[摘要] 血小板、白細(xì)胞及炎癥因子所致全身血管炎癥在川崎病中發(fā)揮重要作用。研究證實(shí)血小板–白細(xì)胞聚集體(platelet-leukocyte aggregate,PLA)參與調(diào)節(jié)多種炎癥疾病,但PLA在川崎病發(fā)病機(jī)制中的具體作用仍未完全明確。本綜述系統(tǒng)總結(jié)PLA的形成機(jī)制及其在川崎病發(fā)病機(jī)制中的研究進(jìn)展。
[關(guān)鍵詞] 血小板–白細(xì)胞聚集體;川崎??;發(fā)病機(jī)制
[中圖分類號] R725" """"[文獻(xiàn)標(biāo)識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.17.026
川崎?。↘awasaki disease,KD)是一種主要發(fā)生于兒童的急性全身性血管炎,冠狀動脈病變(coronary artery lesion,CAL)是其最常見且嚴(yán)重的并發(fā)癥[1]。目前多數(shù)學(xué)者認(rèn)為KD的發(fā)生主要是由于病原體入侵機(jī)體,激活多種免疫細(xì)胞,導(dǎo)致免疫系統(tǒng)異常活化及炎癥因子“瀑布式”釋放[2]。免疫細(xì)胞及各種炎癥因子是KD發(fā)病過程的主要參與者[3]。血小板是炎癥反應(yīng)中的效應(yīng)細(xì)胞,也是免疫應(yīng)答的重要組成部分。當(dāng)機(jī)體發(fā)生感染后,血小板活化并分泌生物活性物質(zhì),活化的血小板與白細(xì)胞發(fā)生相互作用,觸發(fā)細(xì)胞間信號傳導(dǎo),形成血小板–白細(xì)胞聚集體(platelet-leukocyte aggregate,PLA),參與血栓形成和炎癥介質(zhì)的大量合成[4]。多項(xiàng)研究證實(shí)PLA與多種炎癥性疾病相關(guān),并參與免疫調(diào)節(jié)[5-9]。本文就PLA參與KD發(fā)病機(jī)制的研究進(jìn)展進(jìn)行綜述。
1" KD的發(fā)病機(jī)制
KD的主要病理特征是全身血管炎癥。Orenstein等[10]使用光學(xué)和透射電子顯微鏡揭示KD存在3個(gè)不同但相互關(guān)聯(lián)的血管病變過程,包括壞死性動脈炎、亞急性動脈炎及慢性動脈炎。3個(gè)病理過程涉及中性粒細(xì)胞涌入冠狀動脈,淋巴細(xì)胞、單核細(xì)胞、巨噬細(xì)胞和漿細(xì)胞浸潤組織相互作用,并釋放促炎介質(zhì)。多數(shù)學(xué)者認(rèn)為遺傳易感性、感染、免疫反應(yīng)、環(huán)境等因素在KD的發(fā)病中起重要作用[11-12]。各種免疫細(xì)胞(中性粒細(xì)胞、淋巴細(xì)胞、單核細(xì)胞和巨噬細(xì)胞)相繼活化浸潤到中型動脈(主要是冠狀動脈),釋放白細(xì)胞介素(interleukin,IL)-1β、IL-6、IL-18和γ干擾素等細(xì)胞因子,這些細(xì)胞因子在KD的發(fā)病中發(fā)揮重要作用[13]。Chen等[14]研究表明,單核細(xì)胞和巨核細(xì)胞是伴有CAL的KD患者細(xì)胞因子風(fēng)暴的主要來源。
2" PLA的形成及其作用
血小板生成素是血小板生成的關(guān)鍵調(diào)節(jié)因子,與巨核細(xì)胞上的血小板生成素受體結(jié)合,促進(jìn)其分化和血小板的持續(xù)產(chǎn)生。許多細(xì)胞因子,如IL-6、IL-1β、IL-3、IL-4、IL-8、IL-11、促紅細(xì)胞生成素、干細(xì)胞因子及粒細(xì)胞-巨噬細(xì)胞集落刺激因子可調(diào)控血小板的生成[15]。血小板激活后,其表面受體通過復(fù)雜的信號傳導(dǎo)與白細(xì)胞表面的黏附分子[P-選擇素糖蛋白配體-1(P-selectin glycoprotein ligand-1,PSGL-1)、CD40、巨噬細(xì)胞抗原1]結(jié)合,形成PLA[16]。