• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter

    2015-08-11 11:57:19BinXianJianchuanGuoandYaoZhang
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Bin Xian,Jianchuan Guo,and Yao Zhang

    Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter

    Bin Xian,Jianchuan Guo,and Yao Zhang

    —This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties.The control objective is to let the helicopter track some pre-defined position and yaw trajectories.In order to facilitate the control design,we divide the helicopter's dynamic model into three subsystems.The proposed controller combines the backstepping method with online parameter update laws to achieve the control objective.The global asymptotical stability (GAS)of the closed-loop system is proved by a Lyapunov based stability analysis.Numerical simulations demonstrate that the controller can achieve good tracking performance in the presence of parametric uncertainties.

    Index Terms—Unmanned helicopter,adaptive backstepping control,trajectory tracking,parametric uncertainty.

    I.INTRODUCTION

    C OMPARED with the fixed-wing unmanned aerial vehicles(UAVs),unmanned helicopters have the characters of hovering,autonomous take-off and landing vertically and multi-attitude flight.They have a wide application prospectin the field of military and civilian applications.The unmanned helicopter is a special controlled object,which is a dynamic system of 6-degree-of-freedom(DOF),underactuated,multiinput multi-output(MIMO),strong coupling and nonlinear. Consequently,the development of sophisticated and reliable unmanned helicopter flight control system has recently become an attractive research topic in academic communities worldwide[1].

    Nowadays,unmanned helicopter control methods include linear controller,nonlinear controller and intelligent controller.Traditional approaches to flight control and most initial attempts to achieve autonomous helicopter flight have been developed based on linear design techniques such as proportional-integral-derivative(PID)[2],linear quadratic regulator(LQR)[3],H∞[4]and gain scheduling[5].Linear control method is effective when the dynamic system state of an unmanned helicopter is near the equilibrium point.However, when the helicopter is away from the equilibrium point or aerobatic maneuvers are performed,the performance of the control system will deteriorate greatly.Therefore,in recently years there have been a growing number of papers using nonlinear control methods to deal with unmanned helicopterflight control.It is shown in[6]that approximated unmanned helicopter system with dynamic decoupling is full state linearizable by choosing positions and heading asoutputs. Nonlinear backstepping trajectory tracking control design for small scale helicopters is presented in[7].A two-time scale controller is presented in[8]by using adaptive backstepping technique to achieve the hover flight control of an unmanned helicopter.Robusttrajectory tracking controldesign for unmanned helicopters is introduced in[9?10].A position tracking controlsystem for a UAV using robustintegralof the signum of error(RISE)and neural network(NN)feedforward terms is developed in[11].In addition to the above two methods,intelligent control has also been widely used in the autonomous control of unmanned helicopters.The control methods based on model-free fuzzy and neural networks are reported in[12?13]respectively for their successful applications to autonomous fl ight control.

    This paperpresents an adaptive backstepping controldesign for unmanned helicopters with parametric uncertainties.The proposed controller employs online parameter update laws to estimate unknown parameters associated with the helicopter's dynamics of mass and moment coefficients.When parametric uncertainties exist in the dynamic model,the proposed controller will be a significant improvement to the traditional exact model knowledge(EMK)control method as employed in[6?7].We use a simplified unmanned helicopter's nonlinear dynamic model for the flight control development.The main objective is to let the unmanned helicopter track a predefined position and heading reference trajectory.In order to facilitate the control design,we divide the helicopter model into three subsystems,which are the altitude subsystem,the yaw subsystem and the horizontal subsystem.Since there is no strong coupling between the three subsystems,we can design the controllers separately.The proposed design approach is obviously different from the two-level hierarchical control scheme reported in[8,11].Itis reasonable in thatthis approach is mathematically consistent with the intuitive flight notion. The global asymptotical stability(GAS)of the closed-loop error system is proved by a Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve good tracking performance in the presence of parametric uncertainties.

    This paper is organized as follows.In the next section, the nonlinear dynamic model of the unmanned helicopter is introduced.Sections IIIand IV are the main body of this paper, which presentthe adaptive backstepping controldesign and the stability analysis method.Simulation results and conclusion are presented in Sections V and VI.

    II.DYNAMIC MODEL OF THE HELICOPTER

    In order to develop the helicopter's equations of motion, first of all we should define two reference frames.The first one is the inertia frame defined as FI={OI,→xI,→yI,→zI}.The second is the body fixed reference frame defined as FB= {OB,→xB,→yB,→zB},where the center OBislocated atthe center of gravity(CG)of the unmanned helicopter.The direction of the inertia frame and the body frame unitary vectors can be seen in Fig.1.For the purpose of control,we consider a complete helicoptermodelas a rigid body with a force and moment generation process.The dynamic equations of the helicopter's rigid body can be derived using Newton-Eulerequations in the configuration space S E(3)=R3×S O(3)[6,9,14].There are four control inputs associated with helicopter piloting,which are defined as u=£TMTTa b?T.The former two components TMand TTare the magnitudes of the thrusts generated by the main and tail rotors.The latter two control commands are the fl apping angles a,b,which represent the tilts of the tip-path-plane(TPP)at the longitudinal and lateral axes,respectively.The four control inputs are also depicted in Fig.1.In the following,we willgive the unmanned helicopter's translationaland rotationaldynamics,respectively. More details can be found in[6?7,10].

