摘要: 基于自然老化對(duì)微塑料吸附行為的重要影響, 選取商用聚苯乙烯(PS)咖啡杯蓋為微塑料的來源, 利用室外自然過程獲取自然老化的微塑料, 選擇壬基酚(NP)為目標(biāo)污染物, 研究自然老化前后PS微塑料對(duì)NP的吸附動(dòng)力學(xué)和熱力學(xué)特征, 并結(jié)合掃描電子顯微鏡、 比表面積分析儀、 紅外光譜和X射線光電子能譜等表征方式研究自然老化對(duì)微塑料吸附NP的影響機(jī)理. 結(jié)果表明: 偽二級(jí)(PSO)動(dòng)力學(xué)模型能較好地?cái)M合PS微塑料吸附NP的動(dòng)力學(xué)過程; Henry模型和Freundlich模型均能較好地?cái)M合PS微塑料對(duì)NP的吸附等溫線. PS微塑料對(duì)NP的吸附機(jī)理包括分配作用、 范德華力、 氫鍵作用、 π-π相互作用和疏水相互作用, 老化后的PS和NP間的π-π相互作用和疏水相互作用減弱, 從而抑制了NP的吸附. 研究結(jié)果為準(zhǔn)確評(píng)估PS微塑料和NP的生態(tài)風(fēng)險(xiǎn)提供了理論依據(jù).
關(guān)鍵詞:" 微塑料; 聚苯乙烯; 自然老化; 壬基酚; 吸附
中圖分類號(hào): X131" 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1671-5489(2025)01-0262-09
Mechanism of Natural Aging Inhibiting" Adsorption of
Nonylphenol by Polystyrene Microplastics
KANG Chunli, DING Weiheng, HE Shuiyuan, YU Shuyi, DU Ruihan, CHEN Weiwei
(College of New Energy and Environment," Jilin University," Changchun 130012," China)
收稿日期: 2024-12-02.
第一作者簡(jiǎn)介: 康春莉(1963—), 女, 漢族, 博士, 教授, 博士生導(dǎo)師, 從事環(huán)境化學(xué)的研究, E-mail: kangcl@jlu.edu.cn.
通信作者簡(jiǎn)介: 陳薇薇(1982—), 女, 漢族, 博士, 高級(jí)工程師, 從事環(huán)境污染的研究, E-mail: chenvv@jlu.edu.cn.
基金項(xiàng)目: 吉林省科技發(fā)展計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 20230203017SF).
Abstract:"" Based on the""" significant impact of" natural aging on the adsorption behavior of microplastics, we selected commercial polystyrene (PS) coffee cup lids as the microplastic source. Naturally aged microplastics were obtained through an outdoor natural process. Nonylphenol (NP) was chosen as the target pollutant. The adsorption kinetic and thermodynamic characteristics of NP by PS microplastics before and after natural aging were investigated. The influence mechanism of natural aging on the adsorption of NP by microplastics was studied" by combining with various characterization methods," such as scanning electron microscopy, specific surface area analyzer, infrared spectroscopy, and X-ray photoelectron spectroscopy. The results show that the pseudo second-order (PSO) kinetic model can well fit the kinetic process of NP adsorption by PS microplastics. Both the Henry model and the Freundlich model can well fit the adsorption isotherms of NP by PS microplastics. The adsorption mechanism of NP by PS microplastics includes partitioning," van der Waals forces," hydrogen bonding," π-π interactions and hydrophobic interactions. After" aging,"" the π-π interactions and hydrophobic interactions between PS and NP are weakened," thereby inhibiting the adsorption of NP. The research results provide a theoretical basis for accurately assessing the ecological risks of PS microplastics and NP.
Keywords: microplastics;" polystyrene;" natural aging;" nonylphenol;" adsorption
由于塑料制品的使用量大且回收效率較低, 塑料垃圾不可避免地進(jìn)入環(huán)境, 并在長(zhǎng)期的物理、 化學(xué)和生物作用下分解形成直徑小于5 mm的微塑料, 這些微塑料會(huì)吸附環(huán)境中的污染物, 進(jìn)而影響污染物的環(huán)境歸趨, 對(duì)生態(tài)環(huán)境構(gòu)成潛在威脅. 聚苯乙烯(PS)是一種常見的塑料材料, 由苯乙烯單體聚合而成, 因其性能優(yōu)良而應(yīng)用廣泛. 目前, 在多種環(huán)境介質(zhì)中均檢出PS微塑料[1], 有關(guān)PS微塑料吸附污染物的研究也有報(bào)道, 如PS微塑料吸附環(huán)丙沙星[2]和三嗪類農(nóng)藥[3]等. 由于自然老化對(duì)微塑料的性質(zhì)具有重要影響[4], 因此研究自然老化作用下微塑料的環(huán)境行為對(duì)準(zhǔn)確評(píng)估微塑料和污染物的復(fù)合生態(tài)風(fēng)險(xiǎn)具有重要意義.