上述過程中的表面受體包括分化群(cluster of differentiation,CD)62P、CD40配體(CD40 ligand,CD40L)、糖蛋白(glycoprotein,GP)Ⅰbα、GPⅡb/GPⅢa等。中性粒細(xì)胞和單核細(xì)胞通過與血小板形成中性粒細(xì)胞–血小板聚集體(neutrophil-platelet aggregate,NPA)、單核細(xì)胞–血小板聚集體(monocyte- platelet aggregate,MPA)積極參與炎癥因子的釋放過程[16]。
PLA形成后可強(qiáng)化單核細(xì)胞和中性粒細(xì)胞功能。血小板通過招募中性粒細(xì)胞促進(jìn)其釋放由DNA、組蛋白和蛋白質(zhì)組成的網(wǎng)狀結(jié)構(gòu),即中性粒細(xì)胞外捕獲網(wǎng)(neutrophil extracellular trap,NET)。NET為血小板附著提供支架,促進(jìn)血小板持續(xù)激活并發(fā)揮炎癥作用[17-18]。血小板可分泌三磷酸腺苷、血小板衍生生長因子、血小板活化因子和白三烯等炎癥介質(zhì),促進(jìn)單核細(xì)胞趨化和活化,形成MPA,釋放腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、IL-1β、IL-6等促炎性細(xì)胞因子及單核細(xì)胞趨化蛋白-1(monocyte ehemoattractant protein-1,MCP-1)、IL-8等趨化因子,加速局部炎癥進(jìn)程[19]。
血小板和白細(xì)胞的相互作用存在正反饋機(jī)制。MPA形成后,分泌的IL-6和TNF-α等細(xì)胞因子可促進(jìn)血小板再次活化,穩(wěn)定MPA釋放炎癥因子的過程[19-20]。血小板可通過組織因子(tissue factor,TF)依賴途徑與單核細(xì)胞結(jié)合形成MPA,這一過程促使單核細(xì)胞上調(diào)TF的表達(dá),TF通過激活蛋白酶活化受體1和蛋白酶活化受體2,刺激單核細(xì)胞分泌TNF-α、IL-1β等促炎性細(xì)胞因子。反過來,分泌的炎癥因子又可激活血小板和單核細(xì)胞,進(jìn)一步促進(jìn)TF的表達(dá)及更多炎癥介質(zhì)的釋放,形成炎癥放大正反饋環(huán)。細(xì)胞外核苷酸也可觸發(fā)NPA的形成。在抗磷脂綜合征患兒中,外核苷酸酶活性降低導(dǎo)致三磷酸腺苷與單磷酸腺苷水平升高,進(jìn)而促進(jìn)NPA水平升高并增加NET的釋放。
3" PLA參與KD血管炎癥反應(yīng)
研究認(rèn)為當(dāng)KD患兒接觸某種“感染因子”后,基因易感兒童開始出現(xiàn)對感染因子的“反應(yīng)”。這些反應(yīng)包括急性期血小板、中性粒細(xì)胞、單核細(xì)胞、細(xì)胞因子激活,血小板與白細(xì)胞結(jié)合形成PLA,增強(qiáng)中性粒細(xì)胞和單核細(xì)胞功能,釋放細(xì)胞因子,進(jìn)而促進(jìn)血小板活化及MPA形成,促使MPA釋放炎癥因子。PLA形成后,IL-1、IL-6、TNF-α等細(xì)胞因子在KD血管炎中進(jìn)一步激活,尤其是IL-1β的激活可加重CAL[21]。Atici等[22]也發(fā)現(xiàn)干酪乳桿菌細(xì)胞壁提取物(Lactobacillus casei cell wall extract,LCWE)誘導(dǎo)血管炎小鼠模型的血小板計(jì)數(shù)和MPA水平上調(diào),促進(jìn)IL-1β的產(chǎn)生并加重血管炎。
