摘要: SWEET蛋白是一類新型糖轉(zhuǎn)運(yùn)蛋白, 負(fù)責(zé)介導(dǎo)細(xì)胞中糖類的雙向跨膜運(yùn)輸, 在植物生長(zhǎng)發(fā)育過(guò)程中具有韌皮部裝載, 植物激素轉(zhuǎn)運(yùn), 花、 果實(shí)和種子的發(fā)育, 植物與病原物之間的互作以及植物和微生物之間共生等重要功能, 是植物與病原物互作過(guò)程的重要參與者." 總結(jié)SWEET蛋白在生物脅迫中的應(yīng)答機(jī)制以及植物與病原物(細(xì)菌、 真菌、 線蟲和病毒)互作中SWEET基因的代謝特征、 調(diào)控途徑及特異性防御反應(yīng)," 并討論使用基因編輯工具編輯SWEET基因增強(qiáng)植物對(duì)病原物的抗性及其在農(nóng)業(yè)領(lǐng)域中的應(yīng)用. 為深入研究SWEET蛋白參與植物-病原物互作的機(jī)制及利用SWEET基因進(jìn)行抗病育種提供參考.
關(guān)鍵詞:" 糖轉(zhuǎn)運(yùn)蛋白; SWEET蛋白; SWEET基因; 植物-病原物互作; 生物脅迫; 寄主防御; 抗病育種
中圖分類號(hào): Q71" 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1671-5489(2025)01-0241-12
Research Advances on Function of SWEET Protein in Plant-Pathogen Interactions
WANG Yangyizhou, GUO Jinxin, QIAO Kaibin," XU Xun, LIU Xiangyu, WANG Fengting, PAN Hongyu, LIU Jinliang
(College of Plant Sciences," Jilin University," Changchun" 130062," China)
收稿日期: 2024-11-26.
第一作者簡(jiǎn)介:"" 汪洋一舟(1999—)," 男, 漢族, 碩士研究生, 從事植物大分子功能結(jié)構(gòu)的研究, E-mail:" wyyz21@mails.jlu.edu.cn.
通信作者簡(jiǎn)介:" 劉金亮(1978—)," 男," 漢族," 博士, 教授, 博士生導(dǎo)師, 從事植物大分子功能結(jié)構(gòu)的研究, E-mail:" jlliu@jlu.edu.cn.
基金項(xiàng)目:" 國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 32172505)和吉林省自然科學(xué)基金(批準(zhǔn)號(hào): 20230101156JC).
Abstract:"" SWEET (sugars will eventually be exported transporters) proteins are a novel class of sugar transporter proteins that mediate the bidirectional transmembrane transport of sugars in cells and play important functions in plant growth and development," including phloem loading," phytohormone transport," flower," fruit and seed development," interactions between plants and pathogen, and symbiosis between plants and microorganisms." SWEET proteins are important participant in the process of plant-pathogen interactions. We summarize the response mechanisms of SWEET proteins in biotic stresses, as well as the metabolic characteristics," regulatory pathways and specific defense responses of SWEET genes when plants are infected with different pathogens (bacteria," fungi," nematodes and virus). We also discuss" the use of gene editing tools to edit SWEET genes to enhance plant resistance to pathogens and their application in agriculture. The aim is to provide a reference for in-depth research on the mechanism of" SWEET proteins involvement in plant-pathogen interactions and the use of SWEET genes for disease resistance breeding.
Keywords: sugar transporter protein;" SWEET protein; SWEET gene;" plant-pathogen interaction;" biotic stress;" host defense;" disease resistance breeding
在自然條件下, 植物和微生物通過(guò)相互接觸并識(shí)別從而實(shí)現(xiàn)復(fù)雜的互作過(guò)程. 在長(zhǎng)久的植物與病原物互作進(jìn)程中, 寄主植物建立了一套復(fù)雜的雙層免疫監(jiān)測(cè)系統(tǒng)用于感知并抵抗來(lái)自病原物的威脅, 分別為病原相關(guān)分子模式觸發(fā)免疫(pathogen-associated molecular pattern-triggered immunity," PTI)和效應(yīng)因子觸發(fā)免疫(effector-triggered immunity," ETI).