壬基酚(NP)是非離子表面活性劑壬基酚聚氧乙烯醚的原料和主要降解產(chǎn)物, 是一種典型的內(nèi)分泌干擾物, 在環(huán)境中廣泛存在. NP具有顯著的雌激素效應(yīng)、 生物毒性和強(qiáng)烈的生物累積效應(yīng), 已被列入我國重點(diǎn)管控新污染物清單(2023年版)[5], 是需要優(yōu)先監(jiān)控的重要污染物. 研究表明, NP具有疏水性, 易在土壤和沉積物上發(fā)生吸附[6-7]. 但目前關(guān)于環(huán)境中微塑料對(duì)NP的吸附行為研究較少[8], 微塑料對(duì)NP的吸附行為、 機(jī)制及其生態(tài)風(fēng)險(xiǎn)尚不清楚. 基于此, 本文選取商用PS咖啡杯蓋為微塑料來源, 利用室外自然過程獲取自然老化的微塑料, 選擇NP為目標(biāo)污染物, 研究NP在老化前后PS微塑料上的吸附行為. 老化通常會(huì)促進(jìn)污染物的吸附[9-10], 但本文研究表明, 自然老化抑制了PS微塑料對(duì)NP的吸附. 為解釋該實(shí)驗(yàn)現(xiàn)象, 在研究該體系吸附特征的基礎(chǔ)上, 結(jié)合掃描電子顯微鏡(SEM)、 比表面積分析(BET)、 Fourier變換紅外光譜(FT-IR)和X 射線光電子能譜(XPS)等表征技術(shù), 分析自然老化對(duì)PS微塑料吸附NP的抑制機(jī)理.
1 材料與方法
1.1 試 劑
壬基酚(C15H24O, NP)購于阿拉丁試劑(上海)有限公司, 疊氮化鈉(NaN3)和氯化鈣(CaCl2)購于國藥集團(tuán)化學(xué)試劑有限公司, 乙腈(C2H3N)購于美國Sigma公司. 除乙腈為色譜純?cè)噭┩猓?其余試劑均為分析純?cè)噭? 所用的去離子水(≥18.2 MΩ·cm)由實(shí)驗(yàn)室凈水系統(tǒng)(Basic-Q15型, 韓國Hitech公司)制備.
1.2 原始和老化PS微塑料樣品的制備
實(shí)驗(yàn)所用PS塑料制品為咖啡杯蓋, 購自長(zhǎng)春市某超市. 將原始塑料制品懸掛在室外無障礙物遮擋處進(jìn)行90 d的自然老化. 老化結(jié)束后, 將原始塑料和老化塑料用去離子水沖洗, 在室溫下自然干燥, 用不銹鋼剪刀切成塊, 在液氮中(-196 ℃)冷卻后, 使用粉碎機(jī)研磨, 將得到的塑料粉末分別通過115目和250目不銹鋼篩, 得到63~125 μm粒度的級(jí)分, 于干燥處避光保存.
1.3 吸附動(dòng)力學(xué)和熱力學(xué)實(shí)驗(yàn)
預(yù)實(shí)驗(yàn)結(jié)果表明, 在不含微塑料的背景溶液中, NP濃度隨時(shí)間的變化可忽略. 此外, 在只含有微塑料的體系內(nèi), 從微塑料中浸出NP的含量低于檢出限. 因此, 本文中NP的濃度變化均被認(rèn)為由微塑料吸附導(dǎo)致.
