【摘要】 結(jié)直腸癌是消化道常見惡性腫瘤,放療在結(jié)直腸癌治療中發(fā)揮重要作用,放療抵抗會導(dǎo)致結(jié)直腸癌的局部復(fù)發(fā)甚至轉(zhuǎn)移。鐵死亡是一種依賴于鐵過載及脂質(zhì)過氧化的調(diào)節(jié)性細(xì)胞死亡形式,在放療誘導(dǎo)的細(xì)胞死亡和腫瘤抑制中發(fā)揮重要的作用。本文介紹了鐵死亡的發(fā)生機(jī)制,鐵死亡與結(jié)直腸癌的相互作用,描述了靶向鐵死亡與放射治療聯(lián)合應(yīng)用的作用機(jī)制及治療新進(jìn)展,為探索鐵死亡在結(jié)直腸癌治療中的研究提供指引。
【關(guān)鍵詞】 鐵死亡 結(jié)直腸腫瘤 放射治療
Research Progress of Ferroptosis in Radiotherapy for Colorectal Cancer/WANG Wenhui, GENG Haitao, LI Mianli. //Medical Innovation of China, 2025, 22(08): -185
[Abstract] Colorectal cancer is a common malignant tumor in the digestive tract. Radiotherapy plays an important role in the treatment of colorectal cancer, and radiotherapy resistance leads to local recurrence or even metastasis of colorectal cancer. Ferroptosis is a form of regulatory cell death dependent on iron overload and lipid peroxidation, which plays an important role in radiotherapy induced cell death and tumor inhibition. This article introduces the mechanism of ferroptosis and the interaction between ferroptosis and colorectal cancer, describes the mechanism of action and new progress of the combination of targeted ferroptosis and radiotherapy, and provides guidance for the exploration of ferroptosis in the treatment of colorectal cancer.
[Key words] Ferroptosis Colorectal cancer Radiotherapy
First-author's address: Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, China
doi:10.3969/j.issn.1674-4985.2025.08.040
結(jié)直腸癌(colorectal cancer,CRC)是常見的消化道惡性腫瘤,2020年中國癌癥統(tǒng)計(jì)報(bào)告顯示:在我國全部惡性腫瘤中,結(jié)直腸癌發(fā)病率、死亡率分別居第2位和第5位[1]。目前,早期CRC可以通過手術(shù)得到很好控制,而晚期CRC長期預(yù)后較差,復(fù)發(fā)和轉(zhuǎn)移率仍較高。出現(xiàn)遠(yuǎn)處器官轉(zhuǎn)移是CRC死亡的主要原因,5年生存率約為15%[2]。放射治療是結(jié)直腸癌特別是直腸癌重要的治療方式,對于局部進(jìn)展期直腸癌患者,術(shù)前同步放療可顯著使腫瘤降期并降低局部復(fù)發(fā)情況[3]。然而腫瘤細(xì)胞的放療抵抗常導(dǎo)致治療失敗,放療抵抗與CRC術(shù)后復(fù)發(fā)、耐藥和轉(zhuǎn)移有關(guān),是放療的主要障礙,最終影響患者的生活質(zhì)量及生存。但目前關(guān)于放療抵抗的發(fā)生機(jī)制尚不十分明確。
