• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy

    2024-01-25 07:11:12PanpanHuang黃盼盼YouluZhang張有祿KaiHu胡凱JingboQi齊靜波DainanZhang張岱南andLiangCheng程亮
    Chinese Physics B 2024年1期
    關(guān)鍵詞:張岱

    Panpan Huang(黃盼盼), Youlu Zhang(張有祿), Kai Hu(胡凱), Jingbo Qi(齊靜波),3,?,Dainan Zhang(張岱南),,?, and Liang Cheng(程亮),3,§

    1School of Electronic Science and Engineering,Universityof ElectronicScience and Technology of China,Chengdu 611731,China

    2StateKeyLaboratory ofElectronic ThinFilmsand IntegratedDevices,UniversityofElectronicScienceandTechnologyofChina,Chengdu611731,China

    3School of Physics,University ofElectronicScienceandTechnologyof China,Chengdu611731,China

    Keywords: GeSn thin film,time-resolved THz spectroscopy,ultrafast dynamics,carrier recombination

    1.Introduction

    Ge1?xSnx(abbreviated as GeSn)materials have attracted increasing attention in the fields of microelectronics and optoelectronics due to their excellent optoelectronic properties and good compatibility with mature Si-based technology.[1,2]When the Sn concentration of GeSn is in the range ofx~0.06–0.1, a transition from an indirect bandgap to a direct bandgap occurs,and this tunable band structure enables GeSn to have multiple applications.[3–5]Furthermore,due to its high carrier mobility, GeSn can be used to fabricate novel electronic devices.[6–9]It also exhibits excellent optoelectronic properties in the infrared range, and can be used as a luminescent material to fabricate infrared light sources.[4,10–14]Moreover, GeSn can be used for infrared detection, and the bandgap width of GeSn can be adjusted by tuning the Sn content,enabling the tuning of the infrared detection range.[15,16]Therefore, optoelectronic devices based on GeSn have enormous potential for application in various fields, such as freespace and fiber-optic communication, optoelectronic detection, monitoring and identification, artificial intelligence, and medical imaging,among others.

    At higher doping concentrations, GeSn alloy transforms into a direct bandgap semiconductor,[3,4]and exhibits good performance in the infrared range.In order to apply this material,it is necessary to understand the interaction between infrared photons and the material, especially the carrier relaxation behavior after photoexcitation and the electrical properties of the generated carriers.Therefore, we perform timeresolved terahertz spectroscopy (TRTS)[17–19]to measure the epitaxial grown GeSn thin films.

    2.Samples and experimental setup

    In our work, the sample is GeSn thin film grown on Si substrate using the molecular beam epitaxy (MBE) method.Before the growth, the chamber base pressure is kept at approximately 4×10?9Torr.During growth, the temperature of the Ge source is set at 1200°C with a heating rate of 7°C/min, the temperature of the Sn source is set at 1050°C with a heating rate of 5°C/min,and the substrate temperature is set at 150°C with a heating rate of 3°C/min.The growth time is 2 hours, resulting in the film thickness of approximately 120 nm.The Sn concentration in the prepared GeSn film is confirmed by x-ray photoelectron spectroscopy(XPS)as approximately 22.34%, which is heavily doped and makes the GeSn sample as a direct bandgap semiconductor with a bandgap<0.25 eV.[20]Therefore, in the following study, we choose a light source with wavelength of 2500 nm(photon energy~0.5 eV)to excite the sample.

    Fig.1.(a) Schematic of time-resolved THz spectroscopy (TRTS).(b) THz time-domain spectrum of GeSn sample.The red and black curves represent the ESamp(t) and ERef(t), respectively.(c) THz transmittance spectrum.The red balls represent the transmittance of GeSn without optical pump,and the black square represents the calibration of our setup.

    The experimental setup used in our work is a timeresolved terahertz spectroscopy, which is frequently used to measure the terahertz response of the sample after being photoexcited(as shown in Fig.1(a)).The applied laser has a repetition frequency of 1 kHz,a wavelength of 800 nm,and a pulse width of 80 fs.The laser pulse is split into two parts.One is used to generate and detect a broadband terahertz pulse, and the other is used to drive an optical parametric amplifier(OPA)to generate femtosecond pulses with a wavelength of 2500 nm to excite the sample.The generation of terahertz pulses is based on the optical rectification effect in the nonlinear crystal ZnTe induced by femtosecond laser excitation.In addition,terahertz radiation detection is based on the electro-optic sampling method,and we use a 0.5 mm thick ZnTe crystal as the detection crystal.[21]In our experiment,the time resolution of the terahertz time-domain spectroscopy is 0.03 ps,and the terahertz frequency range is 0.4 THz–2.8 THz.The pump power of the 2500 nm pump light used to excite the sample ranges from 2 mW to 40 mW,and the beam diameter is~5 mm.

