摘要: 核盤菌(Sclerotinia sclerotiorum (Lib.) de Bary)是世界性的死體營養(yǎng)型植物病原真菌, 寄主范圍極廣, 所引起的大豆和油菜等菌核病會導致農(nóng)業(yè)生產(chǎn)的巨大經(jīng)濟損失. 核盤菌致病機制復雜, 不僅具有直接殺死細胞的典型死體營養(yǎng)階段, 也包含需抑制植物免疫的短暫活體營養(yǎng)期. 核盤菌具有種類繁多的致病因子, 包括介導侵染結構形成或抗逆能力的關鍵調(diào)控因子、 降解植物細胞組分的水解酶、 草酸、 誘導植物細胞死亡或抑制植物免疫的效應蛋白等. 綜述核盤菌侵染模型, 總結各種致病因子, 尤其是效應蛋白在核盤菌致病中的作用, 并結合最新研究結果對核盤菌致病新機制進行展望, 為作物菌核病的防控提供理論依據(jù).
關鍵詞:" 核盤菌; 致病機制; 致病因子; 效應蛋白
中圖分類號: Q71" 文獻標志碼: A" 文章編號: 1671-5489(2025)01-0253-09
Research Advances on Pathogenic Mechanism of Sclerotinia sclerotiorum
PAN Hongyu, LI Yalan, SUN Hongyu," XIAO Kunqin
(College of Plant Sciences," Jilin University," Changchun" 130062," China)
收稿日期: 2024-11-22.
第一作者簡介:""" 潘洪玉(1961—)," 男," 漢族," 博士," 教授," 博士生導師, 從事植物病原真菌發(fā)育調(diào)控及其抗病基因工程的研究, E-mail: panhongyu@jlu.edu.cn. 通信作者簡介:" 肖坤欽(1996—)," 男," 漢族," 博士, 助理工程師," 從事核盤菌與寄主互作機制的研究, E-mail: xiaokq@jlu.edu.cn.
基金項目: 吉林大學研究生教育教學改革重點項目(批準號: 2023JGZ012)、 國家自然科學基金(批準號: 32272484; 323B2055)和國家重點研發(fā)計劃政府間科技創(chuàng)新合作專項基金(批準號: 2019YFE0114200).
Abstract:"" Sclerotinia sclerotiorum (Lib.) de Bary is a worldwide and necrotrophic phytopathogenic fungi with a wide host-range. Sclerotinia stem rot (SSR) caused in soybean and rapeseed by S.sclerotiorum has caused huge economic losses to agricultural production. The pathogenic mechanism of S.sclerotiorum is complicated," which not only has a necrotrophic phase that directly kills cells," but also includes a short biotrophic phase that needs to suppress plant immunity. S.sclerotiorum has a wide variety of pathogenic factors," including key regulatory factors that mediate the formation of infection structure or stress resistance," hydrolytic enzymes that degrade plant cell components," oxalic acid," effector that induce plant cell death or inhibit plant immunity," etc. We have reviewed the infection model of S.sclerotiorum, summarized" the roles of various pathogenic factors," especially effector proteins," in the pathogenesis of S.sclerotiorum. Combined with the latest research," we have prospected the new pathogenic mechanism of S.sclerotiorum,"" providing theoretical basis for the prevention and control of crop Sclerotinia diaease.
Keywords: Sclerotinia sclerotiorum; pathogenic mechanism; pathogenic factor; effector proctein
核盤菌(Sclerotinia sclerotiorum (Lib.) de Bary)隸屬子囊菌門, 核盤菌屬, 在世界范圍內(nèi)廣泛分布[1]. 已知核盤菌可侵染超過700余種植物, 是典型的廣寄主性死體營養(yǎng)型植物病原真菌, 侵染導致的植物病害稱為菌核?。?]. 在農(nóng)業(yè)生產(chǎn)上, 菌核病對大豆、 油菜、 向日葵等油料作物和多種蔬菜作物的生產(chǎn)危害巨大. 由于核盤菌致病機制復雜、 抗性種質(zhì)資源匱乏, 因此菌核病防控已成為世界性難題. 核盤菌具有典型的多形菌態(tài), 包括菌絲、 菌絲侵染時特化形成的侵染結構-侵染墊、 菌絲在逆境下聚集產(chǎn)生的可越冬形態(tài)及初侵染源-菌核、 菌核在適宜條件下萌發(fā)產(chǎn)生的有性態(tài)-子囊盤和子囊盤產(chǎn)生可傳播的有性孢子-子囊孢子等, 菌核也可萌發(fā)形成菌絲繼續(xù)侵染[3]. 這種多形菌態(tài)的生活史是菌核病頻繁流行和難防難控的關鍵原因, 多個介導侵染墊形成、 菌核發(fā)育或抗逆性的關鍵調(diào)控因子影響核盤菌致病性[4]. 目前普遍認為核盤菌侵染可分為兩個階段: 1) 早期通過分泌效應蛋白抑制寄主的基礎免疫反應, 屬活體營養(yǎng)期; 2) 后期利用草酸、 細胞壁降解酶及誘導植物細胞死亡的蛋白殺死寄主細胞, 攫取營養(yǎng), 屬典型死體營養(yǎng)階段[5]. 多項研究已證明草酸、 細胞壁降解酶、 效應蛋白均在核盤菌致病過程中發(fā)揮重要作用[6]. 本文總結了核盤菌致病機制的研究進展, 并結合最新研究成果對核盤菌致病新機制進行展望, 為闡明菌核病成災機制、 有效防控菌核病發(fā)生和危害提供參考.