2012年,Dixon等[4]通過研究發(fā)現(xiàn),小分子化合物Erastin能夠選擇性地觸發(fā)含有突變型RAS的腫瘤細(xì)胞發(fā)生細(xì)胞死亡,形式不同于細(xì)胞凋亡、壞死和自噬,其特征是依賴鐵的脂質(zhì)過氧化物(lipid reactive oxygen species,L-ROS)過量積累達(dá)到致命水平,將其命名為“鐵死亡”。目前已經(jīng)發(fā)現(xiàn)鐵過載與多種疾病密切相關(guān),它可以刺激脂質(zhì)氧化和組織損傷,在腫瘤和神經(jīng)元疾病中常發(fā)生鐵的異常積聚,容易誘發(fā)鐵死亡[5]。研究顯示,鐵死亡與氨基酸代謝、脂質(zhì)代謝、鐵代謝、NADPH和輔酶Q10等多種生物學(xué)過程密切相關(guān)。Erastin和RSL3是最早發(fā)現(xiàn)的兩種經(jīng)典鐵死亡誘導(dǎo)劑(ferroptosis inducer,F(xiàn)IN),兩者均能引起L-ROS的上升,誘導(dǎo)細(xì)胞鐵死亡。鐵死亡已經(jīng)成為一種克服腫瘤放療耐藥機(jī)制的潛在策略,本文期望為認(rèn)識鐵死亡發(fā)生機(jī)制及其與放療聯(lián)合治療CRC提供參考。
1 鐵死亡的機(jī)制
1.1 鐵代謝
細(xì)胞外Fe3+通過轉(zhuǎn)鐵蛋白受體(transferrin receptor,TFRC)轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞并被還原為Fe2+。Fe2+被儲存在細(xì)胞內(nèi)的鐵池中,通過Fenton反應(yīng)產(chǎn)生具有氧化能力的自由基,誘導(dǎo)細(xì)胞鐵死亡[6]。多數(shù)鐵以鐵蛋白和含鐵血黃素的形式儲存,核受體輔激活因子4(NCOA4)與鐵蛋白結(jié)合并促進(jìn)其降解,使細(xì)胞內(nèi)游離鐵含量升高[7]。細(xì)胞通過鐵轉(zhuǎn)運(yùn)蛋白(FPN1)將鐵轉(zhuǎn)運(yùn)出細(xì)胞,F(xiàn)PN1缺乏將直接導(dǎo)致細(xì)胞內(nèi)鐵過載和脂質(zhì)過氧化[8]。
1.2 脂質(zhì)代謝
大量的自由基在酶和鐵的催化下與胞膜上的多不飽和脂肪酸磷脂(polyunsaturated fatty acid phospholipids,PUFA-PLs)發(fā)生反應(yīng),產(chǎn)生大量L-ROS,導(dǎo)致細(xì)胞死亡[9]。?;o酶A合成酶長鏈家族成員4(Acyl-CoA synthetase long-chain family member 4,ACSL4)是脂質(zhì)代謝的關(guān)鍵介質(zhì),花生四烯酸(AA)是一種PUFA,能夠被ASCL4酯化為前列腺素、白三烯等一系列下游介質(zhì),AA能夠增強(qiáng)RSL3誘導(dǎo)的鐵死亡[10]。臨床治療中,非甾體抗炎藥可以抑制前列腺素生成,往往被應(yīng)用于CRC的預(yù)防。
1.3 氨基酸代謝
