摘要""目的:探討芒柄花黃素(Form)調(diào)節(jié)Toll樣受體4(TLR4)/核因子κB(NF-κB )通路對氧化型低密度脂蛋白(ox-LDL)誘導(dǎo)的人冠狀動脈內(nèi)皮細(xì)胞(HCAECs)損傷的影響。方法:采用24 μg/ mL的ox-LDL處理HCAECs 40 h誘導(dǎo)損傷和炎癥,未用ox-LDL處理的HCAECs作為對照組。將ox-LDL處理的HCAECs分為HCAECs組、L-Form組(16 μmol/L Form)、M-Form組(32 μmol/L Form)、H-Form組(64 μmol/L Form)、脂多糖(LPS)組(5 μg/mL TLR4/NF-κB p65通路激活劑"LPS)、H-Form+LPS組(64 μmol/L Form+5 μg/mL LPS)。采用細(xì)胞計數(shù)(CCK-8)法檢測細(xì)胞增殖活性;流式細(xì)胞術(shù)檢測細(xì)胞凋亡;Transwell法測定細(xì)胞遷移和侵襲;基質(zhì)膠評估管形成能力;酶聯(lián)免疫吸附試驗(ELISA)檢測白細(xì)胞介素-1β(IL-1β)、白細(xì)胞介素-6(IL-6)、腫瘤壞死因子-α(TNF-α)水平;蛋白免疫印跡法(Western Blot)檢測TLR4/NF-κB通路蛋白表達(dá)水平。結(jié)果:與對照組相比,HCAECs組凋亡率,IL-1β、IL-6、TNF-α水平,TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)明顯升高(P<0.05),細(xì)胞增殖活性O(shè)D值明顯降低(P<0.05),遷移細(xì)胞數(shù)量、侵襲細(xì)胞數(shù)量、毛細(xì)管管樣的節(jié)點數(shù)量明顯減少(P<0.05),管總長度明顯縮?。?em>P<0.05);與HCAECs組相比,L-Form組、M-Form組、H-Form組HCAECs細(xì)胞凋亡率,IL-1β、IL-6、TNF-α水平,TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)明顯下降(P<0.05),細(xì)胞增殖活性O(shè)D值、遷移細(xì)胞數(shù)量、侵襲細(xì)胞數(shù)量、毛細(xì)管管樣的節(jié)點數(shù)量、管總長度明顯增加(P<0.05),而LPS組趨勢相反;LPS消除了高濃度Form對HCAECs細(xì)胞有利的影響。結(jié)論:Form可能通過抑制TLR4/NF-κB信號通路來緩解ox-LDL誘導(dǎo)的HCAECs損傷。
關(guān)鍵詞""芒柄花黃素;人冠狀動脈內(nèi)皮細(xì)胞;氧化型低密度脂蛋白;Toll樣受體4/核因子κB信號通路;實驗研究
doi:10.12102/j.issn.1672-1349.2025.07.007
Effect of Formononetin on Human Coronary Endothelial Cell Against ox-LDL-induced "Injury by Regulating TLR4/NF-κB Pathway
YUAN Xiaocui LIAO Jinyu FU Li LUO Yong CHEN Dong
1.Mianyang Central Hospital, Mianyang 621000, Sichuan, China, E-mail: aqyvn87@163.com; 2.The Third People′s Hospital of Chengdu; 3.Mianyang People′s Hospital
Abstract Objective:To investigate the effect of formononetin(Form) in regulating toll-like receptor 4(TLR4)/nuclear factor κB(NF-κB) pathway on human coronary endothelial cell(HCAECs) against oxidative low-density lipoprotein(ox-LDL)-induced "injury.Methods:The HCAECs treated with 24 μg/mL ox-LDL for 40 h induced injury and inflammation,and the non-ox-LDL treated HCAECs served as the control group.HCAECs treated with ox-LDL were divided into HCAECs group,L-form group(16 μmol/L Form),M-Form group(32 μmol/L Form),H-Form group(64 μmol/L Form) and lipopolysaccharide(LPS) group(5 μg/mL) TLR4/NF-κB p65 pathway activator LPS) and H-Form+LPS groups(64 μmol/L Form+5 μg/mL LPS).Cell proliferation activity was detected by cell counting(CCK-8).Flow cytometry was used to detect apoptosis.Cell migration and invasion were measured by Transwell method.Matrix glue was used to evaluate tube formation ability.The levels of interleukin-1β(IL-1β),interleukin-6(IL-6),and tumor necrosis factor-α(TNF-α) were detected by enzyme-linked immunosorbent assay(ELISA).Western Blot was used to detect TLR4/NF-κB pathway protein expression.Results:Compared with the control group,the apoptosis rate,the levels of IL-1β,IL-6,TNF-α,the expression of TLR4,P-NF-κB p65/NF-κB p65 protein in HCAECs group "significantly increased(P<0.05),and the OD value of cell proliferation activity "significantly decreased(P<0.05),the number of migrating cells,the number of invading cells,the number of capillary tube nodes significantly decreased(P<0.05),and the total tube length significantly reduced(P<0.05).Compared with HCAECs group,the apoptosis rate of HCAECs cells,the levels of IL-1β,IL-6,and TNF-α,and the expression of TLR4 and P-NF-κB p65/NF-κB p65 protein in L-Form,M-Form,and H-Form groups significantly decreased(P<0.05).OD value of cell proliferation activity,number of migrating cells,number of invading cells,number of capillary tube nodes,and total tube length significantly increased(P<0.05),but the trend was opposite in LPS group.LPS eliminated the beneficial effect of high concentration Form on HCAECs cells.Conclusion:Form may alleviate ox-LDL-induced HCAECs damage by inhibiting the TLR4/NF-κB signaling pathway.