KD患兒急性期NPA和MPA數(shù)量均高于健康對照者或患有其他發(fā)熱性疾病的患兒。Ueno等[23]發(fā)現(xiàn)KD患兒NPA%顯著高于細(xì)菌感染患兒和健康對照組。Vignesh等[24]觀察KD病程3個(gè)階段(急性期、靜脈用人免疫球蛋白治療后24h、急性期后3個(gè)月)MPA的變化,結(jié)果表明急性期KD患兒MPA%中位數(shù)為41.3%,遠(yuǎn)高于發(fā)熱對照組和健康對照組;隨著疾病恢復(fù),MPA%在急性期后3個(gè)月逐漸下降,但仍顯著高于健康對照組。
研究表明在KD炎癥反應(yīng)中,血小板與單核細(xì)胞間存在一個(gè)重要的細(xì)胞因子“正反饋回路”?;钴S的血小板通過與CD62P/PSGL-1初始相互作用,促使單核細(xì)胞偏向促炎CD14/CD16表型轉(zhuǎn)化,隨后通過與GPⅠbα/CDⅡb連接成穩(wěn)定的MPA,促炎單核細(xì)胞釋放IL-6和TNF-α等細(xì)胞因子;這些因子再次促進(jìn)血小板激活,被單核細(xì)胞活化的血小板啟動轉(zhuǎn)化生長因子-β1(transforming growth factor-β1,TGF-β1)釋放,導(dǎo)致核因子κB(nuclear factor-κB,NF-κB)在單核細(xì)胞中核定位,驅(qū)動單核細(xì)胞向促炎表型轉(zhuǎn)化,從而維持這一正反饋循環(huán)。實(shí)驗(yàn)發(fā)現(xiàn)血小板TGF-β1完全沉默(打破正反饋回路)可防止MPA介導(dǎo)的KD血管病變,進(jìn)一步證實(shí)這條回路的存在。Kocatürk等[25]通過分析急性KD患兒全血轉(zhuǎn)錄組數(shù)據(jù)發(fā)現(xiàn),血小板相關(guān)基因的表達(dá)發(fā)生顯著變化,通過去除血小板基因(如使用Mpl-/-小鼠)或使用抗CD42B抗體可顯著減輕LCWE誘導(dǎo)KD血管炎癥及心血管病變的嚴(yán)重程度。
3.1 "PLA通過多條信號通路參與KD發(fā)病過程
PLA通過多條信號通路從多個(gè)方向?qū)е翪AL并加劇血管炎癥。①激活NF-κB信號通路。NF-κB是一組轉(zhuǎn)錄因子,參與激活多種促炎性細(xì)胞因子(如IL-6、IL-1β、TNF-α)、趨化因子、黏附分子相關(guān)基因,調(diào)控炎癥反應(yīng)。在KD體外實(shí)驗(yàn)中,MPA形成后可激活NF-κB,促使IL-6、TNF-α和IL-1β等促炎性細(xì)胞因子的釋放,促進(jìn)炎癥進(jìn)展。其中,TNF-α可通過促進(jìn)KD血管炎中白細(xì)胞黏附誘導(dǎo)血管內(nèi)皮反應(yīng),導(dǎo)致血管炎癥擴(kuò)展,甚至形成CAL。②激活核苷酸結(jié)合結(jié)構(gòu)域富含亮氨酸重復(fù)序列和含熱蛋白結(jié)構(gòu)域受體3(nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3,NLRP3)炎癥小體。NLRP3炎癥小體是一種多蛋白復(fù)合體,其前體胱天蛋白酶-1(cysteinyl aspartate specific proteinase-1,caspase-1)活化后可促進(jìn)IL-1β和IL-18成熟[26]。在KD小鼠模型中血小板可通過激活NLRP3炎癥小體釋放可溶性介質(zhì),誘導(dǎo)單核細(xì)胞產(chǎn)生IL-1β等細(xì)胞因子,caspase-1缺乏可保護(hù)小鼠免受LCWE誘導(dǎo)的血管炎和CAL,表明NLRP3炎癥小體在KD中發(fā)揮關(guān)鍵作用[27]。上述研究提示靶向NLRP3炎癥小體或caspase-1可能是治療KD的新方向。③T細(xì)胞受體/B細(xì)胞受體和抗原呈遞通路。血小板通過抗原呈遞加劇T細(xì)胞和B細(xì)胞活化,其表面表達(dá)的CD40L可誘導(dǎo)樹突狀細(xì)胞成熟、B細(xì)胞轉(zhuǎn)換并增強(qiáng)CD8+T細(xì)胞的功能,加重適應(yīng)性免疫反應(yīng)過程[28-29]。