細(xì)胞內(nèi)的抗氧化應(yīng)激系統(tǒng)主要依賴谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4),GPX4作為結(jié)構(gòu)蛋白和抗氧化酶,可以有效抑制脂質(zhì)過氧化[11]。由溶質(zhì)載體家族7成員11(solute carrier family 7 member 11,SLC7A11)和溶質(zhì)載體家族3成員2(SLC3A2)組成的異源二聚體胱氨酸/谷氨酸轉(zhuǎn)運(yùn)復(fù)合物XC(systemXc-)以1︰1的形式將胱氨酸攝入細(xì)胞,將谷氨酸轉(zhuǎn)運(yùn)出細(xì)胞[6,12-13]。
胱氨酸用于合成谷胱甘肽(GSH),GSH在GPX4的作用下能將L-ROS還原為脂醇。GPX4表達(dá)下調(diào)導(dǎo)致脂質(zhì)過氧化物積累并導(dǎo)致鐵死亡[14]。Ⅰ型FIN代表藥物Erastin是SystemXc-阻斷劑,阻止胱氨酸進(jìn)入細(xì)胞,使得GSH合成受阻,從而影響GPX4的抗氧化過程,誘導(dǎo)鐵死亡發(fā)生[14]。RSL3可以抑制GPX4的表達(dá),促進(jìn)過氧化物的積累觸發(fā)鐵死亡,最近Cheff等[15]研究發(fā)現(xiàn),RSL3并非直接抑制GPX4,而是硫氧還蛋白還原酶1(TXNRD1)的直接抑制劑,TXNRD1是一種胞質(zhì)硒蛋白,可促進(jìn)一系列抗氧化硫氧還蛋白依賴性酶和細(xì)胞中的調(diào)節(jié)氧化還原途徑,但目前與鐵死亡相關(guān)研究甚少,仍需進(jìn)一步的研究來分析FIN和硫氧還蛋白還原酶抑制劑對細(xì)胞死亡的分子機(jī)制。
1.4 其他代謝途徑
FSP1是一種不依賴GSH的強(qiáng)效鐵死亡抑制因子,它能夠降解輔酶Q10(CoQ10),生成還原性CoQ10,抑制過氧化物的積累,阻止鐵死亡的發(fā)生[16]。Nakamura等[17]的研究發(fā)現(xiàn)了一種抑制劑icFSP1,它能與GXP4協(xié)同發(fā)揮作用,研究顯示icFSP1在體內(nèi)腫瘤中能殺傷腫瘤細(xì)胞,可以作為一種有效抗癌劑。由線粒體蛋白(DHODH)介導(dǎo)的線粒體局部防御系統(tǒng),可以代償GPX4系統(tǒng),將線粒體內(nèi)膜中的CoQ還原為CoQH2,中和脂質(zhì)過氧化并防御鐵死亡,GPX4和DHODH失活能觸發(fā)鐵死亡[18]。雙氫青蒿素是近年來被發(fā)現(xiàn)具有巨大抗腫瘤潛力的鐵死亡誘導(dǎo)藥物,它可以通過誘導(dǎo)鐵蛋白自噬,釋放不穩(wěn)定態(tài)鐵,加速Fe2+介導(dǎo)的細(xì)胞氧化損傷[19]。
2 鐵死亡與腫瘤相關(guān)基因及通路
2.1 鐵死亡相關(guān)基因
2.1.1 p53基因 p53基因是一種重要的抑癌基因,可以調(diào)控包括細(xì)胞周期停滯、DNA修復(fù)、凋亡和鐵死亡等多種細(xì)胞效應(yīng),參與鐵、脂質(zhì)、ROS這3種元素的代謝。p53基因被發(fā)現(xiàn)可以抑制SLC7A11的轉(zhuǎn)錄,SLC7A11可以螯合某些脂氧合酶(Lipoxygenase,LOX)并損害其活性,p53基因介導(dǎo)的SLC7A11的下調(diào)能促進(jìn)LOX的釋放而發(fā)揮其促鐵死亡功能[20]。p53基因在CRC細(xì)胞中的基因缺失提高了Erastin在體內(nèi)的抗癌活性[21]。
2.1.2 SLC7A11 是氨基酸轉(zhuǎn)運(yùn)代謝途徑的關(guān)鍵樞紐。去泛素化酶(OTUB1)被發(fā)現(xiàn)是SLC7A11的主要調(diào)節(jié)因子,OTUB1在多種癌癥中高表達(dá),內(nèi)源性O(shè)TUB1的缺失會降低腫瘤細(xì)胞中SLC7A11的活性[22]。Xu等[23]的研究通過構(gòu)建鉑耐藥CRC模型,敲除或抑制SLC7A11可以誘導(dǎo)鐵死亡,顯著殺傷結(jié)直腸腫瘤干細(xì)胞,并減輕鉑耐藥。
