摘要: 西洋參富含多種藥理活性物質(zhì), 具有保護心血管系統(tǒng)、 改善神經(jīng)系統(tǒng)疾病和降血糖等多種藥理作用, 目前對西洋參中皂苷類成分的結(jié)構(gòu)表征及炮制轉(zhuǎn)化研究取得了顯著進展. 總結(jié)概括西洋參中皂苷類活性成分的分類和分布、 現(xiàn)代主流分析技術(shù)以及炮制加工對皂苷類成分的轉(zhuǎn)化機制, 為西洋參皂苷類成分的深入挖掘和創(chuàng)新炮制技術(shù)等提供有效的技術(shù)支撐和指導(dǎo)方法, 從而擴大其在醫(yī)療和保健等方面的應(yīng)用.
關(guān)鍵詞:" 西洋參; 皂苷; 串聯(lián)質(zhì)譜; 炮制加工
中圖分類號: R917" 文獻標(biāo)志碼: A "文章編號: 1671-5489(2025)01-0229-12
Research Progress on" Characterization of Saponin Components
in American Ginseng and" Component Transformation
Caused by Processing
LIU Zhongying1, LI Yu1, LIU Shu2, HOU Zong2, WANG Rongjin1
(1. College of Pharmacy," Jilin University," Changchun 130021," China;
2. Key Laboratory of Traditional
Chinese Medicine Chemistry and Mass Spectrometry Jilin Province," Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences," Changchun 130022, China)
Abstract:nbsp;" American ginseng was rich in various pharmacological active substances," which had" various" pharmacological effects such as protecting the cardiovascular system," improving neurological diseases," and lowering blood sugar," significant progress had been made in the structural characterization and processing transformation research of saponin components in American ginseng. We summarized the classification and distribution of saponin active components in American ginseng," modern mainstream analytical techniques," and the transformation mechanism of saponin components by processing,"" providing effective technical support and methodological guidance for the in-depth exploration of saponin components in American ginseng and innovative processing techniques," thereby expanding its applications in medical treatment," health care" and other aspects.
Keywords: American ginseng;" saponin;" tandem mass spectrometry; processing and preparation
西洋參為五加科人參屬植物西洋參(Panax quinquefolium L.)的干燥根, 也稱為西洋人參、 洋參、 美國人參、 花旗參和廣東參, 原產(chǎn)于加拿大以及美洲中東部一帶, 于20世紀(jì)80年代在我國引種成功[1]. 清代儒醫(yī)汪昂所著《補圖本草備要》中首次將西洋參收載入醫(yī)藥文獻, 稱其: “苦、 甘、 涼、 味厚、 氣薄, 補脾降火, 生津液, 除煩倦, 虛而有火者相宜”[2]. 研究表明, 西洋參中具有多種活性成分, 包括皂苷類、 多糖類、 微量元素、 脂肪酸類、 聚炔類、 氨基酸類、 甾醇類、 黃酮類、 無機元素類及揮發(fā)油類等[3], 其中皂苷類成分是西洋參中藥理活性最顯著的藥效物質(zhì)[4], 已證實具有保護心血管系統(tǒng)[5]、 改善神經(jīng)系統(tǒng)疾?。?]、 抗腫瘤[7]、 抗氧化[8]和降血糖等藥理作用. 基于此, 為明確西洋參的藥效物質(zhì)基礎(chǔ)以及炮制加工后西洋參活性成分改變導(dǎo)致的藥效差異, 研究人員利用現(xiàn)代分析技術(shù)表征皂苷類成分的化學(xué)結(jié)構(gòu), 并關(guān)注炮制加工對皂苷類成分間相互轉(zhuǎn)化的影響, 已取得較多研究成果. 本文對現(xiàn)有相關(guān)研究成果進行系統(tǒng)的總結(jié)概括, 為人們更科學(xué)、 全面地進行西洋參皂苷類物質(zhì)的相關(guān)研究提供依據(jù).
1 基于現(xiàn)代分析技術(shù)的西洋參中皂苷類成分研究進展
目前, 常采用色譜法對西洋參提取物中皂苷類成分進行分離鑒定, 包括薄層色譜法(TLC)、 氣相色譜法(GC)[9]、 高效液相色譜法(HPLC)[10]、 高速離心分配色譜法(HSCPC)和高效逆流色譜法(HPCCC)等. 其中, HPLC因其分析速度快、 靈敏度高和對非揮發(fā)性極性化合物的適應(yīng)性而成為分析皂苷類成分的理想選擇. HPLC常配置不同檢測器以適應(yīng)不同化合物的分析, 其中紫外(UV)和蒸發(fā)光散射(ELSD)等檢測器已廣泛用于檢測皂苷類活性成分, 但仍存在特異性和靈敏度低等問題, 且UV檢測器無法檢測到24(R)-擬人參皂苷F11等不包含任何可被UV檢測器識別合適發(fā)色團的皂苷類成分.
