• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Autonomous Landing of Small Unmanned Aerial Rotorcraft Based on Monocular Vision in GPS-denied Area

    2015-08-11 11:57:29CunxiaoMiaoandJingjingLi
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Cunxiao Miao and Jingjing Li

    Autonomous Landing of Small Unmanned Aerial Rotorcraft Based on Monocular Vision in GPS-denied Area

    Cunxiao Miao and Jingjing Li

    —Focusing on the low-precision attitude of a current smallunmanned aerialrotorcraftat the landing stage,the present paper proposes a new attitude controlmethod for the GPS-denied scenario based on the monocular vision.Primarily,a robust landmark detection technique is developed which leverages the well-documented merits of supporting vector machines(SVMs) to enable landmark detection.Then an algorithm of nonlinear optimization based on Newton iteration method for the attitude and position of camera is put forward to reduce the projection error and get an optimized solution.By introducing the wavelet analysis into the adaptive Kalman filter,the high frequency noise of vision is filtered out successfully.At last,automatic landing tests are performed to verify the method's feasibility and effectiveness.

    Index Terms—Automatic landing,monocular vision,attitude, wavelet filter.

    I.INTRODUCTION

    W ITH the ability to take off and land vertically,along with hovering ability,the smallunmanned aerialrotorcraft(SUAR)has an irreplaceable role in civilapplications[1]. Thus,it has been widely used in many regions,such as road traffic monitoring,data acquisition,mapping and surveillance, etc[2?4].And it allows us to easily access environments to which no humans or other vehicles can get access.

    Now most navigation systems for SUAR are based on inertial sensors(gyroscopes and accelerometer)and GPS[5?6]. However,buildings and other obstacles in urban environments can easily disturb the GPS signal and even cause the signal to get lost due to electromagnetic noise from active emitters and multi-path effects.And it directly leads to the poor performance of SUAR as a result of the inertial navigation errors generated by the gyroscope drifts and accelerometer biases without GPS.So there is a requirementthatthe vehicle is able to navigate without using GPS to guarantee the safety of operations in unknown,unstructured and GPS-denied environments.

    Considering the problem mentioned above,a feasible solution is to navigate the vehicle using a system based on vision.Small cameras which are low-lost,light-weight and passive are attractive sensors for SUAR.Furthermore,a vision system is self-suffi cient,and provides position values which are much more accurate than the standard GPS's(cm accuracy).Off-board cameras for motion capture systems are well studied[7?8].However,the cameras can be used only in small environments that are accessible physically by humans,and the cameras's field of view directly constrains the operation of the helicopter.Therefore,it is necessary to install the camera onboard.Saripalli used vision for the precise target detection and recognition and the navigation successfully in combination with GPS[9].Moreover,Hermansson established an EKF model to fuse the measurements of vision,GPS and compass,and realized a landing within 0.5 m in the horizontal direction[10].Obviously,these systems still relies on the GPS signal.The stereo vision is also used to detectthe safe landing area and to achieve soft landing[11?12].However,the range data become inaccurate when the distance to the scene is much larger than the baseline[13].

    In this paper,we propose an autonomous landing method for SUAR to tackle the problem of poor navigation in GPS-denied environment by using a single camera and onboard inertial sensors.The position and attitude of the SUAR are estimated by the vision system using a specially designed landmark firstly.Then a wavelet-adaptive KF is developed by fusing the position estimated by the vision system with inertial data to improve the performance of SUAR.

    The paper is organized as follows:The image processing algorithm is described in Section II.In Section III,an adaptive-KF based on wavelet filter is proposed to get high-precision estimated values.Simulation and test results confirm the effectiveness of the proposed method in Section IV.Finally, conclusions are drawn in Section V.

    II.THE DESCRIPTION OF VISION SYSTEM

    To land successfully,two basic stages are required by the visual navigation system for SUAR:the landmark detection and the accurate estimation of position and attitude for SUAR.

    A.Landmark Detection Based on SVM

    As a basic step of a visualnavigation system,usually there are three methods for landmark detection.Special landmarksare identified easily,but this approach cannot be applied commonly.Besides,pattern matching[14]is a mostly used way, too.However,the main shortcomings are the large calculation and vast experiments are needed when dividing the similarity threshold.Machine learning[15?16]is recognized as the most intelligent method,and can be used commonly to detect any landmark.

    In order to significantly improve the effect of landmark detection,an innovative landmark detection technique was studied and finally specified.Its support vector machine (SVM)takes advantage of the Hu invariant moments[17].

    A series of Hu invariant moments of several images of landmark are used as inputto the SVM,which now is widely used for detection purposes and is based on a training set of elements.Basically,the SVM technique aims to geometrically separate the training set represented in a n space,with n standing for the number of criteria taken into account for classification,using a hyper-plane or some more complex surface if necessary.The SVM training algorithm finds out the best frontier in order to maximize the margin,defined as a symmetric zone centered on the frontierwith no training points included,and to minimize the number of wrong classification occurrences,as which can be shown in Fig.1.