2.1.3 轉(zhuǎn)錄因子核因子E2相關(guān)因子2(nuclear factor erythroid 2 related factor 2,Nrf2) Nrf2被認(rèn)為是抗氧化反應(yīng)的主要調(diào)節(jié)因子。上調(diào)Nrf2能夠抑制鐵死亡,Keap1-Nrf2通路可以有效保護(hù)肝細(xì)胞癌免受鐵死亡,抑制Nrf2的表達(dá)增加了Erastin和索拉非尼的抗腫瘤活性[24]。Yang等[25]研究發(fā)現(xiàn)了西妥昔單抗與RSL3聯(lián)合作用增強(qiáng)了對KRAS突變型CRC細(xì)胞的抑癌作用,通過激活p38絲裂原活化蛋白激酶抑制Nrf2-HO-1軸來增強(qiáng)RSL3誘導(dǎo)的鐵死亡。
2.1.4 ACSL4 是催化脂質(zhì)過氧化反應(yīng)的關(guān)鍵因子。ACSL4和溶血磷脂酰膽堿?;D(zhuǎn)移酶3(LPCAT3)催化PUFA的酯化,通過ACSL4-LPCAT3-LOX通路可以介導(dǎo)PUFA-PLs的合成[26]。在人結(jié)直腸腫瘤細(xì)胞中,ACSL4 的表達(dá)量更高,細(xì)胞實(shí)驗(yàn)證實(shí)敲低ACSL4抑制了CRC細(xì)胞的增殖和侵襲[27]。
2.1.5 其他分子 Xue等[28-29]研究發(fā)現(xiàn)缺氧誘導(dǎo)因子-2α(HIF-2α)調(diào)控靶基因腸鐵吸收轉(zhuǎn)運(yùn)蛋白1
(DMT-1)誘導(dǎo)結(jié)腸癌發(fā)生,抑制DMT-1通過轉(zhuǎn)錄激活因子3(STAT3)降低結(jié)腸腫瘤發(fā)生。TfRC在CRC細(xì)胞中高表達(dá),TfRC缺失通過減少腫瘤細(xì)胞內(nèi)鐵積累來阻礙結(jié)腸腫瘤發(fā)生,機(jī)制上,Kim等[30]研究發(fā)現(xiàn)TfRC可以通過激活TNKs-Axin2-catenin信號軸下調(diào)c-Myc,降低靶基因DNA聚合酶δ1(POLD1)的表達(dá),抑制CRC細(xì)胞的生長。轉(zhuǎn)錄因子叉頭盒A2(FOXA2)高表達(dá)與CRC進(jìn)展有關(guān),近年來,Liu等[31]研究發(fā)現(xiàn),敲低FOXA2的表達(dá)抑制了Nrf2通路的激活進(jìn)而降低GPX4水平,導(dǎo)致CRC細(xì)胞的鐵死亡。
2.2 鐵死亡相關(guān)通路
2.2.1 能量代謝途徑 細(xì)胞通過絲氨酸/蘇氨酸激酶AMP活化蛋白激酶(AMPK)感受能量應(yīng)激,腫瘤細(xì)胞能量代謝不足,導(dǎo)致ATP含量下降,激活下游乙酰輔酶A羧化酶(ACC),減少PUFA-PLs的合成,從而抑制腫瘤細(xì)胞鐵死亡,敲除AMPK能促進(jìn)Erastin誘導(dǎo)的鐵死亡[32]。研究發(fā)現(xiàn)鐵死亡的發(fā)生伴隨著自噬樣改變,AMPK可以介導(dǎo)自噬調(diào)控蛋白(BECN1)磷酸化形成BECN1-SLC7A11復(fù)合物,抑制SystemXc-,從而引起鐵死亡[33]。
2.2.2 PI3K-AKT-mTOR通路 此通路是人類癌癥中最突變的通路之一,可以使腫瘤細(xì)胞對鐵死亡誘導(dǎo)更加耐受。激活PI3K-AKT-mTOR信號通路可以通過調(diào)節(jié)下游固醇調(diào)節(jié)元件結(jié)合蛋白1(SREBP1)和硬脂酰-CoA去飽和酶-1(SCD1)介導(dǎo)的脂肪生成抑制鐵死亡[34],Chen等[35]研究發(fā)現(xiàn),阿司匹林能夠激活PI3K-AKT-mTOR通路抑制下游SREBP1-SCD1介導(dǎo)的MUFAs的合成,在異種小鼠移植模型中證實(shí)了阿司匹林協(xié)同RSL3增強(qiáng)誘導(dǎo)CRC的鐵死亡。