1 死體營養(yǎng)型核盤菌兩階段侵染假說
以往研究[1]認為核盤菌是典型的死體營養(yǎng)型真菌, 但目前的遺傳學、 組織學染色和細胞學觀察證據(jù)均表明, 核盤菌在侵染早期存在一個明顯的、 典型的、 短暫的活體營養(yǎng)階段, 開始時間和持續(xù)時間根據(jù)寄主的特征不同而不同[5,7-8]. 在該階段, 核盤菌不會導致侵染點周圍的寄主細胞死亡, 并且需抑制植物免疫以促進菌絲的生存和后續(xù)的侵染進程[9-11]. 根據(jù)侵染過程的先后順序分為如下幾個過程: 1) 侵染墊及衍生的侵染釘利用機械壓力打破寄主的角質(zhì)層(可能也包括各種蠟質(zhì)層), 但不穿透進入寄主的表皮細胞[12-13]; 2) 在角質(zhì)層下, 從這些侵染釘中分化形成球莖狀和多葉狀的囊泡結構, 然后囊泡繼續(xù)生長形成角質(zhì)層下的侵染性菌絲[14]; 3) 這些侵染性菌絲可持續(xù)在角質(zhì)層下水平生長達數(shù)層菌絲, 此時不會殺死寄主表皮細胞而是抑制植物免疫, 包括抑制胼胝質(zhì)和乳突的沉積、 活性氧(ROS)積累、 芥子油苷等次生代謝物的防御壁壘, 處于典型的活體營養(yǎng)階段, 與寄主進行親和性互作, 這些菌絲構成了主要的定殖陣地, 代表建立侵染和初步定殖完成[7,10,13]; 4) 隨后菌絲沿細胞間隙產(chǎn)生大量分支并利用各種細胞壁降解酶、 草酸和其他致病因子逐漸軟化分解表皮細胞壁, 侵入細胞后導致細胞壁崩解和細胞死亡并攫取死亡細胞的營養(yǎng)成分[12]; 5) 上述過程逐步沿侵染點周圍的表皮細胞向遠端和深層細胞持續(xù)進行, 在侵染性菌絲的最前端繼續(xù)采用活體營養(yǎng)方式擴展, 而分支菌絲降解細胞壁、 誘導和殺死寄主細胞、 攫取營養(yǎng), 最終形成病變組織的擴展[5,7].
2 侵染墊形成及抗逆對其致病性的決定作用
除少數(shù)通過傷口侵染時不需侵染結構外, 形成侵染墊是核盤菌定殖和侵染的前提, 因此侵染墊的形成和發(fā)育對核盤菌的致病至關重要. 遺傳學研究已證實多個調(diào)控因子通過介導侵染墊形成和發(fā)育決定核盤菌致病性[4-6], 綜合來看, 核盤菌侵染墊的形成至少涉及對寄主或堅硬基質(zhì)的感知、 絲裂原活化蛋白激酶(mitogen-actived protein kinases," MAPKs)和RAS(rat sarcoma)等信號傳導通路、 幾個關鍵轉錄因子介導的轉錄重編程、 細胞自噬和非典型調(diào)控因子作用等5個層面. 例如, 一個位于細胞表面的SsCFEM蛋白在感知植物蠟質(zhì)層和堅硬基質(zhì)上發(fā)揮重要作用, 因此將其敲除后導致侵染墊形成的能力顯著降低, 進而降低了致病力[15]. MAPKs的細胞壁完整性通路介導了對細胞壁擾動的感知和信號傳導, 研究表明該通路的幾個核心組分SsPkc1,SsBck1,SsMkk1和SsSmk3均負責調(diào)控侵染墊的形成和發(fā)育, 它們敲除突變體的侵染墊水平和致病力均大幅度減少[16]. 另一個MAPKs通路SsSte50-SsSte11-SsSte7-SsSmk1也調(diào)控了侵染墊的形成, 甚至敲除SsSmk1后導致其侵染墊形成的能力和對寄主的致病性完全喪失[17]. 幾個介導RAS信號通路的蛋白SsRAS1,SsRAS2和SsGAP1也在調(diào)節(jié)侵染墊形成和致病性中發(fā)揮關鍵作用[18]. 轉錄因子通過操縱下游功能基因的轉錄發(fā)揮多效作用, SsSfh1,SsFkh1,SsSte12,SsMcm1,SsAms2,SsNsd1和SsFoxE3等轉錄調(diào)控因子都在調(diào)控侵染墊形成和發(fā)育中發(fā)揮重要作用, 也參與了對致病性的調(diào)控[16,19-23]. 由于在侵染墊形成期和侵染早期, 菌絲均處于營養(yǎng)缺陷狀態(tài), 因此細胞自噬在侵染墊形成和致病中發(fā)揮關鍵作用, 已報道關鍵自噬相關蛋白SsAtg1,SsAtg8,SsAtg13和SsTOR均為侵染墊形成和致病所需[23-25]. 此外, 一些非典型調(diào)控因子也通過影響侵染墊發(fā)育決定致病性, 包括影響侵染墊黑色素合成的聚酮合酶SsPKS13、 鈣離子結合蛋白SsCaf1、 谷氨酰轉肽酶SsGGT1和草酸脫羧酶SsOdc2等, 它們的敲除或沉默突變體在提供人為傷口后均能恢復致病力[26-29].