質(zhì)譜(MS)技術(shù)的不斷發(fā)展使對西洋參中皂苷類成分進行高靈敏度、 高選擇性、 高分辨率和高通量的分析成為可能[11]. HPLC和質(zhì)譜聯(lián)用可定性和定量分析皂苷類成分, 是闡明西洋參皂苷類成分結(jié)構(gòu)并進行定量分析的重要工具[12-13], 如超高效液相色譜-四極桿靜電場軌道阱高分辨質(zhì)譜(UHPLC-Q-exactive orbitrap HRMS)[14]、 快速分辨液相色譜-四極桿飛行時間質(zhì)譜(RRLC-Q-TOF-MS)[15]、 超高效液相色譜-高分辨質(zhì)譜(UPLC-HRMS)[16]、 超高效液相色譜-四極桿飛行時間質(zhì)譜(UPLC-Q-TOF-MS)[17]、 高效液相色譜-四極桿飛行時間質(zhì)譜(HPLC-Q-TOF-MS)[18]、 超高效液相色譜-串聯(lián)三重四極桿飛行時間質(zhì)譜(UPLC-Triple-TOF-MS/MS)[19]、 高效液相色譜-光電二極管陣列檢測-質(zhì)譜法(HPLC-DAD-ESI-MS)[20]和超高效液相色譜-離子淌度四極桿飛行時間質(zhì)譜聯(lián)用法(UHPLC/IM-QTOF-MS)[21]等. 在上述質(zhì)譜技術(shù)中, 電噴霧電離(ESI)是適合西洋參中皂苷類成分分析的常用離子化方法, 大氣壓電離(APCI)對熱不穩(wěn)定的人參皂苷可進行有效的補充鑒定[22]. 離子化后, 常采用正負(fù)離子模式相互補充以鑒定皂苷類成分的結(jié)構(gòu). 在正離子模式下獲得的人參皂苷結(jié)構(gòu)信息更多, 可觀察到兩條主要碎裂途徑, 即糖苷鍵裂解和H2O的消除. 負(fù)離子模式下人參皂苷的離子敏感性更高, 觀察到的主要碎裂途徑為糖苷鍵裂解[23]. 此外, 多種掃描模式也可應(yīng)用于西洋參中皂苷結(jié)構(gòu)的表征, 如增強質(zhì)量掃描-信息依賴性數(shù)據(jù)采集-增強產(chǎn)物離子掃描模式(EMS-IDA-EPI)可用于非靶向識別皂苷類成分[24], 母離子-信息依賴性數(shù)據(jù)采集-增強產(chǎn)物離子掃描模式(Prec-IDA-EPI)可針對關(guān)鍵成分選定的離子進行更靈敏和選擇性掃描, 以系統(tǒng)了解樣品中的成分[25], 多反應(yīng)監(jiān)測-信息依賴性數(shù)據(jù)采集-增強產(chǎn)物離子掃描模式(MRM-IDA-EPI)可提高“焦點”類型人參皂苷的通量, 從而補充Prec-IDA-EPI的掃描信息[26].
2 西洋參中皂苷類成分分類和結(jié)構(gòu)的表征方法
2.1 西洋參中皂苷類成分的結(jié)構(gòu)和分類
人參皂苷是西洋參的主要藥理活性成分[27], 由糖苷配基和糖基側(cè)鏈組成, 如圖1所示. 由圖1可見, 人參皂苷可分為糖基側(cè)鏈連接在C-3和/或C-20上的原人參二醇型(PPD)、 糖基側(cè)鏈連接在C-6和/或C-20處的原人參三醇型(PPT)、 在C-20處具有五元環(huán)氧環(huán)的Ocotillol(OCO)型、 具有非甾體結(jié)構(gòu)的齊墩果烷(OLE)型以及母核部分側(cè)鏈略有不同的其他類型[13]. OCO型人參皂苷是西洋參的特征性成分[11], 其中24(R)-擬人參皂苷F11僅存在于西洋參中, 其同分異構(gòu)體人參皂苷Rf僅存在于人參中, 二者可用于區(qū)分西洋參和人參[28]. 在PPD型和PPT型皂苷結(jié)構(gòu)中, C-20羥基空間位置不同導(dǎo)致20(S)和20(R)人參皂苷產(chǎn)生立體異構(gòu)體: 20(S)-OH在幾何上接近人參皂苷的C-12羥基, 20(R)-OH遠離C-12羥基, 大多數(shù)天然存在的皂苷為20(S)型[29]. 人參皂苷分子量的增加在很大程度上取決于糖苷配基上糖的延伸(圖1), 常見的糖取代基有葡萄糖(Glc)、 木糖(Xyl)、 阿拉伯糖(Ara)、 鼠李糖(Rha)和葡萄糖醛酸(GlurA)[30]等, 糖取代基中的羥基與乙?;ˋcetyl)、 丁烯?;˙ut)或丙二酰基(Malonyl)連接時, 形成?;藚⒃碥?, 其中高分子量的丙二?;藚⒃碥眨ㄒ脖环Q為酸性人參皂苷)和乙酰人參皂苷分別是鮮西洋參和干西洋參的特征成分[11].
2.2 西洋參中皂苷類成分的含量差異
西洋參取材部位或生長環(huán)境不同導(dǎo)致皂苷類活性成分種類和含量不同," 如PPD型和PPT型人參皂苷在根中含量最高, OLE型人參皂苷在西洋參的莖和葉中顯著富集[26]; PPD型人參皂苷及丙二?;碥赵谠耘嘈臀餮髤⒅泻枯^高, OCO型人參皂苷在野山參中含量較高[16,31]." 西洋參的地下部分(細(xì)根、 根莖和主根)中Rb1的濃度最高, 其次為Malonyl-ginsenoside Rb1,Re和Rg1, 西洋參莖葉中Re含量最高, 其次為擬人參皂苷F11[32-33]. 此外, Rg2,F(xiàn)1,Rd2和F2等部分稀有人參皂苷僅存在于莖中(Rh1和Rh7)或在莖中含量最高[26], 因此西洋參莖葉也是人參皂苷的優(yōu)質(zhì)來源.