1 SWEET蛋白基本特征和功能
1.1 SWEET蛋白的結(jié)構(gòu)特征和分類
糖轉(zhuǎn)運(yùn)蛋白有3個(gè)主要超家族, 包括MFS超家族(major facilitator superfamily)、 鈉依賴性葡萄糖轉(zhuǎn)運(yùn)蛋白和 SWEETs蛋白.
1.2 SWEET蛋白在植物生理中的功能
SWEET基因在蒺藜苜蓿(Medicago truncatula)中被首次發(fā)現(xiàn), 命名為MtN3, SWEET基因廣泛存在于原核生物、 植物、 動(dòng)物和人類中.
2 SWEET蛋白在植物-病原物互作中的功能
植物編碼SWEET蛋白的基因?qū)Σ≡锿ǔW鳛楦胁』虬l(fā)揮作用, 而大多數(shù)病原物在侵入寄主植物時(shí)都需從寄主中獲取碳源以滿足自身生長(zhǎng)發(fā)育需求. 在病原物和寄主互作過(guò)程中, 病原物通過(guò)調(diào)節(jié)寄主植物體內(nèi)SWEETs的表達(dá)水平以影響侵染部位糖外流, 從而幫助自身獲取營(yíng)養(yǎng), 同時(shí)也會(huì)影響寄主植物相關(guān)防御反應(yīng)(圖1). 為系統(tǒng)了解SWEET蛋白在植物-病原物互作時(shí)發(fā)揮的功能, 下面主要總結(jié)并介紹SWEET蛋白參與植物病原細(xì)菌、 真菌、 線蟲以及病毒等病原物的相互作用.
2.1 SWEET蛋白參與植物-病原細(xì)菌互作
植物病原細(xì)菌侵染寄主可通過(guò)Ⅲ型分泌系統(tǒng)(type Ⅲ secretion system, T3SS)將轉(zhuǎn)錄激活效應(yīng)因子(transcription activator-like effectors, TALEs)注入寄主細(xì)胞中. TALEs的C端有一個(gè)核定位信號(hào)域(nuclear localization signal domain," NLS)和激活域(activation domain," AD), 結(jié)構(gòu)中心部位包含1.5~33.5個(gè)串聯(lián)重復(fù)序列, 而每個(gè)重復(fù)序列包含約34個(gè)氨基酸. 其中第12位和第13位的重復(fù)可變雙殘基(repeat variant diresidue," RVD)可與多種SWEET基因啟動(dòng)子中效應(yīng)因子結(jié)合元件(effector-binding element," EBE)結(jié)合, 誘導(dǎo)SWEET基因表達(dá), 從而轉(zhuǎn)運(yùn)糖類為病原物提供能量.
2.2 SWEET蛋白參與植物-病原真菌互作
植物病原真菌在侵染寄主時(shí)可分泌效應(yīng)因子直接誘導(dǎo)SWEET基因表達(dá), 也可通過(guò)激活轉(zhuǎn)錄因子間接誘導(dǎo)SWEET基因表達(dá).
2.3 SWEET蛋白參與植物-線蟲互作
根結(jié)線蟲(Meloidogyne)是一種高度專化的農(nóng)作物寄生線蟲, 主要通過(guò)劫持寄主植物的營(yíng)養(yǎng)物質(zhì)危害其根部. 在根結(jié)線蟲侵染植物的過(guò)程中, 線蟲會(huì)誘導(dǎo)植物體內(nèi)SWEET基因的表達(dá)量變化, 尤其在根結(jié)部位表達(dá)量明顯提高, 表明SWEET蛋白參與植物和線蟲的互作.
信號(hào)途徑核心轉(zhuǎn)錄因子 ELONGATED HYPOCOTYL5 (HY5)受到南方根結(jié)線蟲侵染的誘導(dǎo), 負(fù)調(diào)控植物對(duì)根結(jié)線蟲的抗性并激活擬南芥AtSWEET11a,AtSWEET12b和AtSWEET15d表達(dá).
2.4 SWEET蛋白參與植物-病毒互作
目前, 僅吉林大學(xué)植物與病原物分子互作課題組對(duì)SWEET蛋白參與植物-病毒互作進(jìn)行了研究."" 其中, 馬鈴薯Y病毒科Y病毒屬(Potyvirus)的蕪菁花葉病毒(turnip mosaic virus," TuMV)P3蛋白與擬南芥AtSWEET1,AtSWEET4和AtSWEET15蛋白互作.