Keywords""formononetin; human coronary artery endothelial cells; oxidative low-density lipoprotein; Toll-like receptor 4/nuclear factor κB pathway; experimental study
冠狀動脈疾病是一種常見的心血管疾病,嚴(yán)重威脅著全球范圍內(nèi)人類的健康和生命。據(jù)估計,2017年全球有1 780萬人死于心血管疾病,其中50%以上是由冠心病引起的[1]。眾所周知,動脈粥樣硬化(AS)是冠狀動脈疾病的主要原因。動脈內(nèi)皮功能障礙是一個潛在的起始因素,與冠狀動脈AS的各個階段有關(guān)[2]。研究表明,AS是內(nèi)皮細(xì)胞損傷的結(jié)果[3]。氧化型低密度脂蛋白(ox-LDL)在AS形成和內(nèi)皮細(xì)胞損傷中起關(guān)鍵作用,ox-LDL引起的內(nèi)皮損傷,可促進(jìn)多種炎癥細(xì)胞浸潤受損的血管內(nèi)皮[4]。芒柄花黃素(Form)是一種從中藥黃芪中鑒定出的類黃酮,在不同的人類疾病中具有抗炎或抗氧化特性。研究表明,F(xiàn)orm可以預(yù)防ox-LDL誘導(dǎo)的內(nèi)皮功能障礙,進(jìn)而緩解冠狀動脈疾病[5]。Ma等[6]研究也發(fā)現(xiàn)Form可以減輕冠心病小鼠AS。然而,其具體影響機制尚未明確。Toll樣受體4(TLR4)/核因子κB(NF-κB)通路在氧化應(yīng)激反應(yīng)和炎癥中具有明顯作用,與AS密切相關(guān),下調(diào)TLR4/NF-κB信號傳導(dǎo)可以抑制炎癥并改善載脂蛋白E(ApoE)缺陷小鼠的AS[7]。He等[8]研究發(fā)現(xiàn),F(xiàn)orm可以通過調(diào)控TLR4/NF-κB信號軸改善膿毒癥小鼠所致心功能不全。本研究探討Form是否可以通過下調(diào)TLR4/NF-κB信號傳導(dǎo)減輕ox-LDL誘導(dǎo)的人冠狀動脈內(nèi)皮細(xì)胞(HCAECs)損傷。
1 材料與方法
1.1 細(xì)胞及主要材料
HCAECs(貨號:YS3585C)購自上海雅吉生物科技有限公司;Form(貨號YT62736)購自北京伊塔生物科技有限公司;TLR4/NF-κB信號通路激活劑脂多糖(LPS,貨號:A2313)、ox-LDL(貨號:B5435)購自北京康瑞納生物科技有限公司;細(xì)胞計數(shù)(CCK-8)細(xì)胞增殖試劑盒(貨號:CA1210)購自北京索萊寶科技有限公司;V-異硫氰酸熒光素(Annexin V-FITC)/碘化丙啶(propidium iodide,PI)細(xì)胞凋亡試劑盒(貨號:70-APCC101)購自杭州聯(lián)科生物技術(shù)股份有限公司;TLR4抗體(貨號:ab13556)、磷酸化NF-κB(p-NF-κB)p65抗體(貨號:ab194729)、NF-κB p65抗體(貨號:ab220803)購自Abcam公司。
1.2 細(xì)胞培養(yǎng)及分組
將購買的HCAECs在添加10%胎牛血清(FBS)的DMEM培養(yǎng)基中培養(yǎng),置于37 ℃、含有5%CO2的培養(yǎng)箱中培養(yǎng)。用24 μg/mL的ox-LDL處理40 h[5],誘導(dǎo)內(nèi)皮損傷和炎癥。未用ox-LDL處理的HCAECs作為對照組。
當(dāng)ox-LDL誘導(dǎo)的HCAECs達(dá)到60%~70%的融合時,分為HCAECs組、L-Form組、M-Form組、H-Form組、LPS組、H-Form+LPS組。L-Form組、M-Form組、H-Form組分別用16、32、64 μmol/L的Form處理HCAECs[9];LPS組用5 μg/mL TLR4/NF-κB通路激活劑"LPS處理HCAECs[10];H-Form+LPS組在64 μmol/L Form處理的基礎(chǔ)上用5 μg/mL LPS處理HCAECs,培養(yǎng)48 h后,收集HCAECs用于后續(xù)實驗。
