• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter

    2015-08-11 11:57:19BinXianJianchuanGuoandYaoZhang
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Bin Xian,Jianchuan Guo,and Yao Zhang

    Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter

    Bin Xian,Jianchuan Guo,and Yao Zhang

    —This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties.The control objective is to let the helicopter track some pre-defined position and yaw trajectories.In order to facilitate the control design,we divide the helicopter's dynamic model into three subsystems.The proposed controller combines the backstepping method with online parameter update laws to achieve the control objective.The global asymptotical stability (GAS)of the closed-loop system is proved by a Lyapunov based stability analysis.Numerical simulations demonstrate that the controller can achieve good tracking performance in the presence of parametric uncertainties.

    Index Terms—Unmanned helicopter,adaptive backstepping control,trajectory tracking,parametric uncertainty.

    I.INTRODUCTION

    C OMPARED with the fixed-wing unmanned aerial vehicles(UAVs),unmanned helicopters have the characters of hovering,autonomous take-off and landing vertically and multi-attitude flight.They have a wide application prospectin the field of military and civilian applications.The unmanned helicopter is a special controlled object,which is a dynamic system of 6-degree-of-freedom(DOF),underactuated,multiinput multi-output(MIMO),strong coupling and nonlinear. Consequently,the development of sophisticated and reliable unmanned helicopter flight control system has recently become an attractive research topic in academic communities worldwide[1].

    Nowadays,unmanned helicopter control methods include linear controller,nonlinear controller and intelligent controller.Traditional approaches to flight control and most initial attempts to achieve autonomous helicopter flight have been developed based on linear design techniques such as proportional-integral-derivative(PID)[2],linear quadratic regulator(LQR)[3],H∞[4]and gain scheduling[5].Linear control method is effective when the dynamic system state of an unmanned helicopter is near the equilibrium point.However, when the helicopter is away from the equilibrium point or aerobatic maneuvers are performed,the performance of the control system will deteriorate greatly.Therefore,in recently years there have been a growing number of papers using nonlinear control methods to deal with unmanned helicopterflight control.It is shown in[6]that approximated unmanned helicopter system with dynamic decoupling is full state linearizable by choosing positions and heading asoutputs. Nonlinear backstepping trajectory tracking control design for small scale helicopters is presented in[7].A two-time scale controller is presented in[8]by using adaptive backstepping technique to achieve the hover flight control of an unmanned helicopter.Robusttrajectory tracking controldesign for unmanned helicopters is introduced in[9?10].A position tracking controlsystem for a UAV using robustintegralof the signum of error(RISE)and neural network(NN)feedforward terms is developed in[11].In addition to the above two methods,intelligent control has also been widely used in the autonomous control of unmanned helicopters.The control methods based on model-free fuzzy and neural networks are reported in[12?13]respectively for their successful applications to autonomous fl ight control.

    This paperpresents an adaptive backstepping controldesign for unmanned helicopters with parametric uncertainties.The proposed controller employs online parameter update laws to estimate unknown parameters associated with the helicopter's dynamics of mass and moment coefficients.When parametric uncertainties exist in the dynamic model,the proposed controller will be a significant improvement to the traditional exact model knowledge(EMK)control method as employed in[6?7].We use a simplified unmanned helicopter's nonlinear dynamic model for the flight control development.The main objective is to let the unmanned helicopter track a predefined position and heading reference trajectory.In order to facilitate the control design,we divide the helicopter model into three subsystems,which are the altitude subsystem,the yaw subsystem and the horizontal subsystem.Since there is no strong coupling between the three subsystems,we can design the controllers separately.The proposed design approach is obviously different from the two-level hierarchical control scheme reported in[8,11].Itis reasonable in thatthis approach is mathematically consistent with the intuitive flight notion. The global asymptotical stability(GAS)of the closed-loop error system is proved by a Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve good tracking performance in the presence of parametric uncertainties.

    This paper is organized as follows.In the next section, the nonlinear dynamic model of the unmanned helicopter is introduced.Sections IIIand IV are the main body of this paper, which presentthe adaptive backstepping controldesign and the stability analysis method.Simulation results and conclusion are presented in Sections V and VI.

    II.DYNAMIC MODEL OF THE HELICOPTER

    In order to develop the helicopter's equations of motion, first of all we should define two reference frames.The first one is the inertia frame defined as FI={OI,→xI,→yI,→zI}.The second is the body fixed reference frame defined as FB= {OB,→xB,→yB,→zB},where the center OBislocated atthe center of gravity(CG)of the unmanned helicopter.The direction of the inertia frame and the body frame unitary vectors can be seen in Fig.1.For the purpose of control,we consider a complete helicoptermodelas a rigid body with a force and moment generation process.The dynamic equations of the helicopter's rigid body can be derived using Newton-Eulerequations in the configuration space S E(3)=R3×S O(3)[6,9,14].There are four control inputs associated with helicopter piloting,which are defined as u=£TMTTa b?T.The former two components TMand TTare the magnitudes of the thrusts generated by the main and tail rotors.The latter two control commands are the fl apping angles a,b,which represent the tilts of the tip-path-plane(TPP)at the longitudinal and lateral axes,respectively.The four control inputs are also depicted in Fig.1.In the following,we willgive the unmanned helicopter's translationaland rotationaldynamics,respectively. More details can be found in[6?7,10].