3 SWEET蛋白參與植物抗病的功能
自開(kāi)展SWEET蛋白功能研究以來(lái), SWEET基因普遍被認(rèn)為在植物與病原物互作中作為感病基因(susceptible gene)發(fā)揮功能, 其隱形等位基因通常表現(xiàn)為抗病表型. 在病原物侵染植物過(guò)程中, 病原能夠產(chǎn)生特定效應(yīng)因子誘導(dǎo)寄主植物中的SWEET基因表達(dá), 從而促進(jìn)更多的糖類釋放到細(xì)胞間隙, 為病原物的生長(zhǎng)發(fā)育提供能量.
隨著SWEET基因功能研究的深入開(kāi)展," 發(fā)現(xiàn)在被病原物劫持并為其提供營(yíng)養(yǎng)外, 部分SWEET蛋白受病原物誘導(dǎo)后會(huì)參與增強(qiáng)植物對(duì)病原的抗性, 這些SWEET蛋白通過(guò)發(fā)揮自身的糖轉(zhuǎn)運(yùn)功能降低質(zhì)外體中糖類含量, 從而限制病原物的生長(zhǎng). 此外, SWEET蛋白還可通過(guò)改變植物體內(nèi)的糖含量影響防御相關(guān)基因的表達(dá), 增強(qiáng)寄主植物的抗性.
3.1 作為感病基因表達(dá)產(chǎn)物的SWEET蛋白
水稻中存在大量SWEET基因作為感病基因被病原物利用, 其中OsSWEET11/12 /13/14/15基因在水稻白葉枯病菌侵染時(shí)參與病原致病過(guò)程, 相關(guān)基因表達(dá)由黃單胞菌水稻致病變種TAL效應(yīng)因子(如TalC,AvrXa7,PthXo3和Tal5等)誘導(dǎo).
綜上所述, 大部分植物SWEET蛋白基因能被病菌誘導(dǎo)表達(dá), 并作為感病基因促進(jìn)病原物侵染寄主, 在表型上表現(xiàn)為植物的易感性增強(qiáng).
3.2 減少病原可利用糖的SWEET蛋白
腐霉病菌(Pythium irregulare)可引起植物種子、 莖、 根的腐爛和幼苗倒伏, 在擬南芥中, AtSWEET2蛋白主要定位于根表皮液泡膜, 具有轉(zhuǎn)運(yùn)葡萄糖進(jìn)入液泡的功能, 在受到腐霉病菌侵染時(shí), AtSWEET2基因會(huì)受到顯著的誘導(dǎo)表達(dá), 而AtSWEET2突變體植株的根系干質(zhì)量降低, 且葉片中葡萄糖積累量降低, 植株出現(xiàn)黃化枯萎現(xiàn)象, 此時(shí)植株的根系對(duì)腐霉的敏感性增強(qiáng), 說(shuō)明AtSWEET2可通過(guò)限制根系中糖的外排, 從而增強(qiáng)擬南芥對(duì)腐霉病菌抗病性.
綜上所述, 部分SWEET蛋白可以通過(guò)降低質(zhì)外體中糖含量限制病原物的生長(zhǎng), 從而增強(qiáng)寄主對(duì)病原物的抗性.
3.3 誘導(dǎo)植物防御反應(yīng)的SWEET蛋白
在葡萄(Vitis vinifera)受到腐霉病菌侵染時(shí), 寄主的VvSWEET4基因會(huì)受到誘導(dǎo)表達(dá), 而在毛狀根中過(guò)表達(dá)VvSWEET4基因后, 植物對(duì)糖的運(yùn)輸能力增強(qiáng), 同時(shí)在高糖水平下, 毛狀根中參與類黃酮合成途徑的基因表達(dá)量上調(diào), 促進(jìn)了抗真菌特性的黃酮類化合物合成, 從而增強(qiáng)植株對(duì)腐霉病菌的抗性.
綜上所述, 部分SWEET蛋白導(dǎo)致的糖類物質(zhì)積累, 不僅可被病原物吸收利用, 同樣也可增強(qiáng)植物自身的相關(guān)防御反應(yīng).