由于核盤菌在侵染時受植物免疫或植物細胞崩解產(chǎn)生的ROS和具有抑菌殺菌活性防御化合物的脅迫, 因此核盤菌也通過精密調(diào)控的抗氧化系統(tǒng)和解毒酶抵消這些脅迫的危害. 如編碼超氧化物歧化酶Sssod1、 過氧化氫酶Sscat1、 硫氧還蛋白還原酶SsTrr1、 銅離子輸入及轉運SsCTR1,SsCCS 和 SsATX1的抗氧化解毒基因. 在敲除或沉默后, 核盤菌對氧化脅迫的耐受性和對寄主的致病力均顯著減少[30-31]. 其他編碼存活因子的基因SsSvf1和Bax 抑制劑的基因 SsBi1被沉默后也減少了核盤菌對多種脅迫的耐受性和對寄主的侵染能力[32]. 除上述關鍵ROS解毒基因外, 負責轉錄調(diào)控這些ROS解毒基因表達的調(diào)控因子SsSnf5和SsHsf1也被證明在抵御植物免疫產(chǎn)生的ROS時, 二者相互作用組成轉錄模塊可激活ROS解毒基因的轉錄, 進而增強了核盤菌對寄主的致病力[33]. 此外, 研究也證實核盤菌分別通過槲皮苷加雙氧酶SsQDO和異硫氰酸酯酶SsSaxA將植物產(chǎn)生的防御次生代謝物類黃酮和異硫氰酸酯分解為低毒性的化合物, 進而降低了這些抗真菌化合物對自身的危害, 促進對寄主的侵染[34-35].
探究核盤菌影響致病的關鍵調(diào)控因子對解析核盤菌的致病機制至關重要, 也可將這些調(diào)控因子作為殺菌劑或寄主誘導的基因沉默(host-induced gene silencing, HIGS)靶標, 開發(fā)綠色高效的新型殺菌劑和抗病的新品種. 目前, 已證明分別針對SsSnf5,SsHsf1,SsHsp70,SsGAP1,SsRAS1,SsRAS2和SsSte50設計的HIGS載體在轉入寄主植物后均可減少核盤菌的侵染[17-18,33], 而分別以SsSmk3同源蛋白MoMps1、 保守的磷脂酸磷酸酯酶MoPah1為靶點開發(fā)的化合物A378-0和普萘洛爾可廣譜地應用于治療植物病原真菌感染, 包括核盤菌[36-37].
3 草酸產(chǎn)生對核盤菌廣譜致病性的決定作用
草酸一直被認為是核盤菌關鍵的致病因子, 草酸在核盤菌致病中的作用主要歸因于其形成的酸性環(huán)境, 草酸作為核盤菌形成酸性環(huán)境的最主要物質(zhì), 在侵染過程中發(fā)揮多種且關鍵作用[5-6]. 編碼草酸合成的關鍵酶——草酰乙酸乙酰水解酶Ssoah在紫外誘變、 T-DNA插入突變、 基于同源重組的基因敲除或基于CRISPR-Cas9的突變體中, 均極顯著降低了對多種寄主的致病力[13,26,38]. 此外, 在大豆中過表達能降解草酸的草酸氧化酶OxO也降低了對核盤菌的敏感性[8].
草酸在核盤菌侵染過程中已被證明主要有以下幾方面作用: 1) 操縱寄主氧化還原環(huán)境, 在侵染早期抑制寄主ROS爆發(fā)和胼胝質(zhì)沉積等植物免疫, 促進早期定殖, 而在侵染后期則誘導寄主ROS爆發(fā)和細胞死亡, 促進死體營養(yǎng)階段的發(fā)生和病斑的擴展[11]; 2) 在侵染早期通過激活非光化學淬滅操縱寄主葉黃素循環(huán), 進而影響葉綠體氧化還原通路、 減少茉莉酸和脫落酸的合成, 最終削弱ROS爆發(fā)和胼胝質(zhì)沉積等植物免疫[39];" 3) 降低侵染點周圍的pH值, 創(chuàng)造有利于核盤菌侵染的酸性環(huán)境[38]; 4) 螯合寄主組織中的Ca2+形成草酸鈣結晶, 以避免高濃度鈣對菌絲的傷害[40]; 5) 抑制寄主的細胞自噬削弱植物免疫[10]; 6) 影響脫落酸途徑或保衛(wèi)細胞功能阻止氣孔關閉[41].
4 核盤菌分泌水解酶對寄主植物組分的降解作用
核盤菌在侵染時需通過分泌多種水解酶以幫助其穿透植物角質(zhì)層、 水解植物細胞壁和各種細胞成分, 將植物高分子物質(zhì)如果膠、 纖維素、 蛋白質(zhì)等降解為小分子物質(zhì)吸收利用. 大量核盤菌和寄主互作的轉錄組研究都展示了編碼各種水解酶的基因在侵染時期高度上調(diào)表達[9,42-45]. 在具體的功能研究上, 已有文獻報道了幾個水解酶作為核盤菌致病因子發(fā)揮作用: 敲除編碼角質(zhì)酶的SsCut1后減少了角質(zhì)酶活性和對寄主的致病力[46]; 敲除編碼內(nèi)切木聚糖酶的SsXyl1和SsXyl2也減少了核盤菌致病力[47-48];" 聚半乳糖醛酸酶SsPG1也在致病中起關鍵作用[49]. 研究表明, 某些水解酶也可作為激發(fā)子或通過其他方式激活植物免疫和誘導植物細胞死亡: SsCutA在異源表達后可作為激發(fā)子誘導植物免疫和煙草細胞死亡[50];" SsCut1瞬時表達進煙草也能誘導煙草的ROS爆發(fā)和防衛(wèi)基因表達[46].