2.3 西洋參中皂苷類成分的表征方法
2.3.1 西洋參皂苷類成分的質(zhì)譜表征方法
在質(zhì)譜分析過程中, 西洋參提取物中皂苷類成分經(jīng)液相色譜柱分離, 在質(zhì)譜儀的離子源中被離子化后進入質(zhì)量分析器, 通過全掃描獲得皂苷類物質(zhì)在正負(fù)離子模式下的準(zhǔn)分子離子, 從而獲得相對分子質(zhì)量和分子式等信息, 進一步利用子離子掃描獲得皂苷類物質(zhì)的二級或多級碎裂質(zhì)譜圖, 通過與數(shù)據(jù)庫匹配或?qū)Χ壦槠M行結(jié)構(gòu)解析, 得出定性篩查結(jié)果. 西洋參提取物中含有?;藚⒃碥諘r, 離子化過程中糖鏈會先失去?;糠中纬芍行匀藚⒃碥?, 其特征是42(-Acetyl),68(-But)和86(-Malonyl)處的峰消除[34], 反應(yīng)釋放的丙二酸和乙酸等可提供酸性環(huán)境, 促進中性人參皂苷進一步降解. 中性人參皂苷是西洋參皂苷提取物中的主要皂苷類成分," 在正負(fù)離子模式下, 中性人參皂苷表現(xiàn)出糖單元連續(xù)損失, 直至形成糖苷配基離子[35]. 因此, 需掌握人參皂苷糖基側(cè)鏈與糖苷配基質(zhì)譜碎裂規(guī)律, 通過計算中性損失的相對分子質(zhì)量以初步鑒定結(jié)構(gòu)中糖基側(cè)鏈的組成, 進而結(jié)合其[糖苷配基-H]-碎片離子表征皂苷的類型[26], 最終進行綜合分析并確定人參皂苷結(jié)構(gòu). 糖基側(cè)鏈與糖苷配基的質(zhì)譜碎裂規(guī)律總結(jié)如下.
1) 糖殘基的碎裂規(guī)律. 在低能量碰撞誘導(dǎo)解離-串聯(lián)質(zhì)譜(CID-MS/MS)中, 前體離子通過連續(xù)或同時損失各種糖基團形成特征糖片段產(chǎn)物離子, 產(chǎn)生162(-Glc),146(-Rha),132(-Xyl/-Ara),176(-GluA)的單個或連續(xù)中性丟失, 而相對較高的碰撞誘導(dǎo)解離(CID)能量可確定m/z=70~400內(nèi)的糖鏈組成, 如Glc-可在m/z=179,161,143,131,119,113,101處產(chǎn)生碎片離子; Rha-可在m/z=131,149處產(chǎn)生碎片離子; Ara-或Xyl-可在m/z=145,163處產(chǎn)生共有離子; Glc-可在m/z=203,221,323處產(chǎn)生碎片離子; Glc-Arap/Xly可在m/z=191,293處產(chǎn)生碎片離子; Arap/Xly可在m/z=131,149處產(chǎn)生碎片離子, 由此可推導(dǎo)側(cè)鏈中連接的糖分子量、 數(shù)量、 組成和連接順序[13,36].
2) 糖苷配基的碎裂規(guī)律. 在負(fù)離子模式下, 如流動相中存在甲酸, 一級質(zhì)譜常產(chǎn)生典型的溶劑加合物[M+HCOO]-和去質(zhì)子化分子離子\ 因此很容易根據(jù)質(zhì)譜離子碎片信息確定糖苷配基類型. 在正離子模式下, [M+H]+和[M+NH4]+在高于250 ℃的毛細(xì)管溫度下完全降解, 脫糖基后產(chǎn)生的糖苷配基還會進行負(fù)離子模式下觀察不到的系列脫水行為[13], 基于正離子模式下能提供質(zhì)子(H)并促進脫水過程, 使PPD型糖苷配基在m/z=443,425,407處, PPT型糖苷配基在m/z=441,423,405處, OCO型糖苷配基在m/z=457,439,421處及OLE型糖苷配基在m/z=439處產(chǎn)生獨特碎片離子[36].
2.3.2 西洋參中皂苷類成分同分異構(gòu)體的鑒定方法
西洋參中皂苷類物質(zhì)存在較多同分異構(gòu)體, 其中一些同分異構(gòu)體由于色譜保留行為存在差異, 因此通過液相色譜保留行為即可進行區(qū)別, 如Δ20(21)-幾何異構(gòu)體比其相關(guān)Δ20(22)-異構(gòu)體更早洗脫, 如Rk1,Rg5和Rk2,Rh3, 而人參皂苷Rg2,Rh1,Rg3和Rs3的(20S)差向異構(gòu)體比其對應(yīng)的(20R)差向異構(gòu)體更早洗脫[11,37]. 部分同分異構(gòu)體雖然具有相似的色譜保留行為, 但因糖基側(cè)鏈中糖的種類或連接順序不同, 或糖苷配基結(jié)構(gòu)的差異等導(dǎo)致質(zhì)譜碎裂規(guī)律不同, 可根據(jù)質(zhì)譜信息進行鑒別. 以人參皂苷Rf和20(R)-擬人參皂苷F11(P-F11)為例: Rf和P-F11具有相同的相對分子質(zhì)量及相似的色譜保留行為, 但在一級質(zhì)譜中, Rf的前體離子m/z=799.48[M-H]-和m/z=845.49[M+HCOO]-的豐度幾乎相等, 而P-F11的前體離子m/z=845.59[M+HCOO]-的豐度約是m/z=799.48[M-H]-的7倍; 在二級質(zhì)譜中, 通過兩個糖基的連續(xù)損失, Rf在m/z=637,475處產(chǎn)生特征離子, P-F11在m/z=654,491處產(chǎn)生特征離子, 以此進行區(qū)分. 因此, 在鑒定西洋參中皂苷類同分異構(gòu)體成分時, 可與標(biāo)準(zhǔn)品色譜保留行為進行比對, 并結(jié)合質(zhì)譜碎裂信息進行化合物的準(zhǔn)確表征. 西洋參中糖基側(cè)鏈與糖苷配基已明確部分的皂苷類成分分別列于表1~表7.