    Fig.1. Coordinate systems for the helicopter.

    A.Translational Dynamics

    The kinematic and dynamic equations of unmanned helicopter's translational motion with respect to the inertial frame can be described as

    Hereafter the abbreviations C·,S·and T·representthe trigonometric functions cos(·),sin(·)and tan(·),respectively.

    B.Rotational Dynamics

    The kinematic and dynamic equations of unmanned helicopter's rotational motion with respect to the body fixed framework can be described as

    S?ωB¢in(3)denotes a skew symmetric matrix,which is given by

    J in(3)denotes the inertia matrix of the helicopter with respect to the body frame,which can be expressed as

    vc=£b a TT?T,A(TM)∈R3×3represents an invertible matrix for TM,B(TM)∈R3represents a parameter vector for TM.

    C.Control Objective

    When the unmanned helicopteris in operation,load changes and other factors may cause the parametric uncertainties in the system dynamics.It will greatly affect the performance of conventional control method based on EMK.Thus the proposed controller combines the backstepping method with online parameter update laws to achieve the controlobjective. The main controlobjective is to design the four controlinputs u=£TMTTa b?Tin orderto asymptotically track the reference trajectories of xr(t),yr(t),zr(t)andψr(t)subject to model uncertainties of mass and moment coefficient.The components of xr(t)and yr(t)are required to be C4functions of time,zr(t)andψr(t)are required to be C2functions of time.

    To deal with the subsequent control development,we make some assumptions as follows:

    Assumption 2.TM>0 for t≥0.

    The purpose of Assumption 1 is to assure the controlinput TMwhich will be designed in the following is non-singular. Obviously,this assumption is necessary to avoid singularities in angular velocity transfer matrix of(4).Similar assumption was applied in[7].The purpose of Assumption 2 is to assure the pseudo control rdwhich will be designed in the following is non-singular.Similar assumption was employed in[9].

    III.FLIGHT CONTROL DESIGN

    In order to achieve the control objective,the proposed controllerfollows adaptive backstepping design principles[15].For the purpose of improving the autonomous flightperformance, we employ adaptive backstepping technique to deal with the parametric uncertainties by using online parameter estimation laws.In this paper,we divide the helicopter's dynamic model into three subsystems,which are the altitude subsystem,yaw subsystem and horizontal subsystem.Since there is no strong coupling between these subsystems,the controller for each subsystem can be developed separately.

    A.Altitude Subsystem

    By elaborating(1),the vertical dynamics are described as

    whereρijdenotes the element of jth row and ith column of the rotation matrix R.

    Step 1.Let the altitude and vertical velocity tracking errors be defined as

    where vIzddenotes the vertical velocity virtual control.By taking the time derivative of epz,the open-loop altitude tracking error dynamics can be obtained as follows:

    Let the virtual control signal vIzdbe designed as

    where k1∈ R is a positive,constant control gain.Then the closed-loop altitude tracking error dynamics will take the following form

    Step 2.By taking the time derivative of evz,the open-loop vertical velocity tracking error dynamics can be written as follows:

    On account of the mass uncertainty in the error dynamics,in this step we use the adaptive control law to estimate the unknown parameter on line.In order to facilitate the subsequent analysis,we make some changes to the corresponding terms of the right side of(12)as follows:

    whereη1∈R represents the unknown mass of the helicopter. According to(13),we know that the unknown parameter satisfies the condition of linear parameterization(LP).Thus, the open-loop verticalvelocity tracking error dynamics can be revised into the following advantageous form

    Here we design the general control input U as follows:

    where k2∈R is a positive,constant control gain,?η1is the online estimation of unknown parameterη1.After combining (13)with(15),the real control input TMcan be derived as follows:

    The adaptive updating law of unknown parameter can be designed as follows:

    whereγ1∈R is a positive,constant adaptation gain.Substituting(15)into(14),we can derive the closed-loop vertical velocity tracking error dynamics as follows:

    where?η1= η1??η1∈R denotes the unknown parameter estimation error.

    In order to facilitate the subsequentsystem stability analysis, we define a Lyapunov function candidate,denoted by V1(t)∈R,as follows:

    By taking the time derivative of(19)and making the appropriate substitutions from(11),(17)and(18),we derive the following expression

    B.Yaw Subsystem

    By elaborating(3),the yaw dynamics is described as

    whereΨ3(Θ)is the third row of matrixΨ(Θ)defined in(4).

    Step 3.Let the yaw angular and yaw angular velocity tracking error be defined as

    whereωzdrepresents the yaw angular velocity virtual control. By taking the time derivative of eψ,we can derive the openloop yaw error dynamics as follows:

    whereλψ∈R is a positive,constantcontrolgain.Substituting (24)into(23),we can getthe closed-loop yaw error dynamics as follows:

    We define a Lyapunov function candidate for this subsystem,denoted by V2(t)∈R,as follows:

    By take the time derivative of(26)and making the substitution from(25),we can derive the following equation:

    C.Horizontal Subsystem

    Since the lateral-longitudinaldynamics has strong coupling with the attitude dynamics,we focus ourattention on a cascade control structure constituted by an inner-loop controlling the attitude dynamics and a outer-loop governing the laterallongitudinal dynamics.In the following paragraphs,the proposed controller uses the adaptive backstepping design principles to deal with the horizontal subsystem with parametric uncertainties,which can be described in a parametric-purefeedback form[15].