1.3 CCK-8法檢測細(xì)胞增殖活性
將藥物處理后的HCAECs以1×104個/孔的密度接種到96孔板中培養(yǎng)48 h,然后與CCK-8溶液在37 ℃下共孵育2 h。共孵育后,在450 nm處讀取每孔細(xì)胞的光密度值(OD)。
1.4 流式細(xì)胞術(shù)檢測細(xì)胞凋亡
將各組HCAECs用磷酸鹽緩沖液(PBS)漂洗,胰蛋白酶消化后,在3 000 r/min下離心5 min收集細(xì)胞,隨后用預(yù)冷PBS洗滌3次,用500 μL的Binding Buffer制成單細(xì)胞懸液,加入5 μL的Annexin V-FITC 孵育5 min后加入5 μL的PI孵育15 min,用流式細(xì)胞儀分析HCAECs凋亡率。
1.5 Transwell法測定細(xì)胞遷移和侵襲
將各組HCAECs以1×105個/mL的濃度置于涂有基質(zhì)膠(侵襲)或不涂有基質(zhì)膠(遷移)的Transwell上室,下室加入600 μL的DMEM培養(yǎng)基和10% FBS,培養(yǎng)4 h后,用4%多聚甲醛固定細(xì)胞,擦拭膜上未侵襲/遷移的細(xì)胞,結(jié)晶紫染色,光學(xué)顯微鏡觀察。并使用Image J軟件對隨機選擇的3個區(qū)域計數(shù)。
1.6 基質(zhì)膠評估管形成能力
在預(yù)冷的48孔板中每孔加入150 μL基質(zhì)凝膠,在37 ℃下孵育30 min。將HCAECs(每孔5×104個細(xì)胞)加入到涂有基質(zhì)凝膠的孔中,在細(xì)胞培養(yǎng)條件下共孵育6 h。共孵育后,使用ImageJ軟件測量用于評估管形成能力的毛細(xì)管管樣的節(jié)點數(shù)和總長度。
1.7 酶聯(lián)免疫吸附試驗(ELISA)檢測炎性因子水平
使用ELISA試劑盒檢測HCAECs中白細(xì)胞介素-1β(IL-1β)、白細(xì)胞介素-6(IL-6)、腫瘤壞死因子-α(TNF-α)水平。
1.8 蛋白免疫印跡法(Western Blot)檢測TLR4/NF-κB蛋白水平
RIPA裂解緩沖液提取細(xì)胞總蛋白。采用二喹啉甲酸(BCA)法測定蛋白濃度。將等量的總蛋白加到10%聚丙烯酰胺凝膠中進(jìn)行電泳后,轉(zhuǎn)移到聚偏二氟乙烯(PVDF)膜,用5%牛血清白蛋白(BSA)封閉2 h。將膜與適當(dāng)?shù)囊豢筎LR4(1∶1 000)、NF-κB p65(1∶2 000)、p-NF-κB p65(1∶1 000)和甘油醛-3-磷酸脫氫酶(GAPDH)抗體(1∶1 000)4 ℃下孵育,次日加入二抗,室溫孵育4 h,通過加入增強化學(xué)發(fā)光試劑(enhanced chemiluminescence,ECL)試劑使其顯影后,使用Image J軟件分析目標(biāo)蛋白的灰度值。
1.9 統(tǒng)計學(xué)處理
采用GraphPad Prism 8.0軟件處理數(shù)據(jù)。符合正態(tài)分布的定量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,進(jìn)一步兩組間比較采用SNK-q檢驗。以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 Form對HCAECs增殖活性的影響
與對照組相比,HCAECs組HCAECs增殖活性O(shè)D值明顯下降(P<0.05);與HCAECs組相比,L-Form組、M-Form組、H-Form組HCAECs增殖活性O(shè)D值明顯升高(P<0.05),且H-Form組>M-Form組>L-Form組,而LPS組HCAECs增殖活性O(shè)D值較HCAECs組明顯下降(P<0.05);與H-Form組相比,H-Form+LPS組HCAECs增殖活性O(shè)D值明顯降低(P<0.05)。詳見表1。
2.2 Form對HCAECs凋亡的影響