2.2.3 HCAR1/MCT1-SREBP1-SCD1通路 SCD1可能通過取代脂質(zhì)膜中的PUFAs催化MUFAs的生成,減少脂質(zhì)ROS的積累,從而有效地抑制鐵死亡。Zhao等[36]研究觀察到腫瘤微環(huán)境中乳酸濃度的增加可以激活肝癌細(xì)胞膜上的羥基羧酸受體1(HCAR1)受體,促進(jìn)單羧酸轉(zhuǎn)運(yùn)蛋白1(MCT1)介導(dǎo)的乳酸攝取,使細(xì)胞內(nèi)AMP︰ATP的比值下降,激活A(yù)MPK并下調(diào)SREBP1及SCD1的表達(dá),催化MUFAs形成。外源MUFAs能有效抑制脂質(zhì)過氧化,阻斷鐵死亡[37],但目前潛在機(jī)制尚未明確仍需進(jìn)一步研究。
3 鐵死亡在結(jié)直腸癌放療及放療聯(lián)合治療中的應(yīng)用進(jìn)展
3.1 放療誘導(dǎo)鐵死亡的機(jī)制
電離輻射(ionizing radiation,IR)是直接或通過產(chǎn)生過氧化物損傷細(xì)胞DNA。經(jīng)過研究發(fā)現(xiàn),IR不僅誘導(dǎo)細(xì)胞凋亡、壞死、自噬等,也可以觸發(fā)強(qiáng)烈的鐵死亡。腫瘤細(xì)胞在IR作用下能夠刺激氧化酶產(chǎn)生大量ROS,最終生成脂質(zhì)氫過氧化物誘導(dǎo)鐵死亡[38]。IR能夠上調(diào)ASCL4的表達(dá),驅(qū)動細(xì)胞的L-ROS生成,Ji等[39]研究發(fā)現(xiàn)IR可以導(dǎo)致腸道組織損傷,在機(jī)制上與腸道細(xì)菌和真菌誘導(dǎo)ASCL4表達(dá)增高有關(guān)。IR還能夠抑制SLC7A11的表達(dá),進(jìn)而減少胱氨酸攝取和GSH合成來觸發(fā)鐵死亡[40]。IR還可以誘導(dǎo)線粒體自噬,通過增加細(xì)胞內(nèi)游離脂肪酸促進(jìn)鐵死亡[41]。
3.2 放療聯(lián)合鐵死亡誘導(dǎo)藥物
放療聯(lián)合靶向SLC7A11的FINs(如柳氮磺吡啶、索拉非尼)在體內(nèi)顯示出較強(qiáng)的協(xié)同鐵死亡和腫瘤抑制效應(yīng)[38]。有研究表明Erastin能通過耗竭GSH增強(qiáng)肺腺癌、子宮頸癌細(xì)胞系及其異種移植模型的放射增敏作用[42]。細(xì)胞研究證實(shí)減弱GPX4能顯著增強(qiáng)腫瘤細(xì)胞對放療的敏感性,表現(xiàn)為細(xì)胞增殖減弱和鐵死亡相關(guān)脂質(zhì)過氧化增加,IR介導(dǎo)的GPX4的表達(dá)促進(jìn)了腫瘤細(xì)胞的鐵死亡抗性和輻射抗性。Tubastatin A是一種新型GPX4抑制劑,通過直接抑制GPX4活性在體內(nèi)及體外腫瘤細(xì)胞中增強(qiáng)對IR誘導(dǎo)鐵死亡的敏感性[43]。FINs對增強(qiáng)CRC的放療效果的基礎(chǔ)研究和臨床試驗(yàn)仍較少,但一些研究結(jié)果表明降低GSH、GPX4的靶向鐵死亡藥物可以作為一種有效放療增敏劑,并將在治療CRC方面取得進(jìn)一步進(jìn)展。
3.3 放療聯(lián)合免疫治療
對于微衛(wèi)星穩(wěn)定型結(jié)直腸癌,免疫治療可以得到很好的臨床獲益,而放療被認(rèn)為可以增加免疫治療的全身反應(yīng)。IR可以激活共濟(jì)失調(diào)性毛細(xì)血管擴(kuò)張突變基因(ATM)誘導(dǎo)的信號途徑靶向抑制SLC7A11減少胱氨酸攝取觸發(fā)鐵死亡,聯(lián)合免疫治療激活的CD8+T細(xì)胞產(chǎn)生的γ干擾素導(dǎo)致腫瘤脂質(zhì)過氧化增強(qiáng)鐵死亡[40]。Shen等[44]研究證實(shí),放療可以通過GMP-AMP合酶(cGAS)激活下游干擾素基因刺激劑(STING)誘導(dǎo)CRC細(xì)胞發(fā)生鐵死亡,放療聯(lián)用PARP抑制劑后能顯著增加雙鏈DNA水平并增強(qiáng)體內(nèi)抗腫瘤作用,同時誘導(dǎo)CD8+T細(xì)胞產(chǎn)生抗腫瘤免疫應(yīng)答增強(qiáng),沉默cGAS的M38結(jié)腸癌細(xì)胞系對聯(lián)合治療的敏感性較低。