適應(yīng)性免疫反應(yīng)產(chǎn)生的免疫復(fù)合物在KD和CAL的病理生理過程中起關(guān)鍵作用。T細(xì)胞與血小板中的P-選擇素/PSGL-1相互作用可引起輕微系統(tǒng)性紅斑狼瘡反應(yīng),但目前尚無血小板–淋巴細(xì)胞聚集體應(yīng)用于KD患兒的試驗(yàn)。④TF信號通路:TF是凝血級聯(lián)反應(yīng)的主要啟動劑,在多種疾病的血栓形成中發(fā)揮重要作用。血小板可響應(yīng)幾乎所有激動劑表達(dá)TF,亦可通過P-選擇素的表達(dá)與中性粒細(xì)胞和單核細(xì)胞的PSGL-1相互作用促進(jìn)白細(xì)胞TF的表達(dá)[30]。PLA的形成可增加TF的釋放,TF不僅啟動外源性凝血級聯(lián)反應(yīng),產(chǎn)生凝血酶和血栓;TF反之還可通過上述正反饋環(huán)進(jìn)一步激活單核細(xì)胞及血小板釋放炎癥介質(zhì),加劇KD血管炎癥反應(yīng)和血栓形成,增加CAL發(fā)生風(fēng)險(xiǎn)。
3.2 "PLA的形成與KD患者CAL的相關(guān)性
血小板在免疫介導(dǎo)的炎癥性疾病的發(fā)病機(jī)制中起核心作用。血小板計(jì)數(shù)增加和血小板活化是KD的特殊表現(xiàn)之一。血小板因子-4(platelet factor-4,PF-4)和β-血栓球蛋白(β-thromboglobulin,β-TG)是血小板活化的標(biāo)志物。KD合并CAL患兒的NPA%顯著高于無CAL患兒,其與PF-4和β-TG相關(guān),表明血小板的活化及NPA的形成均與CAL相關(guān)[23,31]。
3.3" 抗血小板治療通過PLA減輕KD血管炎癥反應(yīng)
用于KD治療的抗血小板藥物包括阿司匹林、氯吡格雷和雙嘧達(dá)莫。
阿司匹林通過抑制血小板環(huán)氧合酶-1(cyclo- xygenase-1,COX-1)抑制血栓素A2生成,減少血小板聚集,該通路與MPA形成機(jī)制無關(guān)[31-32]。新近研究報(bào)道接受抗血小板治療CAL患兒的PLA或血小板脫顆粒水平與對照組比較差異無統(tǒng)計(jì)學(xué)意義,未發(fā)現(xiàn)明顯抗PLA作用[33]。
氯吡格雷通過抑制二磷酸腺苷(adenosine diphosphate,ADP)與血小板表面P2Y12受體結(jié)合,阻斷ADP介導(dǎo)的GPⅡb/GPⅢa復(fù)合物活化,抑制血小板聚集,該作用可減弱MPA的形成及血小板誘導(dǎo)的單核細(xì)胞活化[30,32,34]。Thomas等[34]以膿毒癥患兒為病例組設(shè)計(jì)一項(xiàng)隨機(jī)對照試驗(yàn),發(fā)現(xiàn)氯吡格雷可顯著降低患兒MPA及主要促炎性細(xì)胞因子的峰值水平。Rolling等[30]研究發(fā)現(xiàn)P2Y12和蛋白酶活化受體1抑制劑可抑制MPA的形成,并降低單核細(xì)胞CD40和TF影響表達(dá),使用P2Y12抑制劑預(yù)處理血小板可減少血小板介導(dǎo)的細(xì)胞因子信號抑制因子3和抑瘤素M的轉(zhuǎn)錄。
雙嘧達(dá)莫通過抑制磷酸二酯酶的活性升高血小板內(nèi)環(huán)腺苷酸水平,進(jìn)而抑制血小板聚集。雙嘧達(dá)莫可通過PLA的形成抑制血栓或炎癥進(jìn)展[35-36]。Weyrich等[35]總結(jié)心血管疾病中雙嘧達(dá)莫的作用,發(fā)現(xiàn)其可抑制血小板,刺激單核細(xì)胞MCP-1信使RNA(messenger RNA,mRNA)、基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)-9 mRNA的轉(zhuǎn)錄,減少M(fèi)CP-1和MMP-9的生成,繼而抑制粥樣斑塊的形成。Zhao等[36]體外實(shí)驗(yàn)發(fā)現(xiàn)及臨床試驗(yàn)藥物P2Y12受體拮抗劑AR-C69931與雙嘧達(dá)莫組合及AR- C69931、雙嘧達(dá)莫與阿司匹林組合可抑制MPA的形成。
