• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic and electronic properties of La-doped hexagonal 4H-SrMnO3

    2024-01-25 07:15:20JieLi李杰YinanChen陳一楠NuoGong宮諾XinHuang黃欣ZhihongYang楊志紅andYakuiWeng翁亞奎
    Chinese Physics B 2024年1期
    關(guān)鍵詞:李杰

    Jie Li(李杰), Yinan Chen(陳一楠), Nuo Gong(宮諾), Xin Huang(黃欣),Zhihong Yang(楊志紅), and Yakui Weng(翁亞奎),?

    1Grünberg Research Centre,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: manganites,polaron,magnetic phase transition

    1.Introduction

    Tuning magnetic and electronic states in materials is one of the fundamental goals for both basic science and practical applications.[1–3]To achieve this goal,two conditions need to be met:(i)effective modulation method,and(ii)ideal material platform.Firstly,in terms of regulation methods,a frequently used approach is doping, which can be realized through oxygen deficiency,[4–6]cation substitution,[7–10]and interfacial charge transfer.[11–14]Via proper doping,one can engineer exciting physical phenomena in a new dimension,[15,16]such as magnetic phase transition and insulator–metal transition (or even insulator–superconductor transition).[17,18]

    Secondly, in terms of material platform, transition metal oxides have been providing a fertile ground for studying novel functionalities and relevant physics, since they not only have vast family members (from 3d to 4d/5d systems) with various structures, but also possess fascinating physical phenomena due to the multiple physical couplings among various degrees of freedom (spin, charge, orbital and lattice).[19–21]Among these focused materials, Mn-based oxides have attracted enormous attention and been extensively studied for their rich magnetic phase diagrams,colossal magnetoresistivity,and multiferroicity.[19,22,23]

    SrMnO3(SMO)is a rare example of compounds that has both cubic structure and hexagonal(4H)structures,[24]which are antiferromagnetic insulators with N′eel temperatures of~233 K and~280 K,respectively.[25–27]Since the tolerance factortis larger than 1 (t=1.04), 4H-SMO [see Fig.1(a)]is normally stable under ambient conditions, whereas the cubic phase is commonly observed in a metastable state.[28–30]In comparison of the hexagonal SMO with the cubic SMO,it can be found that their crystal structures are completely different.Cubic SMO contains only corner-sharing octahedra,while 4H-SMO structure contains both corner-and face-sharing octahedra [see Fig.1(a)].In addition, their spin arrangements are different, although both of them are in antiferromagnetic background.Cubic SMO is G-type antiferromagnetic ordering, while spin arrangement of 4H-SMO is in layered form,similar to the A-type antiferromagnetic ordering.Therefore,considering the rich electronic and magnetic properties presented in doped cubic structure, it is worthwhile to study the doped 4H structure.

    However,most of the previous experimental studies have been focused on the metastable cubic SMO with low and high electron doping,[31,32]while the physical properties of carrier doped-4H SMO has rarely been studied.The only recent report on electron doping of 4H-SMO is fluorinated hexagonal SMO(i.e.,SMO3?xFx).[33]Although some interesting properties(i.e.,a spin-or cluster-glass-like state and ferroelectric nature)have been observed in such F-doped 4H-SMO,more exciting physical properties, such as magnetic phase transition,insulator-to-metal transition and magnetic polaron,remain unexplored in 4H-SMO.

    In general,doping of Mn-based oxides is usually achieved by introducing rare-earth(or alkaline-earth)cations rather than anions into the host material, which can be expressed asR1?xAxMnO3(orA1?xRxMnO3),whereRandAare rare-and alkaline-earth cations, respectively.Therefore, in this work,we perform systematic first-principles calculations to study the magnetic and electronic properties of doped 4H-SMO by using La3+to replace Sr2+[i.e., 4H-LaxSr1?xMnO3(LSMO)].Due to the formation of magnetic polaron,the doped 4H-SMO undergoes a localized magnetic phase transition from antiferromagnetism to ferrimagnetism.In addition, the energy gap decreases gradually with increasing doping concentration,exhibiting a tendency toward an insulator-to-metal transition.

    2.Model and method

    The following calculations were performed using the projector augmented wave pseudopotentials as implemented in the Viennaab initiosimulation package (VASP) code.[34,35]The revised Perdew–Burke–Ernzerhof for solids functional and the generalized gradient approximation (GGA) method are adopted to describe the crystalline structure and electron correlation.[36]The cutoff energy of plane wave is 550 eV.For both SMO and LSMO(x=0.25),a 9×9×5 Monkhorst–Packk-point mesh centered at theΓpoint is adopted for the Brillouin-zone integrations, while 9×9×3 and 10×10×2 meshes are used forx=0.125 andx=0.083 cases, respectively.