    The dynamics of the horizontalsubsystem,after elaborating (1)and(3),can be explicitly described as follows:

    Step 4.Let the horizontal position and horizontal velocity tracking errors be defined as

    where p1r=£xryr?T∈R2,v1drepresents the desired horizontal velocity.By taking the time derivative of ep1,we can derive the open-loop horizontal position tracking error dynamics as follows:

    Letthe virtualcontrolinputforhorizontalvelocity be designed as follows:

    where K3=diag(λ1,1,λ1,2)∈R2×2is a diagonal matrix of positive controlgains.Then the closed-loop horizontalvelocity tracking error dynamics will take the following form:

    Step 5.By taking the time derivative of ev1,the open-loop horizontal velocity tracking error dynamics can be written as follows:

    The corresponding term ofthe right-hand side ofthe dynamics equation(33),which includes the unknown parameter,can be linearly parameterized as

    whereη2∈R represents the unknown mass of the helicopter. Thus,the error dynamics of(33)can be changed to

    In this step,we take rdas the desired direction of the thrust vector,and define the orientation error as

    Substituting(36)into(35),we can rewrite the open-loop horizontal velocity tracking error dynamics in the following form:

    Here we design the orientation virtual control as follows:

    where K4=diag(λ2,1,λ2,2)∈R2×2is a diagonal matrix of positive control gains,?η2is the online estimation of unknown parameterη2.The adaptive updating law ofunknown parameter can be designed as follows:

    whereγ2∈R is a positive,constant adaptation gain.Substituting(38)into(37),we can derive the closed-loop horizontal velocity tracking error dynamics as:

    where?η2= η2??η2∈R denotes the unknown parameter estimation error.

    Step 6.By differentiating(36)with respectto time and substituting the orientation dynamics into the resulting equation, the open-loop orientation error dynamics can be written as follows:

    In this step,we takeω1das the desired roll-pitch angular velocity vector,and define the roll-pitch angular velocity tracking error as:

    Substituting(42)into(41),we can rewrite the open-loop orientation error dynamics in the following form

    whereΠ0=£Π 02×1.Based on the form of the openloop dynamics of(43),the virtualcontrolinputω1dis designed as follows:

    whereΛ1=diag(λ3,1,λ3,2)∈R2×2is a diagonal matrix of positive controlgains.Substituting(44)into(43)produces the closed-loop dynamics for er(t)as shown below

    Step 7.Let the angular velocity tracking error be defined as follows:

    Then the angular velocity tracking error dynamics will have the following form

    On account of the inertia matrix uncertainty in the error dynamics,in this step we adopt adaptive control to estimate unknown parameters on line.In the same way,we make some changes to the corresponding terms of the right side of(47) as follows:

    Here we design the general control inputτas follows:

    whereΛ2=diag(λ4,1,λ4,2,λ4,3)∈ R3×3is a diagonal matrix of positive control gains,?Δ is the online estimation of unknown parametersΔ.Therefore,the choice of control input vcwill be

    The adaptive updating law of unknown parameters can be designed as follows:

    whereΓ3=diag(γ3,1,γ3,2,γ3,3)∈ R3×3is a diagonal matrix ofpositive adaptation gains.Substituting(51)into(50), we can derive the closed-loop angular velocity tracking error dynamics as

    where?Δ =Δ??Δ ∈R3denotes the unknown parameters estimation error vector.

    Similarly,we define a Lyapunov function candidate for this subsystem,denoted by V3(t)∈R,as follows:

    By taking the time derivative of(55)and making the appropriate substitutions from(32),(39),(40),(45),(53)and(54), we derive the following expression:

    IV.STABILITY ANALYSIS

    Theorem 1.The control input TMof(16),vcof(52),the adaptive updating law ?η1of(17),?η2of(39)and?Δ of(53) can ensure the global asymptotic convergence of the position and yaw tracking errors as illustrated by

    Proof.To prove the above result,we define a composite Lyapunov function candidate V(t)∈R as follows:

    Taking the time derivative of(58),we can get the following inequality

    whereλmin{·}denotes the minimum eigenvalue of a matrix.