3 西洋參炮制過程中皂苷類成分變化和機制研究
3.1 蒸制對西洋參中皂苷類成分的影響
蒸西洋參是近年來除干西洋參外研究最多的西洋參加工方式[17-18], 經(jīng)蒸制后鮮西洋參發(fā)生Maillard反應(yīng)導(dǎo)致顏色變紅, 稱為紅西洋參. 西洋參生品中?;藚⒃碥站哂袩岵环€(wěn)定性, 蒸制時因受熱先脫?;a(chǎn)生中性人參皂苷[11]后, 轉(zhuǎn)化為生品中不易檢測到的低相對分子質(zhì)量稀有人參皂苷, 如中性人參皂苷Rb1和Rc分解可產(chǎn)生并非天然存在于西洋參生品中的人參皂苷Rg3和Rh2[42](圖2). 因此, 西洋參生品中特有成分主要為酰基化皂苷成分, 而蒸制品中特有成分主要為低相對分子質(zhì)量的稀有皂苷成分[43]. 在蒸制過程中, 除通過大分子中性皂苷糖基的中性丟失產(chǎn)生稀有人參皂苷外, 還存在一些特殊的轉(zhuǎn)化途徑, 包括20(R)人參皂苷異構(gòu)體的產(chǎn)生, 如20(R)-Rg3,20(R)-Rg2,20(R)-Rh2; PPD型與PPT型人參皂苷在Δ20(21)或Δ20(22)脫水形成系列脫水離子[44], 如人參皂苷Rg6,Rk1,F(xiàn)4,Rh4; PPT型人參皂苷在C-24和C-25位形成水合PPT型人參皂苷(m/z=493)[11], 如20(S/R)-Rf2. 此外, Δ20(21)或Δ20(22)脫水離子還可進一步轉(zhuǎn)化為同分異構(gòu)體, 以20(S/R)-Rg3為例, 在C-20處脫水生成20(21)和Δ20(22)異構(gòu)體Rk1和Rg5, 隨后Rk1和Rg5可轉(zhuǎn)化為20(21)和Δ20(22)異構(gòu)體Rk2和Rh3(圖2). 綜上, 蒸西洋參主要成分為中性高相對分子質(zhì)量人參皂苷, 特定成分為由中性高相對分子質(zhì)量人參皂苷轉(zhuǎn)化的20(R)-人參皂苷、 脫水人參皂苷、 水合人參皂苷和其他低相對分子質(zhì)量、 低極性的稀有人參皂苷等[11,13,41,45]組成.
3.2 其他加工方式對西洋參中皂苷類成分的影響
西洋參的加工方式還有干燥和加輔料炮制等, 不同加工條件也可能導(dǎo)致西洋參中各型皂苷的種類和含量差異. 郭娜[46]考察了包括生曬干燥(ND)、 蒸制干燥(SD)和真空冷凍干燥(VFD)3種不同干燥方式對西洋參成分的影響, 發(fā)現(xiàn)這些因素均導(dǎo)致了3種加工產(chǎn)物中人參皂苷的轉(zhuǎn)化: SD樣品高于VFD和ND樣品中人參皂苷Rb1的含量; ND和VFD樣品高于SD樣品中丙二?;藚⒃碥蘸腿藚⒃碥誖g1含量. 此外, 加姜汁炮制西洋參是一種新型加工方法, 胡明欣[47]篩選出姜制西洋參的最佳工藝: 取經(jīng)凈選后的西洋參去蘆、 潤透、 切薄片和干燥, 每100 g西洋參加入10 mL姜汁, 姜汁加入前加4倍量水稀釋至50 mL, 拌勻, 室溫悶潤4 h, 至姜汁吸盡潤透, 80 ℃干燥即可. 王文娟[48]對姜西洋參的物質(zhì)基礎(chǔ)進行了表征, 發(fā)現(xiàn)西洋參經(jīng)姜制后比西洋參增加6-gingerdione,6-gingerol,8-gingerol和10-gingerol共4種生姜成分, 姜汁成分在姜制過程中可干預(yù)西洋參皂苷類成分代謝轉(zhuǎn)換, 如促進人參皂苷Rb1發(fā)生去糖基化反應(yīng)脫去3分子葡萄糖水解產(chǎn)生Rh2和大分子人參皂苷Ra0發(fā)生去糖基化反應(yīng)轉(zhuǎn)化生成其他小分子化合物. 杜培霞[49]將鮮西洋參通過九蒸九曬制得西洋參黑參, 發(fā)現(xiàn)稀有皂苷累積量的最高值隨溫度增高呈先增加后減少的趨勢.
3.3 加工對西洋參藥理活性的影響
西洋參中皂苷類成分的結(jié)構(gòu)多樣性決定了西洋參可通過多靶點和多通路發(fā)揮藥理作用, 每種單體皂苷的藥性活性具有特異性, 其中稀有人參皂苷的功效更顯著[50], 如稀有人參皂苷C-K具有抗腫瘤、 抗炎、 抗糖尿病和降血糖作用[51], Rh1具有增強學(xué)習(xí)記憶[52]等作用(表8). 因此將加工后產(chǎn)生更多低相對分子質(zhì)量和低極性的稀有皂苷視為期望的結(jié)果, 如蒸西洋參中極性較低的人參皂苷具有強大的生物活性, 包括自由基清除、 血管舒張、 神經(jīng)保護和抗腫瘤等活性[53]. 姜制西洋參優(yōu)于西洋參生品的抗糖尿病作用[47]. 西洋參中大分子皂苷, 如丙二酰基人參皂苷對糖尿病高血脂癥具有有益作用[54].
4 總結(jié)與展望
西洋參的物質(zhì)基礎(chǔ)研究技術(shù)已漸趨成熟, 尤其是液相色譜-串聯(lián)質(zhì)譜聯(lián)用方法, 可有效分離并表征西洋參的皂苷類化學(xué)成分. 西洋參作為珍稀藥材, 為擴大其應(yīng)用范圍, 研究人員探索出多種加工方式, 如經(jīng)蒸制獲得紅西洋參、 經(jīng)多次蒸烘加工獲得黑西洋參[66]、 真空冷凍干燥西洋參、 經(jīng)姜汁制/炒獲得姜制西洋參或姜炙西洋參[47]等, 主要期望產(chǎn)生小分子稀有皂苷或新型皂苷, 但因研究尚不成熟和系統(tǒng)而未載入《中華人民共和國藥典》. 物質(zhì)基礎(chǔ)研究是評估藥材質(zhì)量及進一步研究功效、 藥理和毒理的基礎(chǔ), 因此完善西洋參的物質(zhì)基礎(chǔ)表征有助于評估西洋參及其加工品的藥效差異, 是西洋參系統(tǒng)研究的關(guān)鍵步驟. 盡管已有方法可表征大部分的西洋參皂苷類成分, 但對糖基種類和數(shù)量以及糖苷配基均一致且難以獲得標(biāo)準(zhǔn)品的西洋參皂苷同分異構(gòu)體的鑒定方法尚不成熟, 因此需進一步開發(fā).