    Fig.1. Coordinate systems for the helicopter.

    A.Translational Dynamics

    The kinematic and dynamic equations of unmanned helicopter's translational motion with respect to the inertial frame can be described as

    Hereafter the abbreviations C·,S·and T·representthe trigonometric functions cos(·),sin(·)and tan(·),respectively.

    B.Rotational Dynamics

    The kinematic and dynamic equations of unmanned helicopter's rotational motion with respect to the body fixed framework can be described as

    S?ωB¢in(3)denotes a skew symmetric matrix,which is given by

    J in(3)denotes the inertia matrix of the helicopter with respect to the body frame,which can be expressed as

    vc=£b a TT?T,A(TM)∈R3×3represents an invertible matrix for TM,B(TM)∈R3represents a parameter vector for TM.

    C.Control Objective

    When the unmanned helicopteris in operation,load changes and other factors may cause the parametric uncertainties in the system dynamics.It will greatly affect the performance of conventional control method based on EMK.Thus the proposed controller combines the backstepping method with online parameter update laws to achieve the controlobjective. The main controlobjective is to design the four controlinputs u=£TMTTa b?Tin orderto asymptotically track the reference trajectories of xr(t),yr(t),zr(t)andψr(t)subject to model uncertainties of mass and moment coefficient.The components of xr(t)and yr(t)are required to be C4functions of time,zr(t)andψr(t)are required to be C2functions of time.

    To deal with the subsequent control development,we make some assumptions as follows:

    Assumption 2.TM>0 for t≥0.

    The purpose of Assumption 1 is to assure the controlinput TMwhich will be designed in the following is non-singular. Obviously,this assumption is necessary to avoid singularities in angular velocity transfer matrix of(4).Similar assumption was applied in[7].The purpose of Assumption 2 is to assure the pseudo control rdwhich will be designed in the following is non-singular.Similar assumption was employed in[9].

    III.FLIGHT CONTROL DESIGN

    In order to achieve the control objective,the proposed controllerfollows adaptive backstepping design principles[15].For the purpose of improving the autonomous flightperformance, we employ adaptive backstepping technique to deal with the parametric uncertainties by using online parameter estimation laws.In this paper,we divide the helicopter's dynamic model into three subsystems,which are the altitude subsystem,yaw subsystem and horizontal subsystem.Since there is no strong coupling between these subsystems,the controller for each subsystem can be developed separately.

    A.Altitude Subsystem

    By elaborating(1),the vertical dynamics are described as

    whereρijdenotes the element of jth row and ith column of the rotation matrix R.

    Step 1.Let the altitude and vertical velocity tracking errors be defined as

    where vIzddenotes the vertical velocity virtual control.By taking the time derivative of epz,the open-loop altitude tracking error dynamics can be obtained as follows:

    Let the virtual control signal vIzdbe designed as

    where k1∈ R is a positive,constant control gain.Then the closed-loop altitude tracking error dynamics will take the following form

    Step 2.By taking the time derivative of evz,the open-loop vertical velocity tracking error dynamics can be written as follows:

    On account of the mass uncertainty in the error dynamics,in this step we use the adaptive control law to estimate the unknown parameter on line.In order to facilitate the subsequent analysis,we make some changes to the corresponding terms of the right side of(12)as follows:

    whereη1∈R represents the unknown mass of the helicopter. According to(13),we know that the unknown parameter satisfies the condition of linear parameterization(LP).Thus, the open-loop verticalvelocity tracking error dynamics can be revised into the following advantageous form

    Here we design the general control input U as follows:

    where k2∈R is a positive,constant control gain,?η1is the online estimation of unknown parameterη1.After combining (13)with(15),the real control input TMcan be derived as follows:

    The adaptive updating law of unknown parameter can be designed as follows:

    whereγ1∈R is a positive,constant adaptation gain.Substituting(15)into(14),we can derive the closed-loop vertical velocity tracking error dynamics as follows:

    where?η1= η1??η1∈R denotes the unknown parameter estimation error.

    In order to facilitate the subsequentsystem stability analysis, we define a Lyapunov function candidate,denoted by V1(t)∈R,as follows:

    By taking the time derivative of(19)and making the appropriate substitutions from(11),(17)and(18),we derive the following expression

    B.Yaw Subsystem

    By elaborating(3),the yaw dynamics is described as

    whereΨ3(Θ)is the third row of matrixΨ(Θ)defined in(4).

    Step 3.Let the yaw angular and yaw angular velocity tracking error be defined as

    whereωzdrepresents the yaw angular velocity virtual control. By taking the time derivative of eψ,we can derive the openloop yaw error dynamics as follows:

    whereλψ∈R is a positive,constantcontrolgain.Substituting (24)into(23),we can getthe closed-loop yaw error dynamics as follows:

    We define a Lyapunov function candidate for this subsystem,denoted by V2(t)∈R,as follows:

    By take the time derivative of(26)and making the substitution from(25),we can derive the following equation:

    C.Horizontal Subsystem

    Since the lateral-longitudinaldynamics has strong coupling with the attitude dynamics,we focus ourattention on a cascade control structure constituted by an inner-loop controlling the attitude dynamics and a outer-loop governing the laterallongitudinal dynamics.In the following paragraphs,the proposed controller uses the adaptive backstepping design principles to deal with the horizontal subsystem with parametric uncertainties,which can be described in a parametric-purefeedback form[15].