載脂蛋白L3(APOL3)是一種重要的免疫調(diào)節(jié)劑,F(xiàn)eng等[45]通過研究揭示了APOL3可以在蛋白水平上負(fù)調(diào)控乳酸脫氫酶A(LDHA)以促進(jìn)鐵死亡和CD8+T細(xì)胞的抗腫瘤活性,APOL3的過表達(dá)進(jìn)一步提高了RSL3和PD-L1抑制劑在CRC中的協(xié)同作用。研究相關(guān)基因在CRC鐵死亡和免疫浸潤之間的關(guān)系,對于聯(lián)合放療及其他治療措施以使抗腫瘤免疫更好地發(fā)揮作用,這是亟待解決的問題。
3.4 放療聯(lián)合納米藥物
多功能納米材料如氧化鐵納米顆??梢栽黾蛹?xì)胞內(nèi)Fe2+水平,IR與納米藥物的結(jié)合在抑制癌癥和克服電離輻射抗性方面是有效的[46]。Lin等[47]團(tuán)隊(duì)報(bào)道了一種納米藥物(HP NPs)能通過Fenton反應(yīng)生成ROS且減少其消耗,放療與HP NPs聯(lián)合后進(jìn)一步消耗微環(huán)境中的GSH,促進(jìn)鐵死亡作用。Fu等[48]團(tuán)隊(duì)合成了一種納米酶Cu2WS4-PEG,它不僅可以進(jìn)入細(xì)胞核增強(qiáng)IR對DNA的直接損傷,還具有GSH氧化酶活性從而減少GSH,在體內(nèi)及體外實(shí)驗(yàn)中均證實(shí)了它能有效增強(qiáng)乳腺癌放療效率。因此設(shè)計(jì)新型納米放射增敏劑誘導(dǎo)CRC鐵死亡是一種很有前景的癌癥療法。
4 展望
通過相關(guān)研究發(fā)現(xiàn),鐵死亡相關(guān)的代謝異常是CRC發(fā)展的重要原因。鐵死亡是放療誘導(dǎo)細(xì)胞死亡的重要部分,越來越多的研究證據(jù)表明靶向GPX4誘導(dǎo)的鐵死亡是一種非常有潛力的疾病治療策略,可作為克服傳統(tǒng)抗癌治療耐藥和無效患者的治療新思路,將帶來巨大的臨床獲益。但是,放療聯(lián)用鐵死亡藥物對正常細(xì)胞的損傷是否要小于腫瘤細(xì)胞仍不清楚。所以在CRC治療中,仍需深入探索以進(jìn)一步闡明其具體機(jī)制。重點(diǎn)是識別高效的生物標(biāo)志物及靶標(biāo),將放療與新的靶標(biāo)模式相結(jié)合,增強(qiáng)放療誘導(dǎo)的腫瘤細(xì)胞死亡的潛力,對探索 CRC 進(jìn)展的潛在機(jī)制以制定更有效的治療策略至關(guān)重要。
參考文獻(xiàn)
[1]中華醫(yī)學(xué)會腫瘤學(xué)分會,國家衛(wèi)生健康委員會醫(yī)政司.中國結(jié)直腸癌診療規(guī)范(2023版)[J].協(xié)和醫(yī)學(xué)雜志,2023,14(4):706-733.
[2] MORRIS V K,KENNEDY E B,BAXTER N N,et al.Treatment of metastatic colorectal cancer: ASCO guideline[J].Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology,2023,41(3):678-700.
[3] BENSON A B,VENOOK A P,AL-HAWARY M M,et al.
Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J].Journal of the National Comprehensive Cancer Network: JNCCN,2022,20(10):1139-1167.
