中圖分類號(hào):S66 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1002-2910(2025)03-0040-08
Progress in the study of factors affecting fruit firmness
XUE Zhizhan 1,2 ,RAN Jianglin 1,2 ,F(xiàn)ENG Chen2,3,4,DUANXuwei2.3,4,WANGJing2,3,4,ZHENGBaojiangl
(1.Collegeofifeiences,NortheastForestyUniversityHarbin,Helongjiang6,hina;iuteof ForestryandPomology/BeijingAcademyofAgricultureandForestrySciences,Beijing10oo93,China;3.College ofLandscape Architecture,Beijing University ofAgriculture/National Forestry Grassland Cherry Engineering TechnologyCenter,BeijingOo93,China;4.NortheastAsiaBiodiversityResearchCenter,Harbin,Heilongjang 150040,China)
Abstract:Fruit firmness is acritical indicatoroffruit maturity,directly influencing fruit quality, transportationcosts,and shelf life,thereby determining the fruit'scommercial value.Consequently,itis essentialto elucidate andcontrol the factors thataffect fruit firmness.This paper reviewed the physiological and biochemical processes,geneticbasis,phytohormones (IAA,ABA,GA,ETHandBR),ndtransription factors (NAC,MADS,MYB)associated with fruit firmness.The various factors that regulate fruit firmness were summarized.
Key words:fruit firmness;physiology and biochemistry;phytohormones;transcription factors; genetic breeding
果實(shí)硬度是決定鮮食果實(shí)商品價(jià)值的重要因素。果實(shí)硬度的下降導(dǎo)致其不耐貯存和運(yùn)輸,保質(zhì)" 期縮短,從而增加了經(jīng)濟(jì)損失和浪費(fèi)[1]。
果實(shí)硬度的變化受到多種因素的影響。隨著生物技術(shù)的發(fā)展,科學(xué)家們通過基因組組裝、數(shù)量性狀定位(QTL)和全基因組關(guān)聯(lián)分析(GWAS),揭示了控制果實(shí)硬度性狀的遺傳位點(diǎn),這為發(fā)現(xiàn)控制果實(shí)硬度的分子標(biāo)記提供了幫助[2]。多組學(xué)分析進(jìn)一步識(shí)別了調(diào)控果實(shí)硬度和軟化的關(guān)鍵基因,闡述了調(diào)控果實(shí)硬度軟化的過程[34]。基因編輯技術(shù)已在多種水果中應(yīng)用于品種改良[5]。筆者總結(jié)果實(shí)硬度的研究進(jìn)展,以期為為生產(chǎn)提供參考。
1影響果實(shí)硬度的生理基礎(chǔ)
果實(shí)的外層果皮包括角質(zhì)層和表皮層,起到支撐和保護(hù)果實(shí)的作用。中層或內(nèi)層果皮是主要的可食用部分,主要有薄壁細(xì)胞和維管組織構(gòu)成,結(jié)構(gòu)變化會(huì)影響果實(shí)硬度[6,7]。
1.1角質(zhì)層對(duì)果實(shí)硬度的影響
角質(zhì)層結(jié)構(gòu)和組成是果實(shí)硬度研究的關(guān)鍵。研究表明甜櫻桃和蘋果中特定基因PaCER5、PaLACS9、PaLTPG1、PaWBC11和MdOSC1參與了角質(zhì)層的合成,延緩果實(shí)的軟化[8]。藍(lán)莓果實(shí)角質(zhì)層的厚度影響果實(shí)的軟化[9]。
1.2中層或內(nèi)層對(duì)果實(shí)硬度的影響
研究發(fā)現(xiàn)桃果實(shí)中毛細(xì)維管束腔體擴(kuò)大,內(nèi)含物多糖增加,導(dǎo)致果實(shí)硬度下降[10]。葡萄果實(shí)維管束木質(zhì)部導(dǎo)管壁的瓦解,水分運(yùn)輸速率下降,導(dǎo)致果實(shí)硬度下降[1]。藍(lán)莓果實(shí)中央維管束和心皮主維管束周圍的薄壁細(xì)胞和果肉細(xì)胞的破裂,導(dǎo)致水分運(yùn)輸速率和果肉硬度下降[12]。蘋果和弼猴桃發(fā)育后期木質(zhì)部的瓦解與果實(shí)硬度下降密切相關(guān)[13,14]。
2影響果實(shí)硬度的生化基礎(chǔ)
2.1 纖維素