    The dynamics of the horizontalsubsystem,after elaborating (1)and(3),can be explicitly described as follows:

    Step 4.Let the horizontal position and horizontal velocity tracking errors be defined as

    where p1r=£xryr?T∈R2,v1drepresents the desired horizontal velocity.By taking the time derivative of ep1,we can derive the open-loop horizontal position tracking error dynamics as follows:

    Letthe virtualcontrolinputforhorizontalvelocity be designed as follows:

    where K3=diag(λ1,1,λ1,2)∈R2×2is a diagonal matrix of positive controlgains.Then the closed-loop horizontalvelocity tracking error dynamics will take the following form:

    Step 5.By taking the time derivative of ev1,the open-loop horizontal velocity tracking error dynamics can be written as follows:

    The corresponding term ofthe right-hand side ofthe dynamics equation(33),which includes the unknown parameter,can be linearly parameterized as

    whereη2∈R represents the unknown mass of the helicopter. Thus,the error dynamics of(33)can be changed to

    In this step,we take rdas the desired direction of the thrust vector,and define the orientation error as

    Substituting(36)into(35),we can rewrite the open-loop horizontal velocity tracking error dynamics in the following form:

    Here we design the orientation virtual control as follows:

    where K4=diag(λ2,1,λ2,2)∈R2×2is a diagonal matrix of positive control gains,?η2is the online estimation of unknown parameterη2.The adaptive updating law ofunknown parameter can be designed as follows:

    whereγ2∈R is a positive,constant adaptation gain.Substituting(38)into(37),we can derive the closed-loop horizontal velocity tracking error dynamics as:

    where?η2= η2??η2∈R denotes the unknown parameter estimation error.

    Step 6.By differentiating(36)with respectto time and substituting the orientation dynamics into the resulting equation, the open-loop orientation error dynamics can be written as follows:

    In this step,we takeω1das the desired roll-pitch angular velocity vector,and define the roll-pitch angular velocity tracking error as:

    Substituting(42)into(41),we can rewrite the open-loop orientation error dynamics in the following form

    whereΠ0=£Π 02×1.Based on the form of the openloop dynamics of(43),the virtualcontrolinputω1dis designed as follows:

    whereΛ1=diag(λ3,1,λ3,2)∈R2×2is a diagonal matrix of positive controlgains.Substituting(44)into(43)produces the closed-loop dynamics for er(t)as shown below

    Step 7.Let the angular velocity tracking error be defined as follows:

    Then the angular velocity tracking error dynamics will have the following form

    On account of the inertia matrix uncertainty in the error dynamics,in this step we adopt adaptive control to estimate unknown parameters on line.In the same way,we make some changes to the corresponding terms of the right side of(47) as follows:

    Here we design the general control inputτas follows:

    whereΛ2=diag(λ4,1,λ4,2,λ4,3)∈ R3×3is a diagonal matrix of positive control gains,?Δ is the online estimation of unknown parametersΔ.Therefore,the choice of control input vcwill be

    The adaptive updating law of unknown parameters can be designed as follows:

    whereΓ3=diag(γ3,1,γ3,2,γ3,3)∈ R3×3is a diagonal matrix ofpositive adaptation gains.Substituting(51)into(50), we can derive the closed-loop angular velocity tracking error dynamics as

    where?Δ =Δ??Δ ∈R3denotes the unknown parameters estimation error vector.

    Similarly,we define a Lyapunov function candidate for this subsystem,denoted by V3(t)∈R,as follows:

    By taking the time derivative of(55)and making the appropriate substitutions from(32),(39),(40),(45),(53)and(54), we derive the following expression:

    IV.STABILITY ANALYSIS

    Theorem 1.The control input TMof(16),vcof(52),the adaptive updating law ?η1of(17),?η2of(39)and?Δ of(53) can ensure the global asymptotic convergence of the position and yaw tracking errors as illustrated by

    Proof.To prove the above result,we define a composite Lyapunov function candidate V(t)∈R as follows:

    Taking the time derivative of(58),we can get the following inequality

    whereλmin{·}denotes the minimum eigenvalue of a matrix.