    In the experiment,we need to measure the terahertz transmission signalsESamp(t) andERef(t) of the film on the substrate and the reference (usually it is the same substrate as the sample film), respectively.Then we perform the Fourier transform on the two sets of signals to obtain their frequency domain spectrum ?ESamp(ω)and ?ERef(ω),so that we can calculate the transmission of the thin film sample in the frequency domain[22,23]

    Based on the relationship between the transmission and the optical parameters of the sample,the optical parameters of the thin film at different frequencies can be deduced.[18,23–25]Before the measurement, we need to calibrate the experimental setup, and the calibration data are shown in Fig.1(c).The transmittance obtained by the system in the frequency range of 0.4 THz–2.8 THz is 100±0.5%(theoretically it should be 100%) when both the sample and the reference are vacuum,indicating the high reliability of our setup in this frequency range.

    Usually we can perform one-dimensional TRTS (1D TRTS)and two-dimensional TRTS(2D TRTS)to measure the sample.[18,26]From the 1D TRTS measurement, we can obtain the transient change of terahertz peak with respect to the pump-probe time delay, representing the transient change of frequency-averaged terahertz signal.However, in 2D TRTS measurement, we can obtain the transient terahertz timedomain spectrum at different time delays,that is,the transient change of frequency-resolved terahertz signal.The former is similar to the general optical pump–probe technique,[27,28]while the latter can give us more information about the sample in the terahertz frequency range, and it is often used for characterizing different materials such as semiconductors and superconductors.[26,27]

    3.TRTS of GeSn thin film

    3.1.THz spectrum of GeSn thin film in equilibrium

    Firstly,we measure the terahertz signal of the GeSn film without optical excitation, and its time-domain spectrum is shown in Fig.1(b).It can be seen thatESamp(t) andERef(t)are almost identical.This is because GeSn is a semiconductor with low intrinsic carrier density and small thickness, resulting in low terahertz absorption.This is also reflected in Fig.1(c), where the terahertz transmittance of the GeSn film is close to 1.Therefore, we will only focus on the effect of photo-generated carriers of the GeSn film after femtosecond optical excitation in the following work.

    3.2.The 1D TRTS of GeSn thin film

    Next,we measure the transmitted terahertz signal passing through the sample after the pump excitation,that is,the peak intensity of the transmitted terahertz electric field as a function of the pump delay time.In this case,we measure a 1D TRTS.Generally,this change is caused by optically generated quasiparticles such as carriers and phonons induced by the pump excitation.From this signal, we can obtain the ultrafast dynamics information of quasiparticles in the sample.[17,29,30]In the experiment,we apply 2500 nm wavelength light as the optical pump.Since its photon energy is smaller than that of the Si substrate material, there may be a little but observable multiphoton excitation signal in Si (see the dashed curves in Fig.2(a)).The 1D TRTS signal of Si reflects the ultra-long lifetime of the carriers in Si (>1 ns), which has been intensively studied in previous research.[31]According to the data,we can see obvious differences between the GeSn sample and Si.(i)The signal of Si is almost a constant after pump in our measurement range,while the GeSn shows obvious relaxation.(ii)The signal of Si is much smaller than GeSn.Moreover,the GeSn thin film can strongly absorb the pump light which decreases the pump power directly on the substrate in the GeSn sample.Therefore, we can conclude that the ultrafast relaxations of carriers caused by multiphoton excitation in Si substrate cannot contribute obviously to our GeSn data within our measurement range,and the relaxation processes we observed in the GeSn sample should mainly come from the GeSn thin film.

    Fig.2.(a) The 1D TRTS of GeSn thin film and pure Si substrate under different pump power.The solid curves are the fitting results of Eq.(2).The signal of Si under a 10 mW pump is magnified by 10 times.Panels(b)and(c)are the fitting parameters under different pump power.

    The 1D TRTS of GeSn film at different excitation powers is shown in Fig.2(a).It can be seen that after 2500 nm femtosecond laser excitation,the terahertz signal of GeSn film reaches its peak at around 1 ps and then begins the relaxation process.Due to the reflection of the pump light by the backside of substrate, a second excitation process appears at~13 ps.This entire process(including the rising edge of the signal)can be described by a formula containing two exponential relaxation processes(A1,τ1,A2,τ2)

    wheret01(≈?1 ps from fitting) andt02(≈13 ps from fitting)are the pump excitation time and the secondary excitation time, respectively,tr1(≈1 ps from fitting) andtr2(≈4.5 ps from fitting)are the rise times of the signals during the two excitations,respectively.G(≈0.1 from fitting)is the secondary excitation coefficient, andCrepresents the relaxation process with lifetime much longer than our measurement range.Here we assume that the second excitation by the reflected pump can trigger the relaxation processes with similar lifetimes,which is good enough to get the trend of pump-powerdependence of the fitting parameters.We believe that such assumption is reasonable because the second peak is much smaller compared to the main peak, and it cannot change the trend of the fitting parameters.The fitting curve is shown in Fig.2(a),which can fit the secondary reflection excitation process well.