纖維素對(duì)維持細(xì)胞壁的穩(wěn)定性具有重要作用。纖維素的變化對(duì)果實(shí)硬度也會(huì)產(chǎn)生影響,山楂的發(fā)育后期纖維素含量下降導(dǎo)致果實(shí)硬度下降[15]。桃果實(shí)中幾丁質(zhì)類酶PpCTL1活性升高與果實(shí)發(fā)育過程中纖維素的含量下降趨勢(shì)一致[16,17]。內(nèi)切 β-1,4-D- 葡聚糖酶(EGase)在轉(zhuǎn)錄水平的積累和酶活性的提高促使果實(shí)軟化。
2.2 半纖維素
半纖維素約占細(xì)胞壁生物量的1/3,通過與果膠或木質(zhì)素的相互作用來加強(qiáng)細(xì)胞壁的穩(wěn)定性[18]。蘋果果實(shí)發(fā)育后期半纖維素含量下降導(dǎo)致細(xì)胞壁結(jié)構(gòu)降解,果實(shí)硬度降低[19]。
木葡聚糖內(nèi)轉(zhuǎn)葡糖苷酶/水解酶(XTH)通過水解木葡聚糖來降低細(xì)胞壁中半纖維含量,影響果實(shí)硬度。甜櫻桃全基因組鑒定發(fā)現(xiàn)PavXTH14和PavXTH15的表達(dá)使果實(shí)中半纖維素含量下降,果實(shí)硬度下降[20]。蘋果中MdXTHB基因過表達(dá)可加速蘋果果實(shí)軟化[21]。柿子中基因DkXTHI在番茄中異源表達(dá)增加了果實(shí)的細(xì)胞壁和細(xì)胞間隙的密度,延遲果實(shí)的軟化;相反,DkXTH8的過表達(dá)促進(jìn)番茄果實(shí)的軟化[22.23]。XTH基因在草莓果實(shí)軟化過程也具有調(diào)節(jié)作用[24]。這些結(jié)果說明不同的XTH在果實(shí)發(fā)育的過程和軟化過程中發(fā)揮不同的作用。
2.3 果膠
果膠是一種富含D-半乳糖醛酸的陰離子多糖,在植物的初生細(xì)胞壁和中間片層最為豐富[25]。其水解通常由果膠甲酯酶(PME)、多聚半乳糖醛酸酶(PG)果膠裂解酶(PL)、半乳聚糖酶(β-Gase)、鼠李半乳糖醛酸聚糖裂解酶等相互作用,使細(xì)胞壁結(jié)構(gòu)相對(duì)松散,促進(jìn)果實(shí)軟化,硬度下降[26]。
多聚半乳糖醛酸酶(PG)在調(diào)控果實(shí)軟化過程中扮演著重要角色。通過抑制桃PpPG21、PpPG22的表達(dá),PG酶的活性顯著降低,果實(shí)的表皮細(xì)胞更加緊密,果實(shí)硬度提高[27]。草莓基因FaPG1、FaPG2的沉默會(huì)提高果實(shí)硬度[28]。甜櫻桃 PaνPG38[20] 和無(wú)花果FcPG12[29]的超表達(dá),果實(shí)的果膠含量下降,果實(shí)硬度降低。果膠甲酯酶(PME)在草莓[30]成熟過程中水解果膠,果膠局部pH降低,加速果膠溶解和果實(shí)軟化。在杏中隨著PaPME1轉(zhuǎn)錄水平增加,果實(shí)逐漸軟化[31]。
果膠裂解酶(PL)通過催化β消除反應(yīng),裂解多聚半乳糖醛酸的 ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ 糖苷鍵,降解去酯化果膠。抑制草莓的FaPLC和FaEG3基因表達(dá),果實(shí)硬度增加[32];葡萄VvPL1基因在番茄中異源超表達(dá),PL活性增高,水溶性果膠含量升高,番茄果實(shí)硬度下降[33]。沉默桃中的PpePL1、PpePL15后,延緩了果實(shí)硬度下降[34]。
β -半乳糖苷酶是一種水解酶,能夠催化乳糖中的β-1,4- 糖苷鍵的斷裂,將乳糖分解為葡萄糖和半乳糖。抑制草莓中 β- 半乳糖苷酶基因(FaβGal4),轉(zhuǎn)基因株系的成熟果實(shí)中果膠與細(xì)胞壁的共價(jià)結(jié)合和半乳糖含量提高,果實(shí)硬度提高約 30%[35] 。相反,番茄中異源過表達(dá)柿子 ?β- 半乳糖苷酶基因DkGAL1,轉(zhuǎn)基因番茄細(xì)胞間隙擴(kuò)大,細(xì)胞緊密性減少,果實(shí)硬度降低[36]。
較高的鼠李糖半乳糖醛酸聚糖(RG-I)含量和分枝程度增加了細(xì)胞粘附性,降低了細(xì)胞壁孔隙率,保持了果實(shí)硬度[37]。抑制草莓中降解鼠李半乳糖醛酸聚糖裂解酶基因(FaRGLyase1)的表達(dá),果實(shí)細(xì)胞壁內(nèi)果中間片層成分更加完整,果實(shí)更結(jié)實(shí)[38]。
2.4 木質(zhì)素
果實(shí)中木質(zhì)素主要存在于皮層和果肉的維管組織中[39]。枇杷[40]中EjHAT1基因可以抑制木質(zhì)素單體合成基因EjCAD5啟動(dòng)子的活性,降低肉桂醇脫氫酶(CAD)活性和果實(shí)木質(zhì)化程度,從而降低果實(shí)硬度。草莓[41]果實(shí)中木質(zhì)素合成相關(guān)基因FaPOD27通過調(diào)節(jié)木質(zhì)素合成單體G(愈創(chuàng)木基)和S(紫丁香基)的比例,影響果實(shí)的硬度。
2.5擴(kuò)張蛋白
擴(kuò)張蛋白(Exp)是一種非酶細(xì)胞壁蛋白,通過破壞纖維素微原纖維和半纖維素之間的氫鍵,促進(jìn)果實(shí)軟化。EXP表達(dá)含量的差異導(dǎo)致葡萄[42]的硬度差異。草莓中FaEXP2和李中PsEXPA10基因隨著果實(shí)的軟化表達(dá)含量逐漸上升[43,44]。
3果實(shí)硬度的遺傳位點(diǎn)
