中圖分類號:O415.5 文獻標志碼:A 文章編號:1671-5489(2025)04-1164-05
Adaptive Sliding Mode Synchronization PMSM Fractional-Order Chaotic System Based on Disturbance Observer
MAO Beixing, MENG Xiaoling, WANG Jianjun, WANG Dongxiao, JIAO Jianfeng,CHEN Car
Abstract: We used disturbance observer to study the adaptive sliding mode synchronization permanent magnet synchronous motor (PMSM) fractional-order chaotic system. We considered uncertainties and unknown external disturbances through the fractional-order disturbance observer and verified the obtained conclusion through numerical simulation. The results show that the master-slave system the PMSM chaotic system achieves sliding mode synchronization under appropriate disturbance observer, sliding mode function,controller and the adaptive law.
Keywords: permanent magnet synchronous motor system; sliding mode; chaos; disturbance
混沌在同步控制領(lǐng)域的研究已取得較多成果[1-2」.隨著計算方法的改進,分數(shù)階微積分在工程制造、自動化和網(wǎng)絡(luò)與通信等領(lǐng)域應(yīng)用廣泛,由于分數(shù)階系統(tǒng)可對系統(tǒng)進行更精確描述并滿足系統(tǒng)建模需要[3-4],滑動模態(tài)控制具有良好的魯棒性和可移植性等優(yōu)點,因此對分數(shù)階混沌系統(tǒng)的滑模同步研究已引起人們廣泛關(guān)注.如文獻[5]將滑模方法融人Rikitake分數(shù)階混沌系統(tǒng)同步,獲得了同步控制研究方案;文獻[6]研究了Sprot-D混沌分數(shù)階系統(tǒng)自適應(yīng)滑模同步;文獻[7-9]研究了超混沌金融分數(shù)階系統(tǒng)無抖振滑??刂破髟O(shè)計與轉(zhuǎn)移滑模同步;文獻[1O]研究了Genesio-Tesi分數(shù)階混沌系統(tǒng)的滑模同步,得到系統(tǒng)同步的充分條件;文獻[11]研究了不相稱分數(shù)階Genesio-Tesi系統(tǒng)有限時間自適應(yīng)滑模同步,通過設(shè)計分數(shù)階擾動觀測器對系統(tǒng)中擾動和不確定項進行估計,使系統(tǒng)在有限時間內(nèi)擾動誤差收斂至零,并構(gòu)建分數(shù)階滑模面和自適應(yīng)滑??刂破鲗崿F(xiàn)有限時間同步.永磁同步電動機(PMSM)系統(tǒng)具有體積小、運行可靠和結(jié)構(gòu)簡單等優(yōu)點,在航空、新能源和自動化等領(lǐng)域應(yīng)用廣泛.由于永磁電機系統(tǒng)出現(xiàn)混沌狀態(tài)時即會喪失穩(wěn)定性和一些主要性能,使電機系統(tǒng)陷于癱瘓狀態(tài)而無法正常工作,因此需對PMSM混沌系統(tǒng)進行同步控制研究,當系統(tǒng)趨于同步時,可使系統(tǒng)正常運行,從而抑制系統(tǒng)的失穩(wěn)狀態(tài).文獻[12]研究了PMSM系統(tǒng)的快速終端滑??刂?,較好保證了系統(tǒng)的魯棒性;文獻[13-14]研究了PMSM系統(tǒng)的滑模及滑模跟蹤問題;文獻[15]研究了分數(shù)階PMSM混沌系統(tǒng)自適應(yīng)滑模同步;文獻[16]研究了分數(shù)階受擾動電機混沌系統(tǒng)分數(shù)階函數(shù)矩陣投影同步.基于此,本文研究分數(shù)階PMSM混沌系統(tǒng)基于擾動觀測器的自適應(yīng)滑模同步.通過設(shè)計擾動觀測器和滑模函數(shù)及控制器,使主從系統(tǒng)取得自適應(yīng)滑模同步.
1預備知識
定義1[17] Caputo分數(shù)階導數(shù)定義為
分數(shù)階PMSM混沌系統(tǒng)的主系統(tǒng)[15]為
當參數(shù) γ=25 , σ=5.46 , q=0,98 , x1(0)=1 , x2(0)=0.01 , x3(0)=-5 時,系統(tǒng)吸引子相圖如圖1所示.
設(shè)計從系統(tǒng)為
定義誤差 ei(t)=yi(t)-xi(t) , i=1,2,3 , y=(y1,y2,y3)T ,其中 Δf(y) 為不確定項, 為未知外部擾動,總擾動
.將式(2)與式(1)相減可得
假設(shè)1 ∣DtqM∣?ω , ω 為已知的正常數(shù),定義滑模擾動觀測器
φ(t)=Dtq(y2(t)-z(t)),
其中 z(t) 為輔助變量,滿足如下關(guān)系式
為 M 的估計,滿足分數(shù)階方程
引理1[17] 若 x(t) 為連續(xù)可微函數(shù),則對 ?q∈(0,1) ,有
2[18] kgt;0 DtqV(Ψt)?-ky12(Ψt) y12(t)?2V(0)Eq,1(-2ktq) ,即
,其中 Eα,β(Ω?Ω) 表示雙參數(shù)Mittag-Leffler 函數(shù).