    As shown in Fig.2(a),after 2500 nm femtosecond excitation,the terahertz signal of GeSn thin film reaches its peak at around 1 ps,and then starts the relaxation process.The amplitudes and relaxation time that describe the relaxation process are shown in Figs.2(b)and 2(c).The entire relaxation process is approximately in the order of 100 ps,and can be divided into a fast process(τ1)and a slow process(τ2).BothA1andA2are proportional to the excitation power,indicating that the power used has not yet reached the saturation absorption threshold.In addition,τ1andτ2both show a strong negative correlation to the excitation power, where the relaxation time will shorten at higher photo-generated carrier densities.Considering the semiconductor properties of the material, these two processes may be related to higher-order recombination processes of carriers, such as Auger recombination or radiative recombination.[17,18,32–36]

    3.3.The 2D TRTS of GeSn thin film

    We measure the time evolution of the transmitted terahertz electric field (2D TRTS) of GeSn after excitation with 15 mW pump power, as shown in Fig.3.The relative peak change of the transmitted terahertz electric field is about?2%,and it gradually decays with pump time delay.Using the data processing method of time-resolved terahertz time-domain spectroscopy,[18,24]we obtain the terahertz complex conductivity Δ ?σ(ω)of GeSn film,as shown in Fig.3(c).In Fig.3(c),we list the Δ ?σ(ω) at pump time delays of 0, 5 ps and 20 ps,which clearly shows its relaxation behavior with time delay.At delay time after photoexcitation, the real part of Δ ?σ(ω)slowly increases with frequency, while the absolute value of the imaginary part shows a decreasing trend.This frequencydependent conductivity cannot be explained directly by the common Drude model, but can be well fitted by the Drude–Smith model[18,26]

    Here,ε0is the vacuum permittivity,ε∞is the high-frequency dielectric constant of the sample,ωpis the plasma frequency,γis the scattering frequency, andcis a fitting parameter in the Drude–Smith model to describe backscattering.The fitting curve for the GeSn photoconductivity data is shown as the solid line in Fig.3(c).It can be seen that the fits are excellent,indicating that the carriers in the film after photoexcitation are different from the free carriers described in the Drude model,and exhibit some degree of localization(c/=0).This is generally caused by some defects in the crystal and can be observed in various semiconductor films.[26]

    Fig.3.The 2D TRTS of GeSn.(a) Red curve is the THz electric field in the time-domain after passing through the sample.Blue curve is the transient change of THz electric field after pumping at τ =0 ps.(b)Transient change of THz electric field after pumping at selected pump time.(c)Extracted THz optical conductivity at selected pump time.

    Fig.4.Parameters from Drude–Smith model fitting and some deduced parameters.(a)Plasma frequency ωp.(b)Photogenerated carrier density n.(c)Scattering rate γ.(d)MobilityμDS.

    The parametersωpandγobtained by fitting with the Drude–Smith model as functions of pump-probe delay time are shown in Figs.4(a)and 4(c), respectively.We can calculate the photogenerated carrier densitynand mobilityμDSin the GeSn film using the following formula:[26]

    wherem?represents the effective mass of the carriers,eis the unit charge,andμDis the intrinsic mobility(without considering the contribution of backscattering due to defects).According to the previous studies, the effective mass of carriers in GeSn ism?=0.02me,[33]thus the variations ofnandμDSwith pump-probe time delay can be obtained,as shown in Figs.4(b)and 4(d).

    According to Fig.4,the mobility of photo-generated carriers is about 800 cm2·V?1·s?1, and reaches a minimum value at~15 ps after photoexcitation.However, the change of the scattering rate is not so significant,but the backscattering contribution caused by defects(measured by the parameterc)is more significant.Therefore,the main contribution to the change in the mobility of photo-generated carriers with pumpprobe delay time should come from the change of backscattering caused by the defects in the thin film.