    According to the form of(59),we know that V(t)is either decreasing or constant.Since V(t)of(58)is a non-negative function,we can conclude that V(t)∈L∞.According to(58), we know that epz,evz,eψ,ep1,ev1,er,eω,?η1,?η2,?Δ ∈ L∞. From(11),(17),(18),(25),(32),(39),(40),(45),(53),(54), we know that˙epz,˙evz,˙eψ,˙ep1,˙ev1,˙er,˙eω,˙?η1,˙?η2,˙?Δ ∈ L∞. Thus,we have illustrated that all signals in the adaptive backstepping controller and in the system remain bounded during the closed-loop operation.Furthermore,the form of (59)allows us to show that epz,evz,eψ,ep1,ev1,er,eω∈L2. With the above information,we can now invoke Barbalat's lemma[16]to achieve the result of(57).Form(16)and(52), we know that TM,vc∈L∞. □

    V.SIMULATION RESULTS

    This section presents the simulation results of the control algorithm.The helicopter model parameters are taken form [7].The desired position and yaw reference trajectories are

    The initial states of the helicopter are set to 0.The initial values for parameterestimation are setas?η1(0)=?η2(0)=8, ?δ1(0)= ?δ2(0)= ?δ3(0)= 0.The control gains are chosen as k1= 0.9,k2= 1.5,K3= diag{0.4,0.4}, K4=diag{1,1},Λ1=diag{1,2},Λ2=diag{1,1,1}, λψ=1.The adaptation gains are selected asγ1=0.32, γ2=1,Γ3=diag{7,7,1 700}.The position and yaw tracking errors are illustrated in Fig.2.The four control inputs are provided in Fig.3.The parameter estimations can be seen in Fig.4.Itcan be seen thatthe satisfactory tracking performance is achieved in the presence of parametric uncertainties.

    Fig.2. Position and yaw tracking errors.

    VI.CONCLUSION

    This paper has presented an adaptive backstepping control design forthe unmanned helicopterassociated with parametric uncertainties of helicopter's mass and moment coefficients.In order to facilitate the controldesign,we divide the helicopter's dynamic model into three subsystems,which are altitude subsystem,yaw subsystem and horizontal subsystem.Since there is no strong coupling between these subsystems,the controllerforeach subsystem can be developed separately.Theproposed controller combines the backstepping method with online parameter update laws to achieve the controlobjective. The GAS of the closed-loop system is rigorously proved by the Lyapunov based stability analysis.

    Fig.3.Control inputs of TM,TT,a and b.

    Fig.4.Parameter estimations of mass and moment coefficients.

    In this paper,we have not considered the parametric uncertainties associated with the input matrix of A(TM)and B(TM).In order to ensure the robust performance of the unmanned helicopter system,we should combine the adaptive controlmethod with robustcontrolmethod to achieve superior control performance in the future research.

    REFERENCES

    [1]Cai G W,Chen B M,Lee T H.Unmanned Rotorcraft Systems.London: Springer-Verlag,2011.1?5

    [2]Shim D H,Kim H J,Sastry S.Control system design for rotorcraftbased unmanned aerialvehicles using time-domain system identification. In:Proceedings of the 2000 IEEE International Conference on Control Applications.Anchorage,USA:IEEE,2000.808?813

    [3]Gavrilets V.Autonomous Aerobatic Maneuvering of Miniature Helicopters[Ph.D.dissertation],Massachusetts Institute of Technology, Boston,USA,2003.

    [4]La Civita M,Papageorigious G,Messner W C,Kanade T.Design and flighttesting of a gain-scheduled H∞loop shaping controller for wideenvelope flight of a robotic helicopter.In:Proceedings of the 2003 American Control Conference.Denver,USA:IEEE,2003.4195?4200

    [5]Takahashi M D,Schulein G,Whalley M.Flight control law design and development for an autonomous rotorcraft.In:Proceedings of the 64th American Helicopter Society International Annual Forum.Montreal, Canada:AHS International,Inc.,2008.1652?1671

    [6]Koo T J,Sastry S.Output tracking control design of a helicopter model based on approximate linearization.In:Proceedings of the 37th IEEE Conference on Decision&Control.Tampa,USA:IEEE,1998. 3635?3640

    [7]Raptis I A,Valavanis K P,Moreno W A.A novel nonlinear backstepping controller design for helicopters using the rotation matrix.IEEE Transactionson Control System Technology,2011,19(2):465?473

    [8]Ahmed B,Pota H R.Flight control of a rotary wing UAV using adaptive backstepping.In:Proceedings of the 2009 IEEE International Conference on Control and Automation.Christchurch,New Zealand: IEEE,2009.1780?1785

    [9]Isidori A,Marconi L,Serrani A.Robust nonlinear motion control of a helicopter.IEEE Transactions on Automatic Control,2003,48(3): 413?426

    [10]Marconi L,Naldi R.Robust full degree-of-freedom tracking control of a helicopter.Automatica,2007,43(11):1909?1920

    [11]Shin J H,Kim H J,Kim Y D,Dixon W E.Autonomous flight of the rotorcraft-based UAV using RISE feedback and NN feedforward terms.IEEE Transactions on Control System Technology,2012,20(5): 1392?1399

    [12]Sugeno M,Hirano I,Nakamura S,Korsu S.Development of an intelligentunmanned helicopter.In:Proceedings ofthe 4th IEEE International Conference on Fuzzy Systems.Yokohama,Japan:IEEE,1995.33?34

    [13]Johnson E N,Kannan S K.Adaptive trajectory control for autonomous helicopters.Journal of Guidance,Control,and Dynamics,2005,28(3): 524?538

    [14]Lee T Y.Geometric tracking control of the attitude dynamics of a rigid body on SO(3).In:Proceedings of the 2011 American Control Conference.San Francisco,USA:IEEE,2011.1200?1205

    [15]Kanellakopoulos I,Kokotovic P V,Morse A S.Systematic design of adaptive controllers for feedback lineatization systems.IEEE Transactionson AutomaticControl,1991,36(11):1241?1253

    [16]Slotine J E,Li W P.Applied Nonlinear Control.Englewood Cliffs: Prentice Hall,1991.122?126

    Bin Xian Ph.D.,professor at the School of Electrical Engineering and Automation,Tianjin University.His research interests include nonlinear control theory and application,unmanned aerial vehicles, mechatronic systems,and real-time embedded systems.Corresponding author of this paper.