5 效應蛋白誘導植物細胞死亡對侵染的促進作用
對于死體營養(yǎng)型病原菌, 誘導植物細胞死亡以促進侵染是其核心特征, 核盤菌也在侵染中后期通過誘導寄主細胞死亡促進侵染. 此外, 核盤菌作為典型的廣寄主性病原菌, 通常被認為可分泌誘導植物細胞死亡的廣譜型效應蛋白并靶向寄主保守蛋白[51]. 研究人員通過廣泛篩選, 已鑒定到十幾個能誘導植物細胞死亡的效應蛋白. 通過在煙草瞬時表達系統(tǒng)中鑒定得到6個誘導壞死的效應蛋白(necrosis-inducing effectors, SsNEs), 其中5個僅在包含信號肽時方能誘導壞死, 且誘導壞死過程依賴于煙草膜上共受體激酶BAK1和SOBIR1, 表明這5個SsNEs可能在質(zhì)外體被煙草某些膜上受體識別而誘導細胞死亡[52]. 進一步研究表明, SsNE6/SsCDI可作為病原相關分子模式(pathogen-associated molecular patterns, PAMPs)誘導茄科植物的細胞死亡[53]; 而SsNE2/SsHip1代表一類新的壞死誘導蛋白, 其他幾個植物病原真菌的同源蛋白也能誘導壞死和非典型的植物先天免疫反應(PTI)[52,54]. 同樣通過煙草瞬時表達系統(tǒng)也鑒定到5個細胞內(nèi)的誘導壞死型效應蛋白(intracellular necrosis-inducing effectors, SsINEs), 但它們誘導壞死需去掉信號肽, 且它們具有不同的植物細胞定位[55]. 進一步研究表明, SsINE1利用卵菌效應蛋白中常見的RxLR類型基序進入植物細胞[55]; 而SsINE5/SsSSP3誘導煙草細胞死亡需一個典型的R蛋白, 即NLR蛋白, 且SsINE5的同源蛋白廣泛存在于核盤菌科中, 也都能誘導細胞死亡[55-56]. 此外, 在病原菌中保守的壞死及乙烯誘導肽SsNEP1和SsNEP2也能誘導細胞死亡, 其中分別包含SsNLP1和SsNLP2作為典型PAMPs激活WRKY8依賴的PTI[57-58]. 另一類保守的壞死誘導蛋白是一種小的富含半胱氨酸的蛋白SsSCP, 它的核心同源肽廣泛存在于細菌、 真菌和卵菌中, 并作為PAMPs被擬南芥RLP受體RLP30或煙草RLP受體RE02識別后誘導經(jīng)典的PTI[59-60]. 另外幾個分泌蛋白也被證明能誘導植物細胞死亡, 并在遺傳學上證實了它們有助于核盤菌的致病性. 如SsCP1可在植物質(zhì)外體與抗病蛋白PR1互作促進侵染, 同時在侵染后期, 積累高濃度的SsCP1誘導細胞死亡, 也促進了侵染, 但SsCP1也被證實是一個PAMP, 可激活水楊酸途徑的免疫反應[61]; 一個富含半胱氨酸的小分泌蛋白SsSSVP1可通過劫持保守的寄主線粒體蛋白 QCR8, 并擾亂其功能和定位誘導細胞死亡和促進侵染[62]; SsXyl2也能以不依靠木聚糖酶活性的方式, 靶向質(zhì)外體和誘導植物過敏反應蛋白NbHIR2的積累誘導細胞死亡和促進致?。?8].
6 核盤菌效應蛋白抑制寄主植物免疫的定殖作用
大量研究結果表明, 核盤菌存在一個活體營養(yǎng)階段, 也需在侵染早期抑制植物免疫, 多個遺傳學證據(jù)已證實核盤菌在侵染早期通過分泌多種效應蛋白抑制植物免疫和促進早期定殖. 除SsCP1通過抑制PR1的抑菌功能抑制植物免疫外, 早期的效應蛋白SsITL通過靶向植物葉綠體定位的鈣受體CAS干擾水楊酸的合成和信號, 進而抑制植物免疫[63]; 效應蛋白SsCVNH通過與植物過氧化物酶AtPRX71相互作用減少過氧化物酶活性和抑制植物免疫[64]; 效應蛋白SsERP1通過抑制乙烯信號以促進侵染[65]. 研究表明, 植物為抑制SsPG1對植物細胞壁的降解作用, 進化出了PG抑制蛋白PGIPs抑制核盤菌侵染, 同時, 核盤菌為克服PGIPs的抑制作用, 也進化出了失活PGIP的效應蛋白SsPINE1, 通過解離PGIPs與SsPG1恢復SsPG1的致病作用, 從而促進侵染[49]; 抑制植物早期免疫的效應蛋白SsPEIE1通過直接靶向并抑制十字花科的植物過敏反應蛋白HIRs的寡聚化抑制PAMPs誘導的ROS爆發(fā)、 MAPKs的激活以及水楊酸相關的免疫基因誘導等[66].
7 核盤菌致病新機制及其研究展望
近年來, 關于核盤菌的致病機制研究有了飛躍式進展, 目前已知的核盤菌致病模型如圖1所示." 但至少仍有如下謎團有待揭秘.