3.4" 通過抑制PLA緩解KD血管炎癥反應(yīng)的可能方案
糖皮質(zhì)激素已被廣泛應(yīng)用于難治性KD的治療。血小板上存在糖皮質(zhì)激素受體-α,潑尼松可通過調(diào)節(jié)糖皮質(zhì)激素受體-α抑制血小板聚集[37];也可通過調(diào)節(jié)P2Y12受體信號傳導(dǎo)抑制血小板活化及血小板與單核細(xì)胞的相互作用。Liverani等[38]證明潑尼松可抑制血小板黏附和PLA形成,并可能通過選擇性調(diào)節(jié)P2Y12信號通路阻斷血小板與單核細(xì)胞的相互作用,減弱KD炎癥反應(yīng)。
英夫利昔單抗是一種TNF-α單克隆抗體,臨床上用于難治性KD的治療。Manfredi等[20]觀察到TNF-α通過與膜TNF-α受體1和TNF-α受體2相互作用激活血小板,通過P-選擇素依賴性途徑激活白細(xì)胞。血小板主要通過其表面的P-選擇素與白細(xì)胞形成PLA,促進(jìn)或調(diào)控免疫反應(yīng)。理論上,靶向結(jié)合P-選擇素可減少PLA的形成。英夫利昔單抗通過這一機(jī)制調(diào)節(jié)PLA的形成。Nemmar等[39]通過中和P-選擇素分析其在血小板-白細(xì)胞相互作用中的機(jī)制,P-選擇素中和后可有效阻止PLA的形成。一項(xiàng)體外實(shí)驗(yàn)表明抑制P-選擇素(減少85%)和PSGL-1(減少87%)可顯著降低MPA水平[30]。Crizanlizumab是一種人源化抗P-選擇素單克隆抗體,被批準(zhǔn)用于治療16歲以上鐮狀細(xì)胞病患兒的血管閉塞危象[40];理論上,其可通過靶向抑制P-選擇素減少PLA的生成,進(jìn)而減輕KD患兒的炎癥反應(yīng)。但目前尚無Crizanlizumab用于KD患兒的病例報(bào)告。
阿昔單抗是一種GPⅡb/GPⅢa單克隆抗體,已用于KD合并巨大冠脈瘤和血栓形成患兒的治療,理論上可減少PLA的生成,但目前研究結(jié)果較為有限。GPⅡb/GPⅢa抑制劑依替巴肽有降低PLA的作用。體外實(shí)驗(yàn)中不同溫度、不同血小板刺激物導(dǎo)致PLA下降的亞型(MPA/NPA)也不同,具體機(jī)體尚不清楚[41]。
4 "小結(jié)與展望
PLA在KD發(fā)病機(jī)制中扮演多種角色,不僅參與炎癥反應(yīng),還與CAL形成有關(guān),可為治療方案的選擇提供依據(jù)。目前,PLA與KD直接相關(guān)的動物實(shí)驗(yàn)、細(xì)胞實(shí)驗(yàn)及臨床試驗(yàn)仍較少。積極開展相關(guān)研究探索PLA作為KD診斷標(biāo)志物和治療靶點(diǎn)的可行性、構(gòu)建PLA動物模型探索其在KD血管炎中的作用機(jī)制,對深入理解KD發(fā)病機(jī)制具有重要意義。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" MCCRINDLE B W, ROWLEY A H, NEWBURGER J W, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927–e999.
[2]"" DEL PRINCIPE D, PIETRAFORTE D, GAMBARDELLA L, et al. Pathogenetic determinants in Kawasaki disease: The haematological point of view[J]. J Cell Mol Med, 2017, 21(4): 632–639.