4 SWEET基因在植物抗病育種中的應(yīng)用
SWEET基因家族廣泛參與寄主植物-病原物的相互作用, 但目前僅有少數(shù)SWEET基因和病原物的互作機(jī)制得到充分解析, 針對(duì)這些機(jī)制展開(kāi)的分子生物學(xué)改良將有助于植物抗病育種策略的挖掘, 為選育抗病、 高產(chǎn)的優(yōu)良品系提供理論和技術(shù)支持.
目前, 針對(duì)SWEET基因的抗病育種方案主要有人工miRNA(artificial microRNA," amiRNA)技術(shù)、 轉(zhuǎn)錄激活效應(yīng)因子樣核酸酶TALENs(transcription activator-like (TAL) effector nucleases)技術(shù)和CRISPR/Cas9技術(shù).
4.1 人工miRNA技術(shù)
RNA誘導(dǎo)的基因沉默現(xiàn)象(RNAi)在30多年前首次在植物中被描述, 研究人員通過(guò)轉(zhuǎn)錄后機(jī)制使?fàn)颗;ㄖ袇⑴c紫色色素合成的基因受到沉默.
高效地使用, 但目前針對(duì)SWEET基因使用人工miRNA獲得抗病高產(chǎn)理想植株的報(bào)道仍較少, 說(shuō)明相關(guān)領(lǐng)域的技術(shù)優(yōu)化仍需深度開(kāi)發(fā).
4.2 TALENs基因編輯技術(shù)
轉(zhuǎn)錄激活效應(yīng)因子樣核酸酶(TALENs)蛋白于2009年首次被報(bào)道, 來(lái)源于植物病原細(xì)菌黃單胞菌屬(Xanthomonas).
4.3 CRISPR/Cas9基因編輯技術(shù)
CRISPR在大腸桿菌(Escherichia coli)基因組中發(fā)現(xiàn)并描述了一系列短的重復(fù)序列和短序列之間的間隔, 之后在許多細(xì)菌和古細(xì)菌中也發(fā)現(xiàn)了該現(xiàn)象.
目前, CRISPR/Cas9介導(dǎo)的EBEs基因編輯廣泛應(yīng)用于水稻中. 通過(guò)CRISPR/Cas9技術(shù)同時(shí)靶向敲除3個(gè)SWEET基因OsSWEET11/13/14的EBE區(qū)域, 從而獲得對(duì)大多數(shù)黃單胞菌菌株具有廣譜抗性的水稻, 這種編輯方式可在確保水稻獲得對(duì)黃單胞菌廣譜抗性的同時(shí)保持產(chǎn)量.
5 總結(jié)與展望
近年來(lái), 關(guān)于SWEET蛋白在植物和微生物互作尤其是與病原物互作的研究取得了重大進(jìn)展, 但仍有許多問(wèn)題需要解決. SWEET蛋白是植物與病原物之間“戰(zhàn)斗”的重要參與者, 病原物可誘導(dǎo)SWEET基因的轉(zhuǎn)錄控制SWEET蛋白表達(dá), 從而增加寄主植物中碳水化合物含量, 為自身生長(zhǎng)發(fā)育以及侵染提供能量." SWEET蛋白也會(huì)參與調(diào)控植物的防御反應(yīng), 通過(guò)減少侵染部位糖積累阻礙病原物對(duì)糖的獲取, 同時(shí)SWEET基因表達(dá)也可使植物體內(nèi)的糖得到積累, 這些糖類可作為信號(hào)分子激活下游信號(hào)途徑, 從而誘導(dǎo)防御相關(guān)基因上調(diào), 抑制病原物對(duì)植物侵染. 由于有關(guān)SWEET蛋白在植物-病原物互作調(diào)控網(wǎng)絡(luò)以及完整信號(hào)通路等方面仍未形成系統(tǒng)性研究, 因此相關(guān)領(lǐng)域的深入研究仍需大力開(kāi)展.
目前, 在已知30多種高等植物的SWEET基因中, 約有10種植物的SWEET基因作為感病基因在植物病原物和寄主互作中發(fā)揮作用.
參考文獻(xiàn)
[1] ZHANG J, COAKER G, ZHOU J M, et al. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View [J]. Mol Plant, 2020, 13(10): 1358-1378.