    Combining with the results of 1D TRTS on pump power dependence (dependence ofτ1andτ2on pump power), we speculate that Auger recombination may dominate the relaxation of terahertz signals.Therefore,we can use the rate equation to fit the carrier density[18]

    wherek1andk2are the recombination rates of the first and second order processes.Here we only consider the first and second-order recombination processes,because the rate coefficient of higher-order recombination terms is 0 when included.The fitted curve is shown as the red solid line in Fig.4(b).We can see that the fitted curve agrees the experimental data very well, with the fitted parametersk1=(2.6±1.1)×10?2ps?1andk2=(6.6±1.8)×10?19cm3·ps?1.Generally speaking,in direct gap semiconductor materials, the first-order process comes from the capture of photo-generated carriers by defects,and the second-order process may come from defect-assisted Auger recombination[18]or radiative recombination.[35–37]However, in heavily-doped GeSn(direct bandgap), the radiative recombination mechanism can be excluded,since its lifetime at room temperature is much longer than our measurement range.[35–37]According to the recombination rate in the inset of Fig.4(b),we can see that the second-order recombination dominates before 20 ps,and the first-order recombination becomes the main recombination channel after 20 ps.

    4.Discussion

    According to the results of 1D and 2D TRTS of GeSn thin film under 2500 nm optical excitation, we can see that the excitation can generate photo-generated carriers in GeSn,which undergo a relaxation process with a timescale of about~100 ps.After the concentration of photo-generated carriers reaches its maximum, there are two relaxation channels: one is the Auger recombination process involving defect levels,which dominates before 20 ps;the other is the carrier capture process by defect levels,which dominates after 20 ps.During the entire recombination process, the carrier mobility is affected by defect scattering, causing a decrease of about 40%,reaching a minimum value of around~15 ps, and gradually relaxing to an equilibrium value.

    In addition, we notice that the relaxation processes obtained from 1D and 2D TRTS are slightly different.The 1D data show two relaxation processes, with relaxation time of the orders of 10 ps and 50 ps, which cannot be fully correlated with the two carrier relaxation channels obtained from the 2D data.This is mainly because 1D data not only reflect the evolution of carrier concentration but are also affected by the transient change in carrier mobility,and therefore there are more factors included, leading to the difference observed by 1D and 2D TRTS.

    Furthermore, during the relaxation of photo-generated carriers, they can diffuse simultaneously, and the diffusion lengthLDcan be calculated by the following formula:[26]

    wherekBis the Boltzmann constant,Dis the diffusion constant at temperatureT, andkeffis the effective first-order recombination rate,which can be mathematically expressed as

    The results are shown in Fig.5,where the diffusion lengthLDvaries slightly with the pump time,and the change ofLDwith respect to pump delay time is more pronounced when the concentration of photo-generated carriers is high (before 30 ps).The value ofLDis around 0.4μm,which is similar to previous research.[38]

    Fig.5.Diffusion length of photogenerated carriers.

    5.Conclusion and perspectives

    We measure the time-resolved terahertz spectroscopy of GeSn thin film under 2500 nm laser excitation and study the ultrafast dynamics of its carriers.We find that there are two recombination channels: Auger process assisted by defects and defect capture,and the former dominates the carrier relaxation process within 20 ps after photoexcitation while the latter persists for a longer time.Meanwhile,we obtain the carrier diffusion length of GeSn,which is about 0.4μm.These results are important for the optoelectronic applications of GeSn semiconductors, and indicate that the minimum response time of this material can reach~100 ps,corresponding to a frequency upper limit of~10 GHz, making it a promising material for high-speed infrared detection.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)and the National Key R&D Program of China(Grant No.2022YFA1403000).