[4] DIXON S J,LEMBERG K M,LAMPRECHT M R,et al.
Ferroptosis: an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
[5] WU D,CHEN L X.Ferroptosis: a novel cell death form will be a promising therapy target for diseases[J].Acta Biochimica Biophysica Sinica,2022,47(10):857-859.
[6] STERLING J,GUTTHA S,SONG Y,et al.Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels[J].Experimental Eye Research,2017,155:15-23.
[7] MANCIAS J D,WANG X,GYGI S P,et al.Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J].Nature,2014,509(7498):105-109.
[8] LAN Y F,YANG T,YUE Q,et al.IRP1 mediated ferroptosis reverses temozolomide resistance in glioblastoma via affecting LCN2/FPN1 signaling axis depended on NFKB2[J].iScience,2023,26(8):107377.
[9] STOCKWELL B R,F(xiàn)RIEDMANN ANGELI J P,BAYIR H,et al.
Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J].Cell,2017,171(2):273-285.
[10] LIAO P,WANG W M,WANG W C,et al.CD8+T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J].Cancer Cell,2022,40(4):365-378.
[11] LIU Y,WAN Y C,JIANG Y,et al.GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment[J].Biochimica Biophysica Acta Reviews on Cancer,2023,1878(3):188890.
[12] ISHII T,SUGITA Y,BANNAI S.Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine[J].Journal of Cellular Physiology,1987,133(2):330-336.
[13] CONRAD M,SATO H.The oxidative stress-inducible cystine/glutamate antiporter, system xc- : cystine supplier and beyond[J].Amino Acids,2012,42(1):231-246.
[14] YANG W S,SRIRAMARATNAM R,WELSCH M E,et al.
Regulation of ferroptotic cancer cell death by GPX4[J].Cell,2014,156(1):317-331.
[15] CHEFF D M,HUANG C,SCHOLZEN K C,et al.The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1[J].Redox Biology,2023,62:102703.
[16] DOLL S,F(xiàn)REITAS F P,SHAH R,et al.FSP1 is a glutathione-independent ferroptosis suppressor[J].Nature,2019,575(7784):693-698.
[17] NAKAMURA T,HIPP C,SANTOS DIAS MOUR?O A,et al.
Phase separation of FSP1 promotes ferroptosis[J].Nature,2023,619(7969):371-377.
[18] MAO C,LIU X G,ZHANG Y L,et al.DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J].Nature,2021,593(7860):586-590.
[19]駱李康,王譯峰,陳云洋,等.雙氫青蒿素抗消化道惡性腫瘤作用及機(jī)制研究進(jìn)展[J].現(xiàn)代腫瘤醫(yī)學(xué),2024,32(4):737-743.
[20] LIU Y Q,GU W.The complexity of p53-mediated metabolic regulation in tumor suppression[J].Seminars in Cancer Biology,2022,85:4-32.
[21] LV Y,TANG W T,ZHANG Z Y,et al.Cullin-9/p53 mediates HNRNPC degradation to inhibit erastin-induced ferroptosis and is blocked by MDM2 inhibition in colorectal cancer[J].Oncogene,2022,41(23):3210-3221.
[22] LIU T,JIANG L,TAVANA O,et al.The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11[J].Cancer Research,2019,79(8):1913-1924.
[23] XU X T, ZHANG X Y, WEI C Q,et al.Targeting SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing ferroptosis[J].European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences,2020,152:105450.
[24]李天柱,郝丹丹.腫瘤中m6A修飾調(diào)控鐵死亡的機(jī)制研究進(jìn)展[J].現(xiàn)代腫瘤醫(yī)學(xué),2023,31(24):4640-4645.
[25] YANG J W,MO J J,DAI J J,et al.Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J].Cell Death amp; Disease,2021,12(11):1079.
[26] DOLL S,PRONETH B,TYURINA Y Y,et al.Acsl4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J].Nature Chemical Biology,2017,13(1):91-98.
[27] DAI G L,WANG D,MA S T,et al.ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin[J].Phytomedicine: International Journal of Phytotherapy and Phytopharmacology,2022,102:154149.
