余宏偉+廖志偉+莊雅靖+喻芳+周同沖
[摘要] 目的 構(gòu)建并鑒定USP22基因ShRNA慢病毒載體,為進(jìn)一步研究USP22基因在鼻咽癌中的作用機(jī)制奠定基礎(chǔ)。 方法 針對(duì)USP22基因的編碼序列設(shè)計(jì)并合成2條特異性干擾序列,序列兩端含有限制性內(nèi)切酶位點(diǎn)HpaⅠ和XhoⅠ。寡核苷酸鏈退火生成寡核苷酸雙鏈,5′端磷酸化后將含有酶切位點(diǎn)的寡核苷酸雙鏈克隆到pLL3.7慢病毒表達(dá)載體。連接產(chǎn)物經(jīng)轉(zhuǎn)化、培養(yǎng),提取其質(zhì)粒,提取出來的質(zhì)粒經(jīng)HpaⅠ和XhoⅠ酶切電泳鑒定,鑒定正確的質(zhì)粒進(jìn)行測(cè)序。構(gòu)建成功的慢病毒表達(dá)載體pLL-USP22-shRNA與包裝載體質(zhì)?;靹蚬厕D(zhuǎn)染于293T細(xì)胞。通過熒光顯微鏡下觀察綠色熒光蛋白(GFP)情況,對(duì)病毒滴度和感染效率進(jìn)行檢測(cè)。 結(jié)果 成功構(gòu)建慢病毒表達(dá)載體pLL-USP22-shRNA。與包裝載體質(zhì)粒共轉(zhuǎn)染293T細(xì)胞后測(cè)定慢病毒滴度為4×107 TU/ml。 結(jié)論 本實(shí)驗(yàn)應(yīng)用相關(guān)技術(shù)成功構(gòu)建USP22 ShRNA慢病毒載體,為進(jìn)一步研究USP22基因的生物學(xué)功能奠定了基礎(chǔ)。
[關(guān)鍵詞] USP22;慢病毒載體;構(gòu)建;鑒定
[中圖分類號(hào)] R34 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1674-4721(2014)11(b)-0009-05
腫瘤細(xì)胞中基因表達(dá)具有組織特異性,USP22泛素水解酶屬去泛素化酶DUB基因家族成員,其普遍表達(dá)表明其功能的保守性,因此,USP22被歸類為腫瘤干細(xì)胞的標(biāo)記基因而引起高度關(guān)注[1]。國內(nèi)外學(xué)者研究發(fā)現(xiàn),USP22基因過表達(dá)與結(jié)直腸癌[2]、肺癌[3]、胃癌[4]、食管癌[5]、乳腺癌[6]等惡性腫瘤的浸潤、轉(zhuǎn)移和預(yù)后差高度相關(guān)。沉默USP22基因表達(dá),能顯著抑制膀胱癌[7]、結(jié)直腸癌[8]細(xì)胞增殖,由此推測(cè)USP22基因可能成為腫瘤治療的一個(gè)新靶點(diǎn)。本研究通過基因工程技術(shù)構(gòu)建USP22 ShRNA慢病毒載體,為進(jìn)一步研究USP22基因在人鼻咽癌細(xì)胞中的作用機(jī)制提供實(shí)驗(yàn)基礎(chǔ)。
1 材料與方法
1.1 實(shí)驗(yàn)材料、試劑及儀器
pLL3.7慢病毒表達(dá)載體及包裝載體質(zhì)粒購自廣州永諾生物科技有限公司。T4磷酸化酶、T4連接酶、HpaⅠ酶及XhoⅠ酶均購自NEB(New England BioLabs)公司。瓊脂糖購自Biowest公司。高純質(zhì)粒小量提取試劑盒和Tran5α感受態(tài)細(xì)胞購自北京全式金生物公司。質(zhì)粒大提試劑盒(QIAGEN試劑盒)購自QIAGEN公司。溴化乙錠(EB)及LB培養(yǎng)基購自上海生工生物工程有限公司。293T細(xì)胞購自中國科學(xué)院上海細(xì)胞庫。Lipofectamine(脂質(zhì)體)2000購自Life Technologies公司。主要儀器包括水浴箱、恒溫振蕩器、臺(tái)式離心機(jī)、Eppendorf加樣槍和臺(tái)式冷凍離心機(jī)、恒溫?fù)u床、電熱恒溫CO2培養(yǎng)箱、Millipore超純水系統(tǒng)、Bio-Rad瓊脂糖凝膠電泳儀、SynGene凝膠成像系統(tǒng)、Olympus倒置熒光顯微鏡、-4℃冰箱、-20℃冰箱等。