    Jianchuan Guo Ph.D.candidate at the School of Electrical Engineering and Automation,Tianjin University.His research interests include modeling and controlofunmanned helicopters,and embedded control system.

    Yao Zhang Ph.D.candidate atthe Schoolof Electrical Engineering and Automation,Tianjin University.His research interests include nonlinear control for mechatronic systems.

    t

    October 10,2013;accepted July 18,2014.This work was supported by Natural Science Foundation of Tianjin(14JCZDJC31900). Recommended by Associate Editor Changyin Sun

    :Bin Xian,Jianchuan Guo,Yao Zhang.Adaptive backstepping tracking control of a 6-DOF unmanned helicopter.IEEE/CAA Journal of Automatica Sinica,2015,2(1):19?24

    Bin Xian,Jianchuan Guo,and Yao Zhang are with the Institute of Robotics and Autonomous System,Tianjin Key Laboratory of Process Measurement and Control,School of Electrical Engineering and Automation, Tianjin University,Tianjin 300072,China(e-mail:xbin@tju.edu.cn;e-mail: gjch@tju.edu.cn;zytju221@tju.edu.cn).

    嘟嘟电影网在线观看| av国产久精品久网站免费入址| 在线观看国产h片| 中文字幕人妻丝袜制服| 久久这里有精品视频免费| 黄色视频在线播放观看不卡| 精品一区二区三卡| 亚洲精品乱码久久久久久按摩| 亚州av有码| 免费看不卡的av| 两个人免费观看高清视频 | 亚洲四区av| 国国产精品蜜臀av免费| 精品一区在线观看国产| 99九九线精品视频在线观看视频| 男女边吃奶边做爰视频| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 午夜免费鲁丝| 国产成人a∨麻豆精品| 精品国产国语对白av| 午夜老司机福利剧场| 曰老女人黄片| 国产91av在线免费观看| 国产精品一区www在线观看| 亚洲精品中文字幕在线视频 | 精品人妻熟女毛片av久久网站| 国产深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区 | 男女免费视频国产| 亚洲一区二区三区欧美精品| 国产精品人妻久久久久久| 久久亚洲国产成人精品v| 尾随美女入室| 亚洲精华国产精华液的使用体验| 在线观看www视频免费| 国产午夜精品一二区理论片| 免费看日本二区| 精品久久久精品久久久| 精品卡一卡二卡四卡免费| 国国产精品蜜臀av免费| 欧美性感艳星| av卡一久久| 免费观看的影片在线观看| 曰老女人黄片| 热re99久久精品国产66热6| 国产69精品久久久久777片| 熟妇人妻不卡中文字幕| av黄色大香蕉| kizo精华| 蜜桃在线观看..| 色94色欧美一区二区| 22中文网久久字幕| 国产极品天堂在线| 欧美日韩视频高清一区二区三区二| 熟女人妻精品中文字幕| 人人妻人人看人人澡| 亚洲av欧美aⅴ国产| 五月玫瑰六月丁香| 欧美xxxx性猛交bbbb| 免费人成在线观看视频色| 免费观看在线日韩| 一级a做视频免费观看| 老司机影院成人| 亚洲美女搞黄在线观看| 18禁在线播放成人免费| 国产一级毛片在线| 国产亚洲最大av| 色吧在线观看| 九色成人免费人妻av| 亚洲国产精品一区三区| 男男h啪啪无遮挡| 黄色视频在线播放观看不卡| 亚洲成人一二三区av| 国产在线一区二区三区精| 日韩视频在线欧美| 99国产精品免费福利视频| 九九在线视频观看精品| 午夜日本视频在线| 中文欧美无线码| 十分钟在线观看高清视频www | 中文精品一卡2卡3卡4更新| 久热这里只有精品99| 性色av一级| tube8黄色片| 久久亚洲国产成人精品v| 97超碰精品成人国产| 成年人免费黄色播放视频 | 日韩,欧美,国产一区二区三区| 尾随美女入室| av天堂中文字幕网| 亚洲精品亚洲一区二区| 国产伦精品一区二区三区视频9| 大片电影免费在线观看免费| 少妇裸体淫交视频免费看高清| av国产久精品久网站免费入址| 国产美女午夜福利| 在线亚洲精品国产二区图片欧美 | 午夜免费男女啪啪视频观看| 成人亚洲精品一区在线观看| 男女免费视频国产| 亚洲欧美成人综合另类久久久| 哪个播放器可以免费观看大片| av在线播放精品| 如何舔出高潮| 免费观看av网站的网址| 多毛熟女@视频| 人妻系列 视频| 亚洲,欧美,日韩| 免费观看a级毛片全部| 黄色怎么调成土黄色| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 97超视频在线观看视频| 热99国产精品久久久久久7| 国产色婷婷99| 国产真实伦视频高清在线观看| 国产av国产精品国产| 蜜桃久久精品国产亚洲av| 99精国产麻豆久久婷婷| 18禁裸乳无遮挡动漫免费视频| 高清欧美精品videossex| 国产免费又黄又爽又色| 久久久亚洲精品成人影院| 激情五月婷婷亚洲| 纯流量卡能插随身wifi吗| 精品一品国产午夜福利视频| 精品久久久噜噜| 日日撸夜夜添| 日韩熟女老妇一区二区性免费视频| 嘟嘟电影网在线观看| 丝袜在线中文字幕| 99热这里只有是精品50| 久久av网站| 大陆偷拍与自拍| 日韩av不卡免费在线播放| 久久热精品热| 国产精品偷伦视频观看了| 亚洲精品色激情综合| 中国国产av一级| 国产免费视频播放在线视频| 少妇熟女欧美另类| 97精品久久久久久久久久精品| 国产精品久久久久久久久免| 丝瓜视频免费看黄片| 青春草视频在线免费观看| 秋霞伦理黄片| 麻豆成人av视频| 亚洲av欧美aⅴ国产| 日韩一本色道免费dvd| 日韩精品有码人妻一区| 国产精品欧美亚洲77777| 9色porny在线观看| 免费看光身美女| 国产成人一区二区在线| 午夜91福利影院| av国产精品久久久久影院| 秋霞在线观看毛片| 欧美高清成人免费视频www| 伊人亚洲综合成人网| 日韩av免费高清视频| 日韩 亚洲 欧美在线| 夜夜爽夜夜爽视频| 国产免费一级a男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片电影观看| 国产视频首页在线观看| 国产成人a∨麻豆精品| 啦啦啦啦在线视频资源| 成人综合一区亚洲| 人体艺术视频欧美日本| 一区在线观看完整版| 日韩av免费高清视频| 亚洲综合精品二区| 精品99又大又爽又粗少妇毛片| 日韩在线高清观看一区二区三区| 老司机影院毛片| 看非洲黑人一级黄片| 一级二级三级毛片免费看| 亚洲欧美一区二区三区国产| 99热这里只有是精品50| 欧美区成人在线视频| 日韩不卡一区二区三区视频在线| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 黄色配什么色好看| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 少妇的逼水好多| 日本-黄色视频高清免费观看| 久久久久精品久久久久真实原创| 国精品久久久久久国模美| 免费黄色在线免费观看| 男人狂女人下面高潮的视频| 又粗又硬又长又爽又黄的视频| 免费观看性生交大片5| 99热6这里只有精品| 国产色爽女视频免费观看| 日韩成人伦理影院| 蜜臀久久99精品久久宅男| 女人精品久久久久毛片| 亚洲情色 制服丝袜| 中文字幕精品免费在线观看视频 | 国产精品不卡视频一区二区| 纵有疾风起免费观看全集完整版| 我的女老师完整版在线观看| 亚洲高清免费不卡视频| 中文字幕免费在线视频6| 亚洲av二区三区四区| 哪个播放器可以免费观看大片| 18禁在线播放成人免费| 99热6这里只有精品| 国产av一区二区精品久久| 91久久精品电影网| 色吧在线观看| 午夜91福利影院| 亚洲av不卡在线观看| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区 | 嫩草影院新地址| 免费观看的影片在线观看| 亚洲美女搞黄在线观看| 亚洲欧美成人精品一区二区| 91久久精品电影网| 日韩av免费高清视频| av女优亚洲男人天堂| 久久久欧美国产精品| 亚洲一区二区三区欧美精品| 亚洲,一卡二卡三卡| 中文字幕久久专区| 观看av在线不卡| 曰老女人黄片| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 亚洲国产毛片av蜜桃av| 久久精品久久久久久噜噜老黄| 国产精品99久久99久久久不卡 | 少妇丰满av| 丝袜脚勾引网站| 亚洲经典国产精华液单| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 一级毛片久久久久久久久女| 久久这里有精品视频免费| 亚洲怡红院男人天堂| 三级国产精品片| 成年美女黄网站色视频大全免费 | 色视频www国产| av.