    Fig.1.SVM detection in the two-dimensional space.

    The output of SVM training stage is thus the hyper-plane equation[18]

    where→x is the n components vector representing the image to be classified.It should be noted that the normal vector→w is a linear combination of a reduced setof training vectors→x, located nearby the two parallelhyper-planes defining the margin:points located far from the margin have no contribution in the hyper-plane definition.

    Then the classification algorithm is straight forward:if→yi(〈→w,→xi〉+b)?1≥ 0,then the corresponding mark is classified as landmark-free.

    When the linear separation is not efficient,it often proves to become linear when applying some non-linear transform on the coordinate,and SVM technique would be applied to achieve efficiently this non-linear transform using kernels.

    In addition,the SVM convex programming problem can be converted to a dual problem using Lagrange method. That is,a conditional extremum can be constructed as min‖w‖2/2,s.t. →yi(〈→w,→xi〉+b)?1≥0.Here,we use thedefined as minw,bmaxαi≥0L(w,b,αi).Then,the expression above can be transformed through dualistic transformation as maxαi≥0minw,bL(w,b,αi).Then the problem can be resolved using a series of numerical method[19].

    As the input to SVM,the first,second and third moments of inertia are testified to be sufficient to distinguish between the landing target and other objects presented in the image. The moments of inertia can be shown as

    whereφ1,φ2,φ3are the three lower order invariantmoments, andηpqis the normalized central moment which can be defined as

    whereγ=p+2q+1,p+q=2,3,···andμpqrepresents the central moment of an object,which is given by

    where(ˉx,ˉy)represents the center of the gravity of the object, f(x,y)represents a two-dimensional object as a continuous function with p,q=0,1,2,···.

    B.State Estimation Based on Vision

    We have chosen black triangles on white background as they are fast to detect and provide accurate image features. When the landmark is detected in the current image,corners are extracted by the Kitchen and Rosenfild algorithm.Then from the projection ofthe cornerpoints ofthe targetlandmark, the attitude and position of the SUAR is uniquely determined through the following equations,if allintrinsic camera parameters are known.

    Suppose that the landmark is detected,and the normalized coordinates of the corner in the navigation system can be represented as qqqi(i=1,2,···,12)(12 points are used in this research),and the corresponding coordinates in the image plane is xxxi=[u v 1]T(i=1,2,···,12);then the simplified form of(5)can be expressed as follows

    whereλiis equal to zc,and thus we can obtain thatλi=where eeeT3=0 0 1.

    If yyyi=AAA?1xxxi,then we can define Formula(6)as

    and rrr3=rrr1×rrr2.Finally,the attitude of the SUAR can be obtained from RRR.

    Through the linear algorithm above, 9 variables (rrr1,rrr2,ppp)composed of attitude and position parameters ?,θ,ψ,p1,p2,p3can be estimated.It is clear that the 9 variables contain much noise,but they can be used as initial values of the non-linear algorithm below.

    The estimation from the non-linear algorithm is optimized by minimizing the reprojection error G as below

    Therefore,the attitude and position parameters based on Newton method can be expressed as

    III.SENSOR FUSION

    The attitude and position information from the vision system cannot be fed back to the controller directly because of their lack of robustness.

    Therefore,a filter based on Kalman filter(KF)is developed to fuse highly accurate position estimated from vision system with inertial data from the inertial measurement unit(IMU, including angular rate gyroscope and accelerometers).Not only can the filter filter out most of the noise,but it can also provide sufficient information to complete the task when the vision system is disturbed.

    A.The State and Observation Model of SUAR

    The KF is done using the error state space as follows

    We can conclude the discrete state equation XXXk= Φk,k?1XXXk?1+WWWk?1.In(12),δrrr,δVVV andΨare the error vectors of the position,velocity and attitude,ωieis the Earth rotation rate,fff is the accelerometers outputs,▽is the bias of accelerometer,εis the zero driftof gyroscope,XXXkis the state vector,Φk,k?1is the state transition matrix and WWWkrepresents the system noise.

    The three observations are obtained by the difference between the position from vision system and the position from INS.Then the observational equation can be given as

    where ZZZkis the observation vector and VVVkis the observation noise.