    The unit cell of 4H-SMO structure has 20 atoms(4 f.u.).Starting from the experimental 4H structure (space groupP63/mmc,a= 5.4434 ?A andc= 9.0704 ?A),[26]the lattice constants and inner atomic positions are fully relaxed until the Hellman–Feynman forces are converged to less than 0.01 eV/?A.Using the Dudarev implementation,[37]various values of the Hubbard repulsionUeff(=U ?J)on Mn 3d orbitals have been tested from 0 eV to 2 eV.For bulk 4H-SMO,both GGA and GGA +Ucan give reasonable crystal structure parameters (within<1% deviation) and well reproduce the magnetic ground state.To better compare with the data calculated by pure GGA in the literature,[28,38]the GGA is also adopted in this work,if it is not noted explicitly.

    3.Results and discussion

    Undoped SMO As shown in Fig.1(a), 4H-SMO structure (space groupP63/mmc) contains both corner- and facesharing octahedra,which is different from the cubic SMO with corner-sharing octahedra only.This hexagonal structure has relatively shorter Mn–Mn bonds with face sharing, resulting in Mn2O9dimers, while relatively longer Mn–Mn bonds are shown with corner sharing.

    First,to determine the magnetic ground state of undoped 4H-SMO, four most possible magnetic orders: ferromagnetism (FM), type-I antiferromagnetism (AF1), type-II antiferromagnetism(AF2)and type-III antiferromagnetism(AF3)[see Fig.1(b)] are calculated and compared in energy.Taking the AF1 state(all Mn ions are antiferromagnetically coupled along thec-axis)as the energy reference,the energies of all magnetic orders are summarized in Table 1, which suggest the AF1 to be the most stable state, in agreement with the previous studies.[28,39]In addition, according to these energy differences among various magnetic orders,the exchange coefficients can be obtained by mapping the system to a classical spin model with normalized spins (|S|=1).Here, the nearest-neighbor exchangeJ1refers to the magnetic coupling between face-shared Mn ions,while the next-nearest-neighbor exchangeJ2refers to the magnetic coupling between cornershared Mn ions, as indicated in Fig.1(b).For undoped 4HSMO,J1andJ2are 36.1 meV and 51.0 meV (see Table 1),respectively, implying a strong AFM coupling between Mn ions.

    Table 1.Comparison of undoped SMO and LSMO (x=0.25).The energy difference (in units of meV/Mn), exchange coefficients (in units of meV) and net magnetization (in units of μB) are from DFT calculations.AF1 is taken as the reference state for energy comparison.Exchange coefficients(nearest-neighbor exchange J1 and next-nearest-neighbor exchange J2)are calculated by mapping the DFT energies.Pure electron concentration(ele-concentration)case and pure lattice distortion case are also tested and compared.Notably, for the cases of x=0.25 (case B) and pure eleconcentration, while ‘AF2’ is ferrimagnetic, it has the same spin arrangement as AF2 order[see Fig.2(b)].

    Fig.1.(a) The side view and top view of 4H-SMO unit cell.Cornerand face-sharing octahedra are seen along the c axis.(b)Schematics of four possible magnetic orders: type-I antiferromagnetism(AF1),type-II antiferromagnetism (AF2), type-III antiferromagnetism (AF3), and ferromagnetism(FM).Exchange couplings are also indicated: nearestneighbor exchange J1 and next-nearest-neighbor exchange J2.(c)The density of states (DOS) and atom projected DOS (PDOS) of 4HSrMnO3 near the Fermi level.The Fermi energy is located at zero.

    Second, the total density of states (DOS) and atomicprojected density of states (PDOS) of 4H-SMO are shown in Fig.1(c).Clearly, the system is a Mott insulator with energy gap of~1.74 eV, even in the pure GGA calculation,which agrees with the previous calculations.[28,38]The calculated magnetic moment is 2.45μB/Mn, implying the highspin state of Mn4+(d3configuration).Both the valance band maximum and the conduction band minimum are mainly contributed by Mn t2gorbitals,despite the presence of hybridization between Mn 3d and O 2p orbitals around the Fermi level.

    In our DFT calculation with spin-orbit coupling (SOC),the energy of spins parallel to thexyplane is slightly lower(~0.15 meV/u.c.) than the energy of spins along thec-axis,in agreement with the previous study.[28]However,compared with the results without SOC effect,the energy gap and magnetic moment with SOC are almost unchanged(i.e.,~1.73 eV and 2.44μB/Mn, respectively), implying that the influence of SOC effect is very weak in this system and can be ignored in the following calculations.