參考文獻
[1] 馬曉北. 西洋參 [M]. 天津: 天津科學(xué)技術(shù)出版社, 2009: 1-154. ( MA X B. American Ginseng [M]. Tianjin: Tianjin Science and Technology Press, 2009: 1-154.)
[2] 張正海, 雷慧霞, 錢佳奇, 等. 西洋參的引種簡史 [J]. 人參研究, 2020, 32(2): 59-62. (ZHANG Z H, LEI H X, QIAN J Q, et al. Introduction History of Panax quinquefolium L. [J]. Ginseng Research, 2020, 32(2): 59-62.)
[3] 王蕾, 王英平, 許世泉, 等. 西洋參化學(xué)成分及藥理活性研究進展 [J]. 特產(chǎn)研究, 2007, 29(3): 73-77. (WANG L, WANG Y P, XU S Q, et al. A Review on Studies of the Components Pharmacological Activity of Panax quinquefolium L. [J]. Specialty Wild Economic Animal and Plant Research, 2007, 29(3): 73-77.)
[4] JIN Y P, YU Y Z, LIU C, et al. Variation in Ginsenoside Content and Composition within the American Ginseng Population [J/OL]. Natural Product Research, (2024-10-22)[2024-12-03]. https://doi.org/10.1080/14786419.2024.2417353.
[5] 王蕾, 于曉風(fēng), 王耀振, 等. 西洋參總皂苷對心肌缺血再灌注損傷大鼠血液流變學(xué)的影響 [J]. 人參研究, 2017, 29(2): 22-24. (WANG L, YU X F, WANG Y Z, et al. The Effect of American Ginseng Total Saponins on Hemorheology in Myocardial Ischemia-Reperfusion Injury in Rats [J]. Ginseng Research, 2017, 29(2): 22-24.)
[6] 張闊, 張真, 楊靜玉, 等. 擬人參皂苷-F11對SAMP8小鼠認(rèn)知障礙的改善作用及機制 [J]. 中國藥理學(xué)與毒理學(xué)雜志, 2019, 33(6): 467. (ZHANG K, ZHANG Z, YANG J Y, et al. The Ameliorative Effect and Mechanism of Pseudo-ginsenoside-F11 on Cognitive Impairment in SAMP8 Mice [J]. Chinese Journal of Pharmacology and Toxicology, 2019, 33(6): 467.)
[7] 張慧瓊, 李剛敏, 陳俊仁, 等. 西洋參總皂苷聯(lián)合順鉑對Luc-A549肺癌小鼠瘤體生長的影響 [J]. 中藥藥理與臨床, 2021, 37(3): 50-55. (ZHANG H Q, LI G M, CHEN J R, et al. Effect of Total Saponins in Panacis Quinquefolii Radix Combined with Cisplatin on Tumor Growth in Mice Bearing Luc-A549 Cells [J]. Pharmacology and Clinics of Chinese Materia Medica, 2021, 37(3): 50-55.)
[8] 張馨妍, 洪新悅, 高連叢, 等. 六種人參皂苷的制備及體外抗氧化活性研究 [J]. 世界最新醫(yī)學(xué)信息文摘, 2018, 18(102): 14-17. (ZHANG X Y, HONG X Y, GAO L C, et al. Study on Preparation of Six Ginseng Soaps and Their Antioxidant Activity in vitro [J]. World Latest Medicine Information, 2018, 18(102): 14-17.)
[9] SHUAI M Y, YANG Y, BAI F Q, et al. Geographical Origin of American Ginseng (Panax quinquefolius L.) Based on Chemical Composition Combined with Chemometric [J]. Journal of Chromatography A, 2022, 1676: 463284-1-463284-10.
[10] 安琪, 郭梅, 申亞君, 等. 西洋參蒸制前后人參皂苷類成分變化及活性比較研究 [J]. 中國中藥雜志, 2020, 45(18): 4404-4410. (AN Q, GUO M, SHEN Y J, et al. Comparative Study on Changes of Ginsenosides and Activities of American Ginseng before and after Steaming" [J]. China Journal of Chinese Materia Medica, 2020, 45(18): 4404-4010.)
[11] HUANG X, LIU Y, ZHANG Y, et al. Multicomponent Assessment and Ginsenoside Conversions of Panax quinquefolium L.Roots before and after Steaming by HPLC-MSn" [J]. Journal of Ginseng Research, 2019, 43(1): 27-37.
[12] WANG Y P, CHOI H K, BRINCKMANN J A, et al. Chemical Analysis of Panax quinquefolius (North American Ginseng): A Review [J]. Journal of Chromatography A, 2015, 1426: 1-15.
[13] QI L W, WANG H Y, ZHANG H, et al. Diagnostic Ion Filtering to Characterize Ginseng Saponins by Rapid Liquid Chromatography with Time-of-Flight Mass Spectrometry [J]. Journal of Chromatography A, 2012, 1230: 93-99.
[14] DU Z X, LI J H, ZHANG X, et al. An Integrated LC-MS-Based Strategy for the Quality Assessment and Discrimination of Three Panax Species [J]. Molecules, 2018, 23(11): 2988-1-2988-20.
[15] 趙樂鳳, 焦傳新, 李慧, 等. RRLC-Q-TOF-MS研究人參二醇型皂苷Rb1,Rb2和Rc的化學(xué)轉(zhuǎn)化 [J]. 高等學(xué)?;瘜W(xué)學(xué)報, 2018, 39(4): 667-673. (ZHAO L F, JIAO C X, LI H, et al. Chemical Transformation of Protopanaxadiol Type Ginsenoside Rb1,Rb2 and Rc Analyzed by RRLC-Q-TOF-MS [J]. Chemical Journal of Chinese Universities, 2018, 39(4): 667-673.)