    B.The Wavelet-adaptive KF

    1)The wavelet filter method

    Sensor noises are always treated as zero mean Gaussian white noise in traditional Kalman filter.However,to get high precision position and attitude information,it's necessary to get rid of high frequency noises in the sensors(SINS and vision system).The common ways to deal with the high frequency noises include the data smoothing filter,infinite impulse response(IIR)filter,finite impulse response(FIR) filter and wavelet filter.The data smoothing can eliminate the measurement outlier and noise for the high frequency data, but it has high requirement for the sensor data collection system.Although the IIR can eliminate the high frequency noise,itcan cause a phase delay.The FIR can reduce the noise signal energy,but it has limitation in the high frequency noise suppression.Wavelet filter is a time domain and frequency domain method,having good representation for the partial signal characteristic.In the low frequency region,it has a higher frequency resolution and lower time resolution.On the other hand,ithas higher time resolution and a lower frequency resolution in the high frequency region.Therefore,wavelet filter is used as a tool to reduce high frequency noises in the sensor information.

    We can suppose the data with noise as

    where f(t)and g(t)represent the real signal and noise respectively.Besides,they are independent of each other,and ε(t)∈N?0,σ2¢.

    The process of wavelet decomposition and reconstruction scheme includes three steps:

    a)Wavelet decomposition

    b)Prediction:defining the detailed representation characteristics by choosing a predictor.

    c)Update:averaging the signal of rough representation against the original signal.

    2)AKF description

    The Kalman filter is a setof mathematicalequations thatuse an underlying process model to estimate the current system state and correct the estimated value.Using this predictorcorrectormechanism,itcan approximate an optimalestimation from the linearization ofthe process and measurementmodels.

    Then the filter consists of the following stages:

    a)State prediction

    b)Measurement prediction

    c)Updated state estimation

    d)Gain of the filter

    e)Error covariance

    f)Variance matrix of the observation noise

    Considering that the noise structure has changed after wavelet filtering,we cannot simply use experiential value or the statistics of partialnoise as the observation noise variance; here the observation noise variance is estimated using the maximum by a posteriori adaptive method.

    IV.SIMULATION AND EXPERIMENT

    A.System Description

    To test the effectiveness of the proposed method,an autopilot with embedded system based on 2 pieces of highspeed DSPs and microcontroller were developed,to realize the complex algorithms of image processing,navigation and control,as shown in Fig.2.In addition,it consists of a horizontal main board,housing 3-axis rate gyroscopes,3-axis accelerometers and a barometer.The gyro employs the LCG50 produced by System Donner Inertial Company in British.The accelerometer is the Model 1221 manufactured by Silicon Designs Company in Japan.Besides,the camera used here is a RICOR aerial camera,which is light(about 188 g),with a fixed focal length about 6 mm.In view of the time limit, we set the frame frequency at 5 f/s.For flight stability,the navigation and control cycle are set at 50 Hz.Besides,the data fusion method is conducted in 1 Hz of data frequency and the coefficient w is determined by a series of images of the landmark before landing.

    Fig.2.The onboard system and the SUAR used in the experiment.

    B.Autonomous Landing Test

    The landing pad used here is a 1.2 m×1.2 m specially made landmark.The flight trajectory of the SUAR in the landing process is shown in Fig.3.When the SUAR arrives above the landing area,it starts to search for the landmark and begin to land.With the constant adjustment for the planed hovering altitude,the SUAR descends the altitude with hovering station. When the altitude is less than 2 m,the system reaches to the land disturbance region.Since there exists land disturbance,the pilot control model[20]is used to control the collective motor.The pilot control model provides a safe control mode for the SUAR.When the altitude is less than 0.5 m shown in Fig.4,the gun is decreased with constantspeed.Thus,the lift force has been decreased correspondingly.Finally,the SUAR lands the ground at the(0.26,0.42,0).Figs.5 and 6 show the attitude and horizontal velocity in the landing process, respectively.

    Fig.3.The 3D trajectory of the SUAR.

    Fig.4.The vertical positioning results.

    Fig.5.The attitude estimated during the landing process.

    Fig.6.The velocities in two directions.

    To furtherdemonstrate the proposed method,severallanding experiments have been conducted using the wavelet-adaptive KF and the EKF method used before.

    Fig.7 shows the landing results using the wavelet-adaptive KF and the EKF,separately.The SUAR enters the landing mode roughly ten meters above the landing platform and then slowly descends until it has landed.The average Euclidean distances from the landing target are 63 cm and 101 cm, respectively.

    Fig.7.The result of landing tests.

    V.CONCLUSION

    Focusing on the low measurementperformance of the sensor for the low cost SUAR,a navigation method based on vision was proposed to improve the accuracy and reliability of the measurement information.The nonlinear optimization based on Newton iteration method for camera attitude and position was put forward to reduce the projection error and get an optimized solution.With the wavelet filter method,the high frequency noises in the SINS and vision have been eliminated effectively.By using the adaptive Kalman filter,the system fuses the output from SINS and vision to get high precision navigation information.Finally,the landing tests show thatthe compound navigation system based on the proposed method can provide high performance navigation information.With the high performance position and attitude information,theSUAR can realize stable autonomous landing based on the altitude information.