[3]"" SHULMAN S T, ROWLEY A H. Kawasaki disease: Insights into pathogenesis and approaches to treatment[J]. Nat Rev Rheumatol, 2015, 11(8): 475–482.
[4]"" LUDWIG N, HILGER A, ZARBOCK A, et al. Platelets at the crossroads of pro-inflammatory and resolution pathways during inflammation[J]. Cells, 2022, 11(12): 1957.
[5]"" NAVEENKUMAR S K, TAMBRALLI A, FONSECA B M, et al. Low ectonucleotidase activity and increased neutrophil-platelet aggregates in patients with antiphospholipid syndrome[J]. Blood, 2024, 143(12): 1193–1197.
[6]"" SCHULTE C, PIEPER L, FRYE M, et al. Antiplatelet drugs do not protect from platelet-leukocyte aggregation in coronary artery disease[J]. J Thromb Haemost, 2024, 22(2): 553–557.
[7]"" ALLEN N, BARRETT T J, GUO Y, et al. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease[J]. Atherosclerosis, 2019, 282: 11–18.
[8]"" HOTTZ E D, MARTINS-GON?ALVES R, PALHINHA L, et al. Platelet-monocyte interaction amplifies thrombo- inflammation through tissue factor signaling in COVID-19[J]. Blood Adv, 2022, 6(17): 5085–5099.
[9]"" SCHERLINGER M, RICHEZ C, TSOKOS G C, et al. The role of platelets in immune-mediated inflammatory diseases[J]. Nat Rev Immunol, 2023, 23(8): 495–510.
[10] ORENSTEIN J M, SHULMAN S T, FOX L M, et al. Three linked vasculopathic processes characterize Kawasaki disease: A light and transmission electron microscopic study[J]. PLoS One, 2012, 7(6): e38998.
[11] BURNS J C. The etiologies of Kawasaki disease[J]. """J Clin Invest, 2024, 134(5): e176938.
[12] NOVAL RIVAS M, ARDITI M. Kawasaki disease: Pathophysiology and insights from mouse models[J]. Nat Rev Rheumatol, 2020, 16(7): 391–405.
[13] PHILIP S, JINDAL A, KRISHNA KUMAR R. An update on understanding the pathophysiology in Kawasaki disease: Possible role of immune complexes in coronary artery lesion revisited[J]. Int J Rheum Dis, 2023, 26(8): 1453–1463.
[14] CHEN Y, YANG M, ZHANG M, et al. Single-cell transcriptome reveals potential mechanisms for coronary artery lesions in Kawasaki disease[J]. Arterioscler Thromb Vasc Biol, 2024, 44(4): 866-882.
[15] KAUSHANSKY K. Thrombopoiesis[J]. Semin Hematol, 2015, 52(1): 4–11.
[16] KRAL J B, SCHROTTMAIER W C, SALZMANN M, et al. Platelet interaction with innate immune cells[J]. Transfus Med Hemother, 2016, 43(2): 78–88.
[17] STARK K. Platelet-neutrophil crosstalk and netosis[J]. Hemasphere, 2019, 3(Suppl): 89–91.
[18] PAPAYANNOPOULOS V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018, 18(2): 134–147.
[19] ZHANG Y, JIA C, GUO M, et al. Platelet-monocyte aggregate instigates inflammation and vasculopathy in Kawasaki disease[J]. Adv Sci, 2025, 12(5): e2406282.
[20] MANFREDI A A, BALDINI M, CAMERA M, et al. Anti-TNFα agents curb platelet activation in patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2016, 75(8): 1511–1520.
[21] LEE Y, SCHULTE D J, SHIMADA K, et al. Interleukin- 1β is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease[J]. Circulation, 2012, 125(12): 1542–1550.
[22] ATICI A E, NOVAL RIVAS M, ARDITI M. The central role of interleukin-1 signalling in the pathogenesis of Kawasaki disease vasculitis: Path to translation[J]. Can J Cardiol, 2024, 40(12): 2305–2320.
[23] UENO K, NOMURA Y, MORITA Y, et al. Circulating platelet-neutrophil aggregates play a significant role in Kawasaki disease[J]. Circ J, 2015, 79(6): 1349–1356.