1.2 方法
1.2.1 SiRNA的設(shè)計(jì)與合成
運(yùn)用Promega、Invitrogen和Dharmaco公司提供的RNA干擾設(shè)計(jì)工具,并結(jié)合RNA干擾設(shè)計(jì)的原則,尋找19個(gè)堿基的靶序列。將編碼SiRNA的DNA片段設(shè)計(jì)成發(fā)夾結(jié)構(gòu),發(fā)夾結(jié)構(gòu)的兩端含限制性內(nèi)切酶位點(diǎn)HpaⅠ及XhoⅠ。SiUSP22-1:CACGGACAGTCTCAACAAT,5′-AACTCACGGACAGTCTCAACAATTT-CAAGAGAATTGTTGAGACTGTCCGTGTTTTTTC-3′,3′-TTGAGTGCCTGTCAGAGTTGTTAAAGTTCTCTTA-ACAACTCTGACAGGCACAAAAAAGAGCT-5′;SiUS-P22-2:GAAGCATATTCACGAGCAT,5′-AACTGAAGCATATTCACGAGCATTTCAAGAGAATGCTCGTGAA-TATGCTTCTTTTTTC-3′,3′-TTGACTTCGTATAAGTG-CTCGTAAAGTTCTCTTACGAGCACTTATACGAAGA-AAAAAGAGCT-5′。
1.2.2 慢病毒載體的構(gòu)建
1.2.2.1 寡核苷酸鏈的退火 反應(yīng)體系:1 μg/μl正義寡核苷酸鏈,1 μg/μl反義寡核苷酸,1 μl 20×SSC Buffer,加ddH2O至20 μl。反應(yīng)條件:95℃,10 min后自然冷卻至室溫。
1.2.2.2 寡核苷酸雙鏈5′端的磷酸化 因合成的寡核苷酸鏈的5′端沒有被磷酸化,不利于載體的連接,故需要磷酸化。反應(yīng)體系:7 μl寡核苷酸雙鏈,2.5 μl 10×T4 PNK Buffer,2.5 μl ATP,0.5 μl T4磷酸化酶,加ddH2O至25 μl。反應(yīng)條件:37℃,30 min。
1.2.2.3 將含有酶切位點(diǎn)的寡核苷酸雙鏈克隆到pLL3.7載體 連接體系:1 μl pLL3.7載體,1 μl寡核苷酸雙鏈,1 μl 10×連接Buffer,1 μl T4連接酶,加ddH2O至10 μl。反應(yīng)條件:室溫,30 min。
1.2.2.4 連接產(chǎn)物的轉(zhuǎn)化 ①冰浴中將50~100 ng連接產(chǎn)物分別加入至50 μl Tran5α感受態(tài)細(xì)胞中,然后輕輕地旋轉(zhuǎn)使其混合均勻,冰浴時(shí)間30 min;②放置42℃的水浴箱中熱休克90 s;③快速地將管轉(zhuǎn)移至冰浴中,冰浴時(shí)間2 min;④分別加入500 μl LB培養(yǎng)基,混勻,37℃、150 r/min振蕩培養(yǎng)40 min;⑤將150 μl菌液涂布于含氨芐青霉素(Amp)(100 μg/ml)的LB平板表面,室溫下放置,至液體吸收。倒置平板,轉(zhuǎn)移入37℃生化培養(yǎng)箱過夜培養(yǎng)。
1.2.2.5 質(zhì)粒提取及鑒定 從平板上面各接挑取6個(gè)菌落進(jìn)行擴(kuò)增培養(yǎng),加入含有相應(yīng)抗生素的3 ml LB培養(yǎng)液中37℃過夜培養(yǎng),提取其質(zhì)粒(高純質(zhì)粒小量提取試劑盒)。提取出來的質(zhì)粒經(jīng)HpaⅠ和XhoⅠ酶切鑒定,鑒定正確的質(zhì)粒送中美泰和公司測(cè)序。測(cè)序正確的質(zhì)粒經(jīng)大提(QIAGEN試劑盒)后保存于-20℃冰箱。
1.2.3 慢病毒載體的包裝、濃縮及滴度測(cè)定