在线天堂| 国产黄片视频在线免费观看| 国产精品国产av在线观看| 亚洲av男天堂| 亚洲精品国产av蜜桃| 在线观看av片永久免费下载| 男人和女人高潮做爰伦理| 久久狼人影院| 成人免费观看视频高清| 免费黄网站久久成人精品| av视频免费观看在线观看| 日韩人妻高清精品专区| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 看免费成人av毛片| 国产亚洲最大av| 国产在视频线精品| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 丰满人妻一区二区三区视频av| av天堂久久9| 99热这里只有是精品在线观看| 色5月婷婷丁香| 国产熟女午夜一区二区三区 | 97在线视频观看| 国产亚洲精品久久久com| 国产成人freesex在线| 日本猛色少妇xxxxx猛交久久| 国产乱人偷精品视频| 久久热精品热| 2018国产大陆天天弄谢| av网站免费在线观看视频| 我的女老师完整版在线观看| 曰老女人黄片| 国产av一区二区精品久久| 人体艺术视频欧美日本| 国产精品偷伦视频观看了| 一二三四中文在线观看免费高清| 精品亚洲乱码少妇综合久久| 日本免费在线观看一区| 国产一区亚洲一区在线观看| 国产黄色视频一区二区在线观看| 日韩成人伦理影院| 成人国产麻豆网| 国产国拍精品亚洲av在线观看| 精华霜和精华液先用哪个| 高清不卡的av网站| 亚洲精品一区蜜桃| 女人久久www免费人成看片| 黄片无遮挡物在线观看| 成人特级av手机在线观看| 日本黄色片子视频| 日韩 亚洲 欧美在线| 欧美丝袜亚洲另类| 久久久欧美国产精品| 亚洲真实伦在线观看| 久久ye,这里只有精品| 麻豆乱淫一区二区| a级片在线免费高清观看视频| 永久免费av网站大全| 国产日韩一区二区三区精品不卡 | 午夜激情久久久久久久| av不卡在线播放| 晚上一个人看的免费电影| 成人午夜精彩视频在线观看| 大陆偷拍与自拍| 国产精品免费大片| 超碰97精品在线观看| 女人久久www免费人成看片| 久久久久视频综合| 免费在线观看成人毛片| 国产精品不卡视频一区二区| 又大又黄又爽视频免费| 免费看光身美女| 国产免费一级a男人的天堂| 亚洲国产精品一区三区| 纯流量卡能插随身wifi吗| 精品国产露脸久久av麻豆| 男女边吃奶边做爰视频| 最近手机中文字幕大全| 在线观看免费视频网站a站| 成人毛片60女人毛片免费| 免费大片18禁| 亚洲不卡免费看| 99视频精品全部免费 在线| 国产精品无大码| 啦啦啦中文免费视频观看日本| 成年av动漫网址| 成人亚洲精品一区在线观看| 我要看日韩黄色一级片| 亚洲精品一区蜜桃| 看十八女毛片水多多多| 日韩 亚洲 欧美在线| 两个人免费观看高清视频 | 久久ye,这里只有精品| 久久久久久久大尺度免费视频| 精品熟女少妇av免费看| 一本—道久久a久久精品蜜桃钙片| 美女cb高潮喷水在线观看| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 久久人人爽人人片av| 两个人免费观看高清视频 | videossex国产| 99热这里只有是精品50| 国内少妇人妻偷人精品xxx网站| 一本—道久久a久久精品蜜桃钙片| a 毛片基地| 国产av一区二区精品久久| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 久久久精品94久久精品| a级片在线免费高清观看视频| 亚洲欧洲精品一区二区精品久久久 | 女性被躁到高潮视频| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| 美女内射精品一级片tv| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 日本免费在线观看一区| 中文乱码字字幕精品一区二区三区| 亚洲av日韩在线播放| 久久国内精品自在自线图片| 日本黄大片高清| 我要看黄色一级片免费的| 亚洲成人av在线免费| videossex国产| 色网站视频免费| 人妻人人澡人人爽人人| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 汤姆久久久久久久影院中文字幕| 亚洲av综合色区一区| 欧美精品一区二区免费开放| 中文字幕制服av| 又大又黄又爽视频免费| 乱码一卡2卡4卡精品| 视频区图区小说| 欧美成人午夜免费资源| 亚洲av男天堂| 青春草视频在线免费观看| 中文精品一卡2卡3卡4更新| 国产淫语在线视频| 男女国产视频网站| 久久av网站| 国产精品女同一区二区软件| 亚洲欧美日韩东京热| 免费观看无遮挡的男女| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| 久久精品国产自在天天线| 欧美xxⅹ黑人| 亚洲精品乱久久久久久| 亚洲欧美一区二区三区国产| 少妇被粗大的猛进出69影院 | 最黄视频免费看| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 亚洲中文av在线| 久久久久久久久大av| 国产日韩欧美视频二区| 男女免费视频国产| 亚洲欧美一区二区三区国产| 亚洲欧美精品专区久久| 99热这里只有精品一区| 亚洲av.av天堂| 又爽又黄a免费视频| 97超视频在线观看视频| 亚洲丝袜综合中文字幕| 美女xxoo啪啪120秒动态图| 久久鲁丝午夜福利片| 国产成人a∨麻豆精品| 两个人免费观看高清视频 | 亚洲美女黄色视频免费看| xxx大片免费视频| 国精品久久久久久国模美| 欧美国产精品一级二级三级 | 精品酒店卫生间| 在线观看国产h片| 免费少妇av软件| 高清av免费在线| 蜜桃在线观看..