果實(shí)硬度是重要的數(shù)量性狀,數(shù)量性狀基因座(QTL)分析可以找到果實(shí)硬度相關(guān)基因,相關(guān)位點(diǎn)可與果實(shí)硬度緊密連鎖開發(fā)分子標(biāo)記用于輔助育種。通過BSA-seq和QTL聯(lián)合分析發(fā)現(xiàn)蘋果LG16上的果膠乙酰酯酶(MdPAE10),沉默后可提高蘋果肉緊致度和脆度[45]。甜櫻桃全基因組關(guān)聯(lián)研究發(fā)現(xiàn),果皮的脆度與果肉硬度遺傳位點(diǎn)主要在LG4號(hào)染色體上[4,46]。在3個(gè)甜櫻桃的雜交后代群體中同樣在LG4上鑒定到果實(shí)硬度相關(guān)基因,并推測(cè)植物細(xì)胞壁擴(kuò)張蛋白(EXP)和激素信號(hào)通路相關(guān)基因與果實(shí)硬度相關(guān)。甜櫻桃雷尼和薩米特的雜交后代中BSA分析,在LG6號(hào)染色體上發(fā)現(xiàn)了PavSCPL基因,該基因外顯子的 5.2kb 的缺失導(dǎo)致了果實(shí)硬度的增加[47]。在木瓜、草莓、山楂等中均找到與果實(shí)硬度相關(guān)的QTL位點(diǎn),這為挖掘果實(shí)硬度關(guān)鍵基因和分子標(biāo)記輔助育種奠定基礎(chǔ)[48-50]。不同類型果實(shí)硬度QTL定位的候選區(qū)間以及候選基因如表1。
4植物激素及相關(guān)通路對(duì)果實(shí)硬度的影響
4.1 乙烯
乙烯是呼吸躍變果實(shí)成熟的催化劑。S-腺苷-L-蛋氨酸合成酶(SAMS)、ACC合酶(ACS)和ACC氧化酶(ACO)是合成乙烯的關(guān)鍵酶[51]。乙烯信號(hào)傳導(dǎo)的關(guān)鍵包括內(nèi)質(zhì)網(wǎng)(ER)膜中的乙烯受體家族、CTR1蛋白激酶、生物活性未知的跨膜蛋白(EIN2)、轉(zhuǎn)錄因子EIN3、EIL、ERF[52]。
乙烯合成通路中基因結(jié)構(gòu)的變異,會(huì)影響果實(shí)硬度。蘋果中乙烯響應(yīng)因子ERF4編碼區(qū)的突變(C-G)會(huì)導(dǎo)致ERF3表達(dá)的降低,促進(jìn)乙烯的產(chǎn)生和果實(shí)硬度下降;同時(shí)ERF4突變會(huì)導(dǎo)致MdTPL4蛋白遏制MdERF4作用下降,促進(jìn)果實(shí)成熟和軟化。MdERF3、MdERF118啟動(dòng)子8bp、3bp的缺失分別破壞了與MdDOF5.3、MdRAVL1的結(jié)合,促進(jìn)了MdPGLR3、MdPME2和MdACO4的表達(dá),果實(shí)硬度下降[53,54]。
乙烯合成通路基因含量的變化會(huì)影響細(xì)胞壁降解相關(guān)酶的活性,影響果實(shí)硬度。香蕉中乙烯合成通路轉(zhuǎn)錄因子MaERF11與組蛋白脫乙酰酶MaHDA1發(fā)生相互作用,顯著加強(qiáng)了MaERF11介導(dǎo)的MaACO1和MaEXP2、MaEXP7和MaEXP8的轉(zhuǎn)錄抑制,負(fù)調(diào)控香蕉的成熟[55]。木瓜中發(fā)現(xiàn)CpERF9直接與細(xì)胞壁修飾基因CpPME1/2和CpPG5的啟動(dòng)子結(jié)合,抑制CpPME1/2和CpPG5基因的活性,提高果實(shí)硬度[56]。
4.2 脫落酸
脫落酸(ABA)是調(diào)控非呼吸躍變果實(shí)成熟的關(guān)鍵激素[57]。ABA合成途徑中,D-1-脫氧木酮糖5-磷酸(DXS)、玉米黃質(zhì)環(huán)氧化酶(ZEP)、9-順式環(huán)氧類胡蘿卜素脫氫酶(NCED)起關(guān)鍵作用[58]。甜櫻桃中ABA可通過增加PavDof6的表達(dá)和抑制PavDof2/15的表達(dá)來促進(jìn)果實(shí)軟化[59]。甜櫻桃中編碼ABA降解酶的PacCYP707A2基因沉默,促進(jìn)ABA的積累以及PacNCED1轉(zhuǎn)錄水平的上調(diào),從而導(dǎo)致PacACO1的上調(diào)和果實(shí)硬度的降低[60]。
4.3 生長(zhǎng)素
生長(zhǎng)素反應(yīng)因子(ARF)、生長(zhǎng)素/吲哚-3-乙酸(Aux/IAA)、生長(zhǎng)素小分子上調(diào)RNA(SAUR)和生長(zhǎng)素應(yīng)答的GH3基因家族在果實(shí)發(fā)育過程中發(fā)揮著重要的作用[61]。桃中過表達(dá)生長(zhǎng)素相關(guān)基因PpSAUR43 ,可抑制果實(shí)的軟化。酵母雙雜交和雙分子熒光互補(bǔ)表明 PpSAUR43 可能通過抑制PpCMB1(PpMADS2)蛋白的功能來抑制果實(shí)成熟[62];生長(zhǎng)素轉(zhuǎn)導(dǎo)基因PpIAA1可與乙烯合成基因 PpACSI 啟動(dòng)子結(jié)合并激活其表達(dá),促進(jìn)果實(shí)軟化。桃中過表達(dá)PpIAAI ,會(huì)通過增加乙烯生成,促進(jìn)果實(shí)軟化[63]。在桃發(fā)育后期生長(zhǎng)素合成基因 PpYUClI ,是控制果實(shí)硬度的候選基因[64]。草莓[65]外源噴灑生長(zhǎng)素,其擴(kuò)張蛋白(EXP)的活性下降,延緩草莓果實(shí)軟化。
4.4油菜素內(nèi)酯