1.2.3.1 慢病毒的包裝 ①轉(zhuǎn)染前24 h,用胰酶消化對(duì)數(shù)生長期的293T細(xì)胞,傳代到10 cm細(xì)胞培養(yǎng)皿中,在37℃、5%CO2的培養(yǎng)箱內(nèi)進(jìn)行培養(yǎng)。培養(yǎng)24 h后待細(xì)胞密度達(dá)70%~80%時(shí)即可用于轉(zhuǎn)染。細(xì)胞狀態(tài)對(duì)于病毒包裝很重要,需保證良好的細(xì)胞狀態(tài)及較少的傳代次數(shù)。②轉(zhuǎn)染前將細(xì)胞培養(yǎng)基更換成無血清培養(yǎng)基,再將稀釋后的DNA(pLV-gene載體10 μg,pGag/Pol載體5 μg、pRev載體5 μg、pVSV-G載體5 μg)與稀釋后的Lipofectamine 2000混合,慢慢地顛倒以使相互混勻,但不要震蕩,然后在室溫下培育20 min,以形成DNA和Lipofectamine 2000稀釋液的轉(zhuǎn)染復(fù)合物。③將DNA與Lipofectamine 2000混合液轉(zhuǎn)移至培養(yǎng)293T細(xì)胞的培養(yǎng)液中,充分混勻,放置于37℃,5%CO2的細(xì)胞培養(yǎng)箱中培養(yǎng)。培養(yǎng)6 h后吸去含有轉(zhuǎn)染混合物的培養(yǎng)基,在每瓶細(xì)胞培養(yǎng)液中加入含10%血清的培養(yǎng)基10 ml,再放置于37℃、5%CO2的細(xì)胞培養(yǎng)箱內(nèi)繼續(xù)培養(yǎng)48 h。
1.2.3.2 病毒的收獲和濃縮 ①收集轉(zhuǎn)染后48 h以及72 h的293T細(xì)胞上清液。在4℃,4000×g下離心10 min,以除去細(xì)胞碎片。在0.45 μm過濾器上過濾上清液于50 ml的離心管中。②將病毒粗提液樣品加入過濾杯中(最多19 ml),蓋上蓋子,在5000×g離心,達(dá)到需要的病毒濃縮體積(通常需要10~15 min)。離心結(jié)束后過濾杯中即為病毒濃縮液。將病毒濃縮液移出,分裝后保存在病毒管中,可在4℃下保存1周,或在-80℃冰箱中長期保存。
1.2.3.3 慢病毒滴度測(cè)定 ①在測(cè)定滴度的前一天,將293T細(xì)胞鋪于96孔板中,每個(gè)孔加入約4×104個(gè)細(xì)胞,體積為100 μl。然后根據(jù)病毒的預(yù)期滴度,準(zhǔn)備6~10個(gè)無菌的Ep管,在每個(gè)Ep管中加入90 μl的無血清培養(yǎng)基。②吸取待測(cè)定的病毒原液10 μl加入第一個(gè)管中,記為1E+1 μl;充分混勻后,取10 μl加入第二個(gè)管中,記為1E+0 μl。以此類推,重復(fù)相同的操作直至最后一個(gè)管。③選取所需的細(xì)胞孔,吸去90 μl的培養(yǎng)基,丟棄,加入90 μl稀釋好的病毒溶液,放于培養(yǎng)箱中培養(yǎng)。④培養(yǎng)24 h后,加入完全培養(yǎng)基100 μl,4 d后,通過熒光顯微鏡拍照觀察其熒光表達(dá)情況。⑤根據(jù)熒光圖片中GFP表達(dá)情況,如在觀察到熒光表達(dá)的最后一個(gè)濃度1E-4 μl組中看到有5個(gè)帶熒光的細(xì)胞,則說明該孔中至少有5個(gè)病毒顆粒感染了細(xì)胞,則該病毒的滴度等于帶有熒光的細(xì)胞數(shù)除以病毒原液量,就是5/(1E-4)=5×104,單位為TU/μl,也就等于5×107 TU/ml。
2 結(jié)果
2.1 慢病毒表達(dá)載體質(zhì)粒的酶切鑒定及測(cè)序
提取出來的質(zhì)粒經(jīng)HpaⅠ和XhoⅠ酶切鑒定,進(jìn)行凝膠電泳形成一條約7.6 kb的DNA條帶(圖1),與預(yù)期結(jié)果相符。鑒定正確的質(zhì)粒被送至北京中美泰和公司測(cè)序,測(cè)序結(jié)果顯示含有與先前設(shè)計(jì)相同的干擾序列,表明USP22慢病毒表達(dá)載體質(zhì)粒構(gòu)建成功。測(cè)序結(jié)果如下。