    Fig.2.Crystal structure and corresponding electronic structure of Ladoped SMO.[(a),(b)]Two kinds of La-doped structures:(a)case A,(b)case B.The direction and length of the arrows indicate different spin arrangements and magnetic moments,respectively.Obviously,case A is antiferromagnetic,while case B is ferrimagnetic with the same spin arrangement as AF2 order.(c)–(h)Density of state(DOS)and projected density of state(PDOS)of La-doped SMO:(c)–(e)case A;(f)–(h)case B.The Fermi level for each case is set as zero, and the local moments of Mn ions are indicated.The portion of the valence band associated with electron doping is shaded in gray.Inset: the corresponding spatial distribution of added electron in La-doped SMO.

    La-Doped SMO First, the theoretically simplest doping case, i.e., 25% doping, is studied by using one La to replace one Sr in a unit cell.Due to the different valences between La3+and Sr2+, one more electron will be introduced into the system, which can effectively modulate the magnetic order and electronic structure.Since there are two kinds of nonequivalent La atoms in the 4H-SMO system, two doping cases(case A and case B)are tested and compared,as shown in Figs.2(a)and 2(b).

    In our calculations, the crystal structures of La-doped SMO are re-optimized with varying magnetism.As summarized in Table 1, the total energies show that AF2 is the most stable state for both cases A and B,instead of original AF1 in pure SMO bulk,suggesting the doping-driven magnetic phase transition.Interestingly, the intrinsic physical properties of cases A and B are completely different, even though both of them exhibit magnetic phase transitions:

    (i) The magnetic coupling strengths are different.For case A,the values of bothJ1andJ2are significantly reduced compared with those of the pure SMO.For case B, although the values ofJ2is still smaller than that of the pure SMO,the magnitude of itsJ1is nearly twice as large as that of the pure SMO(see Table 1).

    (ii) The net magnetic moments are different.The net magnetization of case A is 0μB/u.c., indicating that the system remains antiferromagnetism.However, the net magnetization of case B is?1μB/u.c.In this case, case B should be ferrimagnetic(with the same spin arrangement as AF2 order)rather than antiferromagnetic(see Table 1).

    (iii) The electronic structures are different.As shown in Figs.2(c)and 2(f),case A becomes metallic and undergoes an insulator–metal transition,while the energy gap of case B still exists despite very small value(~0.07 meV).

    To understand what makes case A different from case B,the atomic-projected density of states(PDOS)and corresponding distribution of electrons are plotted, which can be qualitatively used to analyze the effect of added electron on electronic structure,orbital occupation,and magnetic moment.As shown in Fig.2(a),since the doped La in case A is occupies a highly symmetric position, the introduced electron is equally divided by all Mn ions, which can be visualized by PDOS,local magnetic moments,as well as the spatial distribution of electron [see Figs.2(d) and 2(e)].In this case, all Mn ions within antiferromagnetic order are partially occupied,leading to a metallic behavior and zero net magnetic moment.

    However, for case B, the position of doped La ion is no longer located in the center of the two Mn2O9dimers but close to one of them(i.e.,Mn3–Mn4dimer)[see Fig.2(b)],then the occupation of the introduced electron on the near-La dimer(i.e.,Mn3–Mn4dimer)is more prominent than that of the other one(i.e.,Mn1–Mn2dimer).As shown in Figs.2(g)and 2(h),the added electron is indeed localized on Mn3–Mn4dimer,resulting in an uneven distribution of charges and unequal local magnetic moments between the Mn3–Mn4(2.14μB/Mn)and Mn1–Mn2(?2.51μB/Mn)dimers.In addition,compared with the Mn–O–Mn bond angles(~80.9°)in bulk 4H-SMO,the change of Mn–O–Mn bond angles in the Mn3-Mn4dimer(~76.9°) is relatively large, whereas the change of Mn–O–Mn bond angles in the Mn1–Mn2dimer (~81.1°) is very small.Considering the results of electron restricted by strong Coulombic interaction and the lattice distortions in this system,the 3d polaron is formed,which will enhance the nearestneighbor magnetic coupling and contribute to the semiconductor behavior.[9]Similar magnetic polarons also exist in the electron-doped manganite LaxCa1?xMnO3,which are Mnsites FM clusters embedded in AFM region.[40]Based on the polaron forming and antiferromagnetic arrangement between Mn3–Mn4dimer and Mn1–Mn2dimer,a nonzero net magnetic moment appears.

    By comparing the energies of cases A and B,it is found that case B owns the lowest energy (~109 meV/Mn lower than that of case A), indicating that it is easier to form magnetic polaron in the La-doped 4H-SMO structure.The underlying physical mechanism is that the 3d electrons have strong Hubbard interaction, which tend to favor localized magnetic moments,thus the energy gain from forming magnetic polaron is larger than that of delocalized one.[40]In the following calculation,case B is adopted as default doped structure.