油菜素內(nèi)酯(BR)在果實(shí)成熟過程中發(fā)揮重要作用[66]。研究發(fā)現(xiàn),外源施加BR能抑制桃中果膠降解酶活性(PpPME1/3、PpPG、PpARF2和PpGAL2/l6 ),延緩果實(shí)軟化[67]。香蕉中MaBZR1/2可以通過特異性結(jié)合其啟動(dòng)子中的CGTGT/CG序列來抑制乙烯生物合成基因(MaACS1、MaACO13、MaACO14)的轉(zhuǎn)錄,延緩果實(shí)成熟[68]。柿成熟過程中,DkBZR1通過與BR元件(BRRE)結(jié)合,抑制DkEGase1和DkACS1的轉(zhuǎn)錄,抑制成熟;而DkBZR2通過與 DkPLI,DkACO2 基因啟動(dòng)子上E-box基序結(jié)合,加速果實(shí)軟化[69]。
4.5 赤霉素
赤霉素(GA)在種子的萌發(fā)、成熟和誘導(dǎo)開花和植物的生長(zhǎng)發(fā)育中具有重要的作用[70]。研究發(fā)現(xiàn)外源噴灑赤霉素(GA3),柿中的DkNAC24、DkERF38、DkMYB22分別直接調(diào)控香葉基二磷酸合酶DkGGPS1、賴氨酸組氨酸轉(zhuǎn)運(yùn)蛋白DkLHT1和果糖-二磷酸醛縮酶DkFBA1,分別導(dǎo)致類胡蘿卜素合成的抑制、乙烯前體的向外運(yùn)輸以及果糖和葡萄糖的消耗,延緩果實(shí)軟化[71]。柿中GA信號(hào)轉(zhuǎn)導(dǎo)蛋白DkDELLA1/2增強(qiáng)了DkNAC9對(duì)DkEGase1啟動(dòng)子的反式激活作用,促進(jìn)了柿果實(shí)軟化[72]。植物激素信號(hào)傳導(dǎo)通路關(guān)鍵基因的變化和激素之間的相互調(diào)控,可影響乙烯的產(chǎn)生,調(diào)控果實(shí)硬度(圖1)。
5轉(zhuǎn)錄因子對(duì)果實(shí)硬度的影響
5.1MADS-box轉(zhuǎn)錄因子
MADS-box家族基因廣泛存在許多植物中,在果實(shí)硬度方面也有一定作用。甜櫻桃[73]PaMADS7正調(diào)控PaPG1的基因表達(dá),影響果實(shí)硬度。桃中沉默MADS-box家族基因的亞家族成員PrupeFUL4(AP1/FUL),抑制PrupeACO1和PrupeACS2的表達(dá),延遲果實(shí)軟化[74,75];草莓中沉默F(xiàn)aMADS1會(huì)促進(jìn)基因FaPG、FaXTH表達(dá),加速果實(shí)軟化。
5.2 NAC轉(zhuǎn)錄因子
NAC轉(zhuǎn)錄因子在植物發(fā)育和脅迫反應(yīng)中發(fā)揮重要作用,也可以參與果實(shí)的成熟過程,影響果實(shí)的硬度。桃中兩個(gè)相鄰的轉(zhuǎn)錄因子PpNAC1、PpNAC5可以激活乙烯合成相關(guān)基因PpACS1、PpACO1和細(xì)胞壁降解相關(guān)酶PpCEL3、PpPME13、PpPG1/2、PpXET23/33促進(jìn)果實(shí)成熟與軟化[7。香蕉中MaNAC1、MaNAC2可以抑制MaERF11進(jìn)而抑制乙烯的產(chǎn)生,提高果實(shí)硬度[77]。沉默甜櫻桃基因PavNAC56和草莓基因FaRIF(FaNAC035),果實(shí)硬度增強(qiáng)[78,79]。
注:箭頭表示激活,箭頭末端變鈍表示抑制;虛線表示間接對(duì)基因的促進(jìn)/抑制。
5.3 MYB轉(zhuǎn)錄因子
MYB是ABA依賴性調(diào)控過程的轉(zhuǎn)錄因子,在果實(shí)成熟的調(diào)控研究較少。近期研究發(fā)現(xiàn),MYB轉(zhuǎn)錄因子在調(diào)控果實(shí)硬度方面也發(fā)揮著重要作用。草莓中過表達(dá)FvMYB79可提高FvPME38的轉(zhuǎn)錄水平,導(dǎo)致果實(shí)硬度下降[80]。木瓜CpMYB1、CpMYB2抑制細(xì)胞壁降解酶基因CpPME1、CpPME2、CpPG5的啟動(dòng)子,延緩果實(shí)軟化[81]。藍(lán)莓中VcMYB30與蠟質(zhì)合成基因VcKCS1、VcKCS11、VcLACS8、VcKCR1啟動(dòng)子結(jié)合,促進(jìn)藍(lán)莓表面果實(shí)蠟質(zhì)的積累,延緩果實(shí)軟化[82]。香蕉中MaMYB4負(fù)調(diào)控香蕉的成熟。MaMYB4被E3連接酶MaBRG2/3的蛋白質(zhì)泛素化,隨著果實(shí)的成熟而減少[83]。MaMYB4在番茄中的異源表達(dá)延遲了番茄果實(shí)的成熟,并伴有乙烯生物合成(SIACS2)和細(xì)胞壁修飾基因(SIXTH5、SIPG2、SIEXP1)的下調(diào)。
5.4其他轉(zhuǎn)錄子
香蕉MaTCP5和MaTCP20促進(jìn)了MaXTH10/11的轉(zhuǎn)錄,促進(jìn)香蕉果實(shí)軟化[84];草莓中FvWRKY48的過表達(dá)和RNAi沉默,影響細(xì)胞壁酶FvPLA的活性,從而影響果實(shí)硬度[85]。甜櫻桃果實(shí)中過表達(dá)轉(zhuǎn)錄因子PavDof6和PavDof2/15,細(xì)胞壁降解相關(guān)基因PavQRT3、PavPME44、PavXTH31和PavXTH26的上調(diào)和下調(diào),分別導(dǎo)致甜櫻桃果實(shí)硬度降低和升高[58]。草莓中通過瞬時(shí)表達(dá)和基因沉默 FνTCP9 ,可以影響ABA合成通路基因的表達(dá),進(jìn)而改變ABA含量,果實(shí)硬度下降和上升[86]。桃中 PpHB.G7 與乙烯合成相關(guān)基因 PpACSI 和 PpACOI 結(jié)合并刺激其表達(dá),促進(jìn)果實(shí)軟化[87]??傊?,不同類型的轉(zhuǎn)錄因子通過調(diào)節(jié)激素信號(hào)通路基因或細(xì)胞壁代謝相關(guān)基因,從而影響果實(shí)的硬度。