2.2 慢病毒載體的包裝以及滴度的測(cè)定
慢病毒轉(zhuǎn)染293T細(xì)胞后,通過孔稀釋法來測(cè)定其滴度。在熒光顯微鏡下觀察綠色熒光蛋白(GFP)的表達(dá)情況,觀察到的熒光細(xì)胞數(shù)隨稀釋倍數(shù)的增加而減少(圖2)。
通過圖2中GFP的表達(dá)情況,可以觀察到最后一個(gè)濃度為1E-4 μl組的孔中有4個(gè)帶有熒光的細(xì)胞,說明該孔中至少有4個(gè)病毒顆粒感染了細(xì)胞,那么該病毒的滴度就觀察到的熒光細(xì)胞數(shù)除以病毒原液量,測(cè)定滴度為4×104 TU/μl(4×107 TU/ml),適合感染目的細(xì)胞。
3 討論
RNAi作為一種簡單有效的替代基因敲除的方法,其特異性及很好的表達(dá)抑制效果成為基因功能研究的有力手段[9-10]。慢病毒載體是在人類免疫缺陷病毒1型(HIV-1)基礎(chǔ)上改造而成的病毒載體系統(tǒng),它能高效將目的基因(或RNAi)導(dǎo)入動(dòng)物和人的原代細(xì)胞或細(xì)胞系[11]。慢病毒載體基因組是正鏈RNA,其基因組進(jìn)入細(xì)胞后,在細(xì)胞質(zhì)中被其自身攜帶的反轉(zhuǎn)錄酶反轉(zhuǎn)為DNA,形成DNA整合前復(fù)合體,進(jìn)入細(xì)胞核后,DNA整合到細(xì)胞基因組中。整合后的DNA轉(zhuǎn)錄mRNA,回到細(xì)胞質(zhì)中,表達(dá)目的蛋白;或產(chǎn)生RNAi干擾。慢病毒載體介導(dǎo)的基因表達(dá)或RNAi干擾作用持續(xù)且穩(wěn)定,原因是目的基因整合到宿主細(xì)胞基因組中,并隨細(xì)胞基因組的分裂而分裂[12]。
USP22屬于泛素水解酶家族定位于人17號(hào)染色體,由14個(gè)外顯子組成,編碼525個(gè)氨基酸,USP22在腫瘤組織如肝癌和宮頸癌中異常地高表達(dá),而在正常組織中呈現(xiàn)弱表達(dá)[13]。Zhang等[14-15]的研究發(fā)現(xiàn),RNA干擾技術(shù)特異性沉默USP22基因可阻止Myc及其下游基因的表達(dá)及作用抑制癌細(xì)胞的異常增殖。有研究發(fā)現(xiàn)USP22在多種惡性腫瘤中呈現(xiàn)高表達(dá),且表達(dá)水平與患者預(yù)后、化療耐藥等密切相關(guān)。因此USP22也被認(rèn)為可能是腫瘤早期診斷及基因治療的新靶點(diǎn),是腫瘤干細(xì)胞的標(biāo)志基因之一[16]。但至目前,仍未有相關(guān)文獻(xiàn)報(bào)道USP22基因在鼻咽癌的發(fā)生發(fā)展中是否起著關(guān)鍵作用。
本實(shí)驗(yàn)通過RNA干擾技術(shù)成功設(shè)計(jì)了USP22基因的SiRNA,并成功構(gòu)建了USP22 ShRNA慢病毒載體。通過熒光顯微鏡下觀察GFP的表達(dá)情況測(cè)定慢病毒滴度為4×107 TU/ml,表明慢病毒載體質(zhì)粒成功轉(zhuǎn)染293T細(xì)胞,適合感染目的細(xì)胞。本研究利用相關(guān)技術(shù)成功構(gòu)建了USP22 ShRNA慢病毒載體,為進(jìn)一步研究USP22基因在鼻咽癌的發(fā)生、發(fā)展中的生物學(xué)作用奠定了實(shí)驗(yàn)基礎(chǔ)。
[參考文獻(xiàn)]
[1] Glinsky GV.Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid,anoikis-resistant,metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway[J].Cell Cycle,2006,5(11):1208-1216.