[16] LIU Z H, MOORE R, GAO Y, et al. Comparison of Phytochemical Profiles of Wild and Cultivated American Ginseng Using Metabolomics by Ultra-high Performance Liquid Chromatography-High-Resolution Mass Spectrometry [J]. 2023, 28(1): 9-1-9-17.
[17] 李慧芝, 趙燕芳, 王岱杰, 等. 基于UPLC-Q-TOF-MS/MS和MALDI-MSI的參蒸西洋參皂苷識別及可視化分析 [J]. 中國中藥雜志, 2024, 49(6): 1526-1539. (LI H Z, ZHAO Y F, WANG D J, et al. Identification and Visual Analysis of Ginsenosides in Multi-steamed Roots of Panax quinquefolium Based on UPLC-Q-TOF-MS/MS and MALDI-MSI [J]. China Journal of Chinese Materia Medica, 2024, 49(6): 1526-1539.)
[18] FAN J L, LIU F, JI W H, et al. Comprehensive Investigation of Ginsenosides in the Steamed Panax quinquefolius with Different Processing Conditions Using LC-MS [J]. Molecules, 2024, 29(3): 623-1-623-16.
[19] SUN Y Z, FU X J, QU Y, et al. Characterization of Ginsenosides from the Root of Panax ginseng by Integrating Untargeted Metabolites Using UPLC-Triple TOF-MS [J]. Molecules, 2023, 28(5): 2068-1-2068-12.
[20] HSU B Y, JEN C T, INBARAJ B S, et al. A Comparative Study on Analysis of Ginsenosides in American Ginseng Root Residue by HPLC-DAD-ESI-MS and UPLC-HRMS-MS/MS [J]. Molecules, 2022, 27(10): 3071-1-3071-16.
[21] LI W, WU X L, WU M F, et al. Ultrahigh-Performance Liquid Chromatography Coupled to Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry Profiling and Unveiling the Transformation of Ginsenosides by the Dual Conditions of Citric Acid and High-Pressure Steaming [J]. Rapid Communications in Mass Spectrometry, 2022, 36(20): e9363-1-e9363-11.
[22] LIU Z, QU C Y, LI J X, et al. Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng (Panax quinquefolius L.) on Type 2 Diabetic Mice [J]. Acs Omega, 2021, 6(49): 33652-33664.
[23] MIAO X S, METCALFE C D, HAO C Y, et al. Electrospray Ionization Mass Spectrometry of Ginsenosides [J]. Journal of Mass Spectrometry, 2002, 37(5): 495-506.
[24] GONG P X, ZONG W L, LI H H, et al. Comprehensive Analysis of Different Types of Ginsenosides in the Different Parts of American Ginseng by Targeted and Nontargeted MS/MS Scanning [J]. Journal of Food Science, 2023, 88(12): 5063-5077.
[25] LI C, YANG J H, TONG X, et al. Precursor Ion Scan Enhanced Rapid Identification of the Chemical Constituents of Danhong Injection by Liquid Chromatography-Tandem Mass Spectrometry: An Integrated Strategy [J]. Journal of Chromatography A, 2019, 1602: 378-385.
[26] GONG P X, ZONG W L, LI H H, et al. Comprehensive Analysis of Different Types of Ginsenosides in the Different Parts of American Ginseng by Targeted and Nontargeted MS/MS Scanning [J]. Journal of Food Science, 2023, 88(12): 5063-5077.
[27] LI L, LUO G A, LIANG Q L, et al. Rapid Qualitative and Quantitative Analyses of Asian Ginseng in Adulterated American Ginseng Preparations by UPLC/Q-TOF-MS [J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52(1): 66-72.
[28] LEUNG K S Y, CHAN K, BENSOUSSAN A, et al. Application of Atmospheric Pressure Chemical Ionisation Mass Spectrometry in the Identification and Differentiation of Panax Species [J]. Phytochemical Analysis, 2007, 18(2): 146-150.
[29] JEONG S M, LEE J H, KIM J H, et al. Stereospecificity of Ginsenoside Rg3 Action on Ion Channels [J]. Molecules and Cells, 2004, 18(3): 383-389.
[30] YUAN J B, CHEN Y, LIANG J, et al. Component Analysis and Target Cell-Based Neuroactivity Screening of Panax ginseng by Ultra-performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight Mass Spectrometry [J]. Journal of Chromatography B, 2016, 1038: 1-11.
[31] ZHU H L, LIN H Q, TAN J, et al. UPLC-QTOF/MS-Based Nontargeted Metabolomic Analysis of Mountain-and Garden-Cultivated Ginseng of Different Ages in Northeast China [J]. Molecules, 2019, 24(1): 33-1-33-24.
[32] CHEN W, BALAN P, POPOVICH D G. Comparison of Ginsenoside Components of Various Tissues of New Zealand Forest-Grown Asian Ginseng (Panax Ginseng) and American Ginseng (Panax Quinquefolium L.) [J]. Biomolecules, 2020, 10(3): 372-1-372-15.
[33] 李青, 許偉沂, 彭麗詩, 等. 人參和西洋參提取物中皂苷組分比例分析及其在參類產(chǎn)品鑒別中的應(yīng)用研究 [J]. 食品科技, 2024, 49(5): 225-233. (LI Q, XU W Y, PENG L S, et al. Analysis of Proportion of Saponins Components in Extracts of Ginseng and American Ginseng and Its Application on Identification of Ginseng Products [J]. Food Science and Technology, 2024, 49(5): 225-233.)
[34] SHI X J, YANG W Z, QIU S, et al. An in-Source Multiple Collision-Neutral Loss Filtering Based Nontargeted Metabolomics Approach for the Comprehensive Analysis of Malonyl-Ginsenosides from Panax ginseng, P.quinquefolius, and P.notoginseng [J]. Analytica Chimica Acta, 2017, 952: 59-70.