    According to the form of(59),we know that V(t)is either decreasing or constant.Since V(t)of(58)is a non-negative function,we can conclude that V(t)∈L∞.According to(58), we know that epz,evz,eψ,ep1,ev1,er,eω,?η1,?η2,?Δ ∈ L∞. From(11),(17),(18),(25),(32),(39),(40),(45),(53),(54), we know that˙epz,˙evz,˙eψ,˙ep1,˙ev1,˙er,˙eω,˙?η1,˙?η2,˙?Δ ∈ L∞. Thus,we have illustrated that all signals in the adaptive backstepping controller and in the system remain bounded during the closed-loop operation.Furthermore,the form of (59)allows us to show that epz,evz,eψ,ep1,ev1,er,eω∈L2. With the above information,we can now invoke Barbalat's lemma[16]to achieve the result of(57).Form(16)and(52), we know that TM,vc∈L∞. □

    V.SIMULATION RESULTS

    This section presents the simulation results of the control algorithm.The helicopter model parameters are taken form [7].The desired position and yaw reference trajectories are

    The initial states of the helicopter are set to 0.The initial values for parameterestimation are setas?η1(0)=?η2(0)=8, ?δ1(0)= ?δ2(0)= ?δ3(0)= 0.The control gains are chosen as k1= 0.9,k2= 1.5,K3= diag{0.4,0.4}, K4=diag{1,1},Λ1=diag{1,2},Λ2=diag{1,1,1}, λψ=1.The adaptation gains are selected asγ1=0.32, γ2=1,Γ3=diag{7,7,1 700}.The position and yaw tracking errors are illustrated in Fig.2.The four control inputs are provided in Fig.3.The parameter estimations can be seen in Fig.4.Itcan be seen thatthe satisfactory tracking performance is achieved in the presence of parametric uncertainties.

    Fig.2. Position and yaw tracking errors.

    VI.CONCLUSION

    This paper has presented an adaptive backstepping control design forthe unmanned helicopterassociated with parametric uncertainties of helicopter's mass and moment coefficients.In order to facilitate the controldesign,we divide the helicopter's dynamic model into three subsystems,which are altitude subsystem,yaw subsystem and horizontal subsystem.Since there is no strong coupling between these subsystems,the controllerforeach subsystem can be developed separately.Theproposed controller combines the backstepping method with online parameter update laws to achieve the controlobjective. The GAS of the closed-loop system is rigorously proved by the Lyapunov based stability analysis.

    Fig.3.Control inputs of TM,TT,a and b.

    Fig.4.Parameter estimations of mass and moment coefficients.

    In this paper,we have not considered the parametric uncertainties associated with the input matrix of A(TM)and B(TM).In order to ensure the robust performance of the unmanned helicopter system,we should combine the adaptive controlmethod with robustcontrolmethod to achieve superior control performance in the future research.

    REFERENCES

    [1]Cai G W,Chen B M,Lee T H.Unmanned Rotorcraft Systems.London: Springer-Verlag,2011.1?5

    [2]Shim D H,Kim H J,Sastry S.Control system design for rotorcraftbased unmanned aerialvehicles using time-domain system identification. In:Proceedings of the 2000 IEEE International Conference on Control Applications.Anchorage,USA:IEEE,2000.808?813

    [3]Gavrilets V.Autonomous Aerobatic Maneuvering of Miniature Helicopters[Ph.D.dissertation],Massachusetts Institute of Technology, Boston,USA,2003.

    [4]La Civita M,Papageorigious G,Messner W C,Kanade T.Design and flighttesting of a gain-scheduled H∞loop shaping controller for wideenvelope flight of a robotic helicopter.In:Proceedings of the 2003 American Control Conference.Denver,USA:IEEE,2003.4195?4200

    [5]Takahashi M D,Schulein G,Whalley M.Flight control law design and development for an autonomous rotorcraft.In:Proceedings of the 64th American Helicopter Society International Annual Forum.Montreal, Canada:AHS International,Inc.,2008.1652?1671

    [6]Koo T J,Sastry S.Output tracking control design of a helicopter model based on approximate linearization.In:Proceedings of the 37th IEEE Conference on Decision&Control.Tampa,USA:IEEE,1998. 3635?3640

    [7]Raptis I A,Valavanis K P,Moreno W A.A novel nonlinear backstepping controller design for helicopters using the rotation matrix.IEEE Transactionson Control System Technology,2011,19(2):465?473

    [8]Ahmed B,Pota H R.Flight control of a rotary wing UAV using adaptive backstepping.In:Proceedings of the 2009 IEEE International Conference on Control and Automation.Christchurch,New Zealand: IEEE,2009.1780?1785

    [9]Isidori A,Marconi L,Serrani A.Robust nonlinear motion control of a helicopter.IEEE Transactions on Automatic Control,2003,48(3): 413?426

    [10]Marconi L,Naldi R.Robust full degree-of-freedom tracking control of a helicopter.Automatica,2007,43(11):1909?1920

    [11]Shin J H,Kim H J,Kim Y D,Dixon W E.Autonomous flight of the rotorcraft-based UAV using RISE feedback and NN feedforward terms.IEEE Transactions on Control System Technology,2012,20(5): 1392?1399

    [12]Sugeno M,Hirano I,Nakamura S,Korsu S.Development of an intelligentunmanned helicopter.In:Proceedings ofthe 4th IEEE International Conference on Fuzzy Systems.Yokohama,Japan:IEEE,1995.33?34

    [13]Johnson E N,Kannan S K.Adaptive trajectory control for autonomous helicopters.Journal of Guidance,Control,and Dynamics,2005,28(3): 524?538

    [14]Lee T Y.Geometric tracking control of the attitude dynamics of a rigid body on SO(3).In:Proceedings of the 2011 American Control Conference.San Francisco,USA:IEEE,2011.1200?1205

    [15]Kanellakopoulos I,Kokotovic P V,Morse A S.Systematic design of adaptive controllers for feedback lineatization systems.IEEE Transactionson AutomaticControl,1991,36(11):1241?1253

    [16]Slotine J E,Li W P.Applied Nonlinear Control.Englewood Cliffs: Prentice Hall,1991.122?126

    Bin Xian Ph.D.,professor at the School of Electrical Engineering and Automation,Tianjin University.His research interests include nonlinear control theory and application,unmanned aerial vehicles, mechatronic systems,and real-time embedded systems.Corresponding author of this paper.