    REFERENCES

    [1]Zhong Li-Na,Wang Jun-Hao,Wang Rong.Auto flight algorithm of quad-rotor helicopter based on magnetic sensor.Journal of Chongqing University of Technology(Natural Science),2013,27(12):86?90(in Chinese)

    [2]Jiang Bin,Sun Zhi-Feng.The realization of autonomous navigation for quadrotor aircraft.Electronic Technology,2012,39(2):10?12,9(in Chinese)

    [3]Najib M,Tarek H.A UAR for bridge inspection:visualservoing control law with attitude limits.AutomationinConstruction,2007,17(1):3?10

    [4]Weiss S,Scaramuzza D,Siegwart R.Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics,2011,28(6):854?874

    [5]Wendel J,Meister O,Schlaile C,Trommer G F.An integrated GPS/MEMS-IMU navigation system for an autonomous helicopter. Aerospace Science and Technology,2006,10(6):527?533

    [6]Shin E H,El-Sheimy N.Accuracy improvement of low cost INS/GPS for land applications.In:Proceedings of the 2002 U.S.Inst.Navigation, National Technical Meeting.San Diego,CA USA:ION NTM,2002. 146?158

    [7]Michael N,Fink J,Kumar V.Cooperative manipulation and transportation with aerial robots.Autonomous Robots,2011,30(1):73?86

    [8]How J P,Bethke B,Frank A,Dale D,Vian J.Real-time indoor autonomous vehicle test environment.IEEE Control Systems Magazine, 2008,28(2):51?64

    [9]Saripalli S,Sukhatme G S,Montgomery J F.AnExperimental Study of the Autonomous Helicopter Landing Problem—Experimental Robotics VIII.Berlin:Springer-Verlag,2003.466?475

    [10]Hermansson J,Gising A,Skoglund M,Sch¨on.Autonomous Landing of an Unmanned Aerial Vehicle,Technical Report,Automatic Control, Linkopings Universitet,Sweden,2010.

    [11]Johnson A E,Montgomery J F,Matthies L.Vision guided landing of an autonomous helicopter in hazardous terrain.In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation.Barcelona, Spain:IEEE,2005.3966?3971

    [12]Yu Z Y,NonamiK,Shin J,Demian C.3D vision based landing controlof a small scale autonomous helicopter.International Journal of Advanced Robotic Systems,2007,4(1):51?56

    [13]Press W H,Teukolsky S A,Vetterling W T,Flannery B P.Numerical Recipes in C:the Art of Scientifi c Computing(Second edition).Cambridge:Cambridge University Press,1992.

    [14]Sun Yan-Yue,He Xiao-Hai,Song Hai-Ying,Chen Wei-Long.A blockmatching image registration algorithm for video super-resolution reconstruction.Acta Automatica Sinica,2011,37(1):37?43(in Chinese)

    [15]Wan Yu-Chai,Liu Xia-Bi,Han Fei-Fei,Tong Kun-Qi,Liu Yu.Online learning of binary classifiers for improving google image search results. ActaAutomatica Sinica,2014,40(8):1699?1708

    [16]Chong Yan-Wen,Kuang Hu-Lin,Li Qing-Quan.Two-stage pedestrian detection based on multiple features and machine learning.Acta AutomaticaSinica,2012,38(3):375?381(in Chinese)

    [17]Hu M K.Visual pattern recognition by moment invariants.IRE Transactions onInformationTheory,1962,8(2):179?187

    [18]Latry C,Panem C,Dejean P.Cloud detection with SVM technique. In:Proceedings of the 2007 IEEE International Conference on Geoscience and Remote Sensing Symposium.Barcelona,Spain:IEEE,2007. 448?451

    [19]Cristiani N,Shawe-Taylor J.AnIntroductiontoSupportVectorMachines and Other Kernel-based LearningMethods.Cambridge:Cambridge University Press,2000.

    [20]Lei Xu-Sheng,Fang Jian-Cheng,Bai Lang,etc.Autonomous Taking Off and Landing Technology for the Small Unmanned Rotorcraft Vehicle Based on the Pilot Model,C.N.Patent 102289714B,December 2011. (in Chinese)

    Cunxiao Miao Lecturer at the School of Mechanical Engineering,University of Science and Technology Beijing.He received the B.S.degree from Northeast University,China in 2006 and the Ph.D.degree from Beihang University,China in 2013.His research interests include navigation,identification,and control of unmanned aerial vehicles. Corresponding author of this paper.

    Jingjing Li Assistant engineer at Beijing Aerospace Times Optical-electronic Technology Co., Ltd..She received her master degree from Beihang University in 2013.Her research interests include inertial navigation and visual navigation of unmanned aerial vehicles.

    t

    October 10,2013;accepted July 18,2014.This work was supported by China Postdoctoral Science Foundation(2013M540857) and Fundamental Research Funds for the Central Universities(FRF-TP-14-019A1).Recommended by Associate Editor Bin Xian

    :Cunxiao Miao,Jingjing Li.Autonomous landing of small unmanned aerial rotorcraft based on monocular vision in GPS-denied area. IEEE/CAA Journal of AutomaticaSinica,2015,2(1):109?114

    Cunxiao Miao is with the School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China(e-mail: miao cunxiao@163.com).