[2] NGOU B P M, DING P T, JONES J D G. Thirty Years of Resistance: Zig-Zag through the Plant Immune System [J]. Plant Cell, 2022, 34(5): 1447-1478.
[3] YAO T S, GAI X T, PU Z J, et al. From Functional Characterization to the Application of SWEET Sugar Transporters in Plant Resistance Breeding [J]. J Agric Food Chem, 2022, 70(17): 5273-5283.
[4] LEMOINE R, LA CAMERA S, ATANASSOVA R, et al. Source-to-Sink Transport of Sugar and Regulation by Environmental Factors [J]. Front Plant Sci, 2013, 4: 272-1-272-21.
[5] CHEN H Y, HUH J H, YU Y C, et al. The Arabidopsis Vacuolar Sugar Transporter SWEET2 Limits Carbon Sequestration from Roots and Restricts Pythium infection [J]. Plant J, 2015, 83(6): 1046-1058.
[6] CIERESZKO I. Regulatory Roles of Sugars in Plant Growth and Development [J]. Acta Soc Bot Pol, 2018, 87(2): 3583-1-3583-13.
[7] GUPTA P K. SWEET Genes for Disease Resistance in Plants [J]. Trends Genet, 2020, 36(12): 901-904.
[8] JEENA G S, KUMAR S, SHUKLA R K. Structure, Evolution and Diverse Physiological Roles of SWEET Sugar Transporters in Plants [J]. Plant Mol Biol, 2019, 100(4/5): 351-365.
[9] FORREST L R, KR?MER R, ZIEGLER C. The Structural Basis of Secondary Active Transport Mechanisms [J]. Biochim Biophys Acta, 2011, 1807(2): 167-188.
[10] JIA B L, ZHU X F, PU Z J, et al. Integrative View of the Diversity and Evolution of SWEET and SemiSWEET Sugar Transporters [J]. Front Plant Sci, 2017, 8: 2178-1-2178-18.
[11] PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean (Glycine max) SWEET Gene Family: Insights through Comparative Genomics, Transcriptome Profiling and Whole Genome Re-sequence Analysis [J]. BMC Genomics, 2015, 16: 520-1-520-16.
[12] KRYVORUCHKO I S, SINHAROY S, TORRES-JEREZ I, et al. MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula [J]. Plant Physiol, 2016, 171(1): 554-565.
[13] BREIA R, CONDE A, BADIM H, et al. Plant SWEETs: From Sugar Transport to Plant-Pathogen Interaction and More Unexpected Physiological Roles [J]. Plant Physiol, 2021, 186(2): 836-852.
[14] LIN I W, SOSSO D, CHEN L Q, et al. Nectar Secretion Requires Sucrose Phosphate Synthases and the Sugar Transporter SWEET9 [J]. Nature, 2014, 508:" 546-549.
[15] YUAN M, WANG S P. Rice MtN3/Saliva/SWEET Family Genes and Their Homologs in Cellular Organisms [J]. Mol Plant, 2013, 6(3): 665-674.
[16] JONES J D G, VANCE R E, DANGL J L. Intracellular Innate Immune Surveillance Devices in Plants and Animals [J]. Science, 2016, 354: aaf6395-1-aaf6395-8.
[17] JI J L, YANG L M, FANG Z Y, et al. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions [J]. Biomolecules, 2022, 12(2): 205-1-205-19.
[18] MIZUNO H, KASUGA S, KAWAHIGASHI H. The Sorghum SWEET Gene Family: Stem Sucrose Accumulation as Revealed through Transcriptome Profiling [J]. Biotechnol Biofuels, 2016, 9: 127-1-127-12.
[19] GAUTAM T, SARIPALLI G, GAHLAUT V, et al. Further Studies on Sugar Transporter (SWEET) Genes in Wheat (Triticum aestivum L.) [J]. Mol Biol Rep, 2019, 46(2): 2327-2353.
[20] MANCK-G?TZENBERGER J, REQUENA N. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family [J]. Front Plant Sci, 2016, 7: 487-1-487-14.
[21] GUAN Y F, HUANG X Y, ZHU J, et al. RUPTURED POLLEN GRAIN1, a Member of the MtN3/Saliva Gene Family, Is Crucial for Exine Pattern Formation and Cell Integrity of Microspores in Arabidopsis [J]. Plant Physiol, 2008, 147(2): 852-863.