6小結(jié)與討論
果實(shí)硬度的變化是一個(gè)復(fù)雜的過程。細(xì)胞壁的結(jié)構(gòu)變化和代謝過程中的蛋白質(zhì)調(diào)節(jié)是影響果實(shí)硬度的直接因素。細(xì)胞壁的主要成分(纖維素、半纖維素、果膠和木質(zhì)素)以及它們的合成和降解酶,共同決定了細(xì)胞壁的穩(wěn)定性和果實(shí)的硬度。乙烯、脫落酸、生長(zhǎng)素、赤霉素和油菜素內(nèi)酯等激素在果實(shí)成熟過程中起到關(guān)鍵作用。這些激素合成、運(yùn)輸和傳導(dǎo)過程中的相關(guān)基因通過直接或間接影響細(xì)胞壁代謝相關(guān)酶的活性來調(diào)節(jié)果實(shí)硬度。越來越多的轉(zhuǎn)錄因子通過調(diào)控與果實(shí)軟化相關(guān)的下游靶基因的表達(dá),對(duì)果實(shí)硬度的調(diào)控起到一定作用。有些轉(zhuǎn)錄因子通過影響激素水平調(diào)控果實(shí)硬度。
隨著基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)和代謝組學(xué)等的發(fā)展,研究人員能夠發(fā)現(xiàn)控制果實(shí)硬度的新基因和次級(jí)代謝物,解析轉(zhuǎn)錄因子與激素及其他蛋白質(zhì)之間的相互作用網(wǎng)絡(luò),以全面理解它們?nèi)绾喂餐{(diào)控果實(shí)硬度?;蚓庉嫾夹g(shù)應(yīng)用的廣泛,可以完善其在果實(shí)硬度調(diào)控中的應(yīng)用。筆者總結(jié)的是果實(shí)硬度形成的一般規(guī)律,同一類型的基因在不同物種中可能發(fā)揮不同甚至相反的作用,利用基因工程改造果實(shí)硬度需要足夠的前期實(shí)驗(yàn)。通過研究,我們可以通過生物信息技術(shù)和現(xiàn)代生物技術(shù)相結(jié)合,從而為果實(shí)品質(zhì)的改良提供更加精確的策略。
參考文獻(xiàn):
[1]POPOVAV,PETKOVAZ,MAZOVAN,etal.ChemicalComposition Assessment of Structural Parts (Seeds,Peel,Pulp)ofPhysalis alkekengiL.[J].Fruits Molecules,2022,27(18):5787.
[2]LIU Z,LIANG T,KANG C.Molecular bases of strawberry fruitquality traits:Advances,challenges,and opportunities[J].PlantPhysiol,2023,193(2):900-914.
[3]SOUNDARARAJANP,WONSY,KIMJS.Insight on RosaceaeFamily with Genome Sequencing and Functional GenomicsPerspective[J].Biomed Res Int,2019,7519687.
[4]CAIL,QUERO-GARCIAJ,BARRENECHET,et al.A fruitfirmness QTL identified on linkage group 4in sweet cherry(Prunus avium L.)is associated with domesticated and bredgermplasm[J].SciRep,2019,9(1):5008.
[5]ZHOUJ,LID,WANG G,et al.Application and future perspectiveof CRISPR/Cas9 genome editing in fruit crops[J].JIntegr PlantBiol,2020,62(3):269-286.
[6]JENTZSCHM,ALBIEZV,KARDAMAKISTC,etal.Analysisof the pel structure of different Citrus spp.Vialight microscopy,SEM and μCT with manualand automatic segmentation[J].SoftMatter,2024,20(12):2804-2811.
[7]ROMANOVMS,BOBROVAV,WIJESUNDARADS,etal.Pericarp development and fruit structure in borassoid palms(Arecaceae-Coryphoideae-Borasseae)[J].Ann Bot,2011,108(8):1489-1502.
[8]GARCIA-CORONADO H,TAFOLLA- ARELLANO JC,HERNANDEZ-ONATE MA,et al.Molecular Biology,Composition and Physiological Functions of Cuticle Lipids inFleshyFruits[J].Plants(Basel),2022,11(9):1133.
[9]CHUW,GAOH,CHENH,et al.Effects of cuticular wax on thepostharvest quality of blueberry fruit[J].Food Chem,2018(239):68-74.