    猜你喜歡
    張岱
    體悟人生,感悟孤獨
    張岱的“癡”的疏狂與孤獨
    張岱:遺世而獨立
    《湖心亭看雪》,讓我們看得更深一點
    名作欣賞(2017年27期)2017-09-18 03:22:09
    一個人的夢
    視野(2016年7期)2016-05-14 00:42:39
    我看《湖心亭看雪》中的癡
    張岱與茶
    茶博覽(2015年12期)2015-03-09 06:49:50
    論張岱小品文的“以詩為文” ——以《補孤山種梅序》為中心
    評商震的《另眼看張岱及其他》
    一世界的熱鬧,一個人的夢
    亚洲av中文av极速乱| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| 成人国产av品久久久| 国产深夜福利视频在线观看| 黄色怎么调成土黄色| 免费女性裸体啪啪无遮挡网站| 国产精品99久久99久久久不卡 | 亚洲人成网站在线观看播放| 18禁动态无遮挡网站| 国产精品一区二区精品视频观看| 五月开心婷婷网| 自线自在国产av| 麻豆乱淫一区二区| 黄色视频在线播放观看不卡| 国产精品一二三区在线看| 亚洲综合精品二区| 男女国产视频网站| 多毛熟女@视频| 成人手机av| 亚洲在久久综合| 国产片特级美女逼逼视频| 2021少妇久久久久久久久久久| 王馨瑶露胸无遮挡在线观看| 一二三四中文在线观看免费高清| 欧美国产精品一级二级三级| 亚洲一级一片aⅴ在线观看| 最黄视频免费看| 欧美精品一区二区免费开放| 人成视频在线观看免费观看| 午夜福利免费观看在线| 午夜福利,免费看| 一边摸一边抽搐一进一出视频| 成人国语在线视频| 国产精品一区二区在线观看99| 美女国产高潮福利片在线看| 操美女的视频在线观看| 51午夜福利影视在线观看| 青春草视频在线免费观看| 在线观看www视频免费| 纯流量卡能插随身wifi吗| 国产精品免费视频内射| 999精品在线视频| 中文字幕高清在线视频| 欧美久久黑人一区二区| 少妇的丰满在线观看| av在线app专区| 久久免费观看电影| 男女免费视频国产| 中文字幕另类日韩欧美亚洲嫩草| 久久人妻熟女aⅴ| 视频在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 久久青草综合色| 丁香六月欧美| 毛片一级片免费看久久久久| www.精华液| 亚洲av国产av综合av卡| 宅男免费午夜| 丝瓜视频免费看黄片| 99热全是精品| 国产黄色视频一区二区在线观看| 欧美乱码精品一区二区三区| 在线观看国产h片| 夫妻午夜视频| 自拍欧美九色日韩亚洲蝌蚪91| 各种免费的搞黄视频| 欧美日韩亚洲国产一区二区在线观看 | 精品视频人人做人人爽| 国产免费又黄又爽又色| 国产日韩欧美亚洲二区| 国产免费又黄又爽又色| 2021少妇久久久久久久久久久| 咕卡用的链子| 日本午夜av视频| 国产淫语在线视频| 成年av动漫网址| 777米奇影视久久| 亚洲欧美一区二区三区黑人| 国产av码专区亚洲av| 国产无遮挡羞羞视频在线观看| 日韩免费高清中文字幕av| 久久热在线av| 美女扒开内裤让男人捅视频| 伦理电影免费视频| 丰满迷人的少妇在线观看| 国产精品一区二区在线不卡| 国产视频首页在线观看| 桃花免费在线播放| 亚洲欧洲日产国产| 我的亚洲天堂| 成人毛片60女人毛片免费| 亚洲成人免费av在线播放| 亚洲精品久久成人aⅴ小说| 日韩欧美一区视频在线观看| 亚洲av成人不卡在线观看播放网 | 色吧在线观看| 精品人妻在线不人妻| 亚洲第一av免费看| 亚洲国产毛片av蜜桃av| 婷婷成人精品国产| 最近手机中文字幕大全| 亚洲欧洲精品一区二区精品久久久 | 一本一本久久a久久精品综合妖精| 极品少妇高潮喷水抽搐| 欧美亚洲日本最大视频资源| 久热爱精品视频在线9| 一级毛片我不卡| 一区二区三区四区激情视频| 久久久久精品国产欧美久久久 | 男女高潮啪啪啪动态图| 日本午夜av视频| 成人毛片60女人毛片免费| 叶爱在线成人免费视频播放| 欧美在线黄色| 不卡视频在线观看欧美| 欧美激情极品国产一区二区三区| 色94色欧美一区二区| 你懂的网址亚洲精品在线观看| 国产精品av久久久久免费| 纵有疾风起免费观看全集完整版| 久久国产精品大桥未久av| 国产熟女欧美一区二区| 亚洲精品中文字幕在线视频| 人妻人人澡人人爽人人| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av成人精品| 日韩欧美精品免费久久| 99九九在线精品视频| 亚洲欧美清纯卡通| 久久热在线av| 女人爽到高潮嗷嗷叫在线视频| 国产在视频线精品| 丝袜脚勾引网站| 老汉色∧v一级毛片| 日韩制服丝袜自拍偷拍| 成人国产麻豆网| 一本色道久久久久久精品综合| 国产亚洲最大av| 亚洲,一卡二卡三卡| 