    Jianchuan Guo Ph.D.candidate at the School of Electrical Engineering and Automation,Tianjin University.His research interests include modeling and controlofunmanned helicopters,and embedded control system.

    Yao Zhang Ph.D.candidate atthe Schoolof Electrical Engineering and Automation,Tianjin University.His research interests include nonlinear control for mechatronic systems.

    t

    October 10,2013;accepted July 18,2014.This work was supported by Natural Science Foundation of Tianjin(14JCZDJC31900). Recommended by Associate Editor Changyin Sun

    :Bin Xian,Jianchuan Guo,Yao Zhang.Adaptive backstepping tracking control of a 6-DOF unmanned helicopter.IEEE/CAA Journal of Automatica Sinica,2015,2(1):19?24

    Bin Xian,Jianchuan Guo,and Yao Zhang are with the Institute of Robotics and Autonomous System,Tianjin Key Laboratory of Process Measurement and Control,School of Electrical Engineering and Automation, Tianjin University,Tianjin 300072,China(e-mail:xbin@tju.edu.cn;e-mail: gjch@tju.edu.cn;zytju221@tju.edu.cn).

    男人和女人高潮做爰伦理| 婷婷亚洲欧美| 亚洲性夜色夜夜综合| 有码 亚洲区| 男女边吃奶边做爰视频| 精品人妻熟女av久视频| 日韩精品有码人妻一区| 国产极品精品免费视频能看的| 欧美激情国产日韩精品一区| 欧美色视频一区免费| 嫁个100分男人电影在线观看| 国产午夜精品久久久久久一区二区三区 | 色吧在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 长腿黑丝高跟| 欧美性感艳星| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久久久免费视频| 一级av片app| 色尼玛亚洲综合影院| 男女那种视频在线观看| 男女那种视频在线观看| 久久久久国产精品人妻aⅴ院| 亚洲人成网站在线播放欧美日韩| 午夜福利在线在线| 日韩欧美国产一区二区入口| 热99在线观看视频| 国产蜜桃级精品一区二区三区| 亚洲熟妇熟女久久| 嫩草影院精品99| 免费搜索国产男女视频| 精品欧美国产一区二区三| 久久精品国产99精品国产亚洲性色| 精品人妻一区二区三区麻豆 | 日本一二三区视频观看| 久久久久性生活片| 免费黄网站久久成人精品| 精品久久久久久久久久免费视频| 美女被艹到高潮喷水动态| 午夜日韩欧美国产| 中文字幕高清在线视频| 女人被狂操c到高潮| 欧美日韩精品成人综合77777| 久久久午夜欧美精品| av在线观看视频网站免费| 成人毛片a级毛片在线播放| 日韩精品青青久久久久久| 国产不卡一卡二| 五月玫瑰六月丁香| 免费看美女性在线毛片视频| 91在线精品国自产拍蜜月| 一区二区三区四区激情视频 | 少妇猛男粗大的猛烈进出视频 | 中文字幕熟女人妻在线| 亚洲内射少妇av| 国国产精品蜜臀av免费| 亚洲国产欧美人成| 超碰av人人做人人爽久久| 欧美zozozo另类| 欧美激情在线99| 午夜福利在线观看吧| 真人一进一出gif抽搐免费| 无人区码免费观看不卡| 麻豆精品久久久久久蜜桃| 成熟少妇高潮喷水视频| 亚洲不卡免费看| 亚洲不卡免费看| 国产探花在线观看一区二区| 午夜视频国产福利| 亚洲最大成人中文| 日韩精品中文字幕看吧| 精品不卡国产一区二区三区| 亚洲一区二区三区色噜噜| av天堂在线播放| 深夜a级毛片| 久久亚洲精品不卡| 免费电影在线观看免费观看| 精品久久国产蜜桃| 黄色视频,在线免费观看| 精品免费久久久久久久清纯| 免费观看人在逋| 久久亚洲真实| 亚洲国产色片| 国产aⅴ精品一区二区三区波| 真实男女啪啪啪动态图| 免费观看精品视频网站| 久久精品国产亚洲av涩爱 | 国产高清视频在线观看网站| 最新中文字幕久久久久| 亚洲熟妇中文字幕五十中出| 中文字幕熟女人妻在线| 亚洲精品国产成人久久av| 亚洲国产欧洲综合997久久,| 国产一区二区激情短视频| 欧美精品国产亚洲| 久久这里只有精品中国| 精品人妻偷拍中文字幕| 少妇熟女aⅴ在线视频| 日韩欧美在线乱码| 亚洲欧美日韩高清在线视频| 国产精品一区二区免费欧美| 国内精品久久久久久久电影| 亚洲最大成人手机在线| 免费观看的影片在线观看| 