[22] SUN M X, HUANG X Y, YANG J, et al. Arabidopsis RPG1 Is Important for Primexine Deposition and Functions Redundantly with RPG2 for Plant Fertility at the Late Reproductive Stage [J]. Plant Reprod, 2013, 26(2): 83-91.
[23] CHEN L Q, QU X Q, HOU B H, et al. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport [J]. Science, 2012, 335: 207-211.
[24] SEO P J, PARK J M, KANG S K, et al. An Arabidopsis Senescence-Associated Protein SAG29 Regulates Cell Viability under High Salinity [J]. Planta, 2011, 233(1): 189-200.
[25] DURAND M, MAINSON D, PORCHERON B, et al. Carbon Source-Sink Relationship in Arabidopsis thaliana: The Role of Sucrose Transporters [J]. Planta, 2018, 247(3): 587-611.
[26] GUPTA P K, BALYAN H S, GAUTAM T. SWEET Genes and TAL Effectors for Disease Resistance in Plants: Present Status and Future Prospects [J]. Mol Plant Pathol, 2021, 22(8): 1014-1026.
[27] STREUBEL J, PESCE C, HUTIN M, et al. Five Phylogenetically Close Rice SWEET Genes Confer TAL Effector-Mediated Susceptibility to Xanthomonas oryzae pv.oryzae [J]. New Phytol, 2013, 200(3): 808-819.
[28] CHEN L Q, HOU B H, LALONDE S, et al. Sugar Transporters for Intercellular Exchange and Nutrition of Pathogens [J]. Nature, 2010, 468: 527-532.
[29] COHN M, BART R S, SHYBUT M, et al. Xanthomonas axonopodis Virulence Is Promoted by a Transcription Activator-Like Effector Mediated Induction of a SWEET Sugar Transporter in Cassava [J]. Mol Plant-Microbe Interact, 2014, 27(11): 1186-1198.
[30] COX K L, MENG F H, WILKINS K E, et al. TAL Effector Driven Induction of a SWEET Gene Confers Susceptibility to Bacterial Blight of Cotton [J]. Nat Commun, 2017, 8: 15588-1-15588-14.
[31] KAY S, HAHN S, MAROIS E, et al. Detailed Analysis of the DNA Recognition Motifs of the Xanthomonas Type Ⅲ Effectors AvrBs3 and AvrBs3Δrep16 [J]. Plant J, 2009, 59(6): 859-871.
[32] GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 Function in Mesophyll Cells Improves Resistance of Rice to Sheath Blight Disease [J]. Mol Plant Pathol, 2018, 19(9): 2149-2161.
[33] GAO Y, XUE C Y, LIU J M, et al. Sheath Blight Resistance in Rice Is Negatively Regulated by WRKY53 via SWEET2a Activation [J]. Biochem Biophys Res Commun, 2021, 585: 117-123.
[34] GAO Y, WANG Z Y, KUMAR V, et al. Genome-Wide Identification of the SWEET Gene Family in Wheat [J]. Gene, 2018, 642: 284-292.
[35] SOSSO D, VAN DER LINDE K, BEZRUTCZYK M, et al. Sugar Partitioning between Ustilago maydis and Its Host Zea mays. L during Infection [J]. Plant Physiol, 2019, 179(4): 1373-1385.
[36] CHONG J L, PIRON M C, MEYER S, et al. The SWEET Family of Sugar Transporters in Grapevine: VvSWEET4 Is Involved in the Interaction with Botrytis cinerea [J]. J Exp Bot, 2014, 65(22): 6589-6601.
[37] ASAI Y, KOBAYASHI Y. Increased Expression of the Tomato SISWEET15 Gene during Grey Mold Infection and the Possible Involvement of the Sugar Efflux to Apoplasm in the Disease Susceptibility [J]. J Plant Pathol Microbiol, 2016, 7(1): 1000329-1-1000329-8.
[38] GEBAUER P, KORN M, ENGELSDORF T, et al. Sugar Accumulation in Leaves of Arabidopsis sweet11/sweet12 Double Mutants Enhances Priming of the Salicylic Acid-Mediated Defense Response [J]. Front Plant Sci, 2017, 8: 1378-1-1378-13.