在线 av 中文字幕| 国产无遮挡羞羞视频在线观看| 精品亚洲成国产av| 久久亚洲国产成人精品v| 欧美日韩一区二区视频在线观看视频在线| av有码第一页| 男女免费视频国产| 两性夫妻黄色片| 午夜福利一区二区在线看| 自线自在国产av| 夜夜骑夜夜射夜夜干| 成人漫画全彩无遮挡| 久久久久久久精品精品| 日韩av免费高清视频| 久久久久国产一级毛片高清牌| 亚洲激情五月婷婷啪啪| 欧美日本中文国产一区发布| 久久毛片免费看一区二区三区| 久久婷婷青草| 91成人精品电影| 女的被弄到高潮叫床怎么办| 在线观看人妻少妇| 人妻一区二区av| 国产有黄有色有爽视频| 欧美亚洲 丝袜 人妻 在线| 精品国产乱码久久久久久小说| 日韩大片免费观看网站| 国产精品女同一区二区软件| 日韩免费高清中文字幕av| 超碰成人久久| 中国国产av一级| 国产视频首页在线观看| 搡老乐熟女国产| 亚洲国产中文字幕在线视频| 国产亚洲最大av| 国产成人91sexporn| 男女边吃奶边做爰视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品美女久久久久99蜜臀 | 亚洲国产日韩一区二区| 国产精品久久久人人做人人爽| 久久久国产欧美日韩av| 国产老妇伦熟女老妇高清| 国产精品久久久久久精品电影小说| 热99国产精品久久久久久7| 亚洲精品av麻豆狂野| 精品一区二区三区av网在线观看 | 亚洲,欧美精品.| 十八禁网站网址无遮挡| 国产欧美亚洲国产| 国产伦人伦偷精品视频| 精品酒店卫生间| 少妇人妻久久综合中文| 老司机亚洲免费影院| 久久久久久人妻| 久久精品aⅴ一区二区三区四区| 美国免费a级毛片| 老司机亚洲免费影院| 婷婷色av中文字幕| 国产日韩欧美在线精品| 久久精品国产亚洲av涩爱| 黑丝袜美女国产一区| 欧美日韩成人在线一区二区| 在线观看三级黄色| 国产1区2区3区精品| 狂野欧美激情性bbbbbb| 亚洲精品一区蜜桃| 在线精品无人区一区二区三| 黄色视频不卡| 欧美精品高潮呻吟av久久| 成年动漫av网址| 丝瓜视频免费看黄片| 国产午夜精品一二区理论片| 伊人久久国产一区二区| avwww免费| 男女午夜视频在线观看| 亚洲国产成人一精品久久久| 丰满饥渴人妻一区二区三| www日本在线高清视频| 国产亚洲一区二区精品| 999精品在线视频| 亚洲成人一二三区av| 精品视频人人做人人爽| 香蕉丝袜av| 国产一区二区在线观看av| 国产精品久久久久久精品电影小说| av卡一久久| 欧美日韩视频高清一区二区三区二| 欧美国产精品一级二级三级| 七月丁香在线播放| 一本色道久久久久久精品综合| 少妇人妻 视频| 青草久久国产| 国产黄色免费在线视频| 黄色视频不卡| 黄色一级大片看看| 亚洲成人av在线免费| 最近最新中文字幕大全免费视频 | 校园人妻丝袜中文字幕| 一区在线观看完整版| 别揉我奶头~嗯~啊~动态视频 | 一级a爱视频在线免费观看| 在线免费观看不下载黄p国产| 亚洲五月色婷婷综合| 一区二区三区激情视频| 高清在线视频一区二区三区| 午夜福利免费观看在线| 免费观看人在逋| 极品人妻少妇av视频| 久久99热这里只频精品6学生| 亚洲成人手机| 亚洲av男天堂| 美女福利国产在线| 18禁观看日本| 一个人免费看片子| 免费黄网站久久成人精品| 亚洲欧洲精品一区二区精品久久久 | 大陆偷拍与自拍| 国产一区二区三区综合在线观看| 国产在线免费精品| 婷婷色麻豆天堂久久| 十分钟在线观看高清视频www| 国产片内射在线| 国产免费一区二区三区四区乱码| 亚洲精品第二区| 精品亚洲乱码少妇综合久久| 成人午夜精彩视频在线观看| 香蕉丝袜av| 操美女的视频在线观看| 久久 成人 亚洲| 婷婷成人精品国产| 深夜精品福利| 国产精品成人在线| 精品第一国产精品| 一级a爱视频在线免费观看| 久热这里只有精品99| 久久免费观看电影| 精品国产一区二区久久| 亚洲免费av在线视频| 亚洲精品国产一区二区精华液| 亚洲精品av麻豆狂野| 九九爱精品视频在线观看| 久久女婷五月综合色啪小说| 日韩伦理黄色片| 黑人欧美特级aaaaaa片| 悠悠久久av| 男人添女人高潮全过程视频| 人人妻人人澡人人爽人人夜夜| 69精品国产乱码久久久| 丁香六月欧美| 999久久久国产精品视频| 亚洲国产日韩一区二区| 久久久久精品久久久久真实原创| 中文字幕av电影在线播放| 亚洲国产欧美日韩在线播放| 伦理电影免费视频| 美女扒开内裤让男人捅视频| a级毛片黄视频| 纯流量卡能插随身wifi吗| 女性生殖器流出的白浆| 少妇人妻 视频| 美女福利国产在线| 久久精品国产a三级三级三级| 一区二区日韩欧美中文字幕| 极品少妇高潮喷水抽搐| 成人午夜精彩视频在线观看| 欧美老熟妇乱子伦牲交| 久久天躁狠狠躁夜夜2o2o | 国产日韩欧美亚洲二区| 久久久久精品人妻al黑| 