[35] DU Z X, LI J H, ZHANG X, et al. An Integrated LC-MS-Based Strategy for the Quality Assessment and Discrimination of Three Panax Species [J]. 2018, 23(11): 2988-1-2988-20.
[36] WAN J Y, LIU P, WANG H Y, et al. Biotransformation and Metabolic Profile of American Ginseng Saponins with Human Intestinal Microflora by Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry [J]. Journal of Chromatography A, 2013, 1286: 83-92.
[37] WU W, QIN Q J, GUO Y Y, et al. Studies on the Chemical Transformation of 20(S)-Protopanaxatriol (PPT)-Type Ginsenosides Re,Rg2,and Rf Using Rapid Resolution Liquid Chromatography Coupled with Quadruple-Time-of-Flight Mass Spectrometry (RRLC-Q-TOF-MS) [J]. Journal of Agricultural and Food Chemistry, 2012, 60(40): 10007-10014.
[38] QI L W, WANG C Z, YUAN C S. Ginsenosides from American Ginseng: Chemical and Pharmacological Diversity [J]. Phytochemistry, 2011, 72(8): 689-699.
[39] FUZZATI N. Analysis Methods of Ginsenosides [J]. Journal of Chromatography B, 2004, 812(1/2): 119-133.
[40] KEUM Y S, PARK K K, LEE J M, et al. Antioxidant and Anti-tumor Promoting Activities of the Methanol Extract of Heat-Processed Ginseng [J]. Cancer Letters, 2000, 150(1): 41-48.
[41] KWON S W, HAN S B, PARK I H, et al. Liquid Chromatographic Determination of Less Polar Ginsenosides in Processed Ginseng [J]. Journal of Chromatography A, 2001, 921(2): 335-339.
[42] POPOVICH D G, KITTS D D. Generation of Ginsenosides Rg3 and Rh2 from North American Ginseng [J]. Phytochemistry, 2004, 65(3): 337-344.
[43] 黃寶泰. 西洋參蒸制前后皂苷類成分變化和心肌損傷保護作用研究 [D]. 長春: 長春中醫(yī)藥大學(xué), 2023. (HUANG B T. Study on the Changes of Saponins and the Protective Effect of Myocardial Injury before and after Steaming American Ginseng [D]. Changchun: Changchun University of Chinese Medicine, 2023.)
[44] 楊遠貴. 紅參加工過程皂苷類成分變化規(guī)律及其質(zhì)量標(biāo)準(zhǔn)研究 [D]. 上海: 上海中醫(yī)藥大學(xué), 2021. (YANG Y G. Study on the Processing-Induced Transformation Dynamics of Ginsenosides and Quality Criteria of Red Ginseng [D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2021.)
[45] RYU J H, PARK J H, EUN J H, et al. A Dammarane Glycoside from Korean Red Ginseng [J]. Phytochemistry, 1997, 44(5): 931-933.
[46] 郭娜. 不同加工方式對西洋參化學(xué)成分的影響研究 [D]. 長春: 長春中醫(yī)藥大學(xué), 2023. (GUO N. Effects of Different Processing Methods on the Chemical Constituents of American Ginseng [D]. Changchun: Changchun University of Chinese Medicine, 2023.)
[47] 胡明欣. 姜西洋參炮制及降糖活性研究 [D]. 長春: 吉林大學(xué), 2020. (HU M X. Study on the Processing and Hypoglycemic Activity of Ginger-Processed American Ginseng [D]. Changchun: Jilin University, 2020.)
[48] 王文娟. 姜西洋參和西洋參化學(xué)成分及防治順鉑所致急性腎損傷作用的比較研究 [D]. 長春: 吉林大學(xué), 2023. (WANG W J. Comparative Study on the Chemical Constituents and the Prevention and Treatment of Acute Renal Injury Induced by Cisplatin of Ginger-Processed American Ginseng and American Ginseng [D]. Changchun: Jilin University, 2023.)
[49] 杜培霞. 不同制備工藝對西洋參黑參品質(zhì)特性及成分變化的影響研究 [D]. 濟南: 山東師范大學(xué), 2020. (DU P X. Effects of Different Preparation Processes on Quality Characteristics and Composition Changes of Black Ginseng [D]. Jinan: Shandong Normal University, 2020.)
[50] 鄭藝. 稀有人參皂苷的制備與質(zhì)譜鑒定研究 [D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2020. (ZHENG Y. Preparation of Rare Ginsenosides and Mass Spectrometry Identification Research [D]. Harbin: Harbin Institute of Technology, 2020.)
[51] SINGH P, SINGH H, CASTRO ACEITUNO V, et al. Engineering of Mesoporous Silica Nanoparticles for Release of Ginsenoside CK and Rh2 to Enhance Their Anticancer and Anti-inflammatory Efficacy: in vitro Studies [J]. Journal of Nanoparticle Research, 2017, 19: 257-1-257-14.
[52] HOU J G, XUE J J, LEE M, et al. Long-Term Administration of Ginsenoside Rh1 Enhances Learning and Memory by Promoting Cell Survival in the Mouse Hippocampus [J]. International Journal of Molecular Medicine, 2014, 33(1): 234-240.
[53] WANG C Z, AUNG H H, NI M, et al. Red American Ginseng: Ginsenoside Constituents and Antiproliferative Activities of Heat-Processed Panax quinquefolius Roots [J]. Planta Medica, 2007, 73(7): 669-674.
[54] 屈春園. 西洋參中丙二?;藚⒃碥諏?型糖尿病IR的改善作用及機制研究 [D]. 長春: 吉林農(nóng)業(yè)大學(xué), 2022. (QU C Y. Study on the Regulation Mechanism of Malonyl Ginsenosides from American Ginseng Improving IR of Type 2 Diabetes [D]. Changchun: Jilin Agricultural University, 2022.)