[39] MIAO H X, SUN P G, LIU Q, et al. Genome-Wide Analyses of SWEET Family Proteins Reveal Involvement in Fruit Development and Abiotic/Biotic Stress Responses in Banana [J]. Sci Rep, 2017, 7(1): 3536-1-3536-15.
[40] WANG L, YAO L N, HAO X Y, et al. Tea Plant SWEET Transporters: Expression Profiling, Sugar Transport, and the Involvement of CsSWEET16 in Modifying Cold Tolerance in Arabidopsis [J]. Plant Mol Biol, 2018, 96(6): 577-592.
[41] SUN M X, ZHANG Z Q, REN Z Y, et al. The GhSWEET42 Glucose Transporter Participates in Verticillium dahliae Infection in Cotton [J]. Front Plant Sci, 2021, 12: 690754-1-690754-13.
[42] LI Y, WANG Y N, ZHANG H, et al. The Plasma Membrane-Localized Sucrose Transporter IbSWEET10 Contributes to the Resistance of Sweet Potato to Fusarium oxysporum [J]. Front Plant Sci, 2017, 8: 197-1-197-15.
[43] WU B H, JIA X Y, ZHU W, et al. Light Signaling Regulates Root-Knot Nematode Infection and Development via HY5-SWEET Signaling [J]. BMC Plant Biol, 2024, 24(1): 664-1-664-12.
[44] 周媛. SWEET糖轉(zhuǎn)運(yùn)蛋白在南方根結(jié)線蟲寄生過(guò)程中的作用機(jī)制研究[D]. 沈陽(yáng): 沈陽(yáng)農(nóng)業(yè)大學(xué)," 2020. (ZHOU Y. Studies on the Mechanism of SWEET Sugar Transporers in the Parasitic Process of Meloidogyne incognita[D]. Shenyang: Shenyang Agricultural University, 2020.)
[45] ZHAO D, YOU Y, FAN H Y, et al. The Role of Sugar Transporter Genes during Early Infection by Root-Knot Nematodes [J]. Int J Mol Sci, 2018, 19(1): 302-1-302-15.
[46] 張雅琦. 蕪菁花葉病毒p3基因的分子變異及P3蛋白與擬南芥AtSWEET1蛋白的互作研究[D]. 長(zhǎng)春: 吉林大學(xué), 2015. (ZHANG Y Q. Molecular Variability of p3 Gene of Turnip mosaic virus and the Interaction between P3 Protein and AtSWEET1 Protein in Arabidopsis thaliana[D]. Changchun: Jilin University, 2015.)
[47] 孫穎, 王艷, 張祥輝, 等. 蕪菁花葉病毒編碼蛋白與擬南芥AtSWEET1蛋白互作研究 [C]//中國(guó)植物病理學(xué)會(huì)2017年學(xué)術(shù)年會(huì)論文集. 北京:" 中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社, 2017: 293. (SUN Y, WANG Y, ZHANG X H, et al. The Interaction between Turnip Mosaic Virus Encoded Proteins and AtSWEET1 Protein in Arabidopsis thaliana [C]//Proceedings of the Annual Meeting of Chinese Society for Plant Pathology. Beijing: China Agricultural Science and Technology Press, 2017: 293.)
[48] 王艷. 蕪菁花葉病毒編碼蛋白與擬南芥AtSWEET1蛋白互作研究[D]. 長(zhǎng)春: 吉林大學(xué), 2017. (WANG Y." The Interaction between Turnip mosaic virus Encoded Proteins and AtSWEET1 Protein in Arabidopsis thaliana[D]. Changchun: Jilin University, 2017.)
[49] 孫玥. 大豆花葉病毒P3和P3N-PIPO蛋白與大豆蛋白的互作研究[D]. 長(zhǎng)春: 吉林大學(xué), 2021." (SUN Y." Study on the Soybean Proteins Interacting with P3 and P3N-PIPO Proteins Encoded by Soybean Mosaic Virus[D]. Changchun: Jilin University, 2021.)
[50] LI T, HUANG S, ZHOU J H, et al. Designer TAL Effectors Induce Disease Susceptibility and Resistance to Xanthomonas oryzae pv. oryzae in Rice [J]. Mol Plant, 2013, 6(3): 781-789.