纵有疾风起免费观看全集完整版| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 在线观看国产h片| 另类精品久久| av视频免费观看在线观看| 亚洲少妇的诱惑av| 男女床上黄色一级片免费看| 波多野结衣一区麻豆| 久久韩国三级中文字幕| 91成人精品电影| 母亲3免费完整高清在线观看| 国产精品一区二区在线不卡| 如何舔出高潮| 亚洲七黄色美女视频| 国产高清国产精品国产三级| 精品国产超薄肉色丝袜足j| 日本欧美国产在线视频| 美女福利国产在线| 咕卡用的链子| 18禁观看日本| 亚洲精品美女久久久久99蜜臀 | 在线天堂中文资源库| 这个男人来自地球电影免费观看 | 秋霞在线观看毛片| 欧美精品高潮呻吟av久久| 老司机影院毛片| 如日韩欧美国产精品一区二区三区| 美女扒开内裤让男人捅视频| 无限看片的www在线观看| 免费少妇av软件| 国产精品一区二区在线观看99| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 国产一区有黄有色的免费视频| 亚洲av成人不卡在线观看播放网 | 19禁男女啪啪无遮挡网站| 黄频高清免费视频| 亚洲av男天堂| 亚洲av日韩在线播放| 最近最新中文字幕免费大全7| 国产在视频线精品| 国产日韩欧美在线精品| 欧美精品一区二区大全| 男女高潮啪啪啪动态图| 国产精品久久久久久精品古装| av有码第一页| 色吧在线观看| 美女国产高潮福利片在线看| kizo精华| 又大又黄又爽视频免费| 午夜福利影视在线免费观看| 新久久久久国产一级毛片| 亚洲国产精品一区二区三区在线| 2018国产大陆天天弄谢| 国产精品一区二区精品视频观看| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 成人影院久久| 999久久久国产精品视频| 久久久久久久久久久免费av| 精品国产一区二区久久| 丰满少妇做爰视频| 国产在线一区二区三区精| 成人亚洲精品一区在线观看| 各种免费的搞黄视频| 亚洲欧美中文字幕日韩二区| a级片在线免费高清观看视频| 久久精品亚洲av国产电影网| 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频| 国产成人精品久久久久久| 久久久久视频综合| 曰老女人黄片| 精品视频人人做人人爽| 中国三级夫妇交换| 亚洲婷婷狠狠爱综合网| 午夜福利视频在线观看免费| 老司机影院毛片| 日本av免费视频播放| 一区二区三区乱码不卡18| 亚洲精品在线美女| 国产精品二区激情视频| 汤姆久久久久久久影院中文字幕| 一级毛片 在线播放| 日本欧美国产在线视频| 嫩草影视91久久| 制服丝袜香蕉在线| 操出白浆在线播放| 久久久久久久久免费视频了| 黄色视频在线播放观看不卡| 免费少妇av软件| 日韩一本色道免费dvd| 黑人欧美特级aaaaaa片| 悠悠久久av| 大陆偷拍与自拍| 一级片'在线观看视频| 国产亚洲一区二区精品| 久久久国产精品麻豆| 中文精品一卡2卡3卡4更新| 亚洲欧美激情在线| 伦理电影大哥的女人| 久久久久国产一级毛片高清牌| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 亚洲精品乱久久久久久| 激情视频va一区二区三区| 免费高清在线观看日韩| www.熟女人妻精品国产| 在线亚洲精品国产二区图片欧美| 国产熟女欧美一区二区| 精品久久蜜臀av无| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 精品国产国语对白av| 久久婷婷青草| 亚洲色图 男人天堂 中文字幕| 国产免费视频播放在线视频| 国产成人欧美| 国产精品一区二区在线观看99| 精品一区二区免费观看| 又黄又粗又硬又大视频| 午夜福利乱码中文字幕| 国产黄频视频在线观看| 午夜免费鲁丝| 涩涩av久久男人的天堂| 一级片免费观看大全| 精品少妇久久久久久888优播| 嫩草影院入口| 日本欧美视频一区| 在线观看免费日韩欧美大片| 在线观看免费高清a一片| 日本91视频免费播放| 午夜福利网站1000一区二区三区| 中国国产av一级| 国产欧美日韩一区二区三区在线| 最近中文字幕2019免费版| xxx大片免费视频| 精品国产超薄肉色丝袜足j| 国产成人一区二区在线| 欧美精品一区二区免费开放| 在线观看三级黄色| 丝袜美足系列| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 亚洲av男天堂| 一级毛片我不卡| 久久久久久人妻| www.av在线官网国产| 婷婷色综合大香蕉| 国产精品女同一区二区软件| 国产老妇伦熟女老妇高清| 精品午夜福利在线看| 国产精品久久久久久精品古装| 青春草视频在线免费观看| 