| 国产黄片视频在线免费观看| 国产高清不卡午夜福利| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 777米奇影视久久| 99久久精品一区二区三区| 在线观看国产h片| 久久久久国产网址| 婷婷色综合www| 亚洲av欧美aⅴ国产| 国产成人aa在线观看| 国产精品成人在线| 精品亚洲乱码少妇综合久久| 国产男女内射视频| 亚洲在久久综合| 热re99久久国产66热| 午夜福利在线观看免费完整高清在| 成年人午夜在线观看视频| 国产黄色免费在线视频| 晚上一个人看的免费电影| 99热网站在线观看| 一级毛片aaaaaa免费看小| 精品一区在线观看国产| 一个人看视频在线观看www免费| 国产精品久久久久久av不卡| 男女免费视频国产| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 免费少妇av软件| av天堂久久9| 亚洲中文av在线| 国内精品宾馆在线| 国产精品偷伦视频观看了| 蜜桃久久精品国产亚洲av| 亚洲自偷自拍三级| 国产伦理片在线播放av一区| 18禁在线无遮挡免费观看视频| 亚洲国产精品一区二区三区在线| 建设人人有责人人尽责人人享有的| 五月伊人婷婷丁香| 成人美女网站在线观看视频| 国产高清国产精品国产三级| 看十八女毛片水多多多| av女优亚洲男人天堂| 国产精品无大码| 97在线人人人人妻| 伦理电影免费视频| 十八禁网站网址无遮挡 | 在线观看av片永久免费下载| 欧美日韩亚洲高清精品| 五月玫瑰六月丁香| 麻豆成人av视频| 久久午夜福利片| 纵有疾风起免费观看全集完整版| 国产精品伦人一区二区| av免费在线看不卡| 亚洲欧美成人精品一区二区| 国产免费一区二区三区四区乱码| 日韩欧美 国产精品| 欧美3d第一页| 免费不卡的大黄色大毛片视频在线观看| 午夜免费男女啪啪视频观看| 热re99久久国产66热| 伦理电影大哥的女人| 人人妻人人添人人爽欧美一区卜| 精品人妻熟女毛片av久久网站| 精品久久久久久久久亚洲| 一级二级三级毛片免费看| a级一级毛片免费在线观看| 亚洲av.av天堂| 日日啪夜夜爽| 亚洲av男天堂| 日本91视频免费播放| 日本wwww免费看| 在线亚洲精品国产二区图片欧美 | 少妇高潮的动态图| 欧美日韩视频高清一区二区三区二| 久久狼人影院| 国产男女内射视频| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 在线观看免费视频网站a站| 国产精品免费大片| 蜜桃在线观看..| 少妇裸体淫交视频免费看高清| 亚洲久久久国产精品| 亚洲欧美清纯卡通| 中文欧美无线码| 在线观看人妻少妇| 一级二级三级毛片免费看| 插逼视频在线观看| 国产视频内射| 国产成人免费观看mmmm| 免费看不卡的av| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看 | 人人妻人人澡人人爽人人夜夜| 乱系列少妇在线播放| 婷婷色综合大香蕉| 日韩视频在线欧美| 免费观看无遮挡的男女| 成人亚洲欧美一区二区av| 中文字幕精品免费在线观看视频 | 国产女主播在线喷水免费视频网站| 免费看日本二区| 中国三级夫妇交换| 精品少妇黑人巨大在线播放| 男人和女人高潮做爰伦理| av免费观看日本| 久久狼人影院| 久久国产亚洲av麻豆专区| 在线观看av片永久免费下载| 久久精品国产a三级三级三级| 国产视频首页在线观看| 最近中文字幕2019免费版| 麻豆乱淫一区二区| 亚洲精品乱久久久久久| 国产成人freesex在线| av女优亚洲男人天堂| 久久精品久久久久久噜噜老黄| 日韩电影二区| 一二三四中文在线观看免费高清| 久久久亚洲精品成人影院| 日日啪夜夜爽| 欧美日韩视频高清一区二区三区二| 国产免费福利视频在线观看| 男人狂女人下面高潮的视频| 一边亲一边摸免费视频| 日韩熟女老妇一区二区性免费视频| 久久久久国产精品人妻一区二区| 亚洲伊人久久精品综合| 国产伦精品一区二区三区视频9| 夜夜爽夜夜爽视频| 亚洲色图综合在线观看| 成人毛片a级毛片在线播放| 国产69精品久久久久777片| 精品一区二区免费观看| 秋霞伦理黄片| 一级毛片我不卡| 国产一区二区三区av在线| 一个人免费看片子| 狂野欧美激情性xxxx在线观看| 少妇的逼水好多| 一本久久精品| 欧美日韩精品成人综合77777| 在线观看人妻少妇| 亚洲国产精品一区三区| 久久99一区二区三区| 高清毛片免费看| 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 在线亚洲精品国产二区图片欧美 | 国产日韩欧美视频二区| 日本vs欧美在线观看视频 | 国产免费一区二区三区四区乱码| 国产精品福利在线免费观看| 亚洲三级黄色毛片| 美女福利国产在线| 2022亚洲国产成人精品| 丝袜喷水一区| 久久精品久久精品一区二区三区| 亚洲av欧美aⅴ国产| 极品少妇高潮喷水抽搐| 最近中文字幕高清免费大全6| 日韩一本色道免费dvd| 日本91视频免费播放| 亚洲欧美日韩卡通动漫| 汤姆久久久久久久影院中文字幕| 午夜影院在线不卡| 日日摸夜夜添夜夜爱| 免费高清在线观看视频在线观看| tube8黄色片| 免费观看无遮挡的男女|