国产人妻一区二区三区在| 午夜福利成人在线免费观看| 久久久久久久亚洲中文字幕| 免费av观看视频| 看十八女毛片水多多多| 成人毛片a级毛片在线播放| 高清日韩中文字幕在线| 舔av片在线| 91久久精品国产一区二区成人| 99精品久久久久人妻精品| 性欧美人与动物交配| 欧美成人免费av一区二区三区| 色av中文字幕| 淫妇啪啪啪对白视频| 国产aⅴ精品一区二区三区波| 99久久精品一区二区三区| 婷婷亚洲欧美| 国产爱豆传媒在线观看| 亚洲av五月六月丁香网| 欧美不卡视频在线免费观看| 亚洲专区中文字幕在线| 一a级毛片在线观看| 黄色女人牲交| 99久久中文字幕三级久久日本| 国产一区二区在线av高清观看| 欧美一区二区国产精品久久精品| 哪里可以看免费的av片| 国产精品久久视频播放| 国产欧美日韩一区二区精品| 麻豆成人午夜福利视频| 午夜福利视频1000在线观看| bbb黄色大片| 又爽又黄a免费视频| 可以在线观看毛片的网站| 亚洲av中文字字幕乱码综合| 日韩,欧美,国产一区二区三区 | 淫妇啪啪啪对白视频| 黄色一级大片看看| 午夜免费成人在线视频| 深夜精品福利| 国产一区二区三区在线臀色熟女| 亚洲av第一区精品v没综合| 精品久久久久久久末码| 中文字幕精品亚洲无线码一区| 国产亚洲欧美98| 淫妇啪啪啪对白视频| 欧美+日韩+精品| 老熟妇乱子伦视频在线观看| 大型黄色视频在线免费观看| 国产私拍福利视频在线观看| 男女之事视频高清在线观看| 毛片女人毛片| 国产在视频线在精品| 亚洲无线观看免费| 99视频精品全部免费 在线| 日本黄色视频三级网站网址| 日日啪夜夜撸| 日日撸夜夜添| 免费高清视频大片| 亚洲熟妇中文字幕五十中出| 国产高清有码在线观看视频| 日本免费a在线| 最近最新免费中文字幕在线| 狂野欧美白嫩少妇大欣赏| 成人亚洲精品av一区二区| 欧美潮喷喷水| 国产精品亚洲美女久久久| 亚洲av五月六月丁香网| 国产视频一区二区在线看| 国产精品久久久久久亚洲av鲁大| 97人妻精品一区二区三区麻豆| 深夜a级毛片| 亚洲av.av天堂| 亚洲精品粉嫩美女一区| 亚洲七黄色美女视频| 男人的好看免费观看在线视频| aaaaa片日本免费| 99热这里只有精品一区| 亚洲av成人精品一区久久| 亚洲中文日韩欧美视频| 色5月婷婷丁香| 国产精品1区2区在线观看.| 麻豆久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 丰满人妻一区二区三区视频av| 偷拍熟女少妇极品色| 熟女人妻精品中文字幕| 亚洲天堂国产精品一区在线| 国产精品国产高清国产av| 亚洲精品亚洲一区二区| 久久精品国产清高在天天线| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 中文字幕免费在线视频6| 91在线观看av| 永久网站在线| 精品人妻视频免费看| 在线免费观看的www视频| 久久久久久大精品| 亚洲七黄色美女视频| av女优亚洲男人天堂| 非洲黑人性xxxx精品又粗又长| 久久99热6这里只有精品| 午夜久久久久精精品| 成人欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲最大成人中文| 成人毛片a级毛片在线播放| 午夜影院日韩av| 国产成人福利小说| 观看美女的网站| 欧美成人一区二区免费高清观看| 国产精品嫩草影院av在线观看 | 很黄的视频免费| 亚洲精品456在线播放app | 午夜福利欧美成人| 亚洲熟妇熟女久久| 成人无遮挡网站| av女优亚洲男人天堂| 最新在线观看一区二区三区| 特大巨黑吊av在线直播| 精品国内亚洲2022精品成人| 波野结衣二区三区在线| 精品一区二区免费观看| 亚洲av熟女| 欧美色欧美亚洲另类二区| 色综合婷婷激情| 国产老妇女一区| 亚洲美女视频黄频| 日本精品一区二区三区蜜桃| www.www免费av| 国产精品永久免费网站| 黄色日韩在线| 欧美日韩精品成人综合77777| 男女之事视频高清在线观看| 一级av片app| 又黄又爽又免费观看的视频| 欧美bdsm另类| 亚洲精品影视一区二区三区av| 乱码一卡2卡4卡精品| 波多野结衣高清无吗| 久久午夜福利片| 精品久久久久久久人妻蜜臀av| 99久久精品热视频| 欧美成人免费av一区二区三区| 在线观看av片永久免费下载| 高清毛片免费观看视频网站| 黄色一级大片看看| or卡值多少钱| 婷婷丁香在线五月| 欧美一区二区精品小视频在线| 少妇猛男粗大的猛烈进出视频 | 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 在线观看午夜福利视频| 日韩精品中文字幕看吧| 亚洲最大成人av| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 精品午夜福利视频在线观看一区| 久久久午夜欧美精品| 国产精华一区二区三区| 国语自产精品视频在线第100页| 91久久精品国产一区二区三区| 免费在线观看成人毛片| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区高清视频在线| 久久精品综合一区二区三区| 久久国内精品自在自线图片| 久久久精品大字幕| 亚洲电影在线观看av| 成人国产麻豆网| 日本免费a在线| 日本黄色片子视频| 内射极品少妇av片p| 国产一区二区三区av在线 | 亚洲国产精品合色在线| 国产主播在线观看一区二区| 