[55] 孟巖, 王洪新, 楊育紅. 人參皂苷Rg1對小鼠慢性間歇性缺氧誘導(dǎo)腦損傷的減輕作用及其機制 [J]. 吉林大學(xué)學(xué)報(醫(yī)學(xué)版), 2024, 50(5): 1196-1204. (MENG Y, WANG H X, YANG Y H. Alleviative Effect of Ginsenoside Rg1 on Brain Injury Induced by Chronic Intermittent Hypoxia in Mice and Its Mechanism [J]. Journal of Jilin University (Medicine Edition), 2024, 50(5): 1196-1204.)
[56] 林麗, 陸瀅, 李空飛, 等. 人參皂苷Rg1治療多發(fā)性骨髓瘤的網(wǎng)絡(luò)藥理學(xué)預(yù)測與驗證 [J]. 溫州醫(yī)科大學(xué)學(xué)報, 2024, 54(8): 650-656. (LIN L, LU Y, LI K F, et al. Network Target Prediction and Mechanism Confirmation of Ginsenoside Rg1 in Treating Multiple Myeloma [J]. Journal of Wenzhou Medical University, 2024, 54(8): 650-656.)
[57] 姜明春, 孫麗霞, 李大偉, 等. 基于RIP1/RIP3/MLKL介導(dǎo)程序性壞死通路探討人參皂苷Rb1拮抗LPS誘導(dǎo)的黑質(zhì)多巴胺神經(jīng)元損傷機制 [J]. 現(xiàn)代中西醫(yī)結(jié)合雜志, 2024," 33(16): 2191-2200. (JIANG M C, SUN L X, LI D W, et al. Ginsenoside Rb1 Antagonizes Lps-Induced Nigrostriatal Dopamine Neuron Damage via RIP1/RIP3/MLKL-Mediated Necroptosis Pathway [J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2024, 33(16): 2191-2200.)
[58] OH G S, PAE H O, CHOI B M, et al. 20(S)-Protopanaxatriol, One of Ginsenoside Metabolites, Inhibits Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Expressions through Inactivation of Nuclear Factor-κB in RAW 264.7 Macrophages Stimulated with Lipopolysaccharide [J]. Cancer Letters, 2004, 205(1): 23-29.
[59] 楊倩, 王燦. 人參皂苷Rg3減輕帕金森病小鼠神經(jīng)系統(tǒng)氧化應(yīng)激損傷的作用機制 [J]. 西部中醫(yī)藥, 2024,37(9): 25-29. (YANG Q, WANG C. The Mechanism of Action of Ginsenoside Rg3 for the Relief from Oxidative Stress Injury in the Nervous System of Mice with Parkinson’s Disease [J]. Western Journal of Traditional Chinese Medicine, 2024, 37(9): 25-29.)
[60] 張希賢, 孫俊杰, 劉清雅. 人參皂苷Rg2調(diào)控PI3K/Akt/mTOR信號通路對急性心肌梗死后心臟保護作用 [J/OL]. 中國實驗方劑學(xué)雜志, (2024-07-19)[2024-12-03]. http://lihk.cnki.net/urlid/11.3495.R.20240718.1115.004. (ZHANG X X, SUN J J, LIU Q Y. Ginsenoside Rg2 Regulates PI3K/Akt/mTOR Signaling Pathway to Protect Heart after Acute Myocardial Infarction [J/OL]. Chinese Journal of Experimental Traditional Medical Formulae, (2024-07-19)[2024-12-03]. http://lihk.cnki.net/urlid/11.3495.R.20240718.1115.004.)
[61] 蔣巖, 許潔, 董揚揚, 等. 人參皂苷CK對神經(jīng)退行性疾病的神經(jīng)保護作用 [J]. 神經(jīng)藥理學(xué)報, 2021, 11(4): 49-57. (JIANG Y, XU J, DONG Y Y, et al. The Neuroprotective Effect of Ginsenoside Compound K on Neurodegenerative Diseases [J]. Acta Neuropharmacologica, 2021, 11(4): 49-57.)
[62] 葉萍, 張慧娥, 初孟瑤, 等. 人參皂苷CK美容護膚作用及機制研究進展 [J]. 特產(chǎn)研究, 2024, 46(3): 161-167. (YE P, ZHANG H E, CHU M Y, et al. Research Advances on Beauty and Skin Care Effect and Mechanism of Ginsenoside CK [J]. Special Wild Economic Animal and Plant Research, 2024, 46(3): 161-167.)
[63] 楊森, 張曉娟, 張辰露. 人參皂苷CK活性及生物轉(zhuǎn)化合成研究進展 [J]. 廣東化工, 2024, 51(15): 95-97. (YANG S, ZHANG X J, ZHANG C L. Research Progress of Ginsenoside CK Activity and Biotransformation Synthesis [J]. Guangdong Chemical Industry, 2024, 51(15): 95-97.)
[64] 崔穎. 裂褶菌對西洋參的固體發(fā)酵及其轉(zhuǎn)化產(chǎn)物人參皂苷F2抗心肌梗死活性的研究 [D]. 長春: 吉林農(nóng)業(yè)大學(xué), 2024. (CUI Y. Anti-myocardial Infarction Activity of Solid Fermentation of Panax quinquefolius L.by Schizophyllum commune and Its Transformation Product Ginsenoside F2 [D]. Changchun: Jilin Agricultural University, 2024.)
[65] 何姍美. 人參皂苷Rk1對膝骨關(guān)節(jié)炎大鼠的保護作用研究 [D]. 長春: 吉林大學(xué), 2024. (HE S M. Study on the Protective Effect of Ginsenoside Rk1 on Knee Osteoarthritis in Rats [D]. Changchun: Jilin University, 2024.)
[66] 徐夢丹. 黑西洋參炮制工藝及抗疲勞、 抗氧化作用評價 [D]. 長春: 長春中醫(yī)藥大學(xué), 2024. (XU M D. Evaluation of Processing Technology and Anti-fatigue and Anti-oxidation Effects of Black American Ginseng [D]. Changchun: Changchun University of Chinese Medicine, 2024.)
(責(zé)任編輯: 單 凝)