動(dòng)力學(xué)實(shí)驗(yàn)方法. 將40 mg微塑料和20 mL 1 mg/L的NP溶液加入20 mL棕色小玻璃瓶中, 背景溶液由0.01 mol/L CaCl2和200 mg/L NaN3組成. 將玻璃瓶放入全溫振蕩培養(yǎng)箱中, 在25 ℃和160 r/min的條件下避光振蕩. 間隔一定時(shí)間取樣, 過0.22 μm玻璃纖維濾膜, 利用配備C18反相柱和熒光檢測(cè)器的高效液相色譜分析NP的質(zhì)量濃度. 高效液相色譜條件為: 柱溫40 ℃, 激發(fā)波長(zhǎng)228 nm, 發(fā)射波長(zhǎng)305 nm. 流動(dòng)相比例為V(乙腈)∶V(水)=80∶20, 流動(dòng)相的流速為1 mL/min, NP的保留時(shí)間約為6 min.
吸附熱力學(xué)實(shí)驗(yàn)方法. NP溶液的初始質(zhì)量濃度分別為0,0.2,0.4,1.0,2.0,4.0 mg/L, 其他步驟與動(dòng)力學(xué)實(shí)驗(yàn)相同. 所有實(shí)驗(yàn)樣品均設(shè)置3份平行樣.
在動(dòng)力學(xué)吸附實(shí)驗(yàn)結(jié)束后, 將吸附混合液用0.30 μm聚四氟乙烯濾膜過濾, 將載有微塑料的濾膜置于室溫干燥2 d后, 從膜上刮取吸附有NP的PS微塑料, 于干燥處避光保存.
1.4 數(shù)據(jù)分析方法
吸附量Qt(μg/g)由
Qt =Vm(ρ0—ρt)
(1)
計(jì)算," 其中m為微塑料的質(zhì)量(g), V為NP溶液的體積(L), ρ0和ρt分別為0和t時(shí)刻溶液中NP的質(zhì)量濃度(μg/L).
吸附動(dòng)力學(xué)數(shù)據(jù)用偽一級(jí)(Pseudo-first-order," PFO)和偽二級(jí)(Pseudo-second-order, PSO)動(dòng)力學(xué)模型擬合, 數(shù)學(xué)表達(dá)式為
ln(Qe-Qt)=ln Qe-K1t
,(2)
tQt=1K2Q2e+1Qet
.(3)
使用PFO和PSO模型對(duì)解吸動(dòng)力學(xué)數(shù)據(jù)進(jìn)行擬合. 采用Henry模型、 Freundlich模型和Langmuir模型擬合吸附熱力學(xué)實(shí)驗(yàn)數(shù)據(jù), 數(shù)學(xué)表達(dá)式為
Qe=Kdρe
,(4)
Qe=KFρ1/ne
,(5)
Qe=QmaxKLρe1+KLCe
,(6)
式中Qe和Qt分別為平衡時(shí)和t時(shí)刻的NP吸附量(μg/g), ρe為溶液中NP的平衡濃度(μg/L), K1為PFO和PSO模型的速率常數(shù)(h-1),
K2為PSO模型的速率常數(shù)(g/(μg·h)), Kd為Henry模型常數(shù)(L/g). KF 為與吸附劑吸附量有關(guān)的Freundlich常數(shù)((L1/n·μg1-1/n)/g), n為與吸附強(qiáng)度有關(guān)的經(jīng)驗(yàn)參數(shù), KL為L(zhǎng)angmuir模型的吸附常數(shù)(L/μg), Qmax為飽合吸附量(μg/g).
1.5 表征方法
使用掃描電子顯微鏡(JSM-6510型," 日本JEOL公司)觀察樣品形貌和元素組成. 使用比表面積分析儀(ASAP 2460型," 美國Micromeritics公司)分析微塑料的比表面積和孔徑分布. 用Fourier變換紅外光譜(Nicolet IS50型," 美國Thermo Fisher Scientific公司)對(duì)樣品的成鍵以及官能團(tuán)進(jìn)行分析. 用X射線光電子能譜儀(X′Pert PRO MPD型," 荷蘭PANalytical公司)測(cè)定樣品的元素組成以及相對(duì)含量. 使用視頻光學(xué)接觸角測(cè)量?jī)x(OSA 100型, 德國Dataphysics公司)測(cè)定微塑料的靜態(tài)接觸角.
2 結(jié)果與討論
2.1 吸附動(dòng)力學(xué)特征
NP在原始和老化PS微塑料上吸附量隨時(shí)間的變化關(guān)系如圖1所示. 由圖1可見, PS微塑料在實(shí)驗(yàn)前4 h吸附速率增長(zhǎng)較快, 之后吸附速率逐漸下降, 并在24 h內(nèi)達(dá)到吸附平衡.