1) 侵染墊的形成首先依賴于菌絲對寄主表皮或堅硬物質(zhì)的感知, 廣泛接受的觀點是一些膜蛋白可感知外界信號并介導下游信號的激活. 然而在核盤菌中除SsCFEM外, 其他任何膜蛋白的研究目前尚未見文獻報道. 生物信息學分析表明, 核盤菌基因組中存在大量膜蛋白, 它們的生物學功能有待揭示, 尤其是其是否存在膜蛋白能夠作為受體直接識別寄主表皮相關的配體分子, 又以何種激活途徑激活下游信號通路. 研究表明, SsCFEM錨定在細胞表面, 并能與假設的跨膜蛋白SsGPCR1互作介導細胞壁脅迫和侵染墊形成. 因此推測SsCFEM可能代表一種能感知細胞壁擾動和機械壓力的蛋白, 通過與膜受體SsGPCR1互作導致受體構像變化從而傳遞信號, 這些有待進一步的蛋白結構學研究. 2) 盡管已報道了大量影響侵染墊形成的調(diào)控因子, 但侵染墊形成從起始到完成所涉及的細胞過程和行使形態(tài)發(fā)生的功能基因研究仍較少. 其中細胞壁重塑是菌絲形態(tài)轉變的前提, 然而關于核盤菌細胞壁重塑的關鍵調(diào)控因子和功能基因完全不清楚. 研究表明, 轉錄因子SsAsd4通過負調(diào)控多種細胞壁組分的合成基因和介導糖基磷脂酰肌醇錨定蛋白加工的關鍵酶的轉錄影響細胞壁重塑, 也正調(diào)控侵染墊形成. 這表明SsAsd4可能通過影響侵染墊形成時的細胞壁重塑介導侵染墊形成, 也表明細胞壁重塑可能是侵染墊形成的關鍵. 3) 核盤菌可感知寄主來源的ROS并激活SsSnf5-SsHsf1轉錄模塊以抵御氧化脅迫[33], 然而在植物病原真菌中尚未鑒定到ROS的直接受體, 也不清楚ROS受體通過修飾哪些靶標蛋白對脅迫做出全局的調(diào)控響應. 4) 大量的轉錄組證據(jù)已證明核盤菌在侵染時會大幅度上調(diào)表達水解酶和異源物質(zhì)解毒基因, 但其上游的轉錄因子完全不清楚. 研究表明, 轉錄因子SsGATA1可直接結合幾個水解酶和異源物質(zhì)解毒基因的啟動子激活它們轉錄, 但結果顯示敲除SsGATA1基因后并未完全喪失它們的轉錄. 這表明還存在其他轉錄因子也能發(fā)揮類似功能, 核盤菌如何適時且精準激活這些轉錄因子功能仍有待進一步研究. 5) 武裝或加強PAMPs激活的PTI被認為是抗病育種的重要策略, 然而在核盤菌中僅鑒定到上文提及的幾個PAMPs和幾丁質(zhì), 更多的PAMPs仍有待被鑒定. 通過人工施用或轉入這些PAMPs將有望增強作物的菌核病抗性, 甚至廣譜抗性. 此外, 目前僅在植物中鑒定到RLP30/ RE02,RLP23和幾丁質(zhì)受體, 進一步表征能夠識別核盤菌的膜上受體, 這將為菌核病的抗病育種提供重要基因資源. 6)" 與傳統(tǒng)的基因?qū)蚣僬f不同, 核盤菌中誘導細胞死亡的效應蛋白反而促進了侵染, 表明它們可能在死體營養(yǎng)階段發(fā)揮重要作用, 而不是單純誘導植物免疫. 然而核盤菌也需在早期抑制細胞死亡, 這些似乎是矛盾的. 細胞死亡在核盤菌與寄主互作中起什么作用, 目前尚未明確. 研究表明, 在侵染早期, 核盤菌會分泌效應蛋白SsCm1抑制細胞死亡和植物免疫, 這有助于定殖, 與另一個早期效應蛋白SsPEIE1的報道一致[66]. 在侵染后期, 核盤菌又會分泌效應蛋白SsVSP25靶向植物利鈉肽和光系統(tǒng)Ⅱ, 進而加速細胞死亡的速度促進侵染."" 核盤菌中存在至少11個功能未被解析但能誘導植物細胞死亡的效應蛋白[52,55]. 進一步表征這些效應蛋白和其他細胞死亡相關的核盤菌效應蛋白及其與寄主互作機制, 將有望揭示細胞死亡在核盤菌與寄主互作中的作用, 為死體營養(yǎng)型病原菌的致病機制提供參考. 此外, 這些效應蛋白能誘導植物細胞死亡, 表明植物可能存在膜上或胞內(nèi)受體, 鑒定這些受體將有助于闡明植物免疫機制和提供抗病資源. 7) 研究表明, 核盤菌具有在侵染早期抑制植物免疫的效應蛋白[63-64,66], 在幾個能抑制ROS爆發(fā)等植物免疫的效應蛋白中, SsVSP41抑制關鍵激酶磷酸化信號轉導可促進早期侵染, 進一步證實了核盤菌存在一個早期的活體營養(yǎng)階段, 此時效應蛋白發(fā)揮抑制植物免疫的作用. 對這些抑制植物免疫效應蛋白的進一步挖掘和機制研究將逐步揭示核盤菌在侵染早期的定殖機制, 為農(nóng)業(yè)上及時阻斷核盤菌侵染提供理論依據(jù).
綜上所述, 核盤菌引起的菌核病是世界性的大病害, 由于核盤菌致病機制復雜, 且缺乏有效的抗病品種, 應用殺菌劑化學防治的作物已頻繁出現(xiàn)抗藥性. 因此亟需開發(fā)菌核病綠色防控的新策略. 進一步鑒定核盤菌的關鍵致病因子, 研究植物抗病基因, 深入、 全面解析核盤菌的致病機理, 闡明菌核病成災機制, 將為科學設計病害防控策略提供新見解, 從而保障國家糧油安全.
參考文獻
[1] BOLTON M D," THOMMA B P," NELSON B D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and Molecular Traits of a Cosmopolitan Pathogen[J]. Molecular Plant Pathology," 2006," 7(1): 1-16.
[2] SHANG Q N," JIANG D H," XIE J T," et al. The Schizotrophic Lifestyle of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2024," 25(2):" e13423-1-e13423-13.