引理 3[19] 若存在常數(shù) 00 , 0lt;ηlt;1 ,使得 DtqV(t)?-λVη(t) , V(t)∈R+ ,則對所有t?t* ,有 V(t)=0 業(yè)
2 主要結(jié)果
定理1若滿足假設(shè)1,根據(jù)設(shè)計的擾動觀測器(4),則總擾動誤差 將在有限時間內(nèi)收斂到零.
證明:將從系統(tǒng)(2),(5)代人擾動觀測器(4)中可得 ,設(shè)計
(t),求分數(shù)階導數(shù)可得
9根據(jù)引理3,可得
假設(shè)2 存在未知正常數(shù) k ,滿足
定理2若滿足假設(shè)1和假設(shè)2,構(gòu)造滑模函數(shù) s(t)=e2+e3 ,控制器
u( 自適應(yīng)律
,則主系統(tǒng)(1)與從系統(tǒng)(2)取得自適應(yīng)滑模同步.
證明:構(gòu)造Lyapunov函數(shù) 2+k2(t),由引理1,求分數(shù)階導數(shù)可得
構(gòu)造函數(shù) V2=s2/2 ,假設(shè) ,由引理2,求分數(shù)階導數(shù)可得
DtqV2?sDtqs=s[-e2-y1y3+x1x3+γe3+M+u+σ(e2-e3)]?
根據(jù)引理3可得
當在滑模面上運動時,滿足 ,將
代人式(3)第三個方程中可得Dtqe3=-2σe3?e30?e20 ,代入式(3)第一個方程中可得
Dtqe1=-e1+y2y3-x2x3?e10.
3 數(shù)值仿真
用MATLAB進行數(shù)值仿真,設(shè)置分數(shù)階PMSM混沌系統(tǒng)參數(shù) γ=25 , σ=5.46 , q=0,98 .選取外部擾動 d(t)=1.5cost ,不確定項 Δf(y)=0 . 6sin y2 ,其他各項參數(shù)分別為
擾動觀測器為式(4),滑模函數(shù) s(t)=e2+e3 ,控制器為式(7),自適應(yīng)律為
定理2的系統(tǒng)誤差曲線如圖2所示.由圖2可見,PMSM混沌系統(tǒng)在初始時表現(xiàn)出混沌特性,系統(tǒng)誤差相差較大,一段時間后系統(tǒng)的誤差曲線逐漸靠近并最終趨近于坐標原點,表明混沌系統(tǒng)的主從系統(tǒng)取得了滑模同步,參數(shù) k 的觀測值 的變化曲線如圖3所示.
由圖3可見, 的變化曲線逐漸穩(wěn)定在某個常數(shù).由于三階PMSM不確定分數(shù)階混沌系統(tǒng)無需設(shè)計3個控制器,只需1個控制器即可將系統(tǒng)狀態(tài)驅(qū)動到滑模面并沿滑模面趨近于原點,因此大幅度降低了控制器的運行成本,更易被系統(tǒng)移植和操作.
綜上,本文根據(jù)自適應(yīng)滑模同步理論研究了分數(shù)階PMSM混沌系統(tǒng)的自適應(yīng)滑模同步,利用分數(shù)階自適應(yīng)擾動觀測器對未知擾動和不確定項進行估計,實現(xiàn)了分數(shù)階PMSM混沌系統(tǒng)的自適應(yīng)滑模同步,得到了分數(shù)階PMSM混沌系統(tǒng)基于擾動觀測器滑模同步的充分條件,并利用數(shù)值仿真對結(jié)論進行了驗證.
參考文獻
[1]SONG S, ZHANG B Y, SONG X N,et al. Fractional-Order Adaptive Neuro-Fuzzy Sliding Mode H∞ Control forFuzzy Singularly Perturbed Systems [J]. Journal Franklin Institute, 2O19,356(1O): 5027-5048.
[2]SONG S, ZHANG B Y, SONG X N,et al. Neuro-Fuzzy-Based Adaptive Dynamic Surface Control for Fractional-Order Nonlinear Strict-Feedback Systems with Input Constraint [J]. IEEE Transactions on Systems,Man,andCybernetics:Systems,2021,51(6):3575-3586.
[3]SUN Z Y,DAI Y Y,CHEN C C. Global Fast Finite-Time Partial State Feedback Stabilization High-OrderNonlinear Systems with Dynamic Uncertainties [J]. Information Sciences, 2019,77(1): 219-236.