    Fig.3.The tested magnetic and electronic properties of case B.(a)Electronic structure with only pure electron concentration.The Fermi energy is positioned at zero.(b)Electronic structure with only pure lattice distortion.(c)The energy difference as a function of Ueff.Here,AF2 is taken as the reference state for energy comparison.(d)The energy gap as a function of Ueff.

    As discussed above, the chemical doping effect on the material is usually achieved by changing both carrier concentration and lattice distortion.A direct question is which factor dominates the magnetic phase transition and which factor dominates the change in electronic structure,or both together.To clarify the physical mechanisms behind these phenomena,pure electron concentration and pure lattice distortion are calculated.Here,the pure electron concentration is simulated by embedding La ion in the ground-state SMO structure without re-optimizing the lattice structure, thus qualitatively avoiding the effect of lattice distortion.In contrast,the pure lattice distortion is achieved by calculating pure SMO with the same structure as the ground-state LSMO,so the system maintains the same electron concentration as pure SMO and retains the same lattice distortion generated by La doping.

    As listed in Table 1, the magnetic phase transition from AF1 to AF2 and a net magnetic moment can be induced by pure electron concentration but not by pure lattice distortion,implying that the magnetic properties of La-doped SMO are mainly affected by electron concentration.However, the net magnetic moment induced by pure electron concentration(?0.87μB)is slightly smaller than that of the real system with lattice distortion(?1μB).The underlying reason for this issue is that in the absence of lattice distortion,the doped electron is slightly diffused and not completely localized on the near-La Mn dimer,leading to metallic behavior[see Fig.3(a)]and reduction of the net magnetic moment(see Table 1).By considering lattice distortion but without alteration of electron concentration, the energy gap is almost the same as that of pure SMO, as shown in Fig.3(b).Therefore, the semiconducting behavior and?1μBnet moment are the result of a cooperative mechanism between electron concentration and lattice distortion.

    To further verify the reliability of the magnetic phase transition,the energy difference is also calculated by varyingUeff.As shown in Fig.3(c), taking AF2 as the reference state for energy comparison,the energy differences are always positive,implying a robust conclusion for the magnetic phase transition in La-doped SMO.The energy gap is also checked,as shown in Fig.3(d).The energy gap increases almost linearly withUeff,suggesting a semiconductor fact for La-doped SMO.

    Fig.4.(a)Left: crystalline structure of LaxSr1?xMnO3 along the c axis with different doping concentrations: 25%(x=1/4),12.5%(x=1/8),and 8.25% (x=1/12).Green: Sr; yellow: La; purple: Mn; red: O.Right: the corresponding magnetic ground states: AF2 for x =1/4,AF2–AF1 hybrid magnetic order for x=1/8 and x=1/12.(b)–(d)DOS near the Fermi level plotted with some selected doping concentrations: 25%, 12.5%, and 8.25%.The Fermi energy is located at zero.The topmost valence band and the bottommost conducting band are marked by(gray)broken lines.

    The localization of added electron can be further confirmed by calculating other doping concentrations (i.e.,x=1/8 andx= 1/12), as shown in Fig.4.Starting from thex=1/4 minimal cell,pure SMO cell is doubled/trebled along thecaxis.To determine the magnetic ground state, several possible magnetic orders have been tested,including FM,AF1,AF2,AF3,and a special hybrid magnetic order[denoted as AF2–AF1 here;see Fig.4(a)].The AF2–AF1 state is AF2 order in the La-doped unit cell but AF1 order in La-undoped unit cell(or supercells).

    In our calculations, the AF2–AF1 state owns the lowest energy for bothx=1/8 andx=1/12 cases, due to the formation of magnetic polaron.Such a magnetic polaron can be further confirmed by the total DOS.As shown in Fig.4(b),the electron-occupied or even unoccupied states (near the Fermi level) inx=1/8 andx=1/12 cases are very similar to thex=1/4 case, suggesting the same localized feature of electronic structures.In addition,with decreasing doping concentration, the reduced doping/undoping ratio will make the energy gap approach to the pure SMO, leading to a gradually increasing bandgap.In other words,the energy gap decreases with increasing doping concentration until the highly probable insulator–metal transition occurs.Of course,in DFT calculation with high-density electron doping,there are many choices for the design of doping structure (ordered or disordered), so the final electronic properties may also change accordingly,which need further experimental confirmation and verification.