    Jingjing Li is with Beijing Aerospace Times Optical-electronic Technology Co.,Ltd(ATOT),Beijing 100094,China(e-mail:001rose001@sina.com).

    av国产免费在线观看| 国产欧美日韩精品一区二区| 中出人妻视频一区二区| 简卡轻食公司| 听说在线观看完整版免费高清| 久久久久久久久大av| 国产精品福利在线免费观看| 亚洲第一区二区三区不卡| 日韩av不卡免费在线播放| 亚洲真实伦在线观看| 一a级毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 精品午夜福利在线看| 99久久中文字幕三级久久日本| 99九九线精品视频在线观看视频| 久久久国产成人免费| 在线播放国产精品三级| 国产熟女欧美一区二区| 色综合亚洲欧美另类图片| 一区二区三区四区激情视频 | 中文资源天堂在线| 最好的美女福利视频网| 99九九线精品视频在线观看视频| 99热6这里只有精品| 一级毛片aaaaaa免费看小| 日本-黄色视频高清免费观看| 欧美bdsm另类| 六月丁香七月| 亚洲国产精品久久男人天堂| 少妇高潮的动态图| 国产精品久久久久久精品电影| 亚洲欧美日韩卡通动漫| 国内久久婷婷六月综合欲色啪| 色综合色国产| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 国产单亲对白刺激| 少妇高潮的动态图| 国产精品一及| 给我免费播放毛片高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲专区国产一区二区| 国产高清视频在线观看网站| 在现免费观看毛片| 午夜视频国产福利| 日韩欧美精品v在线| 国产精品女同一区二区软件| 欧美色欧美亚洲另类二区| 18+在线观看网站| 亚洲av中文av极速乱| 国国产精品蜜臀av免费| 欧美丝袜亚洲另类| 日日摸夜夜添夜夜添av毛片| 日本免费一区二区三区高清不卡| 五月玫瑰六月丁香| 最近中文字幕高清免费大全6| 在线免费十八禁| 久久精品国产99精品国产亚洲性色| 十八禁国产超污无遮挡网站| 你懂的网址亚洲精品在线观看 | 国产不卡一卡二| а√天堂www在线а√下载| 99久国产av精品| 免费看光身美女| 精华霜和精华液先用哪个| 观看美女的网站| 色视频www国产| 成人永久免费在线观看视频| 人人妻,人人澡人人爽秒播| 免费电影在线观看免费观看| 丰满人妻一区二区三区视频av| 亚洲18禁久久av| 国产一区二区亚洲精品在线观看| 午夜亚洲福利在线播放| 在线观看午夜福利视频| 99riav亚洲国产免费| 日本三级黄在线观看| 日韩欧美在线乱码| 看十八女毛片水多多多| 一进一出抽搐gif免费好疼| 欧美日本亚洲视频在线播放| 久久中文看片网| 嫩草影院新地址| 麻豆国产av国片精品| 欧美成人精品欧美一级黄| 又黄又爽又刺激的免费视频.| 尾随美女入室| 成年女人看的毛片在线观看| 欧美日韩在线观看h| 天堂动漫精品| 99久久无色码亚洲精品果冻| 欧美xxxx性猛交bbbb| 色尼玛亚洲综合影院| 大又大粗又爽又黄少妇毛片口| 欧美不卡视频在线免费观看| 又粗又爽又猛毛片免费看| 99久久精品热视频| 日韩欧美免费精品| 午夜激情欧美在线| 日本三级黄在线观看| 日韩欧美国产在线观看| 亚洲性久久影院| 亚洲一区二区三区色噜噜| 免费电影在线观看免费观看| 亚洲高清免费不卡视频| 人妻久久中文字幕网| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本亚洲视频在线播放| or卡值多少钱| 一进一出抽搐动态| 大又大粗又爽又黄少妇毛片口| av.在线天堂| 亚洲美女视频黄频| 69av精品久久久久久| 校园春色视频在线观看| 伦理电影大哥的女人| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 男人和女人高潮做爰伦理| 日本一本二区三区精品| 成人特级黄色片久久久久久久| 色综合亚洲欧美另类图片| 嫩草影院入口| 在线免费观看不下载黄p国产| 久久精品国产鲁丝片午夜精品| 少妇的逼水好多| 国产熟女欧美一区二区| 男女下面进入的视频免费午夜| 欧美精品国产亚洲| 日本免费a在线| 亚洲成人久久爱视频| 乱码一卡2卡4卡精品| 免费无遮挡裸体视频| 熟妇人妻久久中文字幕3abv| 1000部很黄的大片| 美女黄网站色视频| 日本a在线网址| 麻豆乱淫一区二区| 国产色婷婷99| 国产精品一区二区三区四区免费观看 | 麻豆一二三区av精品| 自拍偷自拍亚洲精品老妇| 亚洲国产精品成人综合色| av黄色大香蕉| 三级国产精品欧美在线观看| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o| 99热这里只有是精品50| 