[2] Liu YL,Yang YM,Xu H,et al.Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer[J].J Gastroenterol Hepatol,2010,25(11):1800-1805.
[3] Ning J,Zhang J,Liu W,et al.Overexpression of ubiquitin-specific protease 22 predicts poor survival in patients with early-stage non-small cell lung cancer[J].Eur J Histochem,2012,56(4):e46.
[4] Yang DD,Cui BB,Sun LY,et al.The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma[J].Cell Biochem Biophys,2011,61(3):703-710.
[5] Li J,Wang Z,Li Y.USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma[J].J Cancer Res Clin Oncol,2012,138(8):1291-1297.
[6] Zhang Y,Yao L,Zhang X,et al.Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer[J].J Cancer Res Clin Oncol,2011,137(8):1245-1253.
[7] Lv L,Xiao XY,Gu ZH,et al.Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells[J].Mol Cell Biochem,2011,346(1-2):11-21.
[8] Xu H,Liu YL,Yang YM,et al.Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth[J].Int J Colorectal Dis,2012,27(1):21-30.
[9] Tusch IT,Borkhardt A.Small interfering RNAs:arevolutionary tool for the analysis of gene function and gene therapy[J].Mol Intervent,2002,2(3):158-167.
[10] Verma NK,Dey CS.RNA-mediated gene silencing:mechanisms and its therapeutic applications[J].J Clin Pharm Ther,2004,29(5):395-404.
[11] Lu X,Humeau L,Slepushkin V,et al.Safe two plasmid production for the first clinical lentivirus vector that achieves>99% transduction in primary cells using a one step protocol[J].J Gene Med,2004,6(9):963-973.
[12] Bartosch B,Cosset FL.Strategies for retargeted gene delivery using vectors derived from lentiviruses[J].Curr Gene Ther,2004,4(4):427-443.
[13] Lee HJ,Kim MS,Shin JM,et al.The expression patterns of deubiquitinating enzymes,USP22 and Usp22[J].Gene Expr Patterns,2006,6(3):277-284.
[14] Zhang XY,Varthi M,Sykes SM,et al.The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression[J].Mol Cell,2008,29(1):102-111.
[15] Zhang XY,Pfeiffer HK,Thorne AW,et al.USP22,an hSAGA subunit and potential cancer stem cell marker,reverses the polycomb-catalyzed ubiquitylation of histone H2A[J].Cell Cycle,2008,7(11):1522-1524.
[16] Glinsky GV.Death-from-cancer signatures and stem cell contribution to metastatic cancer[J].Cell Cycle,2005,4(9):1171-1175.
(收稿日期:2014-07-09 本文編輯:郭靜娟)
[2] Liu YL,Yang YM,Xu H,et al.Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer[J].J Gastroenterol Hepatol,2010,25(11):1800-1805.
[3] Ning J,Zhang J,Liu W,et al.Overexpression of ubiquitin-specific protease 22 predicts poor survival in patients with early-stage non-small cell lung cancer[J].Eur J Histochem,2012,56(4):e46.
[4] Yang DD,Cui BB,Sun LY,et al.The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma[J].Cell Biochem Biophys,2011,61(3):703-710.
[5] Li J,Wang Z,Li Y.USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma[J].J Cancer Res Clin Oncol,2012,138(8):1291-1297.
[6] Zhang Y,Yao L,Zhang X,et al.Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer[J].J Cancer Res Clin Oncol,2011,137(8):1245-1253.
[7] Lv L,Xiao XY,Gu ZH,et al.Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells[J].Mol Cell Biochem,2011,346(1-2):11-21.
[8] Xu H,Liu YL,Yang YM,et al.Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth[J].Int J Colorectal Dis,2012,27(1):21-30.