[3] MELO"" B S," VOLTAN A R," ARRUDA W," et al. Morphological and Molecular Aspects of Sclerotial Development in the Phytopathogenic Fungus Sclerotinia sclerotiorum[J]. Microbiological Research," 2019," 229:" 126326-1-126326-7.
[4] XIA" S T," XU Y," HOY R," et al. The Notorious Soilborne Pathogenic Fungus Sclerotinia sclerotiorum:" An Update on Genes Studied with Mutant Analysis[J]. Pathogens," 2019," 9(1): 27-1-27-22.
[5] LIANG" X F," ROLLINS J A. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum[J]. Phytopathology," 2018," 108(10):" 1128-1140.
[6] XU" L S," LI G Q," JIANG D H," et al. Sclerotinia sclerotiorum:" An Evaluation of Virulence Theories[J]. Annual Review of Phytopathology," 2018," 56:" 311-338.
[7] KABBAGE" M," YARDEN O," DICKMAN M B. Pathogenic Attributes of Sclerotinia sclerotiorum:" Switching from a Biotrophic to Necrotrophic Lifestyle[J]. Plant Science," 2015," 233:" 53-60.
[8] DAVIDSON" A L," BLAHUT-BEATTY L," ITAYA A," et al. Histopathology of Sclerotinia sclerotiorum Infection and Oxalic Acid Function in Susceptible and Resistant Soybean[J]. Plant Pathology," 2016," 65:" 878-887.
[9] PEYRAUD" R," MBENGUE M," BARBACCI A," et al. Intercellular Cooperation in a Fungal Plant Pathogen Facilitates Host Colonization[J]. Proceedings of the National Academy of Sciences of the United States of America," 2019," 116(8):" 3193-3201.
[10] KABBAGE" M," WILLIAMS B," DICKMAN M B. Cell Death Control:" The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum[J]. PLoS Pathogens," 2013," 9(4):" e1003287-1-e1003287-12.
[11] WILLIAMS" B," KABBAGE M," KIM H J," et al. Tipping the Balance:" Sclerotinia sclerotiorum Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment[J]. PLoS Pathogens," 2011," 7(6):" e1002107-1-e1002107-10.
[12] HUANG" L," BUCHENAUER H," HAN Q," et al. Ultrastructural and Cytochemical Studies on the Infection Process of Sclerotinia sclerotiorum in Oilseed Rape[J]. Journal of Plant Diseases and Protection," 2008," 115(1):" 9-16.
[13] LIANG" X F," LIBERTI D," LI M Y," et al. Oxaloacetate Acetylhydrolase Gene Mutants of Sclerotinia sclerotiorum Do Not Accumulate Oxalic Acid but Do Produce Limited Lesions on Host Plants[J]. Molecular Plant Pathology," 2015," 16(6): 559-571.
[14] JAMAUX" I," GELIE B," LAMARQUE C. Early Stages of Infection of Rapeseed Petals and Leaves by Sclerotinia sclerotiorum Revealed by Scanning Electron Microscopy[J]. Plant Pathology," 1995," 44(1):" 22-30.
[15] 紀旭. 核盤菌分泌蛋白SsCFEM1的功能研究 [D]. 長春: 吉林大學," 2020. (JI X. Functional Study on Secretory Protein SsCFEM1 in Sclerotinia sclerotiorum[D]." Changchun: Jilin University, 2020.)
[16] CONG" J," XIAO K Q," JIAO W L," et al. The Coupling between Cell Wall Integrity Mediated by MAPK Kinases and SsFkh1 Is Involved in Sclerotia Formation and Pathogenicity of Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2022," 13:" 816091-1-816091-13.
[17] TIAN" L," LI J," XU Y," et al. A MAP Kinase Cascade Broadly Regulates the Lifestyle of Sclerotinia sclerotiorum and Can Be Targeted by HIGS for Disease Control[J]. The Plant Journal," 2023, 118(2):" 324-344.
[18] XU" Y," TAN J Y," LU J X," et al. RAS Signalling Genes Can Be Used as Host-Induced Gene Silencing Targets to Control Fungal Diseases Caused by Sclerotinia sclerotiorum and Botrytis cinerea[J]. Plant Biotechnology Journal," 2024, "22(1):" 262-277.
[19] LIU" L," WANG Q C," SUN Y," et al. Sssfh1," a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex," Is Involved in Hyphal Growth," Reactive Oxygen Species Accumulation," and Pathogenicity in Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2018," 9:" 1828-1-1828-14.
[20] XU" T T," LI J T," YU B D," et al. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2018," 9:" 2476-1-2476-13.
[21] LIU" L," WANG Q C," ZHANG X H," et al. Ssams2," a Gene Encoding GATA Transcription Factor," Is Required for Appressoria Formation and Chromosome Segregation in Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2018," 9:" 3031-1-3031-12.
[22] LI" J T," MU W H," VELUCHAMY S," et al. The GATA-Type IVb Zinc-Finger Transcription Factor SsNsd1 Regulates Asexual-Sexual Development and Appressoria Formation in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2018," 19(7):" 1679-1689.
[23] JIAO" W L," YU H L," CONG J," et al. Transcription Factor SsFoxE3 Activating SsAtg8 Is Critical for Sclerotia," Compound Appressoria Formation," and Pathogenicity in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2022," 23(2):" 204-217.
[24] JIAO" W L," YU H L," CHEN X T," et al. The SsAtg1 Activating Autophagy Is Required for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum[J]. Journal of Fungi," 2022," 8(12):" 1314-1-1314-16.
[25] JIAO" W L," DING W C," ROLLINS J A," et al. Cross-Talk and Multiple Control of Target of Rapamycin (TOR) in Sclerotinia sclerotiorum[J]. Journal of Fungi," 2023," 11(2):" e0001323-1-e0001323-12.