[51] ZHOU J H, PENG Z, LONG J Y, et al. Gene Targeting by the TAL effector PthXo2 Reveals Cryptic Resistance Gene for Bacterial Blight of Rice [J]. Plant J, 2015, 82(4): 632-643.
[52] HU Y, ZHANG J L, JIA H G, et al. Lateral organ boundaries 1 Is a Disease Susceptibility Gene for Citrus Bacterial Canker Disease [J]. Proc Natl Acad Sci USA, 2014, 111(4): E521-E529.
[53] KIM P, XUE C Y, SONG H D, et al. Tissue-Specific Activation of DOF11 Promotes Rice Resistance to Sheath Blight Disease and Increases Grain Weight via Activation of SWEET14 [J]. Plant Biotechnol J, 2021, 19(3): 409-411.
[54] METEIER E, LA CAMERA S, GODDARD M L, et al. Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a Soilborne Pathogen [J]. Front Plant Sci, 2019, 10: 884-1-884-14.
[55] SHAH T, ANDLEEB T, LATEEF S, et al. Genome Editing in Plants: Advancing Crop Transformation and Overview of Tools [J]. Plant Physiol Biochem, 2018, 131: 12-21.
[56] NAPOLI C, LEMIEUX C, JORGENSEN R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-suppression of Homologous Genes in Trans [J]. Plant Cell, 1990, 2(4): 279-289.
[57] HUANG G Z, ALLEN R, DAVIS E L, et al. Engineering Broad Root-Knot Resistance in Transgenic Plants by RNAi Silencing of a Conserved and Essential Root-Knot Nematode Parasitism Gene [J]. Proc Natl Acad Sci USA, 2006, 103(39): 14302-14306.
[58] ROSATTI S, ROJAS A M L, MORO B, et al. Principles of miRNA/miRNA* Function in Plant MIRNA Processing [J]. Nucleic Acids Res, 2024, 52(14): 8356-8369.
[59] LI C Y, WEI J, LIN Y J, et al. Gene Silencing Using the Recessive Rice Bacterial Blight Resistance Gene xa13 as a New Paradigm in Plant Breeding [J]. Plant Cell Rep, 2012, 31(5): 851-862.
[60] BOCH J, SCHOLZE H, SCHORNACK S, et al. Breaking the Code of DNA Binding Specificity of TAL-Type Ⅲ Effectors [J]. Science, 2009, 326: 1509-1512.
[61] LI T, LIU B, SPALDING M H, et al. High-Efficiency TALEN-Based Gene Editing Produces Disease-Resistant Rice [J]. Nat Biotechnol, 2012, 30(5): 390-392.
[62] KIM Y A, MOON H, PARK C J. CRISPR/Cas9-Targeted Mutagenesis of Os8N3 in Rice to Confer Resistance to Xanthomonas oryzae pv. oryzae [J]. Rice, 2019, 12(1): 67-1-67-13.
[63] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide Sequence of the iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia coli, and Identification of the Gene Product [J]. J Bacteriol, 1987, 169(12): 5429-5433.
[64] XU Z Y, XU X M, GONG Q, et al. Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice [J]. Mol Plant, 2019, 12(11): 1434-1446.
[65] WANG Y J, GENG M T, PAN R R, et al. Editing of the MeSWEET10a Promoter Yields Bacterial Blight Sesistance in Rassava Cultivar SC8 [J]. Mol Plant Pathol, 2024, 25(10): e70010-1-e70010-6.
[66] YU Y H, STREUBEL J, BALZERGUE S, et al. Colonization of Rice Leaf Blades by an African Strain of Xanthomonas oryzae pv. oryzae Depends on a New TAL Effector That Induces the Rice Nodulin-3 Os11N3 Gene [J]. Mol Plant-Microbe Interact, 2011, 24(9): 1102-1113.
[67] ZAFAR K, KHAN M Z, AMIN I, et al. Precise CRISPR-Cas9 Mediated Genome Editing in Super Basmati Rice for Resistance Against Bacterial Blight by Targeting the Major Susceptibility Gene [J]. Front Plant Sci, 2020, 11: 575-1-575-11.
(責(zé)任編輯: 單 凝)