    4.Conclusion

    In summary, magnetic and electronic properties of Ladoped 4H-SMO have been studied systematically using the first-principles calculation.The La doping to 4H-SMO can not only modulate the electron concentration but also affect the lattice distortion.The extra electron with distorted lattice forms the polaron, leading to a localized magnetic phase transition from antiferromagnetism to ferrimagnetism as well as the semiconducting behavior.Moreover, with increasing doping concentration, the energy gap of La-doped 4H-SMO decreases gradually,showing a tendency of insulator-to-metal transition.Further experimental studies are expected to confirm and verify our predictions.

    Acknowledgment

    This work was supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY222167 and NY220005).

    猜你喜歡
    李杰
    Memristor’s characteristics: From non-ideal to ideal
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    基于SPSS軟件建立ARIMA模型
    客聯(lián)(2022年3期)2022-05-31 04:28:08
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    ?。楱#镅酲耍颞Γ?多duō 多duo
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    国产成人免费无遮挡视频| 国国产精品蜜臀av免费| 色婷婷av一区二区三区视频| 丰满迷人的少妇在线观看| 午夜福利影视在线免费观看| 晚上一个人看的免费电影| 亚洲第一av免费看| videosex国产| 久久精品国产自在天天线| 国产日韩一区二区三区精品不卡| 免费观看性生交大片5| 久久精品久久精品一区二区三区| 黄色视频在线播放观看不卡| 十八禁高潮呻吟视频| 看十八女毛片水多多多| 精品一区二区免费观看| 久久97久久精品| 性色av一级| 精品人妻在线不人妻| 免费女性裸体啪啪无遮挡网站| 亚洲美女视频黄频| 99九九在线精品视频| 国产精品蜜桃在线观看| 国产精品.久久久| 中文字幕人妻丝袜制服| 在线观看三级黄色| 曰老女人黄片| 日韩在线高清观看一区二区三区| 女性被躁到高潮视频| 国产 精品1| 国产又爽黄色视频| 久久久亚洲精品成人影院| 国产精品人妻久久久影院| 一二三四中文在线观看免费高清| 久久99热6这里只有精品| 亚洲人成网站在线观看播放| 久久99精品国语久久久| 黄片播放在线免费| 18禁动态无遮挡网站| 99国产精品免费福利视频| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 下体分泌物呈黄色| 色5月婷婷丁香| 18在线观看网站| 欧美另类一区| 成人二区视频| 久久精品人人爽人人爽视色| 桃花免费在线播放| a级毛片黄视频| 日韩视频在线欧美| 汤姆久久久久久久影院中文字幕| 日韩大片免费观看网站| 欧美精品国产亚洲| 亚洲欧美精品自产自拍| 美女大奶头黄色视频| 成人黄色视频免费在线看| 亚洲综合色网址| 国产成人免费无遮挡视频| 午夜激情av网站| 婷婷色av中文字幕| 久久久久久人妻| 免费人成在线观看视频色| 久久精品国产亚洲av涩爱| 寂寞人妻少妇视频99o| 国产精品人妻久久久影院| 一边亲一边摸免费视频| 精品一区二区三区视频在线| 亚洲少妇的诱惑av| 久久鲁丝午夜福利片| 成人黄色视频免费在线看| av国产精品久久久久影院| 欧美日韩亚洲高清精品| 亚洲av电影在线进入| 精品国产一区二区久久| 国产精品熟女久久久久浪| 日韩制服丝袜自拍偷拍| 男女免费视频国产| 亚洲美女视频黄频| 国产亚洲最大av| 国精品久久久久久国模美| 免费日韩欧美在线观看| 激情视频va一区二区三区| 亚洲精品一区蜜桃| 久久久欧美国产精品| 国产白丝娇喘喷水9色精品| 天天躁夜夜躁狠狠久久av| 搡女人真爽免费视频火全软件| 一级毛片电影观看| 国产精品久久久久成人av| 蜜桃国产av成人99| 秋霞伦理黄片| 不卡视频在线观看欧美| 国产黄频视频在线观看| 校园人妻丝袜中文字幕| videos熟女内射| 狠狠婷婷综合久久久久久88av| 精品午夜福利在线看| 中文乱码字字幕精品一区二区三区| 久久国产精品男人的天堂亚洲 | 制服诱惑二区| 亚洲综合精品二区| 成年女人在线观看亚洲视频| 男人操女人黄网站| 夜夜骑夜夜射夜夜干| 欧美精品高潮呻吟av久久| 全区人妻精品视频| 啦啦啦在线观看免费高清www| av不卡在线播放| 免费人成在线观看视频色| 视频在线观看一区二区三区| 美女福利国产在线| 亚洲国产看品久久| 哪个播放器可以免费观看大片| 中文字幕av电影在线播放| 久久精品国产亚洲av天美| 精品国产露脸久久av麻豆| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美视频二区| 亚洲成色77777| 亚洲成国产人片在线观看| 女性被躁到高潮视频| 午夜免费男女啪啪视频观看| 视频区图区小说| 最后的刺客免费高清国语| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 在线观看美女被高潮喷水网站| 晚上一个人看的免费电影| 大陆偷拍与自拍| 亚洲国产精品专区欧美| 伦理电影免费视频| 性色avwww在线观看| 成人二区视频| 80岁老熟妇乱子伦牲交| 18+在线观看网站| 免费女性裸体啪啪无遮挡网站| 国产一区二区在线观看日韩| 制服人妻中文乱码| 丝袜脚勾引网站| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 91精品伊人久久大香线蕉| 国产亚洲av片在线观看秒播厂| 成人毛片60女人毛片免费| 亚洲精品国产色婷婷电影| 久热久热在线精品观看| 亚洲欧美精品自产自拍| 日本av手机在线免费观看| 亚洲伊人色综图| 大话2 男鬼变身卡| 国精品久久久久久国模美| 久久久a久久爽久久v久久| 人成视频在线观看免费观看| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| 日本与韩国留学比较| 精品卡一卡二卡四卡免费| 午夜福利视频精品| av有码第一页| 黄色一级大片看看| 亚洲国产精品一区二区三区在线| 日韩精品有码人妻一区| 国产精品熟女久久久久浪| 久久久精品区二区三区| 午夜福利视频在线观看免费| 高清在线视频一区二区三区| 国产精品蜜桃在线观看| 考比视频在线观看| 成人亚洲精品一区在线观看| 国产精品一国产av| 国国产精品蜜臀av免费| 成年人午夜在线观看视频| 午夜视频国产福利| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 色5月婷婷丁香| 久久久久久伊人网av| 在线 av 中文字幕| 亚洲久久久国产精品| 久久这里只有精品19| 老司机亚洲免费影院| 宅男免费午夜| 亚洲av.av天堂| 九色亚洲精品在线播放| 欧美日韩综合久久久久久| 色哟哟·www| 欧美亚洲日本最大视频资源| 中文天堂在线官网| 日本爱情动作片www.在线观看| 老女人水多毛片| 1024视频免费在线观看| 又黄又粗又硬又大视频| 亚洲精品美女久久av网站| 国产精品国产三级国产av玫瑰| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| 久久国内精品自在自线图片| 久久久久国产网址| av一本久久久久| 老熟女久久久| av播播在线观看一区| 又黄又粗又硬又大视频| 日韩熟女老妇一区二区性免费视频| 国产男人的电影天堂91| 99久久人妻综合| 国产永久视频网站| 精品久久久精品久久久| 99国产精品免费福利视频| 精品久久蜜臀av无| 内地一区二区视频在线| 国产黄频视频在线观看| 国产 精品1| 久久久国产精品麻豆| 午夜久久久在线观看| 中文字幕亚洲精品专区| 国产黄色免费在线视频| 女性被躁到高潮视频| 成年人免费黄色播放视频| 日韩大片免费观看网站| 亚洲成人一二三区av| 欧美日韩一区二区视频在线观看视频在线| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 妹子高潮喷水视频| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 国产av一区二区精品久久| 99香蕉大伊视频| 9热在线视频观看99| 日韩熟女老妇一区二区性免费视频| 国产精品欧美亚洲77777| 乱人伦中国视频| 婷婷色麻豆天堂久久| 性色avwww在线观看| 欧美人与善性xxx| 一级片'在线观看视频| 国产精品蜜桃在线观看| 成人手机av| 国内精品宾馆在线| 免费高清在线观看日韩| 久久青草综合色| 精品视频人人做人人爽| 日韩三级伦理在线观看| 伊人久久国产一区二区| 成人国产麻豆网| 在线免费观看不下载黄p国产| 欧美日韩综合久久久久久| 国产成人av激情在线播放| 一级爰片在线观看| 极品人妻少妇av视频| 三级国产精品片| 狠狠婷婷综合久久久久久88av| 免费观看性生交大片5| 日韩欧美一区视频在线观看| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡 | 99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 丝袜美足系列| 日韩,欧美,国产一区二区三区| 国产激情久久老熟女| 国产乱人偷精品视频| 国产精品无大码| 亚洲精品日本国产第一区| av有码第一页| 亚洲 欧美一区二区三区| 少妇的逼水好多| 日韩三级伦理在线观看| 在线观看人妻少妇| 欧美日韩视频精品一区| 三级国产精品片| 国产成人精品无人区| 