亚洲精品一区av在线观看| 久久6这里有精品| 老女人水多毛片| 22中文网久久字幕| 男女之事视频高清在线观看| 国产精品永久免费网站| av天堂在线播放| 色播亚洲综合网| 国产综合懂色| 色在线成人网| 亚洲欧美日韩高清专用| 中国美白少妇内射xxxbb| 男人舔女人下体高潮全视频| 日韩亚洲欧美综合| 日日摸夜夜添夜夜添av毛片| 久久久成人免费电影| 简卡轻食公司| 国产精品一区二区三区四区免费观看 | 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 噜噜噜噜噜久久久久久91| 成年av动漫网址| 色哟哟哟哟哟哟| 嫩草影院精品99| 欧美高清性xxxxhd video| 日本-黄色视频高清免费观看| 激情 狠狠 欧美| 国产久久久一区二区三区| 悠悠久久av| 嫩草影院新地址| 又黄又爽又刺激的免费视频.| 婷婷精品国产亚洲av在线| 欧美zozozo另类| 午夜精品一区二区三区免费看| 亚洲精品一区av在线观看| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 免费电影在线观看免费观看| a级毛色黄片| av福利片在线观看| 综合色av麻豆| 一本精品99久久精品77| 精华霜和精华液先用哪个| 99久久精品国产国产毛片| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久精品电影| 久久精品夜色国产| 国产精品1区2区在线观看.| 色哟哟·www| 女的被弄到高潮叫床怎么办| 永久网站在线| 美女内射精品一级片tv| 日韩成人伦理影院| 国产男人的电影天堂91| 亚洲久久久久久中文字幕| 国产精品综合久久久久久久免费| 两个人视频免费观看高清| 久久久久久久亚洲中文字幕| 日韩欧美精品v在线| 国产精华一区二区三区| 国产色婷婷99| 欧美激情国产日韩精品一区| 啦啦啦啦在线视频资源| 国产在视频线在精品| 在线播放无遮挡| 成年女人看的毛片在线观看| 99热只有精品国产| 一级毛片我不卡| 99久久成人亚洲精品观看| 99久久九九国产精品国产免费| 日韩中字成人| а√天堂www在线а√下载| 欧美中文日本在线观看视频| 国产亚洲精品av在线| 色哟哟哟哟哟哟| 亚洲av美国av| 亚洲四区av| 亚洲在线自拍视频| 人妻夜夜爽99麻豆av| 国产欧美日韩精品亚洲av| 最近在线观看免费完整版| 中文字幕久久专区| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 中文在线观看免费www的网站| 日韩av不卡免费在线播放| 久久午夜福利片| 日韩欧美在线乱码| 国产一区亚洲一区在线观看| 成人二区视频| av天堂在线播放| 国产亚洲精品久久久com| 特级一级黄色大片| 淫秽高清视频在线观看| 成人美女网站在线观看视频| 成人三级黄色视频| 久久久久性生活片| 一区二区三区高清视频在线| 国产精品久久久久久av不卡| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 99热这里只有精品一区| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 日韩大尺度精品在线看网址| 久久亚洲精品不卡| 老司机午夜福利在线观看视频| 成人毛片a级毛片在线播放| 亚洲五月天丁香| 国产成人一区二区在线| 久久久精品94久久精品| 一级毛片aaaaaa免费看小| 久久99热这里只有精品18| 午夜激情福利司机影院| 悠悠久久av| 欧美xxxx黑人xx丫x性爽| 内射极品少妇av片p| 麻豆国产97在线/欧美| 亚洲不卡免费看| 欧美日本亚洲视频在线播放| 少妇熟女aⅴ在线视频| 日日撸夜夜添| 亚洲人成网站在线播| 国产三级中文精品| 日韩欧美精品免费久久| 久久久久国产网址| 黄色视频,在线免费观看| 大又大粗又爽又黄少妇毛片口| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 亚洲美女黄片视频| 热99re8久久精品国产| 久久精品91蜜桃| 一个人观看的视频www高清免费观看| 日韩在线高清观看一区二区三区| 国产黄a三级三级三级人| 又爽又黄a免费视频| 欧美日韩精品成人综合77777| 中文字幕精品亚洲无线码一区| 成人特级黄色片久久久久久久| 久久6这里有精品| 中国美白少妇内射xxxbb| 麻豆国产97在线/欧美| 国产aⅴ精品一区二区三区波| 精华霜和精华液先用哪个| 久久人人爽人人片av| 人妻夜夜爽99麻豆av| 插阴视频在线观看视频| 老熟妇乱子伦视频在线观看| 我要搜黄色片| 欧美人与善性xxx| 久久久久久久午夜电影| 99热精品在线国产| 国产国拍精品亚洲av在线观看| 天堂影院成人在线观看| 精品一区二区免费观看| 久久久久久久久久久丰满| 97人妻精品一区二区三区麻豆| 精品无人区乱码1区二区| 