與對照組相比,HCAECs組HCAECs凋亡率明顯升高(P<0.05);與HCAECs組相比,L-Form組、M-Form組、H-Form組HCAECs凋亡率明顯下降(P<0.05),且呈劑量依賴性,而LPS組HCAECs凋亡率較HCAECs組明顯上升(P<0.05);與H-Form組相比,H-Form+LPS組凋亡率明顯上升(P<0.05)。詳見圖1、表2。
2.3 Form對HCAECs遷移、侵襲的影響
與對照組相比,HCAECs組遷移、侵襲數(shù)量明顯減少(P<0.05);與HCAECs組相比,L-Form組、M-Form組、H-Form組HCAECs遷移、侵襲數(shù)量明顯增多(P<0.05),且呈劑量依賴性,而LPS組遷移、侵襲數(shù)量較HCAECs組明顯減少(P<0.05);與H-Form組相比,H-Form+LPS組HCAECs遷移、侵襲數(shù)量明顯減少(P<0.05)。詳見圖2、表3。
2.4 Form對HCAECs管形成的影響
與對照組相比,HCAECs組毛細(xì)管管樣的節(jié)點數(shù)量減少(P<0.05),管總長度明顯縮?。?em>P<0.05);與HCAECs組相比,L-Form組、M-Form組、H-Form組HCAECs毛細(xì)管管樣的節(jié)點數(shù)量、管總長度明顯增加(P<0.05),且呈劑量依賴性,而LPS組毛細(xì)管管樣的節(jié)點數(shù)量較HCAECs組減少(P<0.05),管總長度明顯縮小(P<0.05);與H-Form組相比,H-Form+LPS組HCAECs毛細(xì)管管樣的節(jié)點數(shù)量減少(P<0.05),管總長度明顯縮?。?em>P<0.05)。詳見圖3、表4。
2.5 Form對HCAECs炎性因子的影響
與對照組相比,HCAECs組IL-1β、IL-6、TNF-α水平明顯升高(P<0.05);與HCAECs組相比,L-Form組、M-Form組、H-Form組IL-1β、IL-6、TNF-α水平明顯降低(P<0.05),且呈劑量依賴性,而LPS組IL-1β、IL-6、TNF-α水平較HCAECs組明顯升高(P<0.05);與H-Form組相比,H-Form+LPS組IL-1β、IL-6、TNF-α水平明顯升高(P<0.05)。詳見表5。
2.6 Form對HCAECs TLR4/NF-κB通路蛋白水平的影響
與對照組相比,HCAECs組TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)明顯升高(P<0.05);與HCAECs組相比,L-Form組、M-Form組、H-Form組TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)明顯降低(P<0.05),且呈劑量依賴性,而LPS組TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)較HCAECs組明顯升高(P<0.05);與H-Form組相比,H-Form+LPS組TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)明顯升高(P<0.05)。詳見圖4、表6。
3 討論
我國冠狀動脈疾病的死亡率高于癌癥或其他已知疾病[11-12]。ox-LDL是已知的冠狀動脈疾病危險因素,研究指出,AS性心血管疾病病人血漿ox-LDL水平升高,而ox-LDL的過量產(chǎn)生導(dǎo)致HUVECs異常增殖、凋亡、遷移、血管生成和炎癥反應(yīng),均是導(dǎo)致內(nèi)皮細(xì)胞損傷的原因[13]。Form是從黃芪中提取的主要類黃酮成分,對心血管疾病具有保護作用。研究發(fā)現(xiàn),F(xiàn)orm可以抑制ApoE基因缺陷小鼠AS的發(fā)生[6]。Zhang等[5]研究也發(fā)現(xiàn),F(xiàn)orm可以改善ox-LDL誘導(dǎo)的內(nèi)皮功能障礙。本研究采用24 μg/mL的ox-LDL處理HCAECs 40 h建立體外損傷模型,進(jìn)一步探索Form對ox-LDL誘導(dǎo)的HCAECs損傷的影響。