將動(dòng)力學(xué)數(shù)據(jù)分別用PFO和PSO動(dòng)力學(xué)模型進(jìn)行擬合, 具體參數(shù)列于表1. PFO模型通常描述由物理吸附主導(dǎo)的吸附過程[11], PSO動(dòng)力學(xué)模型常用于描述化學(xué)吸附占主導(dǎo)地位的吸附過程[12]. 對(duì)比二者的擬合系數(shù)(R2)可知, 無論是否老化, PSO動(dòng)力學(xué)模型均可更好地?cái)M合PS微塑料對(duì)NP的吸附過程(R2gt;0.96), 說明化學(xué)吸附可能是吸附過程的限速步驟. 這涉及價(jià)電子之間的作用力, 可通過共享或交換電子(π-π相互作用或氫鍵)實(shí)現(xiàn)[13]. 由PSO模型的速率常數(shù)K2可知, 與原始PS微塑料相比, 老化PS的K2值減小了15.38%, 說明自然老化過程降低了PS微塑料對(duì)NP的吸附速率.
2.2 吸附熱力學(xué)特征
NP在原始和老化PS微塑料上的吸附等溫線如圖2所示." 將圖2中的等溫吸附數(shù)據(jù)分別采用Henry,Langmuir和Freundlich等溫線模型進(jìn)行擬合, 擬合參數(shù)列于表2.
若符合Henry線性模型, 則表明存在分配吸附機(jī)制[14]; Langmuir模型可用于描述均勻表面上的單層吸附[15], 所有吸附位點(diǎn)具有相同的吸附親和力; Freundlich模型更適于描述吸附劑具有非均質(zhì)表面的吸附, 包括單層吸附和多層吸附[16]. 由表2可見, 3種模型均可較好地?cái)M合PS對(duì)NP的吸附過程(R2gt;0.98). 與Henry模型和Freundlich模型相比, Langmuir模型對(duì)微塑料吸附NP的擬合效果較差, 原因可能是PS微塑料的表面不均勻. 此外, 對(duì)老化的PS微塑料, Henry模型比Freundlich模型的擬合效果更好, 表明此時(shí)分配機(jī)制對(duì)NP吸附的影響可能更重要, Freundlich模型中參數(shù)1/n的值接近1也證明了該結(jié)論. 這是由NP的強(qiáng)疏水性(log Kow=4.48)所致. PS微塑料對(duì)NP的吸附既符合線性模型也符合非線性模型, 表明除分配機(jī)制外, 其他作用如范德華力、 氫鍵和疏水相互作用等也會(huì)影響吸附過程. 通過比較Henry模型和Freundlich模型的Kd和KF值可見, 與原始PS微塑料相比, 老化PS微塑料的Kd和KF值分別下降了6.18%和23.42%, 因此自然老化過程降低了PS微塑料對(duì)NP的吸附能力.
2.3 吸附機(jī)理分析
2.3.1 老化前后PS微塑料的表面性質(zhì)
圖3為原始和老化PS的照片以及放大不同倍數(shù)的SEM照片. 由圖3(A),(E)可見, 原始PS咖啡杯蓋為白色, 老化后塑料變黃, 但塑料本體仍較完整, 并未觀察到明顯破碎. 老化后PS塑料變黃的原因?yàn)榫酆衔镅趸a(chǎn)生了發(fā)色產(chǎn)物(如過氧化物和羰基化合物)[17]. 用SEM進(jìn)一步對(duì)老化前后PS咖啡杯蓋研磨制備的微塑料表面形貌進(jìn)行觀察, 由圖3(B)~(D),(F)~(H)可見, 原始PS微塑料的形狀不規(guī)則, 呈顆粒狀; 老化后PS微塑料的表面較粗糙, 形成了磨損、 劃痕和孔洞.
由PS微塑料的N2吸附解吸曲線(圖4(A))可見, 原始和老化PS微塑料的吸附解吸曲線符合Ⅳ型吸附等溫線的特征, 具有H3型回滯環(huán), 表明PS微塑料中有片狀顆粒堆積形成的狹縫孔. 與原始PS微塑料的回滯環(huán)相比, 老化PS微塑料的回滯環(huán)較明顯, 表明老化PS可能有更多的孔隙. 由PS微塑料的孔徑分布(圖4(B))可見, 老化后PS微塑料產(chǎn)生了大量的微孔、 介孔和大孔. 老化后PS微塑料的總孔體積由4.03×10-4 cm3/g增加到2.47×10-3 cm3/g, BET比表面積由0.14 m2/g增加到0.48 m2/g, 分別是原始PS微塑料的6.1倍和3.4倍. 通常微塑料的比表面積增加, 其吸附能力也會(huì)增強(qiáng)[9], 但老化后PS對(duì)NP的吸附能力卻降低, 說明PS微塑料對(duì)NP的吸附過程除受比表面積影響外, 還有其他因素影響吸附過程.