[10]張珺,劉志民,馬煥普,等.桃果實(shí)維管束的分布及解剖研究[J].園藝學(xué)報(bào),2009,36(5):639-646.
[11]謝兆森,曹紅梅,李勃,等.巨峰葡萄果實(shí)不同發(fā)育期維管束水分運(yùn)輸變化[J].中國(guó)農(nóng)業(yè)科學(xué),2012,45(1):111-117.
[12]謝兆森,杜鴻儒,項(xiàng)殿芳,等.藍(lán)莓果實(shí)不同發(fā)育期維管束解剖結(jié)構(gòu)與水分運(yùn)輸變化[J].植物生理學(xué)報(bào),2018,54(1):45-53.
[13]王艷芳,葉淄,劉昊,等.蘋果果實(shí)不同發(fā)育期維管束結(jié)構(gòu)及水分運(yùn)輸變化[J].植物生理學(xué)報(bào),2015,51(9):1414-1418.
[14]CLEARWATER MJ,LUO Z,ONG SE,et al. Vascular functioningand the water balance of ripening kiwifruit(Actinidia chinensis)DeITIeSLJ」.JEXP B0t,ZUI∠,O5(O):1o5)-104/.
[15]XUJ,ZHAOY,ZHANGX,etal.Transcriptome Analysis andUltrastructure Observation Reveal that Hawthorn Fruit SofteningIsdue to Cellulose/Hemicellulose Degradation[J].Front Plant Sci,2016(7):1524.
[16]XU Z,DAIJ,LIANGL,etal.Chitinase-Like Protein PpCTL1Contributes to Maintaining Fruit Firmness by Affecting CelluloseBiosynthesis during Peach Development[J].Foods,2023,12(13):2503.
[17]CLAUDIOB,LUCAF,BENEDETTOR,et al.Endo -β-1 4-glucanases are involved in peach fruit growth and ripening,andregulated by ethylene[J].Physiol Plantarum,2008,102(3):346-352.
[18]PAULYM,GILLE S,LIUL,et al.Hemicelllose biosynthesis[J].Planta,2013,238(4):627-642.
[19]SUQ,LIX,WANGL,et al.Variation in Cell Wall MetabolismandFlesh Firmness of Four Apple Cultivars during FruitDevelopment[J].Foods.2022,11(21):3518.
[20]ZHAIZ,F(xiàn)ENGC,WANGY,etal.Genome-Wide Identificationof theXyloglucan endotransg lucosylase/Hydrolase(XTH)andPolygalacturonase(PG)Genes and Characterization of Their Rolein Fruit Softening of Sweet Cherry[J].IntJMol Sci,2021,22(22):12331.
[21]MAM,YUANY,CHENGC,etal.The MdXTHB gene isinvolved in fruit softening in‘Golden Del.Reinders’ (Maluspumila)[J].JSciFood Agric,2021,101(2):564-572.
[22]HANY,HAN S,BANQ,et al.Overexpression of persimmonDkXTH1 enhanced tolerance to abiotic stress and delayed fruitsoftening in transgenic plants[J].Plant CellRep,2017,36(4):583-596.
[23]HANY,BANQ,LIH,etal.DkXTH8,a novel xyloglucanendotransglucosylase/hydrolase in persimmon,alters cell wallstructure and promotes leaf senescence and fruit postharvestsoftening[J].SciRep,2016(6):39155.
[24] WITASARI LD,HUANG FC,HOFFMANN T,et al.Higherexpression of the strawberry xyloglucan endotransglucosylase/hydrolasegenesFvXTH9andFvXTH6acceleratesfruit ripening[J].PlantJ,2019,100(6):1237-1253.
[25]Caffall KD,Mohnen D.The structure,function,and biosynthesisofplant cell wall pectic polysaccharides[J]. Carbohydr Res,2009,344(14):1879.
[26]LIR,SUN S,WANGH,et al.FIS1 encodes a GA2-oxidase thatregulates fruit firmness in tomato[J].Nat Commun,2020,11(1):5844.
[27]QIANM,XU Z,ZHANG Z,et al. The downregulation of PpPG21and PpPG22 influences peach fruit texture and softening[J].Planta,2021,254(2):22.
[28]PANIAGUAC,RIC-VARAS P,GARCIA-GAGO JA,etal.Elucidating the roleof polygalacturonase genes in strawberryfruit softening[J].JExpBot,2020,71(22):7103-7117.
[29]WANGY,F(xiàn)AN Z,ZHAIY,et al.Polygalacturonase gene familyfruit softening[J].BMC Plant Biol,2023,23(1):320.
[30]DRAYE M,VAN CUTSEMP.Pectin methylesterases induce anabrupt increase of acidic pectin during strawberry fruit ripening[J].JPlant Physiol.2008,165(11):1152-1160.
[31]HOUYY,WUF,ZHAOYT,et al.Cloning and expressionanalysis of polygalacturonase and pectin methylesterase genesduring softening inapricot (Prunus armeniacaL.) fruit[J].ScientiaHorticulturae,2019(256):108607.
[32]YOUSSEFSM,AMAYAI,LOPEZ-ARANDAJM,et al.Effectof simultaneous down-regulation of pectate lyase and endo-β-1,4-glucanase genes on strawberry fruit softening[J].MolBreeding,2013(31):313-322.
[33]YUJ,WANGR,MAW,etal.Pectate Lyase Gene VvPL1 PlaysaRole in Fruit Cracking of Table Grapes[J].JAgric Food Chem,2023,71(3):1643-1654.