[26] LI" J T," ZHANG Y H," ZHANG Y C," et al. Introduction of Large Sequence Inserts by CRISPR-Cas9 to Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum[J]. mBio," 2018," 9(3): e00567-18-1-e00567-18-19.
[27] XIAO" X Q," XIE J T," CHENG J S," et al. Novel Secretory Protein Ss-Caf1 of the Plant-Pathogenic Fungus Sclerotinia sclerotiorum Is Required for Host Penetration and Normal Sclerotial Development[J]. Molecular Plant-Microbe Interactions," 2014," 27(1):" 40-55.
[28] LI" M Y," LIANG X F," ROLLINS J A. Sclerotinia sclerotiorum γ-Glutamyl Transpeptidase (Ss-Ggt1) Is Required Forregulating Glutathione Accumulation and Development of Sclerotia and Compound Appressoria[J]. Molecular Plant-Microbe Interactions," 2012," 25(3):" 412-420.
[29] LIANG" X F," MOOMAW E W," ROLLINS J A. Fungal Oxalate Decarboxylase Activity Contributes to Sclerotinia sclerotiorum Early Infection by Affecting Both Compound Appressoria Development and Function[J]. Molecular Plant Pathology," 2015," 16(8):" 825-836.
[30] ZHANG" J Y," WANG Y B," DU J," et al. Sclerotinia sclerotiorum Thioredoxin Reductase Is Required for Oxidative Stress Tolerance," Virulence," and Sclerotial Development[J]. Frontiers in Microbiology," 2019," 10:" 233-1-233-9.
[31] DING" Y J," MEI J Q," CHAI Y R," et al. Sclerotinia sclerotiorum Utilizes Host-Derived Copper for ROS Detoxification and Infection[J]. PLoS Pathogens," 2020," 16(10):" e1008919-1-e1008919-22.
[32] YU" Y," DU J," WANG Y B," et al. Survival Factor 1 Contributes to the Oxidative Stress Response and Is Required for Full Virulence of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2019," 20(7):" 895-906.
[33] XIAO" K Q," LIU L," HE R N," et al. The Snf5-Hsf1 Transcription Module Synergistically Regulates Stress Responses and Pathogenicity by Maintaining ROS Homeostasis in Sclerotinia sclerotiorum[J]. New Phytologist," 2024," 241(4):" 1794-1812.
[34] CHEN" J Y," ULLAH C," REICHELT M," et al. The Phytopathogenic Fungus Sclerotinia sclerotiorum Detoxifies Plant Glucosinolate Hydrolysis Products via an Isothiocyanate Hydrolase[J]. Nature Communications," 2020," 11(1):" 3090-1-3090-12.
[35] CHEN" J Y," ULLAH C," REICHELT M," et al. Sclerotinia sclerotiorum Circumvents Flavonoid Defenses by Catabolizing Flavonol Glycosides and Aglycones[J]. Plant Physiology," 2019," 180(4):" 1975-1987.
[36] KONG" Z W," ZHANG X," ZHOU F," et al. Structure-Aided Identification of an Inhibitor Targets Mps1 for the Management of Plant-Pathogenic Fungi[J]. mBio," 2023," 14:" e0288322-1-e0288322-14.
[37] ZHAO" J," CHEN Y," DING Z F," et al. Identification of Propranolol and Derivatives That Are Chemical Inhibitors of Phosphatidate Phosphatase as Potential Broad-Spectrum Fungicides [J]. Plant Communications," 2024," 5:" 100679-1-100679-16.
[38] XU" L S,"" XIANG M S," WHITE D," et al. pH Dependency of Sclerotial Development and Pathogenicity Revealed by Using Genetically Defined Oxalate-Minus Mutants of Sclerotinia sclerotiorum[J]. Environmental Microbiology," 2015," 17(8):" 2896-2909.
[39] ZHOU" J," ZENG L Z," LIU J," et al. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum[J]. PLoS Pathogens," 2015," 11(5):" e1004878-1-e1004878-25.
[40] HELLER" A," WITT-GEIGES T. Oxalic Acid Has an Additional," Detoxifying Function in Sclerotinia sclerotiorum Pathogenesis [J]. PLoS One," 2013," 8(8):" e72292-1-e72292-17.
[41] GUIMARES" R L," STOTZ H U. Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection [J]. Plant Physiology," 2004," 136(3):" 3703-3711.
[42] OLIVEIRA" M B," DE-ANDRADE R V," GROSSI-DE-Sá M F," et al. Analysis of Genes That Are Differentially Expressed during the Sclerotinia sclerotiorum-Phaseolus vulgaris Interaction [J]. Frontiers in Microbiology," 2015," 6:"" 1162-1-1162-14.
[43] SEIFBARGHI" S," BORHAN M H," WEI Y D," et al. Changes in the Sclerotinia sclerotiorum Transcriptome during Infection of Brassica napus[J]. BMC Genomics," 2017," 18(1):" 266-1-266-37.
[44] DERBYSHIRE" M," DENTON-GILES M," HEGEDUS D," et al. The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens [J]. Genome Biology and Evolution," 2017," 9(3):" 593-618.
[45] WESTRICK" N M," RANJAN A," JAIN S," et al. Gene Regulation of Sclerotinia sclerotiorum during Infection of Glycine max:" On the Road to Pathogenesis [J]. BMC Genomics," 2019," 20(1):" 157-1-157-22.
[46] GONG" Y D," FU Y P," XIE J T," et al. Sclerotinia sclerotiorum SsCut1 Modulates Virulence and Cutinase Activity [J]. Journal of Fungi," 2022," 8(5):" 526-1-526-15.