我的老师免费观看完整版| 俺也久久电影网| 一个人看的www免费观看视频| 一级毛片久久久久久久久女| 日韩在线高清观看一区二区三区| 久久久久久久午夜电影| 中文字幕久久专区| 亚洲熟妇熟女久久| 青春草视频在线免费观看| 精品乱码久久久久久99久播| 国产精品永久免费网站| 香蕉av资源在线| 午夜福利成人在线免费观看| 亚洲精品日韩av片在线观看| 最新在线观看一区二区三区| 婷婷精品国产亚洲av在线| 亚洲四区av| 国产视频一区二区在线看| 免费搜索国产男女视频| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 亚洲,欧美,日韩| or卡值多少钱| 久久久久免费精品人妻一区二区| 噜噜噜噜噜久久久久久91| 国产精品电影一区二区三区| 久久精品影院6| 成人美女网站在线观看视频| 97超视频在线观看视频| 日本一本二区三区精品| 亚洲av.av天堂| 九九爱精品视频在线观看| eeuss影院久久| 欧美中文日本在线观看视频| 日韩欧美精品v在线| 成年免费大片在线观看| 亚洲国产精品sss在线观看| 韩国av在线不卡| 国产三级中文精品| 97超级碰碰碰精品色视频在线观看| 男人舔奶头视频| 麻豆成人午夜福利视频| 在线观看av片永久免费下载| 国产真实乱freesex| av在线蜜桃| 给我免费播放毛片高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美清纯卡通| 高清午夜精品一区二区三区 | 亚洲国产精品成人久久小说 | 精品久久久久久久久av| 亚洲av中文字字幕乱码综合| 成年女人永久免费观看视频| 成人精品一区二区免费| 有码 亚洲区| 亚洲在线观看片| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说 | 色噜噜av男人的天堂激情| 成年女人永久免费观看视频| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 国产不卡一卡二| 在现免费观看毛片| 色5月婷婷丁香| 日本精品一区二区三区蜜桃| 久久久久性生活片| 国产成人精品久久久久久| 久久久久久久午夜电影| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 欧美激情在线99| 国产精品一区二区免费欧美| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 国产在线精品亚洲第一网站| 国产真实伦视频高清在线观看| 久久九九热精品免费| 亚洲最大成人中文| 精品久久国产蜜桃| 久久精品国产鲁丝片午夜精品| 日韩人妻高清精品专区| 99九九线精品视频在线观看视频| 国产高清三级在线| 欧美日韩精品成人综合77777| 日韩亚洲欧美综合| 欧美不卡视频在线免费观看| 波多野结衣高清作品| 99久国产av精品| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看| 在线国产一区二区在线| 久久久久久伊人网av| 免费看av在线观看网站| 国产爱豆传媒在线观看| videossex国产| 婷婷亚洲欧美| 日本一二三区视频观看| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 国产91av在线免费观看| 精品乱码久久久久久99久播| 亚洲丝袜综合中文字幕| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 国产亚洲91精品色在线| 久久久a久久爽久久v久久| 99久久中文字幕三级久久日本| 久久午夜亚洲精品久久| 搞女人的毛片| 在线观看美女被高潮喷水网站| 在线播放无遮挡| 精品久久国产蜜桃| 尾随美女入室| 日韩成人av中文字幕在线观看 | 久久精品国产清高在天天线| 99久久成人亚洲精品观看| 久久久久久伊人网av| av在线老鸭窝| 国产亚洲91精品色在线| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 91久久精品国产一区二区三区| 免费一级毛片在线播放高清视频| 国产精品三级大全| 国产欧美日韩精品一区二区| 成年女人永久免费观看视频| 午夜日韩欧美国产| 99九九线精品视频在线观看视频| 内射极品少妇av片p| 日本爱情动作片www.