日本av免费视频播放| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 亚洲伊人久久精品综合| 韩国av在线不卡| 精品国产露脸久久av麻豆| 欧美久久黑人一区二区| 高清在线视频一区二区三区| 香蕉丝袜av| 精品第一国产精品| 精品国产一区二区三区四区第35| 国产精品一国产av| www日本在线高清视频| 亚洲av日韩精品久久久久久密 | 欧美亚洲日本最大视频资源| 成年美女黄网站色视频大全免费| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| 欧美亚洲 丝袜 人妻 在线| 日韩欧美精品免费久久| 亚洲精品美女久久久久99蜜臀 | 亚洲欧洲国产日韩| 一级a爱视频在线免费观看| 亚洲av电影在线进入| 黄色怎么调成土黄色| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 国产人伦9x9x在线观看| 在线亚洲精品国产二区图片欧美| 波野结衣二区三区在线| svipshipincom国产片| 悠悠久久av| 叶爱在线成人免费视频播放| 啦啦啦中文免费视频观看日本| 999久久久国产精品视频| 天天添夜夜摸| 国产亚洲午夜精品一区二区久久| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 国产精品 欧美亚洲| 国产精品久久久久久精品古装| 久久久久久久久久久久大奶| 啦啦啦视频在线资源免费观看| 人妻 亚洲 视频| 日本色播在线视频| 水蜜桃什么品种好| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 巨乳人妻的诱惑在线观看| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 国产av精品麻豆| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 亚洲免费av在线视频| 狠狠精品人妻久久久久久综合| 国产黄色免费在线视频| 午夜福利影视在线免费观看| 九草在线视频观看| 国产片内射在线| 成人午夜精彩视频在线观看| 亚洲成国产人片在线观看| 伊人久久国产一区二区| bbb黄色大片| 日韩中文字幕欧美一区二区 | 黄片小视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情av网站| 欧美xxⅹ黑人| 日日摸夜夜添夜夜爱| 成人午夜精彩视频在线观看| 色吧在线观看| 亚洲国产成人一精品久久久| 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 19禁男女啪啪无遮挡网站| 欧美少妇被猛烈插入视频| 97在线人人人人妻| 日本午夜av视频| 亚洲精品成人av观看孕妇| 亚洲国产精品一区二区三区在线| netflix在线观看网站| 久久鲁丝午夜福利片| 国产精品一区二区在线不卡| 久久婷婷青草| 狂野欧美激情性xxxx| 亚洲国产精品国产精品| 美女主播在线视频| 在线观看www视频免费| 视频在线观看一区二区三区| 高清欧美精品videossex| 亚洲成色77777| 天美传媒精品一区二区| 欧美黑人精品巨大| 国产精品人妻久久久影院| 伊人久久国产一区二区| 精品国产一区二区久久| 亚洲精品在线美女| 这个男人来自地球电影免费观看 | 免费日韩欧美在线观看| 久久久久久久久久久免费av| 亚洲情色 制服丝袜| kizo精华| 天堂8中文在线网| 国产毛片在线视频| 久久人人爽av亚洲精品天堂| 久久av网站| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 久久久精品免费免费高清| 成人国产麻豆网| 国产日韩欧美视频二区| 国产精品成人在线| 国产一级毛片在线| 婷婷色综合大香蕉| 久久久久久久国产电影| 日韩精品有码人妻一区| 国产在线一区二区三区精| 亚洲av男天堂| 欧美精品高潮呻吟av久久| 在线观看三级黄色| 久久国产精品男人的天堂亚洲| 又粗又硬又长又爽又黄的视频| 国产又爽黄色视频| 午夜激情久久久久久久| 国产精品久久久av美女十八| 亚洲精品乱久久久久久| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 国产乱人偷精品视频| 日韩制服骚丝袜av| 国产乱人偷精品视频| 桃花免费在线播放| av在线老鸭窝| 亚洲免费av在线视频| 久久久国产欧美日韩av| 亚洲国产欧美在线一区| 欧美在线黄色| 国产成人啪精品午夜网站| h视频一区二区三区| svipshipincom国产片| 国产成人午夜福利电影在线观看| 久久久久精品国产欧美久久久 | 中文字幕人妻丝袜制服| 中文字幕高清在线视频| 久久国产精品大桥未久av| 婷婷色综合www| av网站免费在线观看视频| 日韩中文字幕欧美一区二区 |