既往研究表明,ox-LDL可抑制AS病人HUVEC的遷移和增殖[14],高濃度的ox-LDL可以通過多種方式誘導(dǎo)不同細(xì)胞的凋亡[15]。本研究結(jié)果發(fā)現(xiàn),ox-LDL處理后HCAECs細(xì)胞的OD值、遷移、侵襲數(shù)量明顯下降,凋亡率明顯升高,與先前研究結(jié)果一致,表明ox-LDL可以促進(jìn)HCAECs細(xì)胞凋亡,抑制細(xì)胞增殖,造成HCAECs損傷。而Form治療后HCAECs增殖活性O(shè)D值、遷移、侵襲數(shù)量明顯升高,凋亡率明顯下降,表明Form可能通過促進(jìn)HCAECs細(xì)胞增殖,抑制其凋亡,改善HCAECs損傷。血管內(nèi)皮細(xì)胞炎癥參與AS的各個階段[16]。ox-LDL通過誘導(dǎo)血管內(nèi)皮炎癥和細(xì)胞凋亡來促進(jìn)AS斑塊的形成和發(fā)展[17]。研究表明,ox-LDL處理HCAECs后IL-1β、IL-6、TNF-α水平明顯升高,加重炎癥損傷[18]。本研究結(jié)果與其一致,HCAECs組IL-1β、IL-6、TNF-α水平明顯上升,而Form干預(yù)后IL-1β、IL-6、TNF-α水平明顯下降,表明Form可能減輕ox-LDL誘導(dǎo)的HCAECs炎性損傷。血管生成是一個復(fù)雜的生理過程,血管生成異常不僅促進(jìn)炎癥反應(yīng),而且在AS中發(fā)揮作用[19]。促進(jìn)血管生成可以減少內(nèi)皮炎癥進(jìn)而減輕AS[20]。本研究發(fā)現(xiàn),F(xiàn)orm治療后毛細(xì)管管樣的節(jié)點數(shù)量、管總長度明顯增加,表明Form可促進(jìn)ox-LDL誘導(dǎo)的HCAECs血管生成,減輕炎癥反應(yīng)。
TLR4/NF-κB信號通路是研究AS的常見通路,Li等[21]研究發(fā)現(xiàn),下調(diào)TLR4/NF-κB通路可以抑制巨噬細(xì)胞脂質(zhì)積累和炎癥反應(yīng),減輕AS。Zhu等[22]研究也發(fā)現(xiàn),下調(diào)TLR4/NF-κB通路可以抑制炎癥,減輕ApoE基因缺陷小鼠的AS程度。在本研究中,ox-LDL處理后HCAECs中TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)明顯升高,而Form處理使TLR4、p-NF-κB p65/NF-κB p65蛋白水平明顯降低,表明Form可能通過下調(diào)TLR4/NF-κB信號通路來減輕ox-LDL誘導(dǎo)的HCAECs損傷。為了進(jìn)一步證實,本研究將ox-LDL誘導(dǎo)的HCAECs用TLR4/NF-κB通路激活劑LPS處理,結(jié)果發(fā)現(xiàn)激活TLR4/NF-κB 信號通路加重HCAECs損傷。且LPS可以逆轉(zhuǎn)高濃度Form對HCAECs的有利影響,進(jìn)一步證實,F(xiàn)orm可能通過抑制TLR4/NF-κB信號通路來緩解ox-LDL誘導(dǎo)的HCAECs損傷。
綜上所述,F(xiàn)orm可能通過下調(diào)TLR4/NF-κB信號通路來改善ox-LDL誘導(dǎo)的HCAECs損傷。但是本研究未進(jìn)行體內(nèi)實驗,今后將進(jìn)行體內(nèi)實驗,以驗證Form對冠狀動脈疾病小鼠的干預(yù)效果。
參考文獻(xiàn):
[1] ROTH G A,ABATE D,ABATE K H,et al.Global,regional,and national age-sex-specific mortality for 282 causes of death in 195 countries and territories,1980-2017:a systematic analysis for the Global Burden of Disease Study 2017[J].The Lancet,2018,392(10159):1736-1788.