在线观看 | 女人十人毛片免费观看3o分钟| 蜜桃久久精品国产亚洲av| 一a级毛片在线观看| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 国产成人a区在线观看| 国产成年人精品一区二区| 亚洲在线自拍视频| 女生性感内裤真人,穿戴方法视频| 欧美三级亚洲精品| 久久久久国内视频| 一进一出抽搐gif免费好疼| 精品无人区乱码1区二区| 亚洲精品成人久久久久久| 尤物成人国产欧美一区二区三区| 国产精品人妻久久久影院| 午夜视频国产福利| 日日干狠狠操夜夜爽| 九九在线视频观看精品| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 一级av片app| 草草在线视频免费看| 国产高清三级在线| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 日韩欧美精品免费久久| 日韩人妻高清精品专区| 成年女人毛片免费观看观看9| 国产成人91sexporn| 大又大粗又爽又黄少妇毛片口| 国产精品精品国产色婷婷| 99久久九九国产精品国产免费| 国产亚洲精品久久久com| 国产精品久久久久久亚洲av鲁大| 校园春色视频在线观看| 精品午夜福利在线看| 中国美白少妇内射xxxbb| 国产精品久久久久久av不卡| 悠悠久久av| 干丝袜人妻中文字幕| 热99在线观看视频| 成人一区二区视频在线观看| 俄罗斯特黄特色一大片| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 一本精品99久久精品77| 淫秽高清视频在线观看| 精品福利观看| 亚洲国产精品成人久久小说 | 亚洲欧美日韩卡通动漫| 国产成人精品久久久久久| 夜夜夜夜夜久久久久| 日本 av在线| 青春草视频在线免费观看| 亚洲av一区综合| 欧美区成人在线视频| 美女 人体艺术 gogo| eeuss影院久久| 欧美一级a爱片免费观看看| 欧美一区二区亚洲| 国产精品久久久久久久电影| 在线看三级毛片| 国产蜜桃级精品一区二区三区| 国产激情偷乱视频一区二区| 偷拍熟女少妇极品色| 99视频精品全部免费 在线| 非洲黑人性xxxx精品又粗又长| eeuss影院久久| 亚洲三级黄色毛片| 日日干狠狠操夜夜爽| 国产成人精品久久久久久| 干丝袜人妻中文字幕| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 日韩欧美精品免费久久| 99国产极品粉嫩在线观看| 国产av一区在线观看免费| 亚洲精品国产成人久久av| 人人妻人人澡人人爽人人夜夜 | 国产免费一级a男人的天堂| 亚洲精品456在线播放app| 日韩三级伦理在线观看| 国产午夜精品论理片| 久久久久九九精品影院| 村上凉子中文字幕在线| 别揉我奶头 嗯啊视频| 有码 亚洲区| 99久久九九国产精品国产免费| 简卡轻食公司| 亚洲欧美成人综合另类久久久 | 天堂网av新在线| 搡老妇女老女人老熟妇| 国产免费一级a男人的天堂| 如何舔出高潮| 有码 亚洲区| 精品福利观看| 99热6这里只有精品| 搡女人真爽免费视频火全软件 | 亚洲国产欧洲综合997久久,| 亚洲最大成人中文| 国产精品一区www在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩精品一区二区| 性插视频无遮挡在线免费观看| 97碰自拍视频| 乱码一卡2卡4卡精品| 我要搜黄色片| 免费在线观看影片大全网站| 亚洲久久久久久中文字幕| a级毛片免费高清观看在线播放| 波野结衣二区三区在线| 99热全是精品| 亚洲一级一片aⅴ在线观看| 欧美激情国产日韩精品一区| 国产片特级美女逼逼视频| 五月伊人婷婷丁香| 国产激情偷乱视频一区二区| videossex国产| 国产精品福利在线免费观看| 天堂网av新在线| 欧美zozozo另类| 久久精品人妻少妇| 国产乱人偷精品视频| 舔av片在线| 免费观看在线日韩| 老司机福利观看| 久久久精品94久久精品| 99视频精品全部免费 在线| 狂野欧美白嫩少妇大欣赏| 亚洲乱码一区二区免费版| 欧美成人免费av一区二区三区| 日韩欧美一区二区三区在线观看| 国产综合懂色| 深夜精品福利| 99久久精品一区二区三区| or卡值多少钱| 不卡视频在线观看欧美| 天天躁日日操中文字幕| 国产伦在线观看视频一区| 免费人成视频x8x8入口观看| 三级男女做爰猛烈吃奶摸视频| 国产亚洲精品久久久com| 国产乱人视频| 性欧美人与动物交配| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 国产精品爽爽va在线观看网站| 久久鲁丝午夜福利片| videossex国产| 老熟妇仑乱视频hdxx| 成年免费大片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日本一本二区三区精品| 日韩强制内射视频| 黄色一级大片看看| 免费观看的影片在线观看| 亚洲精品日韩在线中文字幕 | 免费人成视频x8x8入口观看| 全区人妻精品视频| 在线免费观看不下载黄p国产| 久久国产乱子免费精品| 亚洲欧美日韩高清在线视频| 亚洲五月天丁香| 精品人妻视频免费看| 真人做人爱边吃奶动态| 99riav亚洲国产免费| 国产一区二区在线观看日韩| 亚洲成av人片在线播放无| 麻豆国产av国片精品| 久久久久久久久大av| 又黄又爽又免费观看的视频|