男男h啪啪无遮挡| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频 | 日本欧美国产在线视频| 熟女电影av网| 午夜福利视频精品| 女人久久www免费人成看片| 久久影院123| 国产色婷婷99| 十分钟在线观看高清视频www| 丝袜在线中文字幕| 制服诱惑二区| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 黄色毛片三级朝国网站| 黄色一级大片看看| 最近中文字幕高清免费大全6| 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| 婷婷色综合大香蕉| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 国产精品久久久久久精品古装| 日韩人妻精品一区2区三区| 日韩av在线免费看完整版不卡| 婷婷色综合www| 亚洲中文av在线| 国产综合精华液| 国产精品国产av在线观看| 最近最新中文字幕免费大全7| 亚洲精品国产av蜜桃| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 免费女性裸体啪啪无遮挡网站| av卡一久久| 蜜桃在线观看..| 一级毛片 在线播放| 18禁观看日本| 99热国产这里只有精品6| 超碰97精品在线观看| 日本-黄色视频高清免费观看| 搡老乐熟女国产| 欧美97在线视频| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 日韩制服骚丝袜av| 国产爽快片一区二区三区| 亚洲av欧美aⅴ国产| 最后的刺客免费高清国语| 欧美激情 高清一区二区三区| 国产国拍精品亚洲av在线观看| 新久久久久国产一级毛片| 99热国产这里只有精品6| 国产一级毛片在线| 午夜av观看不卡| 少妇 在线观看| a级毛片在线看网站| av女优亚洲男人天堂| 欧美xxⅹ黑人| av女优亚洲男人天堂| 大话2 男鬼变身卡| 欧美日韩av久久| 最近最新中文字幕大全免费视频 | 亚洲av中文av极速乱| 黄色视频在线播放观看不卡| 91午夜精品亚洲一区二区三区| 亚洲欧美中文字幕日韩二区| 伊人亚洲综合成人网| 成年人午夜在线观看视频| 制服丝袜香蕉在线| 曰老女人黄片| 亚洲一区二区三区欧美精品| 国产乱来视频区| 日韩av在线免费看完整版不卡| 国产成人aa在线观看| 亚洲av欧美aⅴ国产| 久久久久精品性色| 1024视频免费在线观看| 国产亚洲一区二区精品| 中文欧美无线码| 国产乱来视频区| 免费高清在线观看视频在线观看| 另类精品久久| 如日韩欧美国产精品一区二区三区| 在线免费观看不下载黄p国产| 男女啪啪激烈高潮av片| 美国免费a级毛片| 不卡视频在线观看欧美| xxx大片免费视频| 一级毛片我不卡| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| 午夜视频国产福利| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 搡女人真爽免费视频火全软件| 欧美精品亚洲一区二区| 亚洲成色77777| 狂野欧美激情性xxxx在线观看| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 亚洲成国产人片在线观看| 亚洲五月色婷婷综合| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 久久久国产欧美日韩av| 亚洲熟女精品中文字幕| 一本久久精品| 人妻一区二区av| 久久久国产一区二区| 内地一区二区视频在线| 欧美日韩成人在线一区二区| 中文字幕精品免费在线观看视频 | www.熟女人妻精品国产 | 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美色中文字幕在线| 午夜激情久久久久久久| 国产精品人妻久久久久久| 国产精品一区二区在线不卡| 国产爽快片一区二区三区| 精品一区二区免费观看| 亚洲精品中文字幕在线视频| 亚洲av成人精品一二三区| 黑人巨大精品欧美一区二区蜜桃 | 赤兔流量卡办理| 九色成人免费人妻av| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| 国产男女超爽视频在线观看| 老司机亚洲免费影院| 精品人妻偷拍中文字幕| 成人无遮挡网站| 精品少妇黑人巨大在线播放| 9色porny在线观看| 精品人妻在线不人妻| 国产成人精品婷婷| 少妇被粗大的猛进出69影院 | 久久人人爽人人片av| 亚洲美女黄色视频免费看| 亚洲国产成人一精品久久久| 亚洲国产av影院在线观看| 极品少妇高潮喷水抽搐| 精品午夜福利在线看| tube8黄色片| 久久精品国产自在天天线| 成人二区视频| 美女国产视频在线观看| 精品国产一区二区三区四区第35| 中文字幕最新亚洲高清| 精品人妻熟女毛片av久久网站| 亚洲欧美日韩卡通动漫| 99国产综合亚洲精品| 国产免费一区二区三区四区乱码| 欧美日韩一区二区视频在线观看视频在线| 亚洲高清免费不卡视频| 日本-黄色视频高清免费观看| 久久久久精品性色| 如日韩欧美国产精品一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲国产av新网站| 