[34]XUZ,DAIJ,KANGT,etal.PpePL1 and PpePL15 Are the CoreMembers of the Pectate Lyase Gene Family Involved in Peach FruitRipening and Softening[J].Front Plant Sci,2022(13):844055.
[35]PANIAGUAC,BLANCO-PORTALESR,BARCELO-MUNOZM,et al.Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels andreduces fruit softening[J].JExp Bot,2016,67(3):619-631.
[36]BANQ,HANY,HEY,et al.Functional characterization ofpersimmon β- galactosidase gene DkGALl in tomato reveals cellwall modification related to fruit ripening and radicle elongation[J].Plant Sci,2018(274):109-120.
[37]LIUD,ZHOU W,ZHONGY,et al. Involvement of branched RG-I pectin with hemicellulose in cell - cell adhesion of tomatoduring fruit softening[J].Food Chem,2023(413):135574.
[38]RIC-VARASP,PANIAGUAC,LOPEZ-CASADO G,etal.Suppressing the rhamnogalacturonan lyase gene FaRGLyaselpreserves RGI pectin degradation and enhances strawberry fruitfirmness[J].Plant Physiol Biochem,2024(206):108294.
[39]LIUX,LIS,F(xiàn)ENGX,et al.Study on CellWall Composition,F(xiàn)ruit Quality and Tissue Structure of Hardened‘Suli’Pears(PyrusbretschneideriRehd)[J].JPlant Growth Regul,2021(40):2007-2016.
[40]XUM,ZHANGMX,SHIYN,et al.EjHAT1Participates in HeatAlleviation of Loquat Fruit Lignification by Suppressing thePromoter Activity of Key Lignin Monomer Synthesis GeneEjCAD5[J].JAgric Food Chem,2019,7(18):5204-5211.
[41]YEHSY,HUANGFC,HOFFMANNT,etal.FaPOD27 functionsin the metabolism of polyphenols in strawberry fruit(Fragariasp.)[J].Front Plant Sci,2014(5):518.
[42]MAL,SUNL,GUOY,et al.Transcriptome analysis of tablegrapes(Vitisvinifera L.)identified a gene network moduleassociated with berry firmness[J].PLoS One,2020,15(8):e0237526.
[43]FELIPEVR,LUIS MQ.Study of the structure and binding siti
features of FaEXPA2,anα-expansin protein involved in strawberry fruit softening[J].Comput Biol Chem,2020(87): 107279.
[44]ZHANG H,WANGH,LIH,et al.Study on the difference of EXP and PsEXPA10 in ripening period of‘jinmi’plum and‘qingcui’ plum[J].IOP Conference Series:Earth and Environmental Science,2021(792):12036.
[45]WUB,SHENF,CHENCJ,et al.Natural variations in apectin acetylesterase gene,MdPAE10,contribute to prolonged apple fruit shelflife[J].Plant Genome,2021,14(1):e20084.
[46]HOLUSOVAK,CMEJLOVAJ,SURANP,et al.Highresolution genome-wide association study of a large Czech collection of sweet cherry(Prunus avium L.)on fruit maturity and quality traits[J].Hortic Res,2022,10(1):uhac233.
[47]QIX,DONGY,LIUC,et al.A5.2-kb insertion in the coding sequence of PavSCPL,aserine carboxypeptidase-like enhances fruit firmness in Prunus avium[J].Plant Biotechnol J,2024, 22(6):1622-1635.
[48]NANTAWANU,KANCHANA-UDOMKANC,BARI,et al.Linkage mapping and quantitative trait loci analysis of sweetness and other fruit quality traits in papaya[J].BMC Plant Biol,2019,19(1):449.
[49]REY-SERRAP,MNEJJAM,MONFORTA.Shape,firmness and fruit quality QTLsshared in two non-related strawberry populations[J].Plant Sci,2021(311):111010.
[50]ZHAOY,ZHAOY,GUOY,etal.High-density genetic linkage -map construction of hawthorn and QTL mapping for important fruit traits[J].PLoSOne,2020,15(2):e0229020.
[51]FATMA M,ASGHER M,IQBALN,et al.Ethylene Signaling under Stressful Environments:Analyzing Collaborative Knowledge [J].Plants(Basel),2022,11(17):2211.
[52]ZHAOH,YINCC,MAB,et al.Ethylene signaling in rice and Arabidopsis:New regulators and mechanisms[J].JIntegr Plant Biol,2021,63(1):102-125.
[53] HUY,HAN Z,SUNY,et al.ERF4 afects fruit firmness through TPL4 by reducing ethylene production[J].Plant J,2020,103 (3):937-950.
[54]WUB,SHENF,WANGX,et al.Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL - based genomics- assisted prediction [J].Plant BiotechnolJ,2021,19(5):1022-1037.
[55]HANYC,KUANGJF,CHENJY,etal.Banana Transcription FactorMaERF1l Recruits Histone Deacetylase MaHDAl and Represses the Expression of MaACO1 and Expansins during Fruit Ripening[J].Plant Physiol,2016,171(2):1070-1084.
[56]FUCC,HANYC,QIXY,et al.Papaya CpERF9 acts asa transcriptionalrepressor of cell- wall -modifying genes CpPME1/2and CpPG5 involved in fruit ripening[J].Plant Cell Rep,2016,35(11):2341-2352.
[57]FENN MA,GIOVANNONIJJ.Phytohormones in fruit development and maturation[J].PlantJ,2021,105(2):446 -458.
[58]YUE K,LINGLINGL,XIEJ,et al.Synthesis and regulation of auxin and abscisic acid in maize[J].Plant Signal Behav,2021, 16(7):1891756.