[28] XUE X,TAYLOR M,ANDERSON E,et al.Hypoxia-inducible factor-2αactivation promotes colorectal cancer progression by dysregulating iron homeostasis[J].Cancer Research,2012,72(9):2285-2293.
[29] XUE X,RAMAKRISHNAN S K,WEISZ K,et al.Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis[J].Cell Metabolism,2016,24(3):447-461.
[30] KIM H,VILLAREAL L B,LIU Z,et al.Transferrin receptor-mediated iron uptake promotes colon tumorigenesis[J].Advanced Science,2023,10(10):2207693.
[31] LIU X,YAN C L,CHANG C X,et al.FOXA2 suppression by TRIM36 exerts anti-tumor role in colorectal cancer via inducing NRF2/GPX4-regulated ferroptosis[J/OL].Advanced Science (Weinheim, Baden-Wurttemberg, Germany),2023,10(35):e2304521(2023-10-24)[2024-04-10].https://pubmed.ncbi.nlm.nih.gov/37875418/. DOI: 10.1002/advs.202304521.
[32] YAN H,TALTY R,JOHNSON C H.Targeting ferroptosis to treat colorectal cancer[J].Trends in Cell Biology,2023,33(3):185-188.
[33] SONG X X,ZHU S,CHEN P,et al.AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity[J].Current Biology :CB,2018,28(15):2388-2399.
[34] YI J M,ZHU J J,WU J,et al.Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(49):31189-31197.
[35] CHEN H,QI Q Q,WU N,et al.Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer[J].Redox Biology,2022,55:102426.
[36] ZHAO Y B,LI M H,YAO X M,et al.HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications[J].Cell Reports,2020,33(10):108487.
[37] LIANG D,MINIKES A M,JIANG X.Ferroptosis at the intersection of lipid metabolism and cellular signaling[J].Molecular Cell,2022,82(12):2215-2227.
[38] YE L F,CHAUDHARY K R,ZANDKARIMI F,et al.
Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers[J].ACS Chemical Biology,2020,15(2):469-484.
[39] JI Q,F(xiàn)U S Q,ZUO H,et al.ACSL4 is essential for radiation-induced intestinal injury by initiating ferroptosis[J].Cell Death Discovery,2022,8(1):332.
[40] LANG X,GREEN M D,WANG W,et al.Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J].Cancer Discovery,2019,9(12):1673-1685.
[41] YANG P F,LI J,ZHANG T Y,et al.Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids[J].Cell Death and Differentiation,2023,30(11):2432-2445.
[42] SHIBATA Y,YASUI H,HIGASHIKAWA K,et al.Erastin,a ferroptosis-inducing agent,sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo[J/OL].PLoS One,2019,14(12):e0225931(2019-12-04)[2024-04-10].https://pubmed.ncbi.nlm.nih.gov/31800616/.DOI:10.1371/journal.pone.0225931.
[43] LIU S,ZHANG H L,LI J,et al.Tubastatin a potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis[J].Redox Biology,2023,62:102677.
[44] SHEN D Y,LUO J,CHEN L,et al.PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer[J].Cancer Letters,2022,550:215919.
[45] FENG Y Z,DAI Y L.APOL3-LDHA axis related immunity activation and cancer ferroptosis induction[J].International Journal of Biological Sciences,2023,19(5):1401-1402.
[46] YANG H C,YAO X M,LIU Y Q,et al.Ferroptosis nanomedicine: clinical challenges and opportunities for modulating tumor metabolic and immunological landscape[J].ACS Nano,2023,17(16):15328-15353.
[47] LIN Y,CHEN X W,YU C C,et al.Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy[J].Acta Biomaterialia,2023,159:300-311.
[48] FU S Y,LI Y,SHEN L,et al.Cu2 WS4-PEG nanozyme as multifunctional sensitizers for enhancing immuno-radiotherapy by inducing ferroptosis[J/OL].Small (Weinheim an Der Bergstrasse, Germany),2024:e2309537(2024-02-07)[2024-04-10].https://pubmed.ncbi.nlm.nih.gov/38323716/.DOI: 10.1002/smll.202309537.
(收稿日期:2024-07-09) (本文編輯:馬嬌)