国产免费又黄又爽又色| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 大香蕉97超碰在线| 亚洲精品乱码久久久久久按摩| 日韩一区二区三区影片| 超色免费av| 欧美3d第一页| 日本vs欧美在线观看视频| 亚洲精品456在线播放app| 菩萨蛮人人尽说江南好唐韦庄| 如何舔出高潮| 一级毛片 在线播放| 免费人成在线观看视频色| 久久久久人妻精品一区果冻| 黄色配什么色好看| 国内精品宾馆在线| 日本与韩国留学比较| 久热久热在线精品观看| 18禁裸乳无遮挡动漫免费视频| 日韩精品免费视频一区二区三区 | 国产亚洲av片在线观看秒播厂| 啦啦啦在线观看免费高清www| 国产一区二区在线观看日韩| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线| 我要看黄色一级片免费的| 精品福利永久在线观看| 婷婷色av中文字幕| 国产精品国产三级国产av玫瑰| av视频免费观看在线观看| 欧美性感艳星| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 精品福利永久在线观看| 如何舔出高潮| 少妇的丰满在线观看| 亚洲精品一二三| 在线观看免费高清a一片| 亚洲国产精品一区二区三区在线| 高清欧美精品videossex| 2022亚洲国产成人精品| av线在线观看网站| 国产男女内射视频| 欧美激情极品国产一区二区三区 | 亚洲一区二区三区欧美精品| 又黄又粗又硬又大视频| 中文字幕人妻丝袜制服| 美国免费a级毛片| 精品国产一区二区三区久久久樱花| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 熟女电影av网| 高清欧美精品videossex| 免费女性裸体啪啪无遮挡网站| 成人无遮挡网站| 国产av码专区亚洲av| 精品国产国语对白av| 黑丝袜美女国产一区| 99久久综合免费| 免费高清在线观看日韩| 咕卡用的链子| 免费观看在线日韩| 黄色毛片三级朝国网站| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 国产在线免费精品| 国产免费视频播放在线视频| 日韩熟女老妇一区二区性免费视频| 国产免费视频播放在线视频| 亚洲人成77777在线视频| 热re99久久国产66热| 久久久国产精品麻豆| 好男人视频免费观看在线| 亚洲成人av在线免费| 精品久久久精品久久久| 欧美xxⅹ黑人| 欧美日韩av久久| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 日产精品乱码卡一卡2卡三| 性色av一级| 一区在线观看完整版| 丝袜在线中文字幕| 欧美日韩精品成人综合77777| 久久久久国产精品人妻一区二区| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 丁香六月天网| 黄片无遮挡物在线观看| 国产精品99久久99久久久不卡 | 五月伊人婷婷丁香| 老女人水多毛片| 多毛熟女@视频| 深夜精品福利| 啦啦啦视频在线资源免费观看| videosex国产| 男人爽女人下面视频在线观看| 寂寞人妻少妇视频99o| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃 | 国产色婷婷99| 男女国产视频网站| 免费人成在线观看视频色| 有码 亚洲区| 乱人伦中国视频| 青青草视频在线视频观看| 中文精品一卡2卡3卡4更新| 99久久人妻综合| 在线观看三级黄色| 免费在线观看完整版高清| 午夜福利视频精品| 黑丝袜美女国产一区| 99久久精品国产国产毛片| 国产免费一级a男人的天堂| videossex国产| 交换朋友夫妻互换小说| 成人二区视频| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| 少妇被粗大的猛进出69影院 | 一级毛片 在线播放| 亚洲欧美色中文字幕在线| 亚洲综合色网址| 两个人免费观看高清视频| av女优亚洲男人天堂| 青青草视频在线视频观看| 中国美白少妇内射xxxbb| 亚洲精品国产色婷婷电影| 18禁国产床啪视频网站| 天美传媒精品一区二区| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 免费av不卡在线播放| 一区二区三区乱码不卡18| 久久久国产精品麻豆| 欧美国产精品va在线观看不卡| 在线观看免费日韩欧美大片| 国产精品国产三级国产专区5o| 国产 一区精品| 国产欧美日韩一区二区三区在线| 亚洲国产av影院在线观看| 国产亚洲精品第一综合不卡 | 丝瓜视频免费看黄片| 我的女老师完整版在线观看| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 尾随美女入室| 美女内射精品一级片tv| 成年人免费黄色播放视频| 咕卡用的链子| 天天操日日干夜夜撸| 国产亚洲精品第一综合不卡 | 人妻系列 视频| av又黄又爽大尺度在线免费看| 大香蕉久久网| 国产日韩欧美视频二区| 精品午夜福利在线看| 国产免费现黄频在线看| 99热全是精品| av免费在线看不卡| 国产欧美亚洲国产| 色婷婷久久久亚洲欧美| 精品一区二区三区四区五区乱码 | 国产亚洲午夜精品一区二区久久| 99精国产麻豆久久婷婷| 香蕉精品网在线| 国产视频首页在线观看|