[4]JIANG M, WANG S,MEIJ,etal. Finite-Time Synchronization Control a Class Memristor-Based RecurrentNeural Networks [J]. Neural Networks,2015,63(5):133-140.[5]孟金濤,毛北行,王東曉,等.基于滑模函數(shù)分數(shù)階 Rikitake混沌系統(tǒng)3個同步方案設(shè)計[J].吉林大學學報(理學版),2025,63(2): 595-600.(MENGJT,MAO BX,WANG D X,et al. Design Three SynchronizationSchemes Fractional-Order Rikitake Chaotic Systems Based on Sliding Mode Functions[J].Journal Jilin(Science Edition),2025,63(2):595-600.)
[6]毛北行,李德奎,王東曉,等.Sprott-D不確定分數(shù)階混沌系統(tǒng)的自適應(yīng)滑模同步[J].吉林大學學報(理學版),
2024,62(5):1235-1240. (MAO B X,LI D K,WANG D X,et al. Adaptive Sliding Mode Synchronization Sprot-D Uncertain Fractional-Order Chaotic Systems [J].Journal Jilin (Science Edition),2024,
62(5):1235-1240.)
[7]HAJIPOUR A,HAJIPOUR M, BALEANU D. On the Adaptive Sliding Mode Controller for a HyperchaoticFractional-Order Financial System [J]. Physica A,2018,19(1): 139-153.
[8]HUANG C D,CAI L M,CAO JD. Linear Control for Synchronization a Fractional-Order Time-DelayedChaotic Financial System [J]. Chaos,Solitons and Fractals,2018,22(5): 326-332.
[9]ZHANG Z, ZHANG J, CHENG F Y,et al. A Novel Stability Criterion Time-Varying Delay Fractional-OrderFinancial Systems Based a New Functional Transformation Lemma [J]. International Journal Control,Automation and Systems,2019,17(4): 916-925.
[10]LUJG. Chaotic Dynamics and Synchronization Fractional-Order Genesio-Tesi Systems [J].Chinese PhysicsB,2005,14(8):1517-1521.[11]周衛(wèi)光,章安,鄭永愛.不相稱分數(shù)階Genesio-Tesi系統(tǒng)的有限時間自適應(yīng)滑模同步[J].揚州大學學報(自然科學版),2023,26(3): 50-55.(ZHOU W G, ZHANG A,ZHENG Y A. Finite Time Adaptive Sliding ModeSynchronization Incommensurate Fractional Order Genesio-Tesi Systems [J]. Journal Yangzhou (Natural Science Edition),2023,26(3):50-55.)
[12]侯利民,李勇,孫釗.PMSM混沌運動的非奇異快速終端滑??刂疲跩].控制工程,2017,24(11):2206-2210.(HOU L M,LI Y,SUN Z. Chaotic Control PMSM Based on Nonsingular Fast-Terminal Sliding Mode [J].Control Engineering ,2017,24(11):2206-2210.)
[13]林飛飛,曾喆昭.不確定分數(shù)階 PMSM混沌系統(tǒng)自適應(yīng)滑??刂疲跩].電力科學與技術(shù)學報,2018,33(2):
66-72.(LIN F F, ZENG Z Z. Adaptive Sliding Mode Control Uncertain Fractional-Order Permanent MagnetSynchronous Motor Chaotic System[J]. Journal Electric Power Science and Technology,2018,33(2): 66-72.)[14]楊秀,韋篤?。趩螤顟B(tài)變量的永磁同步電機混沌跟蹤控制[J].廣西師范大學學報(自然科學版),2023,
41(2): 58-66. (YANG X,WEI D Q. Chaos Tracking Control Permanent Magnet Synchronous Motor Based onSingle State Variable[J]. Journal Guangxi Normal (Natural Science Edition),2O23,41(2):
58-66.)[15]毛北行,王東曉.分數(shù)階永磁同步電機混沌系統(tǒng)自適應(yīng)滑模同步[J].浙江大學學報(理學版),2023,50(5):
564-568.(MAO B X,WANG D X. Self-adaptive Sliding Mode Synchronization Fractional-Order PermanentMagnet Synchronization Motor Chaotic Systems [J]. Journal Zhejiang (Science Edition),2023,
50(5):564-568.)[16]吳一品,賀金滿,楊春升.受擾動的分數(shù)階電機混沌系統(tǒng)的函數(shù)矩陣投影同步[J].吉林大學學報(理學版),
2025,63(3): 906-914.(WU YP,HEJM, YANG C S. Function Matrix Projection Synchronization DisturbedFractional-Order Motor Chaotic Systems [J]. Journal Jilin (Science Edition),2025,63(3):
906-914.)
[17]PODLUBNY 1. Fractional Diferential Equations [M]. New York:Academic Press,1999:1-340.[18]吳強,黃建華.分數(shù)階微積分[M].北京:清華大學出版社,2016:12-15.(WUQ,HUANGJH.FractionalCalculus [M]. Beijing:Tsinghua Press,2O16:12-15.)
[19]BHAT S P,BERNSTEIN D S. Geometric Homogeneity with Applications to Finite-Time Stability[J].Mathematics Control Signals and Systems, 2005,17(2):101-127.
(責任編輯:王 ?。?/p>