[24] VIGNESH P, RAWAT A, SHANDILYA J K, et al. Monocyte platelet aggregates in children with Kawasaki disease-A preliminary study from a Tertiary Care Centre in North-West India[J]. Pediatr Rheumatol Online J, 2021, 19(1): 25.
[25] KOCATüRK B, LEE Y, NOSAKA N, et al. Platelets exacerbate cardiovascular inflammation in a murine model of Kawasaki disease vasculitis[J]. JCI Insight, 2023, 8(14): e169855.
[26] PORRITT R A, ZEMMOUR D, ABE M, et al. NLRP3 inflammasome mediates immune-stromal interactions in vasculitis[J]. Circ Res, 2021, 129(9): e183–e200.
[27] ROLFES V, RIBEIRO L S, HAWWARI I, et al. Platelets fuel the inflammasome activation of innate immune cells[J]. Cell Rep, 2020, 31(6): 107615.
[28] COGNASSE F, DUCHEZ A C, AUDOUX E, et al. Platelets as key factors in inflammation: Focus on CD40L/CD40[J]. Front Immunol, 2022, 13: 825892.
[29] HALLY K, FAUTEUX-DANIEL S, HAMZEH-COGNASSE H, et al. Revisiting platelets and toll-like receptors (TLRs): At the interface of vascular immunity and thrombosis[J]. Int J Mol Sci, 2020, 21(17): 6150.
[30] ROLLING C C, SOWA M A, WANG T T, et al. P2Y12 inhibition suppresses proinflammatory platelet-monocyte interactions[J]. Thromb Haemost, 2023, 123(2): 231–244.
[31] NOVAL RIVAS M, KOCATüRK B, FRANKLIN B S, et al. Platelets in Kawasaki disease: Mediators of vascular inflammation[J]. Nat Rev Rheumatol, 2024, 20(8): 459–472.
[32] KLINKHARDT U, BAUERSACHS R, ADAMS J, et al. Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease[J]. Clin Pharmacol Ther, 2003, 73(3): 232–241.
[33] SANTOS R L D, MARTINS M R, TAVARES V L, et al. Analysis of the expression of cytokines and chemokines, platelet-leukocyte aggregates, sCD40L and sCD62P in cutaneous melanoma[J]. J Surg Oncol, 2024, 130(4): 869–881.
[34] THOMAS M R, OUTTERIDGE S N, AJJAN R A, et al. Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model[J]. Arterioscler Thromb Vasc Biol, 2015, 35(12): 2562–2570.
[35] WEYRICH A S, KRAISS L W, PRESCOTT S M, et al. New roles for an old drug: Inhibition of gene expression by dipyridamole in platelet-leukocyte aggregates[J]. Trends Cardiovasc Med, 2006, 16(3): 75–80.
[36] ZHAO L, BATH P, HEPTINSTALL S. Effects of combining three different antiplatelet agents on platelets and leukocytes in whole blood in vitro[J]. Br J Pharmacol, 2001, 134(2): 353–358.
[37] MORAES L A, PAUL-CLARK M J, RICKMAN A, et al. Ligand-specific glucocorticoid receptor activation in human platelets[J]. Blood, 2005, 106(13): 4167–4175.
[38] LIVERANI E, BANERJEE S, ROBERTS W, et al. Prednisolone exerts exquisite inhibitory properties on platelet functions[J]. Biochem Pharmacol, 2012, 83(10): 1364–1373.
[39] NEMMAR A, HOET P H, VANDERVOORT P, et al. Enhanced peripheral thrombogenicity after lung inflammation is mediated by platelet-leukocyte activation: Role of P-selectin[J]. J Thromb Haemost, 2007, 5(6): 1217–1226.
[40] ATAGA K I, KUTLAR A, KANTER J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease[J]. N Engl J Med, 2017, 376(5): 429–439.
[41] PLUTA K, POR?BSKA K, URBANOWICZ T, et al. Platelet-leucocyte aggregates as novel biomarkers in cardiovascular diseases[J]. Biology, 2022, 11(2): 224.
(修回日期:2025–03–27)
基金項(xiàng)目:首都兒科研究所臨床基礎(chǔ)結(jié)合專項(xiàng)項(xiàng)目(JHYJ-202503)
通信作者:李曉惠,電子信箱:lxhmaggie@pumc.edu.cn