[2] XI X M,ZHENG X F,ZHANG R X,et al.Upregulation of circFOXP1 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells by regulating the miR-185-5p/BCL-2 axis[J].Canadian Journal of Physiology and Pharmacology,2022,100(11):1045-1054.
[3] VIDANAPATHIRANA A K,PSALTIS P J,BURSILL C A,et al.Cardiovascular bioimaging of nitric oxide:achievements,challenges,and the future[J].Medicinal Research Reviews,2021,41(1):435-463.
[4] LIN F,PEI L K,ZHANG Q B,et al.ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation[J].Journal of Cellular Physiology,2018,233(10):6683-6692.
[5] ZHANG B H,HAO Z W,ZHOU W L,et al.Formononetin protects against ox-LDL-induced endothelial dysfunction by activating PPAR-γ"signaling based on network pharmacology and experimental validation[J].Bioengineered,2021,12(1):4887-4898.
[6] MA C R,XIA R L,YANG S,et al.Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in ApoE-/-"mice[J].Theranostics,2020,10(3):1090-1106.
[7] ZHANG X S,XUE C Y,XU Q,et al.Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice[J].Nutrition amp; Metabolism,2019,16:40.
[8] HE S S,ZHAO J X,XU X L,et al.Uncovering the molecular mechanism of the Qiang-Xin 1 formula on sepsis-induced cardiac dysfunction based on systems pharmacology[J].Oxidative Medicine and Cellular Longevity,2020,2020:3815185.
[9] LI X,HUANG C,SUI C L,et al.Formononetin,J1 and J2 have different effects on endothelial cells via EWSAT1-TRAF6 and its downstream pathway[J].Journal of Cellular and Molecular Medicine,2020,24(1):875-885.
[10] WU Y H,WANG Y W,GONG S S,et al.Ruscogenin alleviates LPS-induced pulmonary endothelial cell apoptosis by suppressing TLR4 signaling[J].Biomedicine amp; Pharmacotherapy,2020,125:109868.
[11] MA L Y,CHEN W W,GAO R L,et al.China cardiovascular diseases report 2018:an updated summary[J].Journal of Geriatric Cardiology,2020,17(1):1-8.
[12] JIA Z W,AN L P,LU Y H,et al.Oxidized low density lipoprotein-induced atherogenic response of human umbilical vascular endothelial cells (HUVECs)"was protected by atorvastatin by regulating miR-26a-5p/phosphatase and tensin homolog (PTEN)[J].Medical Science Monitor,2019,25:9836-9843.
[13] ZHANG M,XU Y J,JIANG L.Irisin attenuates oxidized low-density lipoprotein impaired angiogenesis through AKT/mTOR/S6K1/Nrf2 pathway[J].Journal of Cellular Physiology,2019,234(10):18951-18962.
[14] WANG D W,WANG Y,MA J,et al.microRNA-20a participates in the aerobic exercise-based prevention of coronary artery disease by targeting PTEN[J].Biomedicine amp; Pharmacotherapy,2017,95:756-763.
[15] BIAN W H,JING X H,YANG Z Y,et al.Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis[J].Aging,2020,12(7):6385-6400.
[16] KONG P,CUI Z Y,HUANG X F,et al.Inflammation and atherosclerosis:signaling pathways and therapeutic intervention[J].Signal Transduction and Targeted Therapy,2022,7:131.
[17] ZHU Y H,XIAN X M,WANG Z Z,et al.Research progress on the relationship between atherosclerosis and inflammation[J].Biomolecules,2018,8(3):80.
[18] ZHANG P,LUO J F,WU T L,et al.miR-32-5p/AIDA mediates oxLDL-induced endothelial injury and inflammation[J].International Heart Journal,2022,63(5):928-938.
[19] ZHAO Z,SUN W,GUO Z Y,et al.Mechanisms of lncRNA/microRNA interactions in angiogenesis[J].Life Sciences,2020,254:116900.
[20] JIA M P,LI Q H,GUO J Y,et al.Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation[J].Circulation Research,2022,130(7):1038-1055.
[21] LI Y,ZHANG L,REN P,et al.Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation[J].Phytomedicine,2021,93:153812.
[22] ZHU K F,WANG X H,WENG Y Z,et al.Sulfated galactofucan from Sargassum thunbergii attenuates atherosclerosis by suppressing inflammation via the TLR4/MyD88/NF-κB signaling pathway[J].Cardiovascular Drugs and Therapy,2024,38(1):69-78.
(收稿日期:2023-08-10)
(本文編輯"郭懷?。?/p>