最近最新免费中文字幕在线| 国产又黄又爽又无遮挡在线| 麻豆久久精品国产亚洲av| 国产精品日韩av在线免费观看| 国产成人av教育| 国产午夜精品论理片| 国产精品久久久久久亚洲av鲁大| 国产精品爽爽va在线观看网站| 亚洲四区av| 精品久久久噜噜| 波野结衣二区三区在线| 色吧在线观看| 午夜精品久久久久久毛片777| 国产精品不卡视频一区二区| 日韩中字成人| 亚洲精品久久国产高清桃花| 精品一区二区三区av网在线观看| 欧美bdsm另类| 午夜福利成人在线免费观看| 18禁黄网站禁片免费观看直播| 免费在线观看成人毛片| 成人国产一区最新在线观看| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 毛片一级片免费看久久久久 | 亚洲国产欧洲综合997久久,| 国产精品一区二区免费欧美| 在线免费观看的www视频| 亚洲美女搞黄在线观看 | 国产伦人伦偷精品视频| 亚洲性久久影院| 久久精品综合一区二区三区| 国产伦精品一区二区三区四那| 日韩欧美三级三区| 又黄又爽又刺激的免费视频.| 久久婷婷人人爽人人干人人爱| 中出人妻视频一区二区| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看| 亚洲专区中文字幕在线| 国产精品美女特级片免费视频播放器| 亚洲中文字幕一区二区三区有码在线看| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 亚洲五月天丁香| 日韩,欧美,国产一区二区三区 | 在线天堂最新版资源| 欧美黑人巨大hd| 成人高潮视频无遮挡免费网站| 乱人视频在线观看| 韩国av一区二区三区四区| 久久精品综合一区二区三区| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久精免费| 亚洲一级一片aⅴ在线观看| 国产精品久久电影中文字幕| av国产免费在线观看| 国产单亲对白刺激| 国产真实伦视频高清在线观看 | 国产蜜桃级精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区av在线 | 波多野结衣高清无吗| 一个人免费在线观看电影| 九九爱精品视频在线观看| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 无人区码免费观看不卡| 国产精品99久久久久久久久| 午夜福利欧美成人| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 熟女电影av网| 精品久久久久久久久av| bbb黄色大片| 成人永久免费在线观看视频| 男女下面进入的视频免费午夜| 精品久久久久久久末码| 国产成人a区在线观看| 亚洲精品在线观看二区| 国产高清有码在线观看视频| 久久人妻av系列| 91午夜精品亚洲一区二区三区 | 国产在线男女| 成人三级黄色视频| 亚洲五月天丁香| 国产又黄又爽又无遮挡在线| 22中文网久久字幕| 一个人免费在线观看电影| 级片在线观看| 精品人妻偷拍中文字幕| 久久6这里有精品| 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 欧美激情在线99| 日本一本二区三区精品| 久久国产乱子免费精品| 久久国内精品自在自线图片| 在线国产一区二区在线| 丰满的人妻完整版| 无人区码免费观看不卡| 看十八女毛片水多多多| 久久精品影院6| 免费看av在线观看网站| 一个人看的www免费观看视频| 久久精品影院6| 国产69精品久久久久777片| 婷婷亚洲欧美| 十八禁网站免费在线| 一进一出抽搐动态| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 欧美色视频一区免费| 亚洲国产日韩欧美精品在线观看| 黄片wwwwww| 12—13女人毛片做爰片一| 日韩强制内射视频| 国产又黄又爽又无遮挡在线| 自拍偷自拍亚洲精品老妇| av视频在线观看入口| 十八禁国产超污无遮挡网站| 亚洲精品亚洲一区二区| 嫩草影院入口| 欧美高清成人免费视频www| 久久久成人免费电影| 午夜精品久久久久久毛片777| a级一级毛片免费在线观看| 亚洲 国产 在线| 我要搜黄色片| 十八禁国产超污无遮挡网站| 亚洲成人精品中文字幕电影| 日本爱情动作片www.在线观看 | 国产成人av教育| 在线国产一区二区在线| 精品乱码久久久久久99久播| 我要看日韩黄色一级片| 一级av片app| 国产熟女欧美一区二区| 亚洲无线在线观看| 精品人妻熟女av久视频| 亚洲无线观看免费| 亚洲综合色惰| 干丝袜人妻中文字幕| 欧美日韩黄片免| 天美传媒精品一区二区| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 99国产精品一区二区蜜桃av| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区视频9| 麻豆国产97在线/欧美| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站 | 欧美zozozo另类| a级一级毛片免费在线观看| 免费电影在线观看免费观看| 婷婷丁香在线五月| av在线观看视频网站免费| 亚洲成人久久爱视频| 999久久久精品免费观看国产| av女优亚洲男人天堂| 婷婷精品国产亚洲av在线| 