[9] Tusch IT,Borkhardt A.Small interfering RNAs:arevolutionary tool for the analysis of gene function and gene therapy[J].Mol Intervent,2002,2(3):158-167.
[10] Verma NK,Dey CS.RNA-mediated gene silencing:mechanisms and its therapeutic applications[J].J Clin Pharm Ther,2004,29(5):395-404.
[11] Lu X,Humeau L,Slepushkin V,et al.Safe two plasmid production for the first clinical lentivirus vector that achieves>99% transduction in primary cells using a one step protocol[J].J Gene Med,2004,6(9):963-973.
[12] Bartosch B,Cosset FL.Strategies for retargeted gene delivery using vectors derived from lentiviruses[J].Curr Gene Ther,2004,4(4):427-443.
[13] Lee HJ,Kim MS,Shin JM,et al.The expression patterns of deubiquitinating enzymes,USP22 and Usp22[J].Gene Expr Patterns,2006,6(3):277-284.
[14] Zhang XY,Varthi M,Sykes SM,et al.The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression[J].Mol Cell,2008,29(1):102-111.
[15] Zhang XY,Pfeiffer HK,Thorne AW,et al.USP22,an hSAGA subunit and potential cancer stem cell marker,reverses the polycomb-catalyzed ubiquitylation of histone H2A[J].Cell Cycle,2008,7(11):1522-1524.
[16] Glinsky GV.Death-from-cancer signatures and stem cell contribution to metastatic cancer[J].Cell Cycle,2005,4(9):1171-1175.
(收稿日期:2014-07-09 本文編輯:郭靜娟)
[2] Liu YL,Yang YM,Xu H,et al.Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer[J].J Gastroenterol Hepatol,2010,25(11):1800-1805.
[3] Ning J,Zhang J,Liu W,et al.Overexpression of ubiquitin-specific protease 22 predicts poor survival in patients with early-stage non-small cell lung cancer[J].Eur J Histochem,2012,56(4):e46.
[4] Yang DD,Cui BB,Sun LY,et al.The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma[J].Cell Biochem Biophys,2011,61(3):703-710.
[5] Li J,Wang Z,Li Y.USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma[J].J Cancer Res Clin Oncol,2012,138(8):1291-1297.
[6] Zhang Y,Yao L,Zhang X,et al.Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer[J].J Cancer Res Clin Oncol,2011,137(8):1245-1253.
[7] Lv L,Xiao XY,Gu ZH,et al.Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells[J].Mol Cell Biochem,2011,346(1-2):11-21.
[8] Xu H,Liu YL,Yang YM,et al.Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth[J].Int J Colorectal Dis,2012,27(1):21-30.
[9] Tusch IT,Borkhardt A.Small interfering RNAs:arevolutionary tool for the analysis of gene function and gene therapy[J].Mol Intervent,2002,2(3):158-167.
[10] Verma NK,Dey CS.RNA-mediated gene silencing:mechanisms and its therapeutic applications[J].J Clin Pharm Ther,2004,29(5):395-404.
[11] Lu X,Humeau L,Slepushkin V,et al.Safe two plasmid production for the first clinical lentivirus vector that achieves>99% transduction in primary cells using a one step protocol[J].J Gene Med,2004,6(9):963-973.
[12] Bartosch B,Cosset FL.Strategies for retargeted gene delivery using vectors derived from lentiviruses[J].Curr Gene Ther,2004,4(4):427-443.
[13] Lee HJ,Kim MS,Shin JM,et al.The expression patterns of deubiquitinating enzymes,USP22 and Usp22[J].Gene Expr Patterns,2006,6(3):277-284.
[14] Zhang XY,Varthi M,Sykes SM,et al.The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression[J].Mol Cell,2008,29(1):102-111.
[15] Zhang XY,Pfeiffer HK,Thorne AW,et al.USP22,an hSAGA subunit and potential cancer stem cell marker,reverses the polycomb-catalyzed ubiquitylation of histone H2A[J].Cell Cycle,2008,7(11):1522-1524.
[16] Glinsky GV.Death-from-cancer signatures and stem cell contribution to metastatic cancer[J].Cell Cycle,2005,4(9):1171-1175.
(收稿日期:2014-07-09 本文編輯:郭靜娟)