韩欧美免费精品| 精品国产亚洲在线| 十分钟在线观看高清视频www| 丝袜在线中文字幕| 日韩中文字幕视频在线看片| 中文字幕人妻丝袜一区二区| 老司机深夜福利视频在线观看| 大香蕉久久成人网| 丝袜喷水一区| 天堂8中文在线网| 中文字幕另类日韩欧美亚洲嫩草| 在线观看www视频免费| 成人国产av品久久久| 亚洲人成77777在线视频| 777久久人妻少妇嫩草av网站| 操出白浆在线播放| 日韩欧美一区视频在线观看| av国产精品久久久久影院| 满18在线观看网站| 老熟妇仑乱视频hdxx| av网站在线播放免费| 日韩三级视频一区二区三区| 色婷婷久久久亚洲欧美| 欧美日韩一级在线毛片| 国产不卡一卡二| 亚洲精品av麻豆狂野| 纵有疾风起免费观看全集完整版| 亚洲国产成人一精品久久久| 亚洲国产中文字幕在线视频| 成人亚洲精品一区在线观看| 久久国产精品影院| 国产成人免费观看mmmm| 美女高潮喷水抽搐中文字幕| 国产精品久久久久成人av| 久久精品亚洲av国产电影网| 亚洲欧美色中文字幕在线| 一级毛片女人18水好多| 国产精品久久久久久人妻精品电影 | 肉色欧美久久久久久久蜜桃| 在线观看免费视频日本深夜| 女人精品久久久久毛片| 中文字幕人妻丝袜一区二区| 757午夜福利合集在线观看| 亚洲人成电影免费在线| 人妻 亚洲 视频| 亚洲国产欧美网| 国产成人影院久久av| 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 久久中文字幕人妻熟女| 国产一区二区三区视频了| 老司机福利观看| 国产精品.久久久| 又紧又爽又黄一区二区| 在线av久久热| 91精品三级在线观看| 岛国在线观看网站| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 搡老熟女国产l中国老女人| 成年人黄色毛片网站| 国产xxxxx性猛交| 我的亚洲天堂| 国产一区二区三区在线臀色熟女 | 亚洲国产av影院在线观看| 午夜福利欧美成人| 黄色a级毛片大全视频| 国产精品九九99| 欧美性长视频在线观看| 桃红色精品国产亚洲av| 国产深夜福利视频在线观看| 色综合欧美亚洲国产小说| 男女床上黄色一级片免费看| 丝袜美足系列| 狠狠狠狠99中文字幕| 精品少妇一区二区三区视频日本电影| 国产欧美日韩一区二区精品| 大型黄色视频在线免费观看| 日韩大片免费观看网站| 男女无遮挡免费网站观看| 久久国产精品人妻蜜桃| 五月开心婷婷网| 欧美性长视频在线观看| 国产成人影院久久av| 自线自在国产av| 精品久久蜜臀av无| kizo精华| 91精品国产国语对白视频| 亚洲精品中文字幕一二三四区 | 又大又爽又粗| 欧美 日韩 精品 国产| 成人国产av品久久久| 久久久精品国产亚洲av高清涩受| 亚洲欧美色中文字幕在线| av天堂久久9|