免费看av在线观看网站| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 亚洲av美国av| 成人精品一区二区免费| 制服丝袜大香蕉在线| 国产精品国产高清国产av| 性色avwww在线观看| 成人av一区二区三区在线看| 午夜精品在线福利| 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 精品国内亚洲2022精品成人| 少妇被粗大猛烈的视频| 国产成人av教育| 亚洲成人免费电影在线观看| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 日本a在线网址| 少妇的逼水好多| 亚洲综合色惰| 婷婷丁香在线五月| av天堂在线播放| 美女cb高潮喷水在线观看| 欧美激情久久久久久爽电影| 亚洲最大成人av| 亚洲第一电影网av| 国产精品福利在线免费观看| 欧美成人性av电影在线观看| 国产av麻豆久久久久久久| 婷婷六月久久综合丁香| 久99久视频精品免费| 欧美日韩综合久久久久久 | 色视频www国产| 成年女人看的毛片在线观看| videossex国产| 99久久九九国产精品国产免费| 欧美性感艳星| 欧美激情久久久久久爽电影| 给我免费播放毛片高清在线观看| 久久欧美精品欧美久久欧美| 内地一区二区视频在线| 久久人人爽人人爽人人片va| 国产精品99久久久久久久久| 春色校园在线视频观看| 亚洲av中文av极速乱 | 国产男人的电影天堂91| netflix在线观看网站| 亚洲国产精品成人综合色| 亚洲经典国产精华液单| 久久久国产成人免费| 亚洲自拍偷在线| 中文字幕人妻熟人妻熟丝袜美| 男女边吃奶边做爰视频| 亚洲,欧美,日韩| 我要看日韩黄色一级片| 美女被艹到高潮喷水动态| 国产私拍福利视频在线观看| 一进一出抽搐动态| 黄色日韩在线| 黄色视频,在线免费观看| 午夜福利成人在线免费观看| 国产熟女欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦啦在线视频资源| 亚洲午夜理论影院| 久久久久久久久久黄片| x7x7x7水蜜桃| 全区人妻精品视频| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添av毛片 | 国产亚洲欧美98| 久久精品91蜜桃| 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 最新中文字幕久久久久| 国产成人av教育| 一级黄色大片毛片| 乱人视频在线观看| 精品久久久久久久久久免费视频| eeuss影院久久| 中文字幕精品亚洲无线码一区| 国产熟女欧美一区二区| 欧美日韩乱码在线| 可以在线观看毛片的网站| 日本 av在线| 久久久国产成人精品二区| 久久精品人妻少妇| 毛片一级片免费看久久久久 | 日韩欧美 国产精品| 久久久久久久精品吃奶| 麻豆一二三区av精品| 国产精品,欧美在线| 女人被狂操c到高潮| 老熟妇仑乱视频hdxx| 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 日韩在线高清观看一区二区三区 | 中国美女看黄片| 成人国产综合亚洲| 91在线精品国自产拍蜜月| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 亚洲三级黄色毛片| 国产国拍精品亚洲av在线观看| 精品一区二区三区av网在线观看| 亚洲国产欧洲综合997久久,| 啦啦啦韩国在线观看视频| 国产一区二区激情短视频| 国产精品人妻久久久久久| 久久精品综合一区二区三区| 在线国产一区二区在线| 欧美在线一区亚洲| 欧美一区二区精品小视频在线| 亚洲男人的天堂狠狠| 欧美日韩中文字幕国产精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 午夜激情福利司机影院| 亚洲综合色惰| 国产午夜精品论理片| 在现免费观看毛片| 国产一区二区在线观看日韩| 小蜜桃在线观看免费完整版高清| 欧美成人一区二区免费高清观看| 亚洲美女黄片视频| 九色国产91popny在线| 日本a在线网址| 99久久久亚洲精品蜜臀av| 精品99又大又爽又粗少妇毛片 | 国产 一区 欧美 日韩| 免费不卡的大黄色大毛片视频在线观看 | 国产探花极品一区二区| 观看美女的网站| 亚洲国产精品合色在线| 国产伦人伦偷精品视频| 看黄色毛片网站| 天堂动漫精品| 男女那种视频在线观看| 国产精品国产三级国产av玫瑰| 精品人妻一区二区三区麻豆 | 老司机深夜福利视频在线观看| 欧美激情在线99| 在线观看av片永久免费下载| 在线播放国产精品三级| 国内毛片毛片毛片毛片毛片| 两个人的视频大全免费| 日本三级黄在线观看| 99九九线精品视频在线观看视频| 永久网站在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品自产拍在线观看55亚洲| 亚洲中文字幕日韩| 99久国产av精品| 欧美一区二区国产精品久久精品| 亚洲成人免费电影在线观看| 99久国产av精品| 综合色av麻豆| 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| 欧美一区二区精品小视频在线| 又爽又黄a免费视频| 最近中文字幕高清免费大全6 | 国产亚洲精品久久久com| 国产一区二区在线观看日韩| 日韩欧美在线乱码| 国内精品宾馆在线| 九九久久精品国产亚洲av麻豆|