[47] YU" Y," XIAO J F," DU J," et al. Disruption of the Gene Encoding Endo-β-1,4-xylanase Affects the Growth and Virulence of Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2016," 7:" 1787-1-1787-9.
[48] WANG" P," WANG Y B," HU Y W," et al. Plant Hypersensitive Induced Reaction Protein Facilitates Cell Death Induced by Secreted Xylanase Associated with the Pathogenicity of Sclerotinia sclerotiorum[J]. The Plant Journal," 2024," 118(1):" 90-105.
[49] WEI" W," XU L S," PENG H," et al. A Fungal Extracellular Effector Inactivates Plant Polygalacturonase-Inhibiting Protein [J]. Nature Communications," 2022," 13(1):" 2213-1-2213-15.
[50] ZHANG" H J," WU Q," CAO S," et al. A Novel Protein Elicitor (SsCut) from Sclerotinia sclerotiorum Induces Multiple Defense Responses in Plants [J]. Plant Molecular Biology," 2014," 86(4/5):" 495-511.
[51] DERBYSHIRE" M C," RAFFAELE S. Till Death Do Us Pair:" Co-evolution of Plant-Necrotroph Interactions[J]. Current Opinion Plant Biology," 2023," 76:" 102457-1-102457-11.
[52] SEIFBARGHI" S," BORHAN M H," WEI Y," et al. Receptor-Like Kinases BAK1 and SOBIR1 Are Required for Necrotizing Activity of a Novel Group of Sclerotinia sclerotiorum Necrosis-Inducing Effectors[J]. Frontiers in Plant Science," 2020," 11: 1021-1-1021-17.
[53] FRANCO-OROZCO" B," BEREPIKI A," RUIZ O," et al. A New Proteinaceous Pathogen-Associated Molecular Pattern (PAMP) Identified in Ascomycete Fungi Induces Cell Death in Solanaceae[J]. New Phytologist," 2017," 214(4):" 1657-1672.
[54] JEBLICK" T," LEISEN T," STEIDELE C E," et al. Botrytis Hypersensitive Response Inducing Protein 1 Triggers Non-canonical PTI to Induce Plant Cell Death[J]. Plant Physiology," 2023," 191(1):" 125-141.
[55] NEWMAN" T E," KIM H," KHENTRY Y," et al. The Broad Host Range Pathogen Sclerotinia sclerotiorum Produces Multiple Effector Proteins That Induce Host Cell Death Intracellularly[J]. Molecular Plant Pathology," 2023," 24(8):" 866-881.
[56] DENTON-GILES" M," MCCARTHY H," SEHRISH T," et al. Conservation and Expansion of a Necrosis-Inducing Small Secreted Protein Family from Host-Variable Phytopathogens of the Sclerotiniaceae[J]. Molecular Plant Pathology," 2020," 21(4):" 512-526.
[57] REN" C X," CHEN S Y," HE Y H," et al. Fine-Tuning of the Dual-role Transcription Factor WRKY8 via Differential Phosphorylation for Robust Broad-Spectrum Plant Immunity[J]. Plant Communications," 2024," 27:" 101072-1-101072-19.
[58] BASHI" Z D," HEGEDUS D D," BUCHWALDT L," et al. Expression and Regulation of Sclerotinia sclerotiorum Necrosis and Ethylene-Inducing Peptides (NEPs)[J]. Molecular Plant Pathology," 2010,"" 11(1):" 43-53.
[59] YANG" Y K," STEIDELE C E," R?SSNER C," et al. Convergent Evolution of Plant Pattern Recognition Receptors Sensing Cysteine-Rich Patterns from Three Microbial Kingdoms[J]. Nature Communications," 2023," 14(1):" 3621-1-3621-12.
[60] NIE" J J," YIN Z Y," LI Z P," et al. A Small Cysteine-Rich Protein from Two Kingdoms of Microbes Is Recognized as a Novel Pathogen-Associated Molecular Pattern[J]. New Phytologist," 2019," 222(2):" 995-1011.
[61] YANG" G G," TANG L G," GONG Y D," et al. A Cerato-Platanin Protein SsCP1 Targets Plant PR1 and Contributes to Virulence of Sclerotinia sclerotiorum[J]. New Phytologist," 2018," 217(2):" 739-755.
[62] LYU" X L," SHEN C C," FU Y P," et al. A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants[J]. PLoS Pathogens," 2016," 12(2):" e1005435-1-e1005435-28.
[63] TANG" L G," YANG G G," MA M," et al. An Effector of a Necrotrophic Fungal Pathogen Targets the Calcium-Sensing Receptor in Chloroplasts to Inhibit Host Resistance[J]. Molecular Plant Pathology," 2020,"" 21(5):" 686-701.
[64] MA" M," TANG L G," SUN R," et al. An Effector SsCVNH Promotes the Virulence of Sclerotinia sclerotiorum through Targeting Class Ⅲ Peroxidase AtPRX71[J]. Molecular Plant Pathology," 2024,nbsp;" 25(5):" e13464-1-e13464-16.
[65] FAN" H X," YANG W W," NIE J Y," et al. A Novel Effector Protein SsERP1 Inhibits Plant Ethylene Signaling to Promote Sclerotinia sclerotiorum Infection[J]. Journal of Fungi," 2021,"" 7(10):" 825-1-825-15.
[66] LIU" X F," ZHAO H H," YUAN M Y," et al. An Effector Essential for Virulence of Necrotrophic Fungi Targets Plant HIRs to Inhibit Host Immunity [J]. Nature Communications," 2024," 15(1):" 9391-1-9391-16.
(責任編輯: 單 凝)