2.3.2 PS微塑料吸附NP前后的FT-IR
圖5為原始和老化后PS微塑料的FT-IR. 由圖5可見: 原始PS微塑料的紅外光譜在3 082, 3 059,3 026,1 942,1 869,1 800,756,696 cm-1處和
1 601,1 493,1 452 cm-1處的吸收峰分別歸屬于苯環(huán)C—H鍵和CC鍵的伸縮振動(dòng)[18-20]; 在2 920,2 849 cm-1處的兩個(gè)吸收峰分別對(duì)應(yīng)—CH2—的反對(duì)稱和對(duì)稱伸縮振動(dòng). 以上官能團(tuán)與PS含有的官能團(tuán)一致. 此外, 原始PS微塑料在3 445,1 744 cm-1處分別出現(xiàn)了—OH和CO的吸收峰, 并在1 153,1 028 cm-1處出現(xiàn)了C—O的伸縮振動(dòng)峰[21], 這些含氧官能團(tuán)可能來自合成過程中塑料的氧化或加入的添加劑. PS老化后, —OH的吸收峰明顯增強(qiáng), 1 744 cm-1處的CO吸收峰也略增強(qiáng), 表明老化過程中PS塑料表面被氧化. 同時(shí), 老化過程中苯環(huán)CC骨架的吸收峰強(qiáng)度減弱, 這可能是由于光氧化使苯環(huán)開環(huán)所致[22].
圖6為原始和老化PS微塑料吸附NP前后的FT-IR. 由圖6可見, 原始和老化PS微塑料在吸附NP后并未出現(xiàn)新的吸收峰, 但兩種PS微塑料—OH特征峰的強(qiáng)度顯著增加, 表明NP被吸附到PS微塑料上. 原始PS微塑料吸附NP后, 其—OH峰位置未移動(dòng), 而老化PS微塑料吸附NP后的—OH峰從3 445 cm-1移動(dòng)到了3 441 cm-1, 藍(lán)移了4 cm-1, 表明老化PS微塑料的—OH基和NP之間可能產(chǎn)生了氫鍵[23]. 此外, 老化PS微塑料吸附NP后, CO峰由1 744 cm-1移動(dòng)到1 747 cm-1, 且峰強(qiáng)度明顯減弱, 表明CO鍵參與了吸附反應(yīng), 并且可能由氫鍵作用介導(dǎo)[10].
FT-IR分析的結(jié)果表明, 自然老化過程中PS微塑料被氧化形成了更多的含氧官能團(tuán), 同時(shí)也發(fā)生了苯環(huán)的開環(huán)反應(yīng). 老化微塑料由于形成了更多的含氧官能團(tuán), 導(dǎo)致吸附過程中氫鍵作用增強(qiáng), 因此PS微塑料吸附NP的過程中包括氫鍵作用.
2.3.3 PS微塑料吸附NP前后的XPS
為進(jìn)一步分析吸附NP前后微塑料的表面元素、 化學(xué)成分和官能團(tuán)變化, 測(cè)定吸附NP前后PS微塑料的XPS, 結(jié)果表明, PS微塑料主要含有C和O兩種元素, 原始PS中C和O的占比分別為94.94%和5.06%, 老化后C的占比減少(87.70%), O的占比增加(12.30%), 表明老化過程中PS被氧化, 與FT-IR的表征結(jié)果一致. 由C1s和O1s的高分辨率XPS進(jìn)一步得到元素C和O的化學(xué)形態(tài), 以及特定化學(xué)形態(tài)的元素在總樣品中的百分比, 結(jié)果列于表3.
由于原始PS中氧含量較低, 因此在C1s單譜中未分出C—O和CO的特征峰. 老化PS中O元素原子占比增大, C1s單譜中出現(xiàn)C—O(286.27 eV)和CO(289.34 eV)的特征峰, 二者的比例分別為6.41%和2.42%. 此外, 在原始PS的O1s單譜中, 位于532.42 eV處的峰歸屬于CO—C/H, 位于533.47 eV處的峰歸屬于CO[24-25], 兩種形式的O占比分別為57.75%, 42.25%. 老化后二者占比變?yōu)?1.53%, 38.47%. 可見, 老化過程生成了更多的CO官能團(tuán). 此外, 在原始PS的C1s單譜中, 位于284.80,285.57 eV處的峰分別歸屬于芳香族和脂肪族的C—H伸縮振動(dòng)[26], 二者占比分別為69.54%,28.63%. 老化PS中芳香族C—H的比例降為53.58%, 脂肪族C—H的比例略上升. 位于291.57 eV處的峰歸屬于苯環(huán)的π-π*震激躍遷[26], π-π*占比為1.83%; 老化后, π-π*比例下降至1.30%. 與老化PS中苯環(huán)CC骨架紅外吸收峰強(qiáng)度減弱的結(jié)果(圖5)一致, 進(jìn)一步證明了自然老化作用使PS微塑料中苯環(huán)的數(shù)量減少.
原始和老化PS微塑料在吸附NP后, C1s單譜中π-π*官能團(tuán)的結(jié)合能均出現(xiàn)不同程度下降, 這可能是由于PS和NP結(jié)構(gòu)中均含有苯環(huán), 富含π電子, 二者間發(fā)生了π-π相互作用[27], 導(dǎo)致苯環(huán)周圍的電子云密度升高, 使苯環(huán)的π-π*結(jié)合能下降. 同時(shí), 與老化PS微塑料相比, 原始PS微塑料吸附NP后π-π*峰值降低的程度更大, 表明其與NP之間的π-π相互作用更顯著. 這是因?yàn)樵糚S微塑料中含有大量苯環(huán), 而老化PS中苯環(huán)的數(shù)量減少, 與NP之間的π-π相互作用減弱所致.
XPS的結(jié)果表明, 自然老化過程中PS微塑料的苯環(huán)發(fā)生了化學(xué)鍵斷裂, 此外, PS被氧化形成了更多的含氧官能團(tuán). PS微塑料吸附NP的過程中包括π-π相互作用和氫鍵相互作用. 原始PS微塑料有大量苯環(huán), π-π相互作用對(duì)吸附的影響較大; 老化PS微塑料由于苯環(huán)被破壞, 因此吸附過程中π-π相互作用減弱. 且其表面形成了更多的含氧官能團(tuán), 吸附過程中氫鍵作用增強(qiáng).
2.3.4 老化前后PS微塑料的接觸角
測(cè)量水接觸角可直接評(píng)估顆粒表面的疏水性. 微塑料的疏水性可通過影響微塑料和污染物間的疏水相互作用影響吸附過程. 原始PS微塑料粉末的接觸角為140.01°, 表現(xiàn)出較強(qiáng)的疏水性. 老化后PS微塑料的接觸角變?yōu)?35.22°, 降低了3.42%, 表明自然老化后PS微塑料疏水性降低. 這是由于老化過程中微塑料表面被氧化, 生成了含氧官能團(tuán), 這些含氧官能團(tuán)降低了微塑料的疏水性," 疏水性降低會(huì)減弱老化PS微塑料和NP間的疏水相互作用, 從而降低其吸附能力.
綜上可見, PS微塑料對(duì)NP吸附是一個(gè)包括物理吸附和化學(xué)吸附的多重過程. 吸附機(jī)理包括分配作用、 范德華力、 氫鍵、 疏水相互作用以及π-π相互作用; 其中化學(xué)吸附(π-π相互作用)在吸附過程中占主導(dǎo)地位. 自然老化抑制了PS微塑料對(duì)NP的吸附, 與原始微塑料相比, 其吸附能力和吸附速率均降低, 原因主要為: 1)老化過程破壞了PS微塑料中的苯環(huán), 使其與NP的π-π相互作用減弱; 2)老化PS微塑料形成更多的含氧官能團(tuán), 親水性增加, 與NP間的疏水相互作用減弱. 上述兩點(diǎn)原因共同作用抵消了吸附過程中氫鍵和物理吸附作用的增強(qiáng), 使老化PS微塑料小于原始PS微塑料對(duì)NP的吸附能力.
綜上所述, 本文研究了原始和自然老化PS微塑料吸附NP的動(dòng)力學(xué)特征和熱力學(xué)特征, 并結(jié)合SEM,BET,IR和XPS等表征技術(shù), 研究了老化PS微塑料吸附NP的機(jī)理. 結(jié)果表明: 原始和自然老化PS微塑料吸附NP的動(dòng)力學(xué)過程符合PSO動(dòng)力學(xué)模型, 吸附等溫線符合Henry模型和Freundlich模型; 原始和自然老化PS微塑料吸附NP的機(jī)理包括分配作用、 范德華力、 氫鍵作用、 π-π相互作用和疏水相互作用, 既有物理吸附, 也有化學(xué)吸附; 自然老化導(dǎo)致PS 微塑料表面粗糙, 比表面增大, 含氧官能團(tuán)增加, 氫鍵作用增強(qiáng), 但疏水性降低; 自然老化破壞了PS微塑料中的苯環(huán), 使PS和NP間的π-π相互作用減弱. 由于PS和NP間的π-π相互作用減弱及疏水相互作用減弱占主導(dǎo)地位, 因此自然老化抑制了PS微塑料對(duì)NP的吸附.
參考文獻(xiàn)
[1] XU Y H," OU Q," JIAO M," et al. Identification and Quantification of Nanoplastics in Surface Water and Groundwater by Pyrolysis Gas Chromatography: Mass Spectrometry" [J]. Environmental Science amp; Technology," 2022," 56(8):" 4988-4997.
[2] GAO X," CHANG S L," LIU F X," et al. Adsorption Characteristics of Ciprofloxacin Hydrochloride on Polystyrene Microplastics in Freshwater" [J]. Environmental Science and Pollution Research," 2024," 31(16):" 24139-24152.
[3] ZENG Z H," JIA B N," LIU X F," et al. Adsorption Behavior of Triazine Pesticides on Polystyrene Microplastics Aging with Different Processes in Natural Environment" [J]. Environmental Pollution," 2024," 356:" 124319-1-124319-9.
[4] HE W J," LIU S," ZHANG W," et al. Recent Advances on Microplastic Aging:" Identification," Mechanism," Influence Factors," and Additives Release" [J]. Science of the Total Environment," 2023," 889:" 164035-1-164035-18.
[5]" 李芊, 張建, 陳信含, 等. 新污染物水生態(tài)環(huán)境風(fēng)險(xiǎn)及其防控形勢(shì) [J]. 當(dāng)代化工研究, 2024(19): 107-109. (
LI Q, ZHANG J, CHEN X H, et al. Ecological Risks of Emerging Contaminants in Aquatic Environments and Their Control Strategies [J]. Modern Chemical Research, 2024(19): 107-109.)
[6] XU D C," HU S J," XIONG Y Q," et al. Importance of the Structure and Micropores of Sedimentary Organic Matter in the Sorption of Phenanthrene and Nonylphenol" [J]. Environmental Pollution," 2020," 260: "114034-1-114034-11.
[7] CHENG G H," LIU H," DONG T L," et al. Assessment and Prediction of the Effect of Ageing on the Adsorption of Nonylphenol in Black Carbon-Sediment Systems" [J]. Journal of Environmental Sciences," 2021," 102:" 216-225.
[8] PHUONG N N," ZALOUK-VERGNOUX A," DUONG T T," et al. Sorption of Alkylphenols and Estrogens on Microplastics in Marine Conditions" [J]. Open Chemistry," 2023," 21(1):" 20220315-1-20220315-10.
[9] BHAGAT K," BARRIOS A C," RAJWADE K," et al. Aging of Microplastics Increases Their Adsorption Affinity towards Organic Contaminants" [J]. Chemosphere," 2022," 298:" 134238-1-134238-9.
[10] ZHANG L," QIN Z," BAI H," et al. Photochemically Induced Aging of Polystyrene Nanoplastics and Its Impact on Norfloxacin Adsorption Behavior" [J]. Science of the Total Environment," 2024," 930:" 172511-1-172511-12.
[11] JIANG H T," DAI Y J. Vitamin C Modified Crayfish Shells Biochar Efficiently Remove Tetracycline from Water:" A Good Medicine for Water Restoration" [J]. Chemosphere," 2023, "311:" 136884-1-136884-11.
[12] WAGSTAFF A," LAWTON L A," PETRIE B. Polyamide Microplastics in Wastewater as Vectors of Cationic Pharmaceutical Drugs" [J]. Chemosphere," 2022," 288:" 132578-1-132578-8.
[13] TONG X," LI Y X," ZHANG F S," et al. Adsorption of 17β-Estradiol onto Humic-Mineral Complexes and Effects of Temperature," pH," and Bisphenol A on the Adsorption Process" [J]. Environmental Pollution," 2019," 254:" 112924-1-112924-9.
[14] HUANG J J," LI Z Q," WANG Z," et al. Aging," Characterization and Sorption Behavior Evaluation of Tire Wear Particles for Tetracycline in Aquatic Environment" [J]. Chemosphere," 2023," 335:" 139116-1-139116-11.
[15] LIU X," SHAO Z Y," WANG Y X," et al. New Use for Lentinus Edodes Bran Biochar for Tetracycline Removal" [J]. Environmental Research," 2023," 216:" 114651-1-114651-10.
[16] SAADI R," SAADI Z," FAZAELI R," et al. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media" [J]. Korean Journal of Chemical Engineering," 2015," 32(5):" 787-799.
[17] Lü Y D," HUANG Y J," KONG M Q," et al. Multivariate Correlation Analysis of Outdoor Weathering Behavior of Polypropylene under Diverse Climate Scenarios" [J]. Polymer Testing," 2017," 64:" 65-76.
[18] CHANG J N," LIANG J S," FANG W," et al. Adsorption Behaviors and Bioavailability of Tetrabromobisphenol A in the Presence of Polystyrene Microplastic in Soil:" Effect of Microplastics Aging*" [J]. Environmental Pollution," 2023," 334:" 122156-1-122156-9.
[19] CHEN C," WEI F," YE L," et al. Adsorption of Cu2+ by UV Aged Polystyrene in Aqueous Solution" [J]. Ecotoxicology and Environmental Safety," 2022," 232:" 113292-1-113292-7.
[20] 王俊杰," 陳曉晨," 李權(quán)達(dá), 等. 老化作用對(duì)微塑料吸附鎘的影響及其機(jī)制" [J]. 環(huán)境科學(xué)," 2022," 43(4):" 2030-2038. (WANG J J," CHEN X C," LI Q D," et al. Effects of Aging on the Cd Adsorption by Microplastics and the Relevant Mechanisms" [J]. Environmental Science," 2022," 43(4):" 2030-2038.)
[21] MAO R F," LANG M F," YU X Q," et al. Aging Mechanism of Microplastics with UV Irradiation and Its Effects on the Adsorption of Heavy Metals" [J]. Journal of Hazardous Materials," 2020," 393:" 122515-1-122515-10.
[22] LIU P," QIAN L," WANG H Y," et al. New Insights into the Aging Behavior of Microplastics Accelerated by Advanced Oxidation Processes" [J]. Environmental Science amp; Technology," 2019,nbsp; 53(7):" 3579-3588.
[23] JIN Z X," WANG X X, SUN Y B, et al. Adsorption of 4-n-Nonylphenol and Bisphenol-A on Magnetic Reduced Graphene Oxides:" A Combined Experimental and Theoretical Studies" [J]. Environmental Science amp; Technology," 2015," 49:" 9168-9175.
[24] DONG S Y," YAN X X," YUE Y Y," et al. H2O2 Concentration Influenced the Photoaging Mechanism and Kinetics of Polystyrene Microplastic under UV Irradiation:" Direct and Indirect Photolysis" [J]. Journal of Cleaner Production," 2022," 380:" 135046-1-135046-9.
[25] LI Z," LI M," WANG Z Y," et al. Coadsorption of Cu(Ⅱ) and Tylosin/Sulfamethoxazole on Biochar Stabilized by Nano-hydroxyapatite in Aqueous Environment [J]. Chemical Engineering Journal," 2020," 381:" 122785-1-122785-11.
[26] ZHANG J," ZHAN S Y," ZHONG L B," et al. Adsorption of Typical Natural Organic Matter on Microplastics in Aqueous Solution:" Kinetics," Isotherm," Influence Factors and Mechanism" [J]. Journal of Hazardous Materials," 2023," 443:" 130130-1-130130-14.
[27] YU F," YANG C F," ZHU Z L," et al. Adsorption Behavior of Organic Pollutants and Metals on Micro-nanoplastics in the Aquatic Environment" [J]. Science of the Total Environment," 2019," 694:" 133643-1-133643-11.
(責(zé)任編輯: 單 凝)