[59]ZHAI Z,XIAOY,WANGY,etal.Abscisic acid-responsive transcription factors PavDof2/6/15 mediate fruit softening in sweet cherry[J].PlantPhysiol,2022,190(4):2501-2518.
[60]LIQ,CHENP,DAI S,et al.PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance[J].JExp Bot,2015,66(13):3765-3774.
[61] LIY,HAN S,QIY.Advances in structure and function of auxin response factor in plants[J].JIntegr Plant Biol,2023,65(3): 617-632.
[62]WANGJ,SUW,LIUK,et al.PpSAUR43,an Auxin-Responsive Gene,Is Involved in the Post-Ripening and Softening of Peaches [J].Horticulturae,2022,8(5):379.
[63]WANGXB,PANL,WANGY,et al.PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals[J].Plant Sci,2O21(313): 111084.
[64]PANL,ZENG W,NIUL,etal.pYUC,astrong candidate gene for the stony hard phenotype in peach(Prunus persicaL.Batsch)), participates in IAA biosynthesis during fruit ripening[J].JExp Bot,2015,66(22):7031-7044.
[65]CASTRORI,GONZALEZ-FELIUA,MUNOZ-VERAM,et al.Effect of Exogenous Auxin Treatment on Cell Wall Polymers of StrawberryFruit[J].IntJMol Sci,2021,22(12):6294.
[66] LIJ,QUANY,WANGL,et al.Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes:A Review [J].IntJMol Sci,2022,24(1):445.
[67]LIJ,GUOT,GUO M,et al.Exogenous BR delayed peach fruit softening by inhibiting pectin degradation enzyme genes[J].Front Plant Sci,2023(14):1226921.
[68] GUOYF,SHANW,LIANGSM,etal.MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit[J].Physiol Plant,2019,165(3):555-568.
[69]HEY,LIUH,LIH,etal. Transcription factors DkBZR1/2 regulate cell wall degradationgenesandethylene biosynthesis genes during persimmon fruitripening[J].JExp Bot,2021,72(18):6437 - 6446.
[70] YAMAGUCHI S.Gibberellin metabolism and itsregulation [J].Annu Rev Plant Biol,2008(59):225-251.
[71] WUW,SUNNJ,XUY,etal.Exogenous gibberellin delays maturation in persimmon fruit through transcriptional activators and repressors[J].Plant Physiol,2023,193(1):840-854.
[72]WUW,BAO ZY,XIONG CX,etal.The Softening of Persimmon Fruit Was Inhibited by Gibberellin via DkDELLA1/2[J].JAgric Food Chem,2025,73(2):1159-1166.
[73]QIX,LIUC,SONGL,et al.PaMADS7,a MADS-box transcription factor,regulates sweet cherry fruit ripeningand softening[J].Plant Sci,2020(301):110634.
[74]ZHANG S,WANG X,XUZ,et al.PrupeFUL4 regulates ripening and softening of peach fruits through ethylene biosynthesis [J].Acta Physiol Plant,2022(44):23.
[75]LUW,WEIX,HANX,et al.Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit[J].Foods,2023, 12(9):1802.
[76]ZHANG RX,LIUY,ZHANG X,et al.Two adjacent NAC transcription factors regulatefruit maturity date and flavor in peach [J].New Phytol,2024,241(2):632-649.
[77]SHANW,KUANGJF,WEIW,etal.MaXB3 Modulates MaNAC2,MaACS1,and MaACOl Stability to Repress Ethylene Biosynthesis during Banana Fruit Ripening[J].Plant Physiol, 2020,184(2):1153-1171.
[78]QIX,DONGY,LIUC,etal.ThePavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium)[J].PhysiolPlant,2022,174(6):e13834.
[79]MARTIN-PIZARROC,VALLARINO JG,OSORIO S,et al. The NAC transcription factor FaRIF controls fruit ripening in strawberry[J].Plant Cell,2021,33(5):1574-1593.
[80] CAI J,MOX,WENC,etal.FvMYB79PositivelyRegulates Strawberry Fruit Softening via Transcriptional Activation of FvPME38[J].IntJMol Sci,2021,23(1):101.
[81]FUC,CHEN H,GAOH,et al. Two papaya MYB proteins function in fruitripening by regulating some genes involved incell-wal degradation and carotenoid biosynthesis[J].JSciFood Agric, 2020,100(12):4442-4448.
[82]KONGQ,LIURL,WUWJ,et al.VcMYB30 enhances wax production and maintains fruit quality by regulating cuticular wax biosynthesis genes[J].Postharvest BlolTec,2024(212):112856.
[83]YANGYY,SHANW,YANGTW,etal.MaMYB4 isanegative regulator and a substrate ofRING-type E3 ligases MaBRG2/3 in controlling banana fruit ripening[J].Plant J,2022,110(6): 1651-1669.
[84]SONGCB,SHANW,YANGYY,et al.Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/ll genes during banana fruit ripening[J].Biochim Biophys Acta Gene Regul Mech,2018,1861(7):613-622.
[85]ZHANG WW,ZHAO SQ,GUS,et al.FvWRKY48 binds to the pectatelyaseFvPLA promoter tocontrolfruit softening in Fragaria vesca[J].Plant Physiol,2022,189(2):1037-1049.
[86]XIEYG,MAYY,BIPP,etal.Transcription factor FvTCP9 promotes strawberry fruit ripening byregulating the biosynthesis of abscisic acid and anthocyanins[J].Plant Physiol Biochem,2020 (146):374-383.
[87]GUC,GUO ZH,CHENG HY,et al.AHD-ZIP IIHOMEBOX transcription factor,PpHB.G7,mediates ethylene biosynthesis during